

MACHINE LEARNING IN ARTIFICIAL

INTELLIGENCE

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF

NATURAL AND APPLIED SCIENCES OF ÇANKAYA

UNIVERSITY

BY

TARDU ERCAN

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE IN

COMPUTER ENGINEERING

May 2006

iv

ABSTRACT

PERFORMANCE ANALYSIS OF DECISION TREE

ALGORITHMS ON WATER-CONSUMPTION DOMAIN

ERCAN, Tardu

M.S.c., Department of Computer Engineering

 Supervisor: Dr. Ali Rıza AŞKUN

May 2006, 76 Pages

In today’s world, learning is a process of computers as well as human

being. “Learnable” systems and computers will become more important in

following years and affect our lives in many ways. In this thesis, a survey

has been carried out in the field of artificial intelligence, machine learning

v

and especially on decision tree learning algorithms. Some of the decision

tree learning algorithms was used to learn rules which are extracted from a

dataset. The dataset which consists of water consumption of Ankara for one

year and meteorological data of Ankara was used. The results indicate that

which learning method is more efficient and have better performance.

Keywords: Artificial Intelligence, Machine Learning, Decision Tree

Algorithms

vi

ÖZ

KARAR AĞACI ALGORİTMALARININ SU TÜKETİM ALANI

ÜSTÜNDE UYGULANAN PERFORMANS ANALİZİ

ERCAN, Tardu

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi : Dr. Ali Rıza AŞKUN

Mayıs 2006, 76 sayfa

Bugünün dünyasında, “Öğrenme” insanların yaptığı kadar,

bilgisayarlarında yaptığı bir eylem haline gelmiştir. “Öğrenebilen” sistemler

ve bilgisayarlar önümüzdeki yıllarda, hayatımızda çok daha fazla yer

alacaklar.Bu tez içinde, yapay zeka ve öğrenme,

vii

 özellikle karar verme ağacı algoritmalarının yapısı üzerinde çalışılmıştır

Öğrenme kurallarını, veri setimizden çıkarmak için bazı algoritmalar

kullanılmıştır. Bu veri setimizde Ankara`nın bir yıllık su tüketim oranı ve bir

yıllık meteoroloji bilgileri vardır.

Ortaya çıkan sonuçlar ışığında hangi algoritmanın daha verimli ve daha

iyi performansa sahip olduğuna işaret eder.

Anahtar Sözcükler: Yapay Zeka, Öğrenme,Karar Ağacı Algoritması.

viii

ACKNOWLEDGEMENTS

I would like to declare my sincere gratefulness to my supervisor Ali

Rıza AŞKUN for his enormous support and guidance during this thesis.

I would like to thanks Prof. Dr Mehmet Reşit TOLUN and Assoc. Prof.

Ferda Nur ALPASLAN for reading and commenting on this thesis.

I would also like to thank to a special friend, Zeki YETGİN, who

showed to me the meaning of friendship.

Finally special thanks to my father Prof. Dr Yavuz ERCAN, my mother

Nesime ERCAN, my sister İlay İLERİ, my sister`s husband Cihangir İLERİ

and My niece Damla İLERİ for their never ending support.

ix

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM PAGEiii

ABSTRACT ... iv

ÖZ .. vi

ACKNOWLEDGEMENTS...viii

TABLE OF CONTENTS.. ix

LIST OF TABLES .. xii

CHAPTERS :

INTRODUCTION ..1

1.1 Sections ...1

1.2 What Is Artificial Intelligence About?..2

THE IDEA OF MACHINE LEARNING..5

2.1 The Basic Learning Model ...6

x

2.1.1 Types of Learning... 7

2.2 Topics in Machine Learning...8

2.2.1 Artificial Neural Networks ... 8

2.2.2 Genetic Algorithms... 15

2.2.3 Inductive Learning.. 18

2.2.3.1 Decision Trees ... 18

2.2.4 Concept Learning and the General-To-Specific Ordering 21

2.2.5 Evaluating Hypotheses.. 23

2.2.7 Computational Learning Theory... 26

2.2.8 Cased-Based Learning .. 28

2.2.9 Learning Sets of Rules .. 29

2.2.10 Analytical Learning .. 31

2.2.11 Combining Inductive and Analytical Learning... 33

2.2.12 Reinforcement Learning ... 35

ALGORITHMS .. 40

3.1 C4.5 Algorithm...40

3.2 Cart Algorithm..41

3.3 Quest Algorithm ...41

3.4 Chaid Algorithm...41

3.5 Id3 Algorithm ...42

xi

3.6 Comparison of Classification Tree Methods ..44

PROGRAMS .. 47

4.1 SIPINA (Research Edition) ..47

ALGORITHM SELECTION ... 49

5.1 Selection ...49

5.2 Executing Algorithms...49

5.2.1 Quest ..50

5.2.2 Chaid..52

5.2.3 Cart ..52

5.2.4 ID3...54

5.2.5 C4.5..55

5.3 Comparison Table...58

CONCLUSION .. 59

REFERENCES... 62

xii

LIST OF TABLES

Table 1. Inductive and Analytical Learning………………… 33

Table 2. Efficiency Comparison between Algorithms……… 58

1

CHAPTER 1

INTRODUCTION

1.1 Sections

In first section, brief explanation of Artificial Intelligence is given.

Today and tomorrow of A.I, areas of Artificial Intelligence and relation

between A.I and computer science is mentioned.

In second section, Machine-learning topics are widely pointed out. In

addition, the idea of learning and basic learning model are explained.

In third section, which algorithms are used in this thesis and “what are

their specifications?” are explained.

In fourth section, software, which is used in this thesis, is clarified.

In fifth section, performance evaluation is explained.

2

In the last section, conclusion of thesis has been made.

1.2 What Is Artificial Intelligence About?

Artificial Intelligence is a relatively new discipline (born in the middle

of the 20th century). It is increasingly frequently mentioned in newspapers,

magazines, TV, films and in various kinds of computer entertainments, yet

it is not widely understood. Some people think it has already failed and been

abandoned, whereas in fact it is steadily growing in academy and industry,

though the work is not always labeled as "Artificial Intelligence". That is

because some of the important ideas and techniques have been absorbed into

software engineering.

It is a central part of one of the most profound scientific and intellectual

developments of the last century: the study of information, how it can be

acquired, stored, manipulated, extended, used, and transmitted, whether in

machines, or humans or other animals. [1]

Physics and chemistry study matter, energy, forces, and the various

ways they can be combined and transformed. Biology, geology, medicine,

and many other sciences and engineering disciplines build on this by

studying more and more complex systems built from physical components.

All this research requires an understanding of naturally occurring and

artificial machines which operate on forces, energy of various kinds, and

transform or rearrange matter.

But some of the machines, both natural and artificial, also manipulate

knowledge.

It is now clear that a new kind of science is required for the study of the

3

principles by which

• knowledge is acquired and used,

• goals are generated and achieved,

• information is communicated,

• collaboration is achieved,

• concepts are formed,

• Languages are developed.

We could call it the science of knowledge or the science of intelligence.

This is what AI is about. Not only artificial systems, but also human

beings and many living organisms acquire, manipulate, store, use and

transmit information. They are also driven or controlled by it: e.g. made

happy by praise, made sad by bad news, made afraid by noises in the dark,

and so on. From this point it is not surprising that in recent years the study of

emotions has been growing in importance in AI.

So AI, despite its unfortunate name, is about natural information

processing systems as well as artificial systems, and not just about how they

perceive learn and think, but also about what they want and how they feel. It

has already had a profound impact on the study of human minds.

How does AI relate to computer science, is it another new discipline?

In part it is like the relationship between physics and mathematics.

Mathematics develops many concepts and techniques which physics uses,

but the central goal of physics is to understand the world, not to understand

those techniques. Likewise computer science (along with mathematics,

electronic engineering and software engineering) develops general theories

about information processing, and helps to create powerful general tools

(computers, operating systems and compilers) which are used in AI, but

these are not the central focus of AI. The general concepts, techniques and

4

tools produced by computer science are used by AI researchers in the

process of studying something else, the kinds of information processing

capabilities which we find in many living organisms, and which might also

be created in new machines of many kinds.

However, just as the history of physics includes many episodes where

mathematics was enriched by the work of theoretical physicists, also AI had

a great deal of influence on the development of computer science. But

equally it is having a deep impact on other disciplines with which it is

connected, especially philosophy, psychology and linguistics.[2],[3]

5

CHAPTER 2

THE IDEA OF MACHINE LEARNING

The idea behind the learning, how agents work, interaction between the

agent and the world is the some important problems in today Artificial

Intelligence studies. Machine learning can understand and improve

efficiency of human learning. For example, use to improve methods for

teaching and tutoring people, as done in Computer-aided instruction. It

discovers new things or structure that is unknown to humans. Especially, like

in the Data mining. It fills in skeletal or incomplete specifications about a

domain.Large, complex AI systems cannot be completely derived by hand

and require dynamic updating to incorporate new information. Learning new

characteristics expands the domain or expertise. Briefly today’s one of the

most important topic in the AI is “learning”. Investigating the learning

algorithms is a large study area in computer science. [4]

Knowledge Discovery, machine learning is most commonly used to

6

mean the application of induction algorithms, which is one step in the

knowledge discovery process. In that definition, training examples are

externally supplied, whereas here they are assumed to be supplied by a

previous stage of the knowledge discovery process. Machine Learning is the

field of scientific study that concentrates on induction algorithms and on

other algorithms that can be said to “learn”. It has simply:

Understand and improve efficiency of human learning. For example,

use to improve methods for teaching and tutoring people, as done in CAI ---

computer-aided instruction

• Discover new things or structure that is unknown to humans Example:

Data mining

• Fill in skeletal or incomplete specifications about a domain Large,

complex AI systems cannot be completely derived by hand and require

dynamic updating to incorporate new information. Learning new

characteristics expands the domain or expertise.

2.1 The Basic Learning Model

Learning agents consist of four main components. They are:

Learning element -- the part of the agent responsible for improving its

performance

Performance element -- the part that chooses the actions to take

Critic -- tells the learning element how the agent is doing

Problem generator -- suggests actions that could lead to new, informative

experiences (suboptimal from the point of view of the performance element,

7

but designed to improve that element)

In designing a learning system, there are four major issues to consider:

components -- which parts of the performance element are to be improved

representation -- of those components

feedback -- available to the system

prior information -- available to the system

All learning can be thought of as learning the representation of a function.

2.1.1 Types of Learning

There are six main types of learning.

Speed-up learning

A type of deductive learning that requires no additional input, but

improves the agent's performance over time. There are two kinds, rote

learning and generalization .Data caching is an example of how it would be

used.

Learning by taking advice

Deductive learning in which the system can reason about new

information added to its knowledge base.

Learning from examples

Inductive learning, concepts are learned from sets of labelled instances.

8

Clustering

“Natural classes” are found for data instances, as well as ways of

classifying them in an unsupervised inductive learning. Examples include

COBWEB, AUTOCLASS.

Learning by analogy

A system transfers knowledge from one database into that of a different

domain in inductive learning.

Discovery

In this method both inductive and deductive learning in which an agent

learns without help from a teacher. It is deductive if it proves theorems and

discovers concepts about those theorems; it is inductive when it raises

conjectures.

2.2 Topics in Machine Learning

It can be categorized into different approaches:

2.2.1 Artificial Neural Networks

Artificial Neural Network is a system loosely modeled on the human

brain. The field goes by many names, such as connectionism, parallel

distributed processing, neuro-computing, natural intelligent systems,

machine learning algorithms, and artificial neural networks. It is an attempt

to simulate within specialized hardware or sophisticated software, the

multiple layers of simple processing elements called neurons. Each neuron is

9

linked to certain of its neighbors with varying coefficients of connectivity

that represent the strengths of these connections. Learning is accomplished

by adjusting these strengths to cause the overall network to output

appropriate results.

The most basic components of neural networks are modeled after the

structure of the brain. Some neural network structures are not closely to the

brain and some does not have a biological counterpart in the brain. However,

neural networks have a strong similarity to the biological brain and therefore

a great deal of the terminology is borrowed from neuroscience. The most

basic element of the human brain is a specific type of cell, which provides us

with the abilities to remember, think, and apply previous experiences to our

every action. These cells are known as neurons, each of these neurons can

connect with up to 200000 other neurons. The power of the brain comes

from the numbers of these basic components and the multiple connections

between them. Basically, a biological neuron receives inputs from other

sources, combines them in some way, performs a generally nonlinear

operation on the result, and then output the final result.

The basic unit of neural networks, the artificial neurons, simulates the

four basic functions of natural neurons. Of course artificial neurons are much

simpler than the biological neuron. Various inputs in the neural network are

represented by the mathematical symbol, x (n). Each of these inputs are

multiplied by a connection weight, these weights are represented by w (n). In

the simplest case, these products are simply summed, fed through a transfer

function to generate a result, and then output. Even though all artificial

neural networks are constructed from this basic building block the

fundamentals may vary in these building blocks and there are differences.

In the design part, the developer must go through a period of trial and

error in the design decisions before coming up with a satisfactory design.

The design issues in neural networks are complex and are the major concerns

10

of system developers.

Designing a neural network consists of:

* Arranging neurons in various layers.

* Deciding the type of connections among neurons for different layers, as

well as among the neurons within a layer.

* Deciding the way a neuron receives input and produces output.

* Determining the strength of connection within the network by allowing the

network learns the appropriate values of connection weights by using a

training data set.

The process of designing a neural network is an iterative process.

Biologically, layers in neural networks are constructed in a three

dimensional way from microscopic components. These neurons seem

capable of nearly unrestricted interconnections. This is not true in any man-

made network. Artificial neural networks are the simple clustering of the

primitive artificial neurons. This clustering occurs by creating layers, which

are then connected to one another. How these layers connect may also vary.

Basically, all artificial neural networks have a similar structure of topology.

Some of the neurons interface the real world to receive its inputs and other

neurons provide the real world with the network’s outputs. All the rest of the

neurons are hidden form view.

Communicating part of NN process like this: Neurons are connected

via a network of paths carrying the output of one neuron as input to another

neuron. These paths is normally unidirectional, there might however be a

two-way connection between two neurons, because there may be another

path in reverse direction. A neuron receives input from many neurons, but

11

produces a single output, which is communicated to other neurons. The

neuron in a layer may communicate with each other, or they may not have

any connections. The neurons of one layer are always connected to the

neurons of at least another layer.

INTER-LAYER CONNECTIONS

There are different types of connections used between layers; these

connections between layers are called inter-layer connections;

Fully connected

 Each neuron on the first layer is connected to every neuron on the

second layer.

Partially connected

A neuron of the first layer does not have to be connected to all neurons

on the second layer.

Feed forward

The neurons on the first layer send their output to the neurons on the

second layer, but they do not receive any input back form the neurons on the

second layer.

Bidirectional

There is another set of connections carrying the output of the neurons

of the second layer into the neurons of the first layer. Feed forward and bi-

directional connections could be fully- or partially connected.

12

Hierarchical

If a neural network has a hierarchical structure, the neurons of a lower

layer may only communicate with neurons on the next level of layer.

Resonance

The layers have bi-directional connections, and they can continue sending

Messages across the connections a number of times until a certain condition

is achieved. In more complex structures the neurons communicate among

themselves within a layer, this is known as intra-layer connections. There are

two types of intra-layer connections.

INTRA LAYER CONNECTIONS

Recurrent

 The neurons within a layer are fully- or partially connected to

one another. After these neurons receive input form another layer, they

communicate their outputs with one another a number of times before they

are allowed to send their outputs to another layer. Generally, some

conditions among the neurons of the layer should be achieved before they

communicate their output to another layer.

On-center/Off surround

A neuron within a layer has excitatory connections to itself and its

immediate neighbors, and has inhibitory connections to other neurons. One

can imagine this type of connection as a competitive gang of neurons. Each

gang excites it and its gang members and inhibits all members of other

gangs. After a few rounds of signal interchange, the neurons with an active

output value will win, and is allowed to update its and its gang member’s

13

weights. (There are two types of connections between two neurons,

excitatory or inhibitory. In the excitatory connection, the output of one

neuron increases the action potential of the neuron to which it is connected.

When the connection type between two neurons is inhibitory, then the output

of the neuron sending a message would reduce the activity or action potential

of the receiving neuron. One causes the summing mechanism of the next

neuron to add while the other causes it to subtract. One excites while the

other inhibits.

The learning ability of a neural network is determined by its

architecture and by the algorithmic method chosen for training.

The training method usually consists of one of three schemes:

Unsupervised

The hidden neurons must find a way to organize themselves without

help from the outside. In this approach, no sample outputs are provided to

the network against which it can measure its predictive performance for a

given vector of inputs. This is learning by doing.

Reinforcement Learning

This method works on reinforcement from the outside. The connections

among the neurons in the hidden layer are randomly arranged, then

reshuffled as the network is told how close it is to solving the problem.

Reinforcement learning is also called supervised learning, because it requires

a teacher. The teacher may be a training set of data or an observer who

grades the performance of the network results. Both unsupervised and

reinforcement suffers from relative slowness and inefficiency relying on a

random shuffling to find the proper connection weights.

14

Backpropogation Network

This method is proven highly successful in training of multilayered

neural nets. The network is not just given reinforcement for how it is doing

on a task. Information about errors is also filtered back through the system

and is used to adjust the connections between the layers, thus improving

performance. It is a form of supervised learning.

One can categorize the learning methods into yet another group, off-line

or on-line. When the system uses input data to change its weights to learn

the domain knowledge, the system could be in training mode or learning

mode. When the system is being used as a decision aid to make

recommendations, it is in the operation mode, this is also sometimes called

recall.

Off-line

In the off-line learning methods, once the systems enters into the

operation mode, its weights are fixed and do not change any more. Most of

the networks are of the off-line learning type.

On-line

In on-line or real time learning, when the system is in operating mode

(recall), it continues to learn while being used as a decision tool. This type of

learning has a more complex design structure. Neural networks are

performing successfully where other methods do not, recognizing and

matching complicated, vague, or incomplete patterns. Neural networks have

been applied in solving a wide variety of problems.

Most applications of neural networks fall into the following five categories:

Prediction

15

Uses input values to predict some output. E.g., pick the best stocks in

the market, predict weather, and identify people with cancer risk.

Classification

Use input values to determine the classification. E.g., is the input the

letter A is the blob of the video data a plane and what kind of plane is it.

Data association

Like classification, it also recognizes data that contains errors. E.g., not

only identify the characters that were scanned but identify when the scanner

is not working properly.

Data Conceptualization

Analyze the inputs so that grouping relationships can be inferred. E.g.,

extract from a database the names of those most likely to by a particular

product.

Data Filtering

 Smooth an input signal. E.g., take the noise out of a telephone signal.

2.2.2 Genetic Algorithms

The idea of applying the biological principle of natural evolution to

artificial systems, introduced more than three decades ago, has seen

impressive growth in the past few years. Usually grouped under the term

evolutionary algorithms or evolutionary computation, it was found the

domains of genetic algorithms, evolution strategies, evolutionary

16

programming, and genetic programming. Evolutionary algorithms are

everywhere nowadays, having been successfully applied to numerous

problems from different domains, including optimization, automatic

programming, machine learning, economics, operations research, ecology,

and population genetics, studies of evolution and learning, and social

systems.

A genetic algorithm is an iterative procedure that consists of a constant-

size population of individuals, each one represented by a finite string of

symbols, known as the genome, encoding a possible solution in a given

problem space. This space, referred to as the search space, comprises all

possible solutions to the problem at hand. Generally speaking, the genetic

algorithm is applied to spaces which are too large to be fully searched. The

symbol alphabet used is often binary, though other representations have also

been used, including character-based encodings, real-valued encodings, and -

- most remarkably -- tree representations.

The standard genetic algorithm proceeds as follows: an initial

population of individuals is generated at random or heuristically. Every

evolutionary step, known as a generation, the individuals in the current

population are decoded and evaluated according to some predefined quality

criterion, referred to as the fitness, or fitness function. To form a new

population, individuals are selected according to their fitness. Many

selection procedures are currently in use, one of the simplest being Holland's

original fitness-proportionate selection, where individuals are selected with a

probability proportional to their relative fitness. This ensures that the

expected number of times an individual is chosen is approximately

proportional to its relative performance in the population. Thus, high-fitness

(``good'') individuals stand a better chance of ``reproducing'', while low-

fitness ones are more likely to disappear.

Selection alone cannot introduce any new individuals into the

17

population, specifically; it cannot find new points in the search space. These

are generated by genetically-inspired operators, of which the most well

known are crossover and mutation. Crossover is performed with probability

pcross (the ``crossover probability'' or ``crossover rate'') between two

selected individuals, called parents, by exchanging parts of their genomes

(i.e., encodings) to form two new individuals, called offspring; in its simplest

form, substrings are exchanged after a randomly selected crossover point.

This operator tends to enable the evolutionary process to move toward

``promising'' regions of the search space. The mutation operator is

introduced to prevent premature convergence to local optima by randomly

sampling new points in the search space. It is carried out by flipping bits at

random, with some (small) probability pmut. Genetic algorithms are

stochastic iterative processes that are not guaranteed to converge; the

termination condition may be specified as some fixed maximal number of

generations or as the attainment of an acceptable fitness level. Below

presents the standard genetic algorithm in pseudo-code format:

Begin GA

 g:=0 { generation counter }

 Initialize population P(g)

 Evaluate population P(g) {i.e., compute fitness values }

 While not done do

 g:=g+1

 Select P(g) from P(g-1)

 Crossover P(g)

18

 Mutate P(g)

 Evaluate P(g)

 end while

end GA

The implementation of an evolutionary algorithm, an issue which

usually remains in the background, is quite costly in many cases, since

populations of solutions are involved possibly coupled with computation-

intensive fitness evaluations. One possible solution is to parallelize the

process, an idea that has been explored to some extent in recent years. While

posing no major problems in principle, this may require cautious

modifications of existing algorithms or the introduction of new ones in order

to meet the constraints of a given parallel machine.

2.2.3 Inductive Learning

Inductive learning is a kind of learning in which, given a set of

examples an agent tries to estimate or create an evaluation function. Most

inductive learning is supervised learning, in which examples provided with

classifications. (The alternative is clustering.) More formally, an example is

a pair (x, f(x)), where x is the input and f(x) is the output of the function

applied to x. The task of pure inductive inference (or induction) is, given a

set of examples of f, to find a hypothesis h that approximates f.

2.2.3.1 Decision Trees

A decision tree is a simple inductive learning structure. Given an

19

instance of an object or situation, which is specified by a set of properties,

the tree returns a "yes" or "no" decision about that instance. Each internal

node in the tree represents a test on one of those properties, and the branches

from the node are labelled with the possible outcomes of the test. Each leaf

node is a Boolean classifier for the input instance.

From a logical viewpoint, decision trees are attempting to learn sets of

implication sentences; this set is called the goal predicate. Note that these

implications can only test propositions on the input object. However, any

Boolean function can be represented as a decision tree.

Decision trees very inefficiently represent some Boolean functions. The

parity function is one example; it requires an exponentially large tree, since

it must test all of the attributes. Another difficult function is the majority

function. (It could be characterizing this kind of function roughly as one that

cannot be determined on the basis only of parts of the input; the problem is

that the whole thing has to be examined. The whole point of the decision tree

is to find ways that only parts of the input need to be examined in order to

reach a decision).The point of the decision tree algorithm is to find a

"smallest" tree that correctly classifies most of the training examples.

Algorithm

The decision tree algorithm works roughly as follows:

If there are no examples to split on, return a default classification.

If all examples have the same classification, return it.

Otherwise, choose the property with the highest information gain:

 Create a new decision tree rooted on a test of that property.

20

 For each possible value of that property:

 Recursively call this algorithm with the subset of examples that

 Match the property on the new tree, and their classification

 (By majority vote in case of conflict).

 Add a branch to the sub tree pointing to the result.

 Return this tree.

The approach is to test the attribute with the highest information gain

first, and then those with successively smaller gains, until all examples are

classified.

Two problems arise in this induction. If a split leads to a branch with

no existing examples, its classification is given by some preset default. If a

set of identical examples has different classifications (noise), then some

method must be used to determine what classification to use; majority-vote

is a simple one.

Extensions of Basic Decision Tree

There are several ways to expand upon the trees described. One is to

allow them to handle missing data, where the values of some attributes in the

test set are not known. Several approaches have been suggested: assign a

value based upon the distribution of values in other instances, or construct

another decision tree just to decide the value. The simplest is to give it the

most common value, and in practice this seems to produce nearly as good

results as the other methods.

A second extension is to allow multi-valued attributes, beyond

Boolean. Yet another is to permit continuous-valued attributes, which would

21

need to be discredited in some way to be used in a decision tree. Another is

allowing more than two possible classifications; ID3 algorithm does not do

this, but later systems do.

Two problems with ID3 that were later solved by Quinlan: the smaller

the sub tree gets the harder to intelligently choose an attribute to split on and

decision trees cannot represent DNF concepts efficiently. These problems

were solved by converting the tree into production rules of the form

f1 ^ f2 ^ ... fk -> class.

Statistically insignificant conditions from the left-hand side are

removed, and then entire rules that do not significantly improve performance

(determined by comparing classification using rule sets with and without the

rule under consideration) are deleted. This can both improve accuracy and

dramatically reduce the complexity of the learned concept.

ID5 is an improved version of ID3 that supports incremental learning.

It processes the examples one at a time and produces an updated decision

tree after each example. The basic idea of growing the tree top-down

remains the same, but as the examples are moved through the tree, they are

stored at the leaves. If a leaf node comes to have both positive and negative

examples, a new sub tree is created at that node, splitting on the attribute

with the highest information gain for those examples.

2.2.4 Concept Learning and the General-To-Specific

Ordering

Concept Learning is the process of inferring a Boolean-valued function

from training examples of its input and output.

22

* Learning from examples

* General-to-specific ordering over hypotheses

* Version spaces and candidate elimination algorithm

* Picking new examples

* The need for inductive bias

- It is concerned with acquiring the definition of a general category (concept)

from a sample of positive and negative training examples of the category.

- It can be formulated as a problem of searching through a predefined space

of potential hypotheses for one that best fits the training examples.

- The search can be efficiently organized by general-to-specific ordering of

hypotheses.

Algorithms: Find-S and Version Space.

- The main issue: inductive bias

The topics in concept learning are:

- A concept learning task

- Concept learning as search

- Find-S: Finding a maximally specific hypothesis

- Version spaces

* The candidate elimination algorithm

23

* The boundary set representation

- Inductive bias

- Concept learning can be cast as a search problem. General-to-specific

ordering of hypotheses provides a useful search structure. The version space

approach is good for single concept learning.

2.2.5 Evaluating Hypotheses

The importance of evaluating hypothesis is to understand whether to

use the hypothesis and it is an integral component of learning algorithm. But

it has two difficulties with only set of limited data.

1. Bias in Estimate

Use test examples chosen independently of the training examples.

2. Variance in Estimate

Use larger set of test examples.

Summary of evaluating hypothesis like below:

• Statistical theory provides a basis for estimating true error of a hypothesis h

• One possible cause of errors in estimating accuracy is estimation bias

• A second cause is variance in estimate

• Confidence intervals provide useful bounds for error

• Holdout methods provide an affective method for training and testing on

24

limited data

• Statistical models provide approximate confidence intervals that can be of

great help in interpreting experimental comparisons of learning methods

2.2.6 Bayesian Learning

Learning that treats the problem of building hypotheses as a particular

case of the problem of making predictions. The probabilities of various

hypotheses are estimated, and predictions are made using the posterior

probabilities of the hypotheses to weight them. This is a probabilistic

approach to learning and inference. It is based on the assumption that the

quantities of interest are governed by probability distributions. It is attractive

because in theory it can arrive at optimal decisions. It provides a quantitative

approach to weighing the evidence supporting alternative hypotheses.

Conventional training methods for multilayer perceptrons ("backpropagated"

nets) can be interpreted in statistical terms as variations on maximum

chances estimation. The idea is to find a single set of weights for the network

that maximize the fit to the training data, perhaps modified by some sort of

weight penalty to prevent over fitting. The Bayesian school of statistics is

based on a different view of what it means to learn from data, in which

probability is used to represent uncertainty about the relationship being

learned. Before we have seen any data, our prior opinions about what the

true relationship might be can be expressed in a probability distribution

over the network weights that define this relationship. After looking at the

data our revised opinions are captured by a posterior distribution over

network weights. Network weights that seemed plausible before, but which

don't match the data very well, will now be seen as being much less likely,

while the probability for values of the weights that do fit the data well will

25

have increased.

Typically, the purpose of training is to make predictions for future

cases in which only the inputs to the network are known. The result of

conventional network training is a single set of weights that can be used to

make such predictions. In contrast, the result of Bayesian training is a

posterior distribution over network weights. If the inputs of the network are

set to the values for some new case, the posterior distribution over network

weights will give rise to a distribution over the outputs of the network, which

is known as the predictive distribution for this new case. If a single-valued

prediction is needed, one might use the mean of the predictive distribution,

but the full predictive distribution also tells you how uncertain this

prediction is. Why bother with all this? The hope is that Bayesian methods

will provide solutions to such fundamental problems as:

 * How to judge the uncertainty of predictions. This can be solved by

looking at the predictive distribution, as described above.

 * How to choose appropriate network architecture (e.g., the number hidden

layers, the number of hidden units in each layer).

 * How to adapt to the characteristics of the data (e.g., the smoothness of the

function, the degree to which different inputs are relevant).

Good solutions to these problems, especially the last two, depend on

using the right prior distribution, one that properly represents the uncertainty

that you probably have about which inputs are relevant, how smooth the

function is, how much noise there is in the observations, etc. Such carefully

vague prior distributions are usually defined in a hierarchical fashion, using

hyper parameters, some of which are analogous to the weight decay

constants of more conventional training procedures. The use of

hyperparameters is discussed in particular use of an "Automatic Relevance

26

Determination" scheme that aims to allow many possibly-relevant inputs to

be included without damaging effects. Selection of appropriate network

architecture is another place where prior knowledge plays a role. One

approach is to use a very general architecture, with lots of hidden units,

maybe in several layers or groups, controlled using hyper parameters. It is

also possible to choose between architectures in a Bayesian fashion, using

the "evidence" for architecture. Implementing all this is one of the biggest

problems with Bayesian methods. Dealing with a distribution over weights

(and perhaps hyper parameters) is not as simple as finding a single "best"

value for the weights. Exact analytical methods for models of as complex as

neural networks are out of the question. Two approaches have been tried:

1. Find the weights/hyper parameters that are most probable, using methods

similar to conventional training (with regularization), and then approximate

the distribution over weights using information available at this maximum.

2. Use a Monte Carlo method to sample from the distribution over weights.

The most efficient implementations of this use dynamical Monte Carlo

method whose operation resembles that of backprop with momentum.

Work on Bayesian neural network learning has so far concentrated on

multilayer perceptron networks, but Bayesian methods can in principal be

applied to other network models, as long as they can be interpreted in

statistical terms. For some models (RBF networks), this should be a fairly

simple matter; for others (Boltzmann Machines), substantial computational

problems would need to be solved.

2.2.7 Computational Learning Theory

Computational Learning Theory analyses the sample complexity and

computational complexity of inductive learning. There is a trade-off between

27

the expressiveness of the hypothesis language and the ease of learning. It is

the theory about learn ability, learning error, sample size and computational

complexity.[6]

What general laws constrain inductive learning?

• Probability of successful learning

• Number of training examples

• Complexity of hypothesis space

• Accuracy to which target concept is approximated

• Manner in which training examples presented

How can one possibly know that one’s learning algorithm has produced

a theory that will correctly predict the future? In terms of the definition of

inductive learning, how do we know that the hypothesis h is close to the

target function f if we don’t know what f is?

Let’s focus on the answers provided by Computational Learning

Theory, a field at the intersection of AI and theoretical computer science.

The underlying principle is the following: any hypothesis that is

seriously wrong will almost certainly be “found out” with high probability

after a small number of examples, because it will make an incorrect

prediction. Thus, any hypothesis that is inconsistent with a sufficiently large

set of training examples is unlikely to be seriously wrong that is, it must be

Probably Approximately Correct. PAC learning is the subfield of

computational learning theory that is devoted to the idea.

28

2.2.8 Cased-Based Learning

Case-Based Reasoning is one of most successful applied AI

technologies of recent years. Commercial and industrial applications can be

developed rapidly and existing corporate databases can be used as

knowledge sources. Helpdesks and diagnostic systems are the most common

applications.

Case-Based Reasoning (CBR) is based on the intuition that new

problems are often similar to previously encountered problems, and

therefore, that past solutions may be of use in the current situation. Case-

Based Reasoners typically apply retrieval algorithms and matching

algorithms to a case base of past problem-solution pairs. Cases are often

derived from legacy databases and need not be well structured: case-based

reasoning is robust and requires little knowledge acquisition. In complex

applications such as planning and design it is insufficient to recall the best

matching cases---cases must be adapted to form a new solution.

CBR has been applied to classification tasks, e.g. to determine the type

of an organism from observed attributes and to determine whether or not

cancer treatment is necessary given past cases. CBR has also been applied to

design tasks, e.g. the optimal layout of items in furnace. The major

application of CBR is helpdesks. The helpdesk operator can enter the client's

description of their problem into the CBR system, for example, the client

may describe a malfunction of their PC, and will receive the most

appropriate past solutions from the corporate database as a result.

CBR techniques can be applied to large and complex datasets. Data

points are considered to be cases, and may be described by tens, or even

29

hundreds, of attributes. One attribute will be used as the diagnostic goal, e.g.

faulty or operational, and the CBR will attempt to partition a training set of

data with maximum accuracy. Critical factors in the success of this type of

CBR are the amount of data available for the system to learn from, and the

existence of particular properties in the data itself.

2.2.9 Learning Sets of Rules

Learning rule sets is like learning disjunctive concepts. Learning rules

involving variables is challenging. If-then rules are one of the most

expressive representations of knowledge.

• Learn sets of rules by using ID3 and then converting the tree to rules.

• Use a genetic algorithm that encodes the rules as bit strings.

• But, these only work with predicate rules (no variables).

• They also consider the set of rules as a whole, not one rule at a time.

Rules

• First-order predicate logic (calculus) formalizes statements using

predicates (Boolean functions) and functions. Both can have variables.

• A rule set can look like

IF Parent(x,y) THEN Ancestor(x,y)

IF Parent(x,z) � Ancestor(z,y) THEN Ancestor(x,y)

• Here, Parent(x,y) is a predicate that indicates that y is the parent of x.

30

• These two rules form a recursive function which would be very hard to

represent using a decision tree or propositional representation.

• In Prolog, programs are set of first-order rules with the form as above

(known as Horn clauses).

• View the learning of rules as the learning of Prolog programs.

Sequential Covering

• The idea in a sequential covering algorithm is to learn one rule, remove

the data it covers, and then repeat.

Comparison on Rule Learning Methods:

Symbolic heuristic search:

This method commonly uses general to specific beam search or hill-

climbing search. A performance criterion based on accuracy and coverage

needs to be defined for evaluating and selecting rules. However, this

criterion is often ill-defined especially in the case of noise, inconsistency,

and uncertainty. And there is no good theoretical guidance for global

optimization.

Decision trees:

In this approach, classification knowledge is first represented as a

decision tree and then the tree is translated as a set of rules. The decision tree

is constructed by sequentially selecting attributes based on an information

theoretical measure. This approach has the advantage in speed but it searches

incompletely through a complete hypothesis space and is also sensitive to

data noise.

31

Inverted logic deduction:

In this approach, learning proceeds by generating a hypothesis that,

together with some background knowledge, explains the given data. This

approach does not naturally handle noise, inconsistency, and uncertainty.

The search through the hypothesis space is intractable in the general case and

increasingly complex with the amount of background knowledge. So far,

there is no good solution to all of these problems together.

Neural networks:

In this approach, a neural network learns a function to fit the given

data, and then the function is decoded as a set of rules. There is good

theoretical support in functional approximation, but what remains to be

solved is how to extract correct rules from a trained neural network.

Genetic Algorithms:

In this approach, each rule set is encoded as a bit string and genetic

search operators are applied to explore the hypothesis space. The stochastic

nature of the algorithm provides a means for alleviating the local minima

effect, but the element of randomness may also introduce some degree of

imprecision. Experience has shown that this approach fails to learn true

domain rules even in not too complex domains.

2.2.10 Analytical Learning

* Using background knowledge to explain (prove) training example is

member of the target concept.

32

* Then, generalize explanation

* ILP used background knowledge to suggest new features (i.e., increase H)

* Analytical learning uses BK to decrease (constrain) H

* Prolog -EBG

* Perfect vs. imperfect domain theories

33

2.2.11 Combining Inductive and Analytical Learning

Table 1 – Inductive and Analytical Learning

 Inductive Learning Analytical Learning

Goal

Hypothesis fits data
Hypothesis fits
domain theory

Justification Statistical inference Deductive Inference

Advantages
Requires little prior
knowledge

Learns from scarce
data

Pitfalls
Scarce data, incorrect
bias

Imperfect domain
theory

• They seem very complementary.

It is wanted a learning method such that:

34

1. Given no domain theory it should be as good as purely inductive

methods.

2. Given a perfect domain theory it should be as good as analytical

methods.

3. Given imperfect domain theory and imperfect data it should combine

the two and do batter than both inductive and analytical.

4. Accommodate an unknown level of error in training data.

5. Accommodate an unknown level of error in domain theory.

It is purely inductive;

* need no explicit prior knowledge

* fail when scarce data

* may be misled by wrong bias

It is purely analytical;

* learn even from scarce data

* fail when incorrect or insufficient knowledge

Both of them have justifications:

Inductive;

* Statistical justification

* Hypothesis fits statistically data

35

Analytical;

* Logical justification

* Hypothesis fits domain theory & data

2.2.12 Reinforcement Learning

Reinforcement learning is learning what to do---how to map situations

to actions---so as to maximize a numerical reward signal. The learner is not

told which actions to take, as in most forms of machine learning, but instead

must discover which actions yield the most reward by trying them. In the

most interesting and challenging cases, actions may affect not only the

immediate reward, but also the next situation and, through that, all

subsequent rewards. These two characteristics---trial-and-error search and

delayed reward---are the two most important distinguishing features of

reinforcement learning.

Reinforcement learning is defined not by characterizing learning

algorithms, but by characterizing a learning problem. Any algorithm that is

well suited to solving that problem we consider to be a reinforcement

learning algorithm. The basic idea is simply to capture the most important

aspects of the real problem facing a learning agent interacting with its

environment to achieve a goal. Clearly such an agent must be able to sense

the state of the environment to some extent and must be able to take actions

that affect that state. The agent must also have a goal or goals relating to the

state of the environment. Our formulation is intended to include just these

three aspects---sensation, action, and goal---in the simplest possible form

without trivializing any of them.

Reinforcement learning is different from supervised learning, the kind

36

of learning studied in most current research in machine learning, statistical

pattern recognition, and artificial neural networks. Supervised learning is

learning from examples provided by some knowledgeable external

supervisor. This is an important kind of learning, but alone it is not adequate

for learning from interaction. In interactive problems it is often impractical

to obtain examples of desired behavior that are both correct and

representative of all the situations in which the agent has to act. In uncharted

territory---where one would expect learning to be most beneficial---an agent

must be able to learn from its own experience.

One of the challenges that arise in reinforcement learning and not in

other kinds of learning is the tradeoff between exploration and exploitation.

To obtain a lot of reward, a reinforcement learning agent must prefer actions

that it has tried in the past and found to be effective in producing reward. But

to discover such actions it has to try actions that it has not selected before.

The agent has to exploit what it already knows in order to obtain reward, but

it also has to explore in order to make better action selections in the future.

The dilemma is that neither exploitation nor exploration can be pursued

exclusively without failing at the task. The agent must try a variety of actions

and progressively favor those that appear to be best. On a stochastic task,

each action must be tried many times to reliably estimate its expected

reward.

Another key feature of reinforcement learning is that it explicitly

considers the whole problem of a goal-directed agent interacting with an

uncertain environment. This is in contrast with many approaches that address

sub problems without addressing how they might fit into a larger picture.

Reinforcement learning takes the opposite tack, by starting with a

complete, interactive, goal-seeking agent. All reinforcement learning agents

have explicit goals, can sense aspects of their environments, and can choose

actions to influence their environments. Moreover, it is usually assumed

37

from the beginning that the agent has to operate despite significant

uncertainty about the environment it faces. When reinforcement learning

involves planning, it has to address the interplay between planning and real-

time action selection, as well as the question of how environmental models

are acquired and improved. When reinforcement learning involves

supervised learning, it does so for very specific reasons that determine which

capabilities are critical, and which are not. For learning research to make

progress, important subproblems have to be isolated and studied, but they

should be subproblems that are motivated by clear roles in complete,

interactive, goal-seeking agents, even if all the details of the complete agent

cannot yet be filled in.

Elements of Reinforcement Learning

Beyond the agent and the environment, one can identify four main sub-

elements to a reinforcement learning system: a policy, a reward function, a

value function, and, optionally, a model of the environment.

A policy defines the learning agent's way of behaving at a given time.

Roughly speaking, a policy is a mapping from perceived states of the

environment to actions to be taken when in those states. It corresponds to

what in psychology would be called a set of stimulus-response rules or

associations. In some cases the policy may be a simple function or lookup

table, whereas in others it may involve extensive computation such as a

search process. The policy is the core of a reinforcement learning agent in

the sense that it alone is sufficient to determine behavior. In general, policies

may be stochastic.

A reward function defines the goal in a reinforcement learning

problem. Roughly speaking, it maps perceived states (or state-action pairs)

of the environment to a single number, a reward, indicating the intrinsic

desirability of the state. A reinforcement-learning agent's sole objective is to

38

maximize the total reward it receives in the long run. The reward function

defines what the good and bad events are for the agent. In a biological

system, it would not be inappropriate to identify rewards with pleasure and

pain. They are the immediate and defining features of the problem faced by

the agent. As such, the reward function must necessarily be fixed. It may,

however, be used as a basis for changing the policy. For example, if an

action selected by the policy is followed by low reward then the policy may

be changed to select some other action in that situation in the future. In

general, reward functions may also be stochastic.

Whereas a reward function indicates what is good in an immediate

sense, a value function specifies what is good in the long run. Roughly

speaking, the value of a state is the total amount of reward an agent can

expect to accumulate over the future starting from that state. Whereas

rewards determine the immediate, intrinsic desirability of environmental

states, values indicate the long-term desirability of states after taking into

account the states that are likely to follow, and the rewards available in those

states. For example, a state might always yield a low immediate reward, but

still have a high value because it is regularly followed by other states that

yield high rewards. Or the reverse could be true. To make a human analogy,

rewards are like pleasure (if high) and pain (if low), whereas values

correspond to a more refined and far-sighted judgment of how pleased or

displeased we are that our environment is in a particular state. Expressed this

way, we hope it is clear that value functions formalize a very basic and

familiar idea.

Rewards are in a sense primary, whereas values, as predictions of

rewards, are secondary. Without rewards there could be no values, and the

only purpose of estimating values is to achieve more reward. Nevertheless, it

is values with which we are most concerned when making and evaluating

decisions. Action choices are made on the basis of value judgments. Seeking

39

actions that bring about states of highest value is what is wanted, not highest

reward, because these actions obtain for us the greatest amount of reward

over the long run. In decision-making and planning, the derived quantity

called value is the one with which we are most concerned. Unfortunately, it

is also much harder to determine values than it is to determine rewards.

Rewards are basically given directly by the environment, but values must be

estimated and re-estimated from the sequences of observations an agent

makes over its entire lifetime. In fact, the most important component of

almost all reinforcement learning algorithms is a method for efficiently

estimating values. The importance and centrality of estimating values is

perhaps the most important thing we have learned about reinforcement

learning in the last two decades.

The fourth and final element of some reinforcement learning systems is

a model of the environment. This is something that mimics the behavior of

the environment. For example, given a state and action, the model might

predict the resultant next state and next reward. Models are used for

planning, by which we mean any way of deciding on a course of action by

considering possible future situations before they are actually experienced.

The incorporation of models and planning into reinforcement learning

systems is a relatively new development. Early reinforcement learning

systems were explicitly trial-and-error learners; what they did was viewed as

almost the opposite of planning. Nevertheless, it gradually became clear that

reinforcement learning methods are closely related to dynamic programming

methods, which do use models, and that they in turn are closely related to

state-space planning methods.

Modern reinforcement learning spans the spectrum from low-level,

trial-and-error learning to high-level, deliberative planning.[10]

40

CHAPTER 3

 ALGORITHMS

3.1 C4.5 Algorithm

C4.5 is a later version of the ID3 decision tree induction algorithm.

C4.5 introduces a number of extensions of the original ID3 algorithm. In

building a decision tree we can deal with training sets that have records with

unknown attribute values by evaluating the gain, or the gain ratio, for an

attribute by considering only the records where that attribute is defined. In

using a decision tree, we can classify records that have unknown attribute

values by estimating the probability of the various possible results.

C4.5 is a decision tree that allows both discrete and continuous input

variables. The way in which the input data is organized can be chosen

column by column and allows the threshold splitting similar to CART as

well as the other methods found in CHAID. However, in deciding where the

splits are made it uses an 'information gain' criterion. It is possible to choose

41

the selected processing method (threshold, static, k-means or normal) across

all columns or by column. Care needs to be taken to ensure that the

processing method chosen matches the form of attribute data being used, i.e.

threshold on continuous data, buckets and clustering on either and normal

only on discrete data

3.2 Cart Algorithm

CART is a decision tree that treats all data inputs as continuous

variables and splits the data by using thresholds. Values of an attribute

(column) that are above the threshold split one way and those below the

other. The split is made on the maximum membership of a target class and

non-membership of other target classes. Only binary trees (those splitting

two ways from a node) are produced. CART cannot handle categorical data

with more than two categories in an attribute.

3.3 Quest Algorithm

QUEST stands for “Quick, Unbiased, and Efficient Statistical Trees”

and is a program for tree-structured classification. The algorithms are

described in Loh and Shih (1997). The performance of QUEST compared

with other classification methods can be found in Lim, Loh and Shih (2000).

The main strengths of QUEST are unbiased variable selection and fast

computational speed. In addition, it has options to perform CART-style

exhaustive search and cost-complexity cross-validation pruning. [12]

3.4 Chaid Algorithm

CHAID is a decision tree that treats all data inputs as discrete variables

42

or members of a class and splits the data according to the number of classes.

Splits are made using a chi-square statistical significance test. There are

three processing methods available to categorize and condition the input data

and the choice can be made across all the attributes (columns) or on a per

column basis. The choices are:

Static: This splits the data range of attribute values for the column chosen

into sets of equal size. The number of 'buckets' is selected by entering the

number chosen in the grouping section of the dialog (having de-selected

'using auto-setting').

K-Means: This splits the data range of attribute values for the column chosen

into sets of a size selected by K-means pre-processing of the column data.

The number of K-means clusters is selected by entering the number chosen

in the grouping section of the dialog (having de-selected 'using auto-setting').

The thresholds in the column data will be mid way between the centers of

the clusters found.

Normal: This splits the data such that there is an input class for each attribute

value in the column. This should only be used with discrete data inputs,

however, in the case of continuous data the threshold values will be mid way

between each attribute value.

3.5 Id3 Algorithm

Very simply, ID3 builds a decision tree from a fixed set of examples.

The resulting tree is used to classify future samples. The example has several

attributes and belongs to a class (like yes or no). The leaf nodes of the

decision tree contain the class name whereas a non-leaf node is a decision

node. The decision node is an attribute test with each branch (to another

decision tree) being a possible value of the attribute. ID3 uses information

43

gain to help it decide which attribute goes into a decision node. The

advantage of learning a decision tree is that a program, rather than a

knowledge engineer, elicits knowledge from an expert.

ID3 is a nonincremental algorithm, meaning it derives its classes from a

fixed set of training instances. An incremental algorithm revises the current

concept definition, if necessary, with a new sample. The classes created by

ID3 are inductive, that is, given a small set of training instances, the specific

classes created by ID3 are expected to work for all future instances. The

distribution of the unknowns must be the same as the test cases. Induction

classes cannot be proven to work in every case since they may classify an

infinite number of instances. Note that ID3 (or any inductive algorithm) may

misclassify data.

Data description:

The sample data used by ID3 has certain requirements, which are:

Attribute-value description - the same attributes must describe each example

and have a fixed number of values.

Predefined classes - an example's attributes must already be defined, that is,

they are not learned by ID3.

Discrete classes - classes must be sharply delineated. Continuous

classes broken up into vague categories such as a metal being "hard, quite

hard, flexible, soft, quite soft" are suspect.

Sufficient examples - since inductive generalization is used (i.e. not

provable) there must be enough test cases to distinguish valid patterns from

chance occurrences.

Attribute Selection:

44

How does ID3 decide which attribute is the best? A statistical property,

called information gain, is used. Gain measures how well a given attribute

separates training examples into targeted classes. The one with the highest

information (information being the most useful for classification) is selected.

In order to define gain, we first borrow an idea from information theory

called entropy. Entropy measures the amount of information in an attribute.

Given a collection S of c outcomes

Entropy(S) = Sum -p (I) log2 p (I)

Where p (I) is the proportion of S belonging to class I. Sum is over c. Log2

is log base 2.

Note that S is not an attribute but the entire sample set.

3.6 Comparison of Classification Tree Methods

FEATURE QUEST CART CHAID C4.5 ID3

Split variable selection

Unbiased selection Y N N N N

Split types

Univariate (axis-orthogonal) Y Y Y Y Y

Linear combinations (oblique) Y Y N N N

Choice of misclassification costs Y Y Y N N

45

Choice of class prior probabilities Y Y N N N

Choice of impurity functions Y Y N Y Y

Bagging N Y N N N

Error estimation by

 cross-validation Y Y Y N N

Number of branches at each node

Always two Y Y N N N

Two or more N N Y Y Y

Missing value methods

Imputation Y N N N N

Alternate/surrogate splits N Y N N N

Missing value branch N N Y N N

Probability weights N N N Y Y

Tree size control

Stopping rule N N Y N N

Pre-pruning N N N Y Y

Test-sample pruning Y Y N N N

Cross-validation pruning Y Y N N N

46

Tree diagram formats

Text Y Y Y Y Y

LATEX Y Y N N N

allClear Y N N N N

Proprietary N Y Y N N

Platforms

Windows Y Y Y Y Y

Linux Y Y N Y Y

Sun Y Y N Y N

47

CHAPTER 4

PROGRAMS

4.1 SIPINA (Research Edition)

SIPINA is software which can extract knowledge from data.

SIPINA_W© learns from quantitative and qualitative data. It produces

a lattice graph. The trees are a particular case of a lattice graph. SIPINA

method is more general than induction trees like C4.5, ID3, and CHAID...

In this program, the lattice graph issued from the learning step is

translated in terms of production rules and stored in a Knowledge Base

System (KBS). SIPINA_W© analyses the rules and detects several

anomalies such as redundancy, contradictions, and cancels them.

SIPINA_W© can merge many KBS’s and optimize the final KBS.

The validation of the learning is performed via an inference engine. For

that, first you choose a data file and a KBS and then SIPINA_W© predicts

48

the membership class of the examples in the file. In the same manner, the

generalization is done on any other file.

Furthermore, you may execute cross-validations and, when working

with some analysis methods, it is possible to use the pruning techniques

concerning the induction tree. Moreover, for some methods you are able to

Use the ‘stop growing’ technique on the construction of the graph. [13]

49

CHAPTER 5

ALGORITHM SELECTION

5.1 Selection

Choosing the best algorithm for a dataset was needed a broad survey on

machine learning. We studied and investigated on learning and learning

algorithms in order to make the right decision. After surveys, which we were

done, finished, we agreed to select the decision tree algorithms. These

algorithms are QUEST, CHAID, ID3, C4.5 and CART.

5.2 Executing Algorithms

These algorithms have many different features. To decide which

parameters are suitable for our dataset is vary from person to person or

50

dataset. We chose the parameters below:

QUEST was executed with conditions; Estimated priors, minimal node

size 5,10 or 15, use univariate split, use(unbiased)statistical tests for variable

selection, alpha value(0.50), splint point method(discriminant analysis), for

categorical split point use CRIMCOORD and QDA, use 10-fold CV Sample

pruning CART was also executed with conditions same as QUEST.

C4.5 was executed with specifications; C.L for pessimistic pruning =

25, size of leaves = 2, sampling = All Dataset and size of sample is % 50

with random sampling.

ID3 was executed with conditions; Confidence level = 0.50, sampling =

All Dataset and size of sample is % 50 with random sampling.

CHAID was executed with conditions; P-level for merging nodes =

0.50 and for splitting nodes = 0.00001, bonferroni adjustments is manual (1),

sampling = All Dataset and size of sample is % 50 with random sampling.,

SE-rule trees based on number of SEs = 1.00.

5.2.1 Quest

QUEST showed that it was not an efficient algorithm for our dataset. It

has the lowest accuracy for classified rules (0.5507). Moreover, it was

referring that when the minimal node size increased, the misclassification

cost for confusion matrix decreased. For minimal node size = 5, cost was

0.4963. For minimal node size = 10, cost was 0.4814. For minimal node size

= 15, cost was 0.4781. The rules for QUEST:

Node Left node Right node Split variable Predicted class

51

 1 2 3 maxsıcaklık

 2 4 5 maxsıcaklık

 4 * terminal node * (601000-700000)

 5 * terminal node * (701000-740000)

 3 88 89 minsıcaklık

 88 * terminal node * (741000-800000)

 89 * terminal node * (801000-900000)

Classification tree :

 Node 1: maxsıcaklık <= 16.74

 Node 2: maxsıcaklık <= 9.519

 Node 4: (601000-700000)

 Node 2: maxsıcaklık > 9.519

 Node 5: (701000-740000)

 Node 1: maxsıcaklık > 16.74

 Node 3: minsıcaklık <= 12.22

 Node 88: (741000-800000)

 Node 3: minsıcaklık > 12.22

 Node 89: (801000-900000)

52

5.2.2 Chaid

CHAID was the least accurate algorithm for our dataset. It has accuracy

= 0.5330.The average misclassification cost for confusion matrix was 0.4395

for 5 times execution. It has the rules below:

For one execution:

IF maxsıc >=22.30 and minsıc < 13.55 THEN sutüket in [(741000-800000)]

with accuracy 0.5000 on (18,1,1,0,13,2,1)

IF maxsıc >=22.30 and minsıc >=13.55 THEN sutüket in [(801000-900000)]

with accuracy 0.6458 on (0,0,2,0,31,15,0)

IF maxsıc < 22.30 and maxsıc < 14.00 THEN sutüket in [(601000-700000)]

with accuracy 0.4688 on (5,29,30,0,0,0,0)

IF maxsıc < 22.30 and maxsıc >=14.00 THEN sutüket in [(741000-800000)]

with accuracy 0.5294 on (18,9,6,0,1,0,0)

5.2.3 Cart

CART has the accuracy = 0.5863.It was the third accurate algorithm.

Its misclassification cost increased when the minimal node size increased. Its

rule table:

Node Left node Right node Split variable Predicted class

53

 1 2 3 maxsıcaklık

 2 4 5 maxsıcaklık

 4 6 7 maxsıcaklık

 6 * terminal node * (601000-700000)

 7 * terminal node * (701000-740000)

 5 58 59 minsıcaklık

 58 * terminal node * (741000-800000)

 59 * terminal node * (701000-740000)

 3 98 99 minsıcaklık

 98 * terminal node * (741000-800000)

 99 * terminal node * (801000-900000)

Classification tree:

 Node 1: maxsıcaklık <= 16.74

 Node 2: maxsıcaklık <= 9.519

 Node 4: maxsıcaklık <= 6.020

 Node 6: (601000-700000)

 Node 4: maxsıcaklık > 6.020

 Node 7: (701000-740000)

54

 Node 2: maxsıcaklık > 9.519

 Node 5: minsıcaklık <= -0.3867

 Node 58: (741000-800000)

 Node 5: minsıcaklık > -0.3867

 Node 59: (701000-740000)

 Node 1: maxsıcaklık > 16.74

 Node 3: minsıcaklık <= 12.22

 Node 98: (741000-800000)

 Node 3: minsıcaklık > 12.22

 Node 99: (801000-900000)

5.2.4 ID3

This decision tree algorithm has the second best misclassification cost

for confusion matrix which was 0.3527 for 5 times execution. And it has the

second best accuracy which was 6813.It has rules below:

For one execution:

IF maxsıc >=22.30 and minsıc < 13.55 THEN sutüket in [(741000-800000)]

with accuracy 0.5000 on (18,1,1,0,13,2,1)

IF maxsıc >=22.30 and minsıc >=13.55 THEN sutüket in [(801000-900000)]

with accuracy 0.6458 on (0,0,2,0,31,15,0)

55

IF maxsıc < 22.30 and maxsıc >=14.00 and yağış < 0.05 THEN sutüket in

[(601000-700000)] with accuracy 1.0000 on (0,0,3,0,0,0,0)

IF maxsıc < 22.30 and maxsıc >=14.00 and yağış >=0.05 THEN sutüket in

[(741000-800000)] with accuracy 0.5806 on (18,9,3,0,1,0,0)

IF maxsıc < 22.30 and maxsıc < 14.00 and maxsıc < 3.35 THEN sutüket in

[(601000-700000)] with accuracy 0.7778 on (0,4,14,0,0,0,0)

IF maxsıc < 22.30 and maxsıc < 14.00 and maxsıc >=3.35 THEN sutüket in

[(701000-740000)] with accuracy 0.5435 on (5,25,16,0,0,0,0)

5.2.5 C4.5

C4.5 is the most accurate which has accuracy = 0.6868 of the 5

algorithm for our dataset. In addition, it has also best misclassification cost =

0.2604 for 5 times execution. It has classification rules below:

For one execution:

IF maxsıc >=22.30 and rüzgar >=7.35 and rüzgar >=14.55 THEN sutüket in

[(601000-700000)] with accuracy 0.3333 on (0,1,1,0,1,0,0)

IF maxsıc >=22.30 and rüzgar < 7.35 and nem < 42.35 THEN sutüket in

[(801000-900000)] with accuracy 0.6667 on (1,0,0,0,2,0,0)

IF maxsıc >=22.30 and rüzgar < 7.35 and nem >=42.35 THEN sutüket in

[(741000-800000)] with accuracy 1.0000 on (8,0,0,0,0,0,0)

IF maxsıc < 22.30 and maxsıc >=14.00 and yağış < 0.05 THEN sutüket in

[(601000-700000)] with accuracy 1.0000 on (0,0,3,0,0,0,0)

IF maxsıc < 22.30 and maxsıc >=14.00 and yağış >=0.05 and rüzgar

56

>=13.65 THEN sutüket in [(701000-740000)] with accuracy 0.7143 on

(1,5,1,0,0,0,0)

IF maxsıc < 22.30 and maxsıc >=14.00 and yağış >=0.05 and rüzgar < 13.65

and maxsıc < 21.20 THEN sutüket in [(741000-800000)] with accuracy

0.7619 on (16,4,0,0,1,0,0)

IF maxsıc < 22.30 and maxsıc >=14.00 and yağış >=0.05 and rüzgar < 13.65

and maxsıc >=21.20 THEN sutüket in [(601000-700000)] with accuracy

0.6667 on (1,0,2,0,0,0,0)

IF maxsıc < 22.30 and maxsıc < 14.00 and maxsıc < 3.35 THEN sutüket in

[(601000-700000)] with accuracy 0.7778 on (0,4,14,0,0,0,0)

IF maxsıc < 22.30 and maxsıc < 14.00 and maxsıc >=3.35 THEN sutüket in

[(701000-740000)] with accuracy 0.5435 on (5,25,16,0,0,0,0)

IF maxsıc >=22.30 and rüzgar >=7.35 and rüzgar < 14.55 and minsıc <

13.40 and rüzgar >=10.55 THEN sutüket in [(901000-1400000)] with

accuracy 0.4000 on (2,0,0,0,1,2,0)

IF maxsıc >=22.30 and rüzgar >=7.35 and rüzgar < 14.55 and minsıc <

13.40 and rüzgar < 10.55 and nem < 45.85 THEN sutüket in [(801000-

900000)] with accuracy 0.7778 on (0,0,1,0,7,0,1)

IF maxsıc >=22.30 and rüzgar >=7.35 and rüzgar < 14.55 and minsıc <

13.40 and rüzgar < 10.55 and nem >=45.85 THEN sutüket in [(741000-

800000)] with accuracy 0.5833 on (7,0,0,0,5,0,0)

IF maxsıc >=22.30 and rüzgar >=7.35 and rüzgar < 14.55 and minsıc

>=13.40 and maxsıc < 28.90 THEN sutüket in [(801000-900000)] with

accuracy 0.9167 on (0,0,1,0,11,0,0)

IF maxsıc >=22.30 and rüzgar >=7.35 and rüzgar < 14.55 and minsıc

57

>=13.40 and maxsıc >=28.90 and rüzgar < 8.50 THEN sutüket in [(901000-

1400000)] with accuracy 1.0000 on (0,0,0,0,0,5,0)

IF maxsıc >=22.30 and rüzgar >=7.35 and rüzgar < 14.55 and minsıc

>=13.40 and maxsıc >=28.90 and rüzgar >=8.50 THEN sutüket in [(801000-

900000)] with accuracy 0.6296 on (0,0,0,0,17,10,0)

58

5.3 Comparison Table

Table 2 – Efficiency Comparison between Algorithms

Algorithm Average
Accuracy

Average
Cost

C4.5 % 69 0.2604

ID3 % 68 0.3527

CART % 59 0.4668

CHAID %53 0.4395

QUEST %55 0.4853

59

CHAPTER 6

CONCLUSION

In this thesis, we applied several decision tree algorithms including

Quest, ID3, C4.5, CART and CHAID on to the problem domain that is

“Typical of a water distribution system of Ankara city” in order to optimize

controls and other factors in the domain. However, optimal control requires

an ability to precisely predict short-term water demand so that minimum cost

pumping schedules can be prepared. Based on such an implementation we

compared the decision tree algorithms with respect to their effectiveness in

the domain. [14]

The reason of choosing this domain was optimizing control of

operations in a municipal water-distribution system so that electricity costs

can be reduced greatly, which is the most prominent factor in the domain as

well as realizing other economic benefits. Today majority of water

distribution systems still uses heuristics of experienced people to control

60

required operations. This thesis provides a step towards an autonomous

system that takes intelligent decisions to control and coordinate the

operations in a typical water distribution system. With minimized human

factors, effects of incorrect decisions will also be minimized.

 A great effort is given for data gathering (knowledge acquisition) and

pre-processing phase of data. For this purpose, data’s has taken from the

Government Meteorological Head office in Kalaba and İvedik Water

distribution and Refinery organization.

There were many attributes in meteorological data. However, we chose

the best attributes to define the appropriate dataset. These attributes are; Day

of the week, maximum temperature, minimum temperature, humidity,

rainfall and snowfall and average wind speed.

After collection of data, pre-processing part comes first. In the pre-

processing part, one of the essential parts of data preparation is attribute

categorization, an important and potentially overlooked piece of the data-

mining puzzle. If attributes are improperly categorized, then the data-mining

analyst will miss significant results. Categorizing attributes allows the data

miner to find patterns about groups of numbers. The goal of any data miner

is to find meaningful results, and properly categorizing attributes can help to

do so. A standard categorization will be grouping numbers. There are five

factors that an analyst may consider when categorizing data. The first factor

is the number of categories. Too many categories can make the data overly

specific and by doing so, the data miner may miss general patterns. A second

factor is the distribution of the data set into the categories. One method of

data categorization will have the data evenly distributed into the categories.

A third factor is the range of the categories. If a range of a category is too

big, it may contain data that should not logically be grouped together. A

fourth factor is the consistency of the range of the categories. Keeping the

range of the categories consistent helps keep the analysis of the attribute well

61

organized. The last factor to consider when categorizing data is logical

breaks between categories. According to these rules, we made attribute

categorization for water consumption data.

The algorithms, which we were, choose, may or may not be the best

algorithms in decision tree learning. However, we decided to choose them

and applied on our dataset. Therefore, the results showed that C4.5 and ID3

are the most accurate and less costly algorithms that we have. Of course,

other three algorithms have some advantages on different ways, someone

who want to execute different parameters for different domains.

In the future, some other methods of supervised learning, neural

network applications can be done on this domain. We can expand the dataset

not for a city but for all cities of Turkey.

62

REFERENCES

[1] Russel and Norvig. Artificial Intelligence: A Modern Approach, 1995.

[2] Leake, David.B. Artificial Intelligence. From Van Nostrand Scientific

Encyclopedia, Ninth Editin,.IındianaUniversity Wiley, New York,

2002.

[3] R.S. Michalski, J.G. Carbonell, and T.M. Mitchell. Machine

Learning: An Artificial Intelligence Approach, Vol. 1, Morgan

Kaufmann, San Francisco, 1983.

[4] Wilson, Bill .The Machine Learning Dictionary for COMP9414,1998.

[5] Zarndt, Frederick. A Comprehensive Case Study: An Examination of

Machine Learning and Connectionist Algorithms, June 1995.

[6] http://www.learningtheory.org/

[7] http://www.aaai.org/AITopics/html/machine.html

[8] http://aima.cs.berkeley.edu/ai.html#learning

[9] http://www.ics.uci.edu/~mlearn/

63

[10] http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a-

html/rl-survey.html

[11] Mitchell, Tom., Machine Learning, Mcgraw Hill, 1997.

[12] http://www.stat.wisc.edu/�loh/quest.html

[13] http://eric.univ-lyon2.fr/

[14] An, Aijun. Chan, Christine.Shan, Ning. Cercone, Nick. Ziarko,

Wojciech. Saskatchewan, Canada. Applying Knowledge Discovery to

Predict Water-Supply Consumption, University of Regina, 1997.

.

