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In today’s world, learning is a process of computers as well as human 

being. “Learnable” systems and computers will become more important in 

following years and affect our lives in many ways. In this thesis, a survey 

has been carried out in the field of artificial intelligence, machine learning 
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and especially on decision tree learning algorithms. Some of the decision 

tree learning algorithms was used to learn rules which are extracted from a 

dataset. The dataset which consists of water consumption of Ankara for one 

year and meteorological data of Ankara was used. The results indicate that 

which learning method is more efficient and have better performance. 

Keywords: Artificial Intelligence, Machine Learning, Decision Tree 

Algorithms 
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ÖZ 

 

 

 

KARAR AĞACI ALGORİTMALARININ SU TÜKETİM ALANI 

ÜSTÜNDE UYGULANAN PERFORMANS ANALİZİ 

 

ERCAN, Tardu 

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı 

Tez Yöneticisi : Dr. Ali Rıza AŞKUN 

Mayıs 2006, 76 sayfa 

 

Bugünün dünyasında, “Öğrenme” insanların yaptığı kadar, 

bilgisayarlarında yaptığı bir eylem haline gelmiştir. “Öğrenebilen” sistemler 

ve bilgisayarlar önümüzdeki yıllarda, hayatımızda çok daha fazla yer 

alacaklar.Bu tez içinde, yapay zeka ve öğrenme,
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 özellikle karar verme ağacı algoritmalarının yapısı üzerinde çalışılmıştır 

Öğrenme kurallarını, veri setimizden çıkarmak için bazı algoritmalar 

kullanılmıştır. Bu veri setimizde Ankara`nın bir yıllık su tüketim oranı ve bir 

yıllık meteoroloji bilgileri vardır. 

Ortaya çıkan sonuçlar ışığında hangi algoritmanın daha verimli ve daha 

iyi performansa sahip olduğuna işaret eder. 

Anahtar Sözcükler: Yapay Zeka, Öğrenme,Karar Ağacı Algoritması. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Sections 

In first section, brief explanation of Artificial Intelligence is given. 

Today and tomorrow of A.I, areas of Artificial Intelligence and relation 

between A.I and computer science is mentioned.  

In second section, Machine-learning topics are widely pointed out. In 

addition, the idea of learning and basic learning model are explained. 

In third section, which algorithms are used in this thesis and “what are 

their specifications?” are explained. 

In fourth section, software, which is used in this thesis, is clarified. 

In fifth section, performance evaluation is explained. 
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In the last section, conclusion of thesis has been made. 

 

1.2 What Is Artificial Intelligence About? 

Artificial Intelligence is a relatively new discipline (born in the middle 

of the 20th century). It is increasingly frequently mentioned in newspapers, 

magazines, TV, films  and in various kinds of computer entertainments, yet 

it is not widely understood. Some people think it has already failed and been 

abandoned, whereas in fact it is steadily growing in academy and industry, 

though the work is not always labeled as "Artificial Intelligence". That is 

because some of the important ideas and techniques have been absorbed into 

software engineering.  

It is a central part of one of the most profound scientific and intellectual 

developments of the last century: the study of information, how it can be 

acquired, stored, manipulated, extended, used, and transmitted, whether in 

machines, or humans or other animals. [1] 

Physics and chemistry study matter, energy, forces, and the various 

ways they can be combined and transformed. Biology, geology, medicine, 

and many other sciences and engineering disciplines build on this by 

studying more and more complex systems built from physical components. 

All this research requires an understanding of naturally occurring and 

artificial machines which operate on forces, energy of various kinds, and 

transform or rearrange matter.  

But some of the machines, both natural and artificial, also manipulate 

knowledge.  

It is now clear that a new kind of science is required for the study of the 
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principles by which  

• knowledge is acquired and used,  

• goals are generated and achieved,  

• information is communicated,  

• collaboration is achieved,  

• concepts are formed,  

• Languages are developed.  

We could call it the science of knowledge or the science of intelligence.  

This is what AI is about. Not only artificial systems, but also human 

beings and many living organisms acquire, manipulate, store, use and 

transmit information. They are also driven or controlled by it: e.g. made 

happy by praise, made sad by bad news, made afraid by noises in the dark, 

and so on. From this point it is not surprising that in recent years the study of 

emotions has been growing in importance in AI.  

So AI, despite its unfortunate name, is about natural information 

processing systems as well as artificial systems, and not just about how they 

perceive learn and think, but also about what they want and how they feel. It 

has already had a profound impact on the study of human minds. 

How does AI relate to computer science, is it another new discipline? 

In part it is like the relationship between physics and mathematics. 

Mathematics develops many concepts and techniques which physics uses, 

but the central goal of physics is to understand the world, not to understand 

those techniques. Likewise computer science (along with mathematics, 

electronic engineering and software engineering) develops general theories 

about information processing, and helps to create powerful general tools 

(computers, operating systems and compilers) which are used in AI, but 

these are not the central focus of AI. The general concepts, techniques and 
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tools produced by computer science are used by AI researchers in the 

process of studying something else, the kinds of information processing 

capabilities which we find in many living organisms, and which might also 

be created in new machines of many kinds.  

However, just as the history of physics includes many episodes where 

mathematics was enriched by the work of theoretical physicists, also AI had 

a great deal of influence on the development of computer science. But 

equally it is having a deep impact on other disciplines with which it is 

connected, especially philosophy, psychology and linguistics.[2],[3] 
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CHAPTER 2 

 

 

 

THE IDEA OF MACHINE LEARNING 

 

 

 

The idea behind the learning, how agents work, interaction between the 

agent and the world is the some important problems in today Artificial 

Intelligence studies. Machine learning can understand and improve 

efficiency of human learning. For example, use to improve methods for 

teaching and tutoring people, as done in Computer-aided instruction. It 

discovers new things or structure that is unknown to humans. Especially, like 

in the Data mining. It fills in skeletal or incomplete specifications about a 

domain.Large, complex AI systems cannot be completely derived by hand 

and require dynamic updating to incorporate new information. Learning new 

characteristics expands the domain or expertise. Briefly today’s one of the 

most important topic in the AI is “learning”. Investigating the learning 

algorithms is a large study area in computer science. [4] 

Knowledge Discovery, machine learning is most commonly used to 
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mean the application of induction algorithms, which is one step in the 

knowledge discovery process. In that definition, training examples are 

externally supplied, whereas here they are assumed to be supplied by a 

previous stage of the knowledge discovery process. Machine Learning is the 

field of scientific study that concentrates on induction algorithms and on 

other algorithms that can be said to “learn”. It has simply: 

Understand and improve efficiency of human learning. For example, 

use to improve methods for teaching and tutoring people, as done in CAI ---

computer-aided instruction  

• Discover new things or structure that is unknown to humans Example: 

Data mining  

• Fill in skeletal or incomplete specifications about a domain Large, 

complex AI systems cannot be completely derived by hand and require 

dynamic updating to incorporate new information. Learning new 

characteristics expands the domain or expertise. 

 

2.1 The Basic Learning Model 

Learning agents consist of four main components. They are:  

Learning element -- the part of the agent responsible for improving its 

performance  

Performance element -- the part that chooses the actions to take  

Critic -- tells the learning element how the agent is doing  

Problem generator -- suggests actions that could lead to new, informative 

experiences (suboptimal from the point of view of the performance element, 
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but designed to improve that element)  

In designing a learning system, there are four major issues to consider:  

components -- which parts of the performance element are to be improved  

representation -- of those components  

feedback -- available to the system  

prior information -- available to the system  

All learning can be thought of as learning the representation of a function. 

 

2.1.1 Types of Learning 

There are six main types of learning.  

Speed-up learning  

A type of deductive learning that requires no additional input, but 

improves the agent's performance over time. There are two kinds, rote 

learning and generalization .Data caching is an example of how it would be 

used.  

Learning by taking advice 

Deductive learning in which the system can reason about new 

information added to its knowledge base.  

Learning from examples  

Inductive learning, concepts are learned from sets of labelled instances. 
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Clustering  

“Natural classes” are found for data instances, as well as ways of 

classifying them in an unsupervised inductive learning. Examples include 

COBWEB, AUTOCLASS. 

Learning by analogy  

A system transfers knowledge from one database into that of a different 

domain in inductive learning. 

Discovery  

In this method both inductive and deductive learning in which an agent 

learns without help from a teacher. It is deductive if it proves theorems and 

discovers concepts about those theorems; it is inductive when it raises 

conjectures. 

 

2.2 Topics in Machine Learning 

It can be categorized into different approaches: 

 

2.2.1 Artificial Neural Networks 

Artificial Neural Network is a system loosely modeled on the human 

brain. The field goes by many names, such as connectionism, parallel 

distributed processing, neuro-computing, natural intelligent systems, 

machine learning algorithms, and artificial neural networks. It is an attempt 

to simulate within specialized hardware or sophisticated software, the 

multiple layers of simple processing elements called neurons. Each neuron is 
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linked to certain of its neighbors with varying coefficients of connectivity 

that represent the strengths of these connections. Learning is accomplished 

by adjusting these strengths to cause the overall network to output 

appropriate results. 

The most basic components of neural networks are modeled after the 

structure of the brain. Some neural network structures are not closely to the 

brain and some does not have a biological counterpart in the brain. However, 

neural networks have a strong similarity to the biological brain and therefore 

a great deal of the terminology is borrowed from neuroscience. The most 

basic element of the human brain is a specific type of cell, which provides us 

with the abilities to remember, think, and apply previous experiences to our 

every action. These cells are known as neurons, each of these neurons can 

connect with up to 200000 other neurons. The power of the brain comes 

from the numbers of these basic components and the multiple connections 

between them. Basically, a biological neuron receives inputs from other 

sources, combines them in some way, performs a generally nonlinear 

operation on the result, and then output the final result.  

The basic unit of neural networks, the artificial neurons, simulates the 

four basic functions of natural neurons. Of course artificial neurons are much 

simpler than the biological neuron. Various inputs in the neural network are 

represented by the mathematical symbol, x (n). Each of these inputs are 

multiplied by a connection weight, these weights are represented by w (n). In 

the simplest case, these products are simply summed, fed through a transfer 

function to generate a result, and then output. Even though all artificial 

neural networks are constructed from this basic building block the 

fundamentals may vary in these building blocks and there are differences.  

In the design part, the developer must go through a period of trial and 

error in the design decisions before coming up with a satisfactory design. 

The design issues in neural networks are complex and are the major concerns 
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of system developers.  

Designing a neural network consists of: 

* Arranging neurons in various layers.  

* Deciding the type of connections among neurons for different layers, as 

well as among the neurons within a layer.  

* Deciding the way a neuron receives input and produces output.  

* Determining the strength of connection within the network by allowing the 

network learns the appropriate values of connection weights by using a 

training data set.  

The process of designing a neural network is an iterative process. 

Biologically, layers in neural networks are constructed in a three 

dimensional way from microscopic components. These neurons seem 

capable of nearly unrestricted interconnections. This is not true in any man-

made network. Artificial neural networks are the simple clustering of the 

primitive artificial neurons. This clustering occurs by creating layers, which 

are then connected to one another. How these layers connect may also vary. 

Basically, all artificial neural networks have a similar structure of topology. 

Some of the neurons interface the real world to receive its inputs and other 

neurons provide the real world with the network’s outputs. All the rest of the 

neurons are hidden form view.  

Communicating part of NN process like this: Neurons are connected 

via a network of paths carrying the output of one neuron as input to another 

neuron. These paths is normally unidirectional, there might however be a 

two-way connection between two neurons, because there may be another 

path in reverse direction. A neuron receives input from many neurons, but 
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produces a single output, which is communicated to other neurons. The 

neuron in a layer may communicate with each other, or they may not have 

any connections. The neurons of one layer are always connected to the 

neurons of at least another layer. 

 

INTER-LAYER CONNECTIONS  

There are different types of connections used between layers; these 

connections between layers are called inter-layer connections; 

Fully connected 

 Each neuron on the first layer is connected to every neuron on the 

second layer.  

Partially connected 

A neuron of the first layer does not have to be connected to all neurons 

on the second layer.  

Feed forward 

The neurons on the first layer send their output to the neurons on the 

second layer, but they do not receive any input back form the neurons on the 

second layer.  

Bidirectional 

There is another set of connections carrying the output of the neurons 

of the second layer into the neurons of the first layer. Feed forward and bi-

directional connections could be fully- or partially connected. 
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Hierarchical 

If a neural network has a hierarchical structure, the neurons of a lower 

layer may only communicate with neurons on the next level of layer. 

Resonance 

The layers have bi-directional connections, and they can continue sending 

Messages across the connections a number of times until a certain condition 

is achieved. In more complex structures the neurons communicate among 

themselves within a layer, this is known as intra-layer connections. There are 

two types of intra-layer connections.  

 

INTRA LAYER CONNECTIONS 

Recurrent 

 The neurons within a layer are fully- or partially connected to 

one another. After these neurons receive input form another layer, they 

communicate their outputs with one another a number of times before they 

are allowed to send their outputs to another layer. Generally, some 

conditions among the neurons of the layer should be achieved before they 

communicate their output to another layer. 

On-center/Off surround  

A neuron within a layer has excitatory connections to itself and its 

immediate neighbors, and has inhibitory connections to other neurons. One 

can imagine this type of connection as a competitive gang of neurons. Each 

gang excites it and its gang members and inhibits all members of other 

gangs. After a few rounds of signal interchange, the neurons with an active 

output value will win, and is allowed to update its and its gang member’s 
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weights. (There are two types of connections between two neurons, 

excitatory or inhibitory. In the excitatory connection, the output of one 

neuron increases the action potential of the neuron to which it is connected. 

When the connection type between two neurons is inhibitory, then the output 

of the neuron sending a message would reduce the activity or action potential 

of the receiving neuron. One causes the summing mechanism of the next 

neuron to add while the other causes it to subtract. One excites while the 

other inhibits. 

The learning ability of a neural network is determined by its 

architecture and by the algorithmic method chosen for training.  

The training method usually consists of one of three schemes: 

Unsupervised 

The hidden neurons must find a way to organize themselves without 

help from the outside. In this approach, no sample outputs are provided to 

the network against which it can measure its predictive performance for a 

given vector of inputs. This is learning by doing. 

Reinforcement Learning 

This method works on reinforcement from the outside. The connections 

among the neurons in the hidden layer are randomly arranged, then 

reshuffled as the network is told how close it is to solving the problem. 

Reinforcement learning is also called supervised learning, because it requires 

a teacher. The teacher may be a training set of data or an observer who 

grades the performance of the network results. Both unsupervised and 

reinforcement suffers from relative slowness and inefficiency relying on a 

random shuffling to find the proper connection weights. 
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Backpropogation Network 

This method is proven highly successful in training of multilayered 

neural nets. The network is not just given reinforcement for how it is doing 

on a task. Information about errors is also filtered back through the system 

and is used to adjust the connections between the layers, thus improving 

performance. It is a form of supervised learning.  

One can categorize the learning methods into yet another group, off-line 

or on-line. When the system uses input data to change its weights to learn 

the domain knowledge, the system could be in training mode or learning 

mode. When the system is being used as a decision aid to make 

recommendations, it is in the operation mode, this is also sometimes called 

recall. 

Off-line 

In the off-line learning methods, once the systems enters into the 

operation mode, its weights are fixed and do not change any more. Most of 

the networks are of the off-line learning type.  

On-line 

In on-line or real time learning, when the system is in operating mode 

(recall), it continues to learn while being used as a decision tool. This type of 

learning has a more complex design structure. Neural networks are 

performing successfully where other methods do not, recognizing and 

matching complicated, vague, or incomplete patterns. Neural networks have 

been applied in solving a wide variety of problems. 

Most applications of neural networks fall into the following five categories: 

Prediction 
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Uses input values to predict some output. E.g., pick the best stocks in 

the market, predict weather, and identify people with cancer risk.  

 

Classification 

Use input values to determine the classification. E.g., is the input the 

letter A is the blob of the video data a plane and what kind of plane is it.  

Data association 

Like classification, it also recognizes data that contains errors. E.g., not 

only identify the characters that were scanned but identify when the scanner 

is not working properly. 

Data Conceptualization 

Analyze the inputs so that grouping relationships can be inferred. E.g., 

extract from a database the names of those most likely to by a particular 

product.  

Data Filtering 

 Smooth an input signal. E.g., take the noise out of a telephone signal. 

 

2.2.2 Genetic Algorithms 

The idea of applying the biological principle of natural evolution to 

artificial systems, introduced more than three decades ago, has seen 

impressive growth in the past few years. Usually grouped under the term 

evolutionary algorithms or evolutionary computation, it was found the 

domains of genetic algorithms, evolution strategies, evolutionary 
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programming, and genetic programming. Evolutionary algorithms are 

everywhere nowadays, having been successfully applied to numerous 

problems from different domains, including optimization, automatic 

programming, machine learning, economics, operations research, ecology, 

and population genetics, studies of evolution and learning, and social 

systems.  

A genetic algorithm is an iterative procedure that consists of a constant-

size population of individuals, each one represented by a finite string of 

symbols, known as the genome, encoding a possible solution in a given 

problem space. This space, referred to as the search space, comprises all 

possible solutions to the problem at hand. Generally speaking, the genetic 

algorithm is applied to spaces which are too large to be fully searched. The 

symbol alphabet used is often binary, though other representations have also 

been used, including character-based encodings, real-valued encodings, and -

- most remarkably -- tree representations.  

The standard genetic algorithm proceeds as follows: an initial 

population of individuals is generated at random or heuristically. Every 

evolutionary step, known as a generation, the individuals in the current 

population are decoded and evaluated according to some predefined quality 

criterion, referred to as the fitness, or fitness function. To form a new 

population, individuals are selected according to their fitness. Many 

selection procedures are currently in use, one of the simplest being Holland's 

original fitness-proportionate selection, where individuals are selected with a 

probability proportional to their relative fitness. This ensures that the 

expected number of times an individual is chosen is approximately 

proportional to its relative performance in the population. Thus, high-fitness 

(``good'') individuals stand a better chance of ``reproducing'', while low-

fitness ones are more likely to disappear.  

Selection alone cannot introduce any new individuals into the 
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population, specifically; it cannot find new points in the search space. These 

are generated by genetically-inspired operators, of which the most well 

known are crossover and mutation. Crossover is performed with probability 

pcross (the ``crossover probability'' or ``crossover rate'') between two 

selected individuals, called parents, by exchanging parts of their genomes 

(i.e., encodings) to form two new individuals, called offspring; in its simplest 

form, substrings are exchanged after a randomly selected crossover point. 

This operator tends to enable the evolutionary process to move toward 

``promising'' regions of the search space. The mutation operator is 

introduced to prevent premature convergence to local optima by randomly 

sampling new points in the search space. It is carried out by flipping bits at 

random, with some (small) probability pmut. Genetic algorithms are 

stochastic iterative processes that are not guaranteed to converge; the 

termination condition may be specified as some fixed maximal number of 

generations or as the attainment of an acceptable fitness level. Below 

presents the standard genetic algorithm in pseudo-code format: 

Begin GA 

  g:=0  { generation counter } 

  Initialize population P(g)  

  Evaluate population P(g)  {i.e., compute fitness values }  

  While not done do  

    g:=g+1  

    Select P(g) from P(g-1)  

    Crossover P(g)  
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    Mutate P(g)  

    Evaluate P(g)  

  end while  

end GA 

The implementation of an evolutionary algorithm, an issue which 

usually remains in the background, is quite costly in many cases, since 

populations of solutions are involved possibly coupled with computation-

intensive fitness evaluations. One possible solution is to parallelize the 

process, an idea that has been explored to some extent in recent years. While 

posing no major problems in principle, this may require cautious 

modifications of existing algorithms or the introduction of new ones in order 

to meet the constraints of a given parallel machine.  

 

2.2.3 Inductive Learning 

Inductive learning is a kind of learning in which, given a set of 

examples an agent tries to estimate or create an evaluation function. Most 

inductive learning is supervised learning, in which examples provided with 

classifications. (The alternative is clustering.) More formally, an example is 

a pair (x, f(x)), where x is the input and f(x) is the output of the function 

applied to x. The task of pure inductive inference (or induction) is, given a 

set of examples of f, to find a hypothesis h that approximates f.  

 

2.2.3.1 Decision Trees 

A decision tree is a simple inductive learning structure. Given an 
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instance of an object or situation, which is specified by a set of properties, 

the tree returns a "yes" or "no" decision about that instance. Each internal 

node in the tree represents a test on one of those properties, and the branches 

from the node are labelled with the possible outcomes of the test. Each leaf 

node is a Boolean classifier for the input instance.  

From a logical viewpoint, decision trees are attempting to learn sets of 

implication sentences; this set is called the goal predicate. Note that these 

implications can only test propositions on the input object. However, any 

Boolean function can be represented as a decision tree.  

Decision trees very inefficiently represent some Boolean functions. The 

parity function is one example; it requires an exponentially large tree, since 

it must test all of the attributes. Another difficult function is the majority 

function. (It could be characterizing this kind of function roughly as one that 

cannot be determined on the basis only of parts of the input; the problem is 

that the whole thing has to be examined. The whole point of the decision tree 

is to find ways that only parts of the input need to be examined in order to 

reach a decision).The point of the decision tree algorithm is to find a 

"smallest" tree that correctly classifies most of the training examples.  

Algorithm 

The decision tree algorithm works roughly as follows:  

If there are no examples to split on, return a default classification. 

If all examples have the same classification, return it. 

Otherwise, choose the property with the highest information gain: 

   Create a new decision tree rooted on a test of that property. 
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   For each possible value of that property: 

      Recursively call this algorithm with the subset of examples that 

         Match the property on the new tree, and their classification 

         (By majority vote in case of conflict). 

      Add a branch to the sub tree pointing to the result. 

   Return this tree. 

The approach is to test the attribute with the highest information gain 

first, and then those with successively smaller gains, until all examples are 

classified.  

Two problems arise in this induction. If a split leads to a branch with 

no existing examples, its classification is given by some preset default. If a 

set of identical examples has different classifications (noise), then some 

method must be used to determine what classification to use; majority-vote 

is a simple one.  

Extensions of Basic Decision Tree 

There are several ways to expand upon the trees described. One is to 

allow them to handle missing data, where the values of some attributes in the 

test set are not known. Several approaches have been suggested: assign a 

value based upon the distribution of values in other instances, or construct 

another decision tree just to decide the value. The simplest is to give it the 

most common value, and in practice this seems to produce nearly as good 

results as the other methods.  

A second extension is to allow multi-valued attributes, beyond 

Boolean. Yet another is to permit continuous-valued attributes, which would 
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need to be discredited in some way to be used in a decision tree. Another is 

allowing more than two possible classifications; ID3 algorithm does not do 

this, but later systems do.  

Two problems with ID3 that were later solved by Quinlan: the smaller 

the sub tree gets the harder to intelligently choose an attribute to split on and 

decision trees cannot represent DNF concepts efficiently. These problems 

were solved by converting the tree into production rules of the form  

f1 ^ f2 ^ ... fk -> class.  

Statistically insignificant conditions from the left-hand side are 

removed, and then entire rules that do not significantly improve performance 

(determined by comparing classification using rule sets with and without the 

rule under consideration) are deleted. This can both improve accuracy and 

dramatically reduce the complexity of the learned concept.  

ID5 is an improved version of ID3 that supports incremental learning. 

It processes the examples one at a time and produces an updated decision 

tree after each example. The basic idea of growing the tree top-down 

remains the same, but as the examples are moved through the tree, they are 

stored at the leaves. If a leaf node comes to have both positive and negative 

examples, a new sub tree is created at that node, splitting on the attribute 

with the highest information gain for those examples.  

 

2.2.4 Concept Learning and the General-To-Specific 

Ordering 

Concept Learning is the process of inferring a Boolean-valued function 

from training examples of its input and output. 
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* Learning from examples 

* General-to-specific ordering over hypotheses 

* Version spaces and candidate elimination algorithm 

* Picking new examples 

* The need for inductive bias 

- It is concerned with acquiring the definition of a general category (concept) 

from a sample of positive and negative training examples of the category.  

- It can be formulated as a problem of searching through a predefined space 

of potential hypotheses for one that best fits the training examples.  

- The search can be efficiently organized by general-to-specific ordering of 

hypotheses.  

Algorithms: Find-S and Version Space.  

- The main issue: inductive bias  

The topics in concept learning are: 

- A concept learning task  

- Concept learning as search  

- Find-S: Finding a maximally specific hypothesis  

- Version spaces  

* The candidate elimination algorithm  
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* The boundary set representation  

- Inductive bias  

- Concept learning can be cast as a search problem. General-to-specific 

ordering of hypotheses provides a useful search structure. The version space 

approach is good for single concept learning. 

 

2.2.5 Evaluating Hypotheses 

The importance of evaluating hypothesis is to understand whether to 

use the hypothesis and it is an integral component of learning algorithm. But 

it has two difficulties with only set of limited data. 

1. Bias in Estimate  

Use test examples chosen independently of the training examples. 

2. Variance in Estimate 

Use larger set of test examples. 

Summary of evaluating hypothesis like below: 

• Statistical theory provides a basis for estimating true error of a hypothesis h 

• One possible cause of errors in estimating accuracy is estimation bias 

• A second cause is variance in estimate 

• Confidence intervals provide useful bounds for error 

• Holdout methods provide an affective method for training and testing on 
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limited data 

• Statistical models provide approximate confidence intervals that can be of 

great help in interpreting experimental comparisons of learning methods 

 

2.2.6 Bayesian Learning  

Learning that treats the problem of building hypotheses as a particular 

case of the problem of making predictions. The probabilities of various 

hypotheses are estimated, and predictions are made using the posterior 

probabilities of the hypotheses to weight them. This is a probabilistic 

approach to learning and inference. It is based on the assumption that the 

quantities of interest are governed by probability distributions. It is attractive 

because in theory it can arrive at optimal decisions. It provides a quantitative 

approach to weighing the evidence supporting alternative hypotheses. 

Conventional training methods for multilayer perceptrons ("backpropagated" 

nets) can be interpreted in statistical terms as variations on maximum 

chances estimation. The idea is to find a single set of weights for the network 

that maximize the fit to the training data, perhaps modified by some sort of 

weight penalty to prevent over fitting. The Bayesian school of statistics is 

based on a different view of what it means to learn from data, in which 

probability is used to represent uncertainty about the relationship being 

learned. Before we have seen any data, our prior opinions about what the 

true relationship might be can be expressed in a probability   distribution 

over the network weights that define this relationship. After looking at the 

data our revised opinions are captured by a posterior distribution over 

network weights. Network weights that seemed plausible before, but which 

don't match the data very well, will now be seen as being much less likely, 

while the probability for values of the weights that do fit the data well will 



 

25 
 

 

 

 

 

 

 

 

have increased.  

Typically, the purpose of training is to make predictions for future 

cases in which only the inputs to the network are known. The result of 

conventional network training is a single set of weights that can be used to 

make such predictions. In contrast, the result of Bayesian training is a 

posterior distribution over network weights. If the inputs of the network are 

set to the values for some new case, the posterior distribution over network 

weights will give rise to a distribution over the outputs of the network, which 

is known as the predictive distribution for this new case. If a single-valued 

prediction is needed, one might use the mean of the predictive distribution, 

but the full predictive distribution also tells you how uncertain this 

prediction is.  Why bother with all this? The hope is that Bayesian methods 

will provide solutions to such fundamental problems as:   

 * How to judge the uncertainty of predictions. This can be solved by 

looking at the predictive distribution, as described above.  

 * How to choose appropriate network architecture (e.g., the number hidden 

layers, the number of hidden units in each layer).  

 * How to adapt to the characteristics of the data (e.g., the smoothness of the 

function, the degree to which different inputs are relevant).  

Good solutions to these problems, especially the last two, depend on 

using the right prior distribution, one that properly represents the uncertainty 

that you probably have about which inputs are relevant, how smooth the 

function is, how much noise there is in the observations, etc. Such carefully 

vague prior distributions are usually defined in a hierarchical fashion, using 

hyper parameters, some of which are analogous to the weight decay 

constants of more conventional training procedures. The use of 

hyperparameters is discussed in particular use of an "Automatic Relevance 
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Determination" scheme that aims to allow many possibly-relevant inputs to 

be included without damaging effects. Selection of appropriate network 

architecture is another place where prior knowledge plays a role. One 

approach is to use a very general architecture, with lots of hidden units, 

maybe in several layers or groups, controlled using hyper parameters. It is 

also possible to choose between architectures in a Bayesian fashion, using 

the "evidence" for architecture. Implementing all this is one of the biggest 

problems with Bayesian methods. Dealing with a distribution over weights 

(and perhaps hyper parameters) is not as simple as finding a single "best" 

value for the weights. Exact analytical methods for models of as complex as 

neural networks are out of the question. Two approaches have been tried:  

1. Find the weights/hyper parameters that are most probable, using methods 

similar to conventional training (with regularization), and then approximate 

the distribution over weights using information available at this maximum.  

2. Use a Monte Carlo method to sample from the distribution over weights. 

The most efficient implementations of this use dynamical Monte Carlo 

method whose operation resembles that of backprop with momentum.  

Work on Bayesian neural network learning has so far concentrated on 

multilayer perceptron networks, but Bayesian methods can in principal be 

applied to other network models, as long as they can be interpreted in 

statistical terms. For some models (RBF networks), this should be a fairly 

simple matter; for others (Boltzmann Machines), substantial computational 

problems would need to be solved. 

 

2.2.7 Computational Learning Theory  

Computational Learning Theory analyses the sample complexity and 

computational complexity of inductive learning. There is a trade-off between 
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the expressiveness of the hypothesis language and the ease of learning. It is 

the theory about learn ability, learning error, sample size and computational 

complexity.[6] 

What general laws constrain inductive learning? 

 

• Probability of successful learning 

• Number of training examples 

• Complexity of hypothesis space 

• Accuracy to which target concept is approximated 

• Manner in which training examples presented 

How can one possibly know that one’s learning algorithm has produced 

a theory that will correctly predict the future? In terms of the definition of 

inductive learning, how do we know that the hypothesis h is close to the 

target function f if we don’t know what f is? 

Let’s focus on the answers provided by Computational Learning 

Theory, a field at the intersection of AI and theoretical computer science. 

The underlying principle is the following: any hypothesis that is 

seriously wrong will almost certainly be “found out” with high probability 

after a small number of examples, because it will make an incorrect 

prediction. Thus, any hypothesis that is inconsistent with a sufficiently large 

set of training examples is unlikely to be seriously wrong that is, it must be 

Probably Approximately Correct. PAC learning is the subfield of 

computational learning theory that is devoted to the idea. 
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2.2.8 Cased-Based Learning  

Case-Based Reasoning is one of most successful applied AI 

technologies of recent years. Commercial and industrial applications can be 

developed rapidly and existing corporate databases can be used as 

knowledge sources. Helpdesks and diagnostic systems are the most common 

applications.  

Case-Based Reasoning (CBR) is based on the intuition that new 

problems are often similar to previously encountered problems, and 

therefore, that past solutions may be of use in the current situation. Case-

Based Reasoners typically apply retrieval algorithms and matching 

algorithms to a case base of past problem-solution pairs. Cases are often 

derived from legacy databases and need not be well structured: case-based 

reasoning is robust and requires little knowledge acquisition. In complex 

applications such as planning and design it is insufficient to recall the best 

matching cases---cases must be adapted to form a new solution.  

CBR has been applied to classification tasks, e.g. to determine the type 

of an organism from observed attributes and to determine whether or not 

cancer treatment is necessary given past cases. CBR has also been applied to 

design tasks, e.g. the optimal layout of items in furnace. The major 

application of CBR is helpdesks. The helpdesk operator can enter the client's 

description of their problem into the CBR system, for example, the client 

may describe a malfunction of their PC, and will receive the most 

appropriate past solutions from the corporate database as a result.  

CBR techniques can be applied to large and complex datasets. Data 

points are considered to be cases, and may be described by tens, or even 
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hundreds, of attributes. One attribute will be used as the diagnostic goal, e.g. 

faulty or operational, and the CBR will attempt to partition a training set of 

data with maximum accuracy. Critical factors in the success of this type of 

CBR are the amount of data available for the system to learn from, and the 

existence of particular properties in the data itself. 

 

2.2.9 Learning Sets of Rules  

Learning rule sets is like learning disjunctive concepts. Learning rules 

involving variables is challenging. If-then rules are one of the most 

expressive representations of knowledge. 

• Learn sets of rules by using ID3 and then converting the tree to rules.  

• Use a genetic algorithm that encodes the rules as bit strings.  

• But, these only work with predicate rules (no variables).  

• They also consider the set of rules as a whole, not one rule at a time.  

Rules 

• First-order predicate logic (calculus) formalizes statements using 

predicates (Boolean functions) and functions. Both can have variables.  

• A rule set can look like  

IF Parent(x,y) THEN Ancestor(x,y)  

IF Parent(x,z) � Ancestor(z,y) THEN Ancestor(x,y)  

• Here, Parent(x,y) is a predicate that indicates that y is the parent of x.  
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• These two rules form a recursive function which would be very hard to 

represent using a decision tree or propositional representation.  

• In Prolog, programs are set of first-order rules with the form as above 

(known as Horn clauses).  

• View the learning of rules as the learning of Prolog programs.  

Sequential Covering 

• The idea in a sequential covering algorithm is to learn one rule, remove 

the data it covers, and then repeat. 

Comparison on Rule Learning Methods: 

Symbolic heuristic search:  

This method commonly uses general to specific beam search or hill-

climbing search. A performance criterion based on accuracy and coverage 

needs to be defined for evaluating and selecting rules. However, this 

criterion is often ill-defined especially in the case of noise, inconsistency, 

and uncertainty. And there is no good theoretical guidance for global 

optimization.  

Decision trees:  

In this approach, classification knowledge is first represented as a 

decision tree and then the tree is translated as a set of rules. The decision tree 

is constructed by sequentially selecting attributes based on an information 

theoretical measure. This approach has the advantage in speed but it searches 

incompletely through a complete hypothesis space and is also sensitive to 

data noise.  
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Inverted logic deduction:  

In this approach, learning proceeds by generating a hypothesis that, 

together with some background knowledge, explains the given data. This 

approach does not naturally handle noise, inconsistency, and uncertainty. 

The search through the hypothesis space is intractable in the general case and 

increasingly complex with the amount of background knowledge. So far, 

there is no good solution to all of these problems together.  

Neural networks:  

In this approach, a neural network learns a function to fit the given 

data, and then the function is decoded as a set of rules. There is good 

theoretical support in functional approximation, but what remains to be 

solved is how to extract correct rules from a trained neural network.  

Genetic Algorithms:  

In this approach, each rule set is encoded as a bit string and genetic 

search operators are applied to explore the hypothesis space. The stochastic 

nature of the algorithm provides a means for alleviating the local minima 

effect, but the element of randomness may also introduce some degree of 

imprecision. Experience has shown that this approach fails to learn true 

domain rules even in not too complex domains. 

 

2.2.10 Analytical Learning  

* Using background knowledge to explain (prove) training example is 

member of the target concept. 
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* Then, generalize explanation 

* ILP used background knowledge to suggest new features (i.e., increase H) 

* Analytical learning uses BK to decrease (constrain) H 

* Prolog -EBG 

* Perfect vs. imperfect domain theories 
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2.2.11 Combining Inductive and Analytical Learning 

Table 1 – Inductive and Analytical Learning 
 

 Inductive Learning  Analytical Learning  

Goal 

Hypothesis fits data  
Hypothesis fits 
domain theory  

Justification Statistical inference  Deductive Inference  

Advantages  
Requires little prior 
knowledge  

Learns from scarce 
data  

Pitfalls  
Scarce data, incorrect 
bias  

Imperfect domain 
theory  

 

• They seem very complementary.  

It is wanted a learning method such that:  
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1. Given no domain theory it should be as good as purely inductive 

methods.  

2. Given a perfect domain theory it should be as good as analytical 

methods.  

3. Given imperfect domain theory and imperfect data it should combine 

the two and do batter than both inductive and analytical.  

4. Accommodate an unknown level of error in training data.  

5. Accommodate an unknown level of error in domain theory. 

It is purely inductive; 

* need no explicit prior knowledge 

* fail when scarce data 

* may be misled by wrong bias 

It is purely analytical; 

* learn even from scarce data 

* fail when incorrect or insufficient knowledge 

Both of them have justifications: 

Inductive; 

* Statistical justification 

* Hypothesis fits statistically data 
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Analytical; 

* Logical justification 

* Hypothesis fits domain theory & data 

 

2.2.12 Reinforcement Learning 

Reinforcement learning is learning what to do---how to map situations 

to actions---so as to maximize a numerical reward signal. The learner is not 

told which actions to take, as in most forms of machine learning, but instead 

must discover which actions yield the most reward by trying them. In the 

most interesting and challenging cases, actions may affect not only the 

immediate reward, but also the next situation and, through that, all 

subsequent rewards. These two characteristics---trial-and-error search and 

delayed reward---are the two most important distinguishing features of 

reinforcement learning.  

Reinforcement learning is defined not by characterizing learning 

algorithms, but by characterizing a learning problem. Any algorithm that is 

well suited to solving that problem we consider to be a reinforcement 

learning algorithm. The basic idea is simply to capture the most important 

aspects of the real problem facing a learning agent interacting with its 

environment to achieve a goal. Clearly such an agent must be able to sense 

the state of the environment to some extent and must be able to take actions 

that affect that state. The agent must also have a goal or goals relating to the 

state of the environment. Our formulation is intended to include just these 

three aspects---sensation, action, and goal---in the simplest possible form 

without trivializing any of them.  

Reinforcement learning is different from supervised learning, the kind 
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of learning studied in most current research in machine learning, statistical 

pattern recognition, and artificial neural networks. Supervised learning is 

learning from examples provided by some knowledgeable external 

supervisor. This is an important kind of learning, but alone it is not adequate 

for learning from interaction. In interactive problems it is often impractical 

to obtain examples of desired behavior that are both correct and 

representative of all the situations in which the agent has to act. In uncharted 

territory---where one would expect learning to be most beneficial---an agent 

must be able to learn from its own experience.  

One of the challenges that arise in reinforcement learning and not in 

other kinds of learning is the tradeoff between exploration and exploitation. 

To obtain a lot of reward, a reinforcement learning agent must prefer actions 

that it has tried in the past and found to be effective in producing reward. But 

to discover such actions it has to try actions that it has not selected before. 

The agent has to exploit what it already knows in order to obtain reward, but 

it also has to explore in order to make better action selections in the future. 

The dilemma is that neither exploitation nor exploration can be pursued 

exclusively without failing at the task. The agent must try a variety of actions 

and progressively favor those that appear to be best. On a stochastic task, 

each action must be tried many times to reliably estimate its expected 

reward.  

Another key feature of reinforcement learning is that it explicitly 

considers the whole problem of a goal-directed agent interacting with an 

uncertain environment. This is in contrast with many approaches that address 

sub problems without addressing how they might fit into a larger picture.  

Reinforcement learning takes the opposite tack, by starting with a 

complete, interactive, goal-seeking agent. All reinforcement learning agents 

have explicit goals, can sense aspects of their environments, and can choose 

actions to influence their environments. Moreover, it is usually assumed 
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from the beginning that the agent has to operate despite significant 

uncertainty about the environment it faces. When reinforcement learning 

involves planning, it has to address the interplay between planning and real-

time action selection, as well as the question of how environmental models 

are acquired and improved. When reinforcement learning involves 

supervised learning, it does so for very specific reasons that determine which 

capabilities are critical, and which are not. For learning research to make 

progress, important subproblems have to be isolated and studied, but they 

should be subproblems that are motivated by clear roles in complete, 

interactive, goal-seeking agents, even if all the details of the complete agent 

cannot yet be filled in.  

Elements of Reinforcement Learning 

Beyond the agent and the environment, one can identify four main sub-

elements to a reinforcement learning system: a policy, a reward function, a 

value function, and, optionally, a model of the environment.  

A policy defines the learning agent's way of behaving at a given time. 

Roughly speaking, a policy is a mapping from perceived states of the 

environment to actions to be taken when in those states. It corresponds to 

what in psychology would be called a set of stimulus-response rules or 

associations. In some cases the policy may be a simple function or lookup 

table, whereas in others it may involve extensive computation such as a 

search process. The policy is the core of a reinforcement learning agent in 

the sense that it alone is sufficient to determine behavior. In general, policies 

may be stochastic.  

A reward function defines the goal in a reinforcement learning 

problem. Roughly speaking, it maps perceived states (or state-action pairs) 

of the environment to a single number, a reward, indicating the intrinsic 

desirability of the state. A reinforcement-learning agent's sole objective is to 
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maximize the total reward it receives in the long run. The reward function 

defines what the good and bad events are for the agent. In a biological 

system, it would not be inappropriate to identify rewards with pleasure and 

pain. They are the immediate and defining features of the problem faced by 

the agent. As such, the reward function must necessarily be fixed. It may, 

however, be used as a basis for changing the policy. For example, if an 

action selected by the policy is followed by low reward then the policy may 

be changed to select some other action in that situation in the future. In 

general, reward functions may also be stochastic.  

Whereas a reward function indicates what is good in an immediate 

sense, a value function specifies what is good in the long run. Roughly 

speaking, the value of a state is the total amount of reward an agent can 

expect to accumulate over the future starting from that state. Whereas 

rewards determine the immediate, intrinsic desirability of environmental 

states, values indicate the long-term desirability of states after taking into 

account the states that are likely to follow, and the rewards available in those 

states. For example, a state might always yield a low immediate reward, but 

still have a high value because it is regularly followed by other states that 

yield high rewards. Or the reverse could be true. To make a human analogy, 

rewards are like pleasure (if high) and pain (if low), whereas values 

correspond to a more refined and far-sighted judgment of how pleased or 

displeased we are that our environment is in a particular state. Expressed this 

way, we hope it is clear that value functions formalize a very basic and 

familiar idea.  

Rewards are in a sense primary, whereas values, as predictions of 

rewards, are secondary. Without rewards there could be no values, and the 

only purpose of estimating values is to achieve more reward. Nevertheless, it 

is values with which we are most concerned when making and evaluating 

decisions. Action choices are made on the basis of value judgments. Seeking 
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actions that bring about states of highest value is what is wanted, not highest 

reward, because these actions obtain for us the greatest amount of reward 

over the long run. In decision-making and planning, the derived quantity 

called value is the one with which we are most concerned. Unfortunately, it 

is also much harder to determine values than it is to determine rewards. 

Rewards are basically given directly by the environment, but values must be 

estimated and re-estimated from the sequences of observations an agent 

makes over its entire lifetime. In fact, the most important component of 

almost all reinforcement learning algorithms is a method for efficiently 

estimating values. The importance and centrality of estimating values is 

perhaps the most important thing we have learned about reinforcement 

learning in the last two decades.  

The fourth and final element of some reinforcement learning systems is 

a model of the environment. This is something that mimics the behavior of 

the environment. For example, given a state and action, the model might 

predict the resultant next state and next reward. Models are used for 

planning, by which we mean any way of deciding on a course of action by 

considering possible future situations before they are actually experienced. 

The incorporation of models and planning into reinforcement learning 

systems is a relatively new development. Early reinforcement learning 

systems were explicitly trial-and-error learners; what they did was viewed as 

almost the opposite of planning. Nevertheless, it gradually became clear that 

reinforcement learning methods are closely related to dynamic programming 

methods, which do use models, and that they in turn are closely related to 

state-space planning methods. 

Modern reinforcement learning spans the spectrum from low-level, 

trial-and-error learning to high-level, deliberative planning.[10] 
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CHAPTER 3 

 

 

 

 ALGORITHMS 

 

 

 

3.1 C4.5 Algorithm 

C4.5 is a later version of the ID3 decision tree induction algorithm. 

C4.5 introduces a number of extensions of the original ID3 algorithm. In 

building a decision tree we can deal with training sets that have records with 

unknown attribute values by evaluating the gain, or the gain ratio, for an 

attribute by considering only the records where that attribute is defined. In 

using a decision tree, we can classify records that have unknown attribute 

values by estimating the probability of the various possible results.  

C4.5 is a decision tree that allows both discrete and continuous input 

variables. The way in which the input data is organized can be chosen 

column by column and allows the threshold splitting similar to CART as 

well as the other methods found in CHAID. However, in deciding where the 

splits are made it uses an 'information gain' criterion. It is possible to choose 
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the selected processing method (threshold, static, k-means or normal) across 

all columns or by column. Care needs to be taken to ensure that the 

processing method chosen matches the form of attribute data being used, i.e. 

threshold on continuous data, buckets and clustering on either and normal 

only on discrete data 

3.2 Cart Algorithm 

CART is a decision tree that treats all data inputs as continuous 

variables and splits the data by using thresholds. Values of an attribute 

(column) that are above the threshold split one way and those below the 

other. The split is made on the maximum membership of a target class and 

non-membership of other target classes. Only binary trees (those splitting 

two ways from a node) are produced. CART cannot handle categorical data 

with more than two categories in an attribute.  

 

3.3 Quest Algorithm 

QUEST stands for “Quick, Unbiased, and Efficient Statistical Trees” 

and is a program for tree-structured classification. The algorithms are 

described in Loh and Shih (1997). The performance of QUEST compared 

with other classification methods can be found in Lim, Loh and Shih (2000). 

The main strengths of QUEST are unbiased variable selection and fast 

computational speed. In addition, it has options to perform CART-style 

exhaustive search and cost-complexity cross-validation pruning. [12] 

 

3.4 Chaid Algorithm 

CHAID is a decision tree that treats all data inputs as discrete variables 
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or members of a class and splits the data according to the number of classes. 

Splits are made using a chi-square statistical significance test. There are 

three processing methods available to categorize and condition the input data 

and the choice can be made across all the attributes (columns) or on a per 

column basis. The choices are:  

Static: This splits the data range of attribute values for the column chosen 

into sets of equal size. The number of 'buckets' is selected by entering the 

number chosen in the grouping section of the dialog (having de-selected 

'using auto-setting').  

K-Means: This splits the data range of attribute values for the column chosen 

into sets of a size selected by K-means pre-processing of the column data. 

The number of K-means clusters is selected by entering the number chosen 

in the grouping section of the dialog (having de-selected 'using auto-setting'). 

The thresholds in the column data will be mid way between the centers of 

the clusters found.  

Normal: This splits the data such that there is an input class for each attribute 

value in the column. This should only be used with discrete data inputs, 

however, in the case of continuous data the threshold values will be mid way 

between each attribute value.  

 

3.5 Id3 Algorithm 

Very simply, ID3 builds a decision tree from a fixed set of examples. 

The resulting tree is used to classify future samples. The example has several 

attributes and belongs to a class (like yes or no). The leaf nodes of the 

decision tree contain the class name whereas a non-leaf node is a decision 

node. The decision node is an attribute test with each branch (to another 

decision tree) being a possible value of the attribute. ID3 uses information 
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gain to help it decide which attribute goes into a decision node. The 

advantage of learning a decision tree is that a program, rather than a 

knowledge engineer, elicits knowledge from an expert. 

ID3 is a nonincremental algorithm, meaning it derives its classes from a 

fixed set of training instances. An incremental algorithm revises the current 

concept definition, if necessary, with a new sample. The classes created by 

ID3 are inductive, that is, given a small set of training instances, the specific 

classes created by ID3 are expected to work for all future instances. The 

distribution of the unknowns must be the same as the test cases. Induction 

classes cannot be proven to work in every case since they may classify an 

infinite number of instances. Note that ID3 (or any inductive algorithm) may 

misclassify data. 

Data description: 

The sample data used by ID3 has certain requirements, which are: 

Attribute-value description - the same attributes must describe each example 

and have a fixed number of values.  

Predefined classes - an example's attributes must already be defined, that is, 

they are not learned by ID3.  

Discrete classes - classes must be sharply delineated. Continuous 

classes broken up into vague categories such as a metal being "hard, quite 

hard, flexible, soft, quite soft" are suspect.  

Sufficient examples - since inductive generalization is used (i.e. not 

provable) there must be enough test cases to distinguish valid patterns from 

chance occurrences.  

Attribute Selection: 
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How does ID3 decide which attribute is the best? A statistical property, 

called information gain, is used. Gain measures how well a given attribute 

separates training examples into targeted classes. The one with the highest 

information (information being the most useful for classification) is selected. 

In order to define gain, we first borrow an idea from information theory 

called entropy. Entropy measures the amount of information in an attribute.  

Given a collection S of c outcomes 

Entropy(S) = Sum -p (I) log2 p (I)  

Where p (I) is the proportion of S belonging to class I. Sum is over c. Log2 

is log base 2. 

Note that S is not an attribute but the entire sample set. 

 

3.6 Comparison of Classification Tree Methods 

FEATURE  QUEST CART CHAID C4.5 ID3  

Split variable selection  

Unbiased selection   Y N N N N  

Split types 

Univariate (axis-orthogonal) Y Y Y Y Y 

Linear combinations (oblique) Y Y N N N 

Choice of misclassification costs Y Y Y N N  
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Choice of class prior probabilities Y Y N N N 

Choice of impurity functions Y Y N Y Y 

Bagging    N Y N N N 

Error estimation by 

 cross-validation   Y Y Y N N 

Number of branches at each node 

Always two    Y Y N N N 

Two or more   N N Y Y Y 

Missing value methods 

Imputation    Y N N N N 

Alternate/surrogate splits  N Y N N N 

Missing value branch  N N Y N N 

Probability weights   N N N Y Y 

Tree size control 

Stopping rule   N N Y N N 

Pre-pruning    N N N Y Y 

Test-sample pruning  Y Y N N N 

Cross-validation pruning  Y Y N N N 
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Tree diagram formats 

Text     Y Y Y Y Y 

LATEX    Y Y N N N 

allClear    Y N N N N 

Proprietary    N Y Y N N 

Platforms 

Windows    Y Y Y Y Y  

Linux    Y Y N Y Y 

Sun     Y Y N Y N 

 

 

 

 

 

 



 

47 
 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

 

 

 

PROGRAMS 

 

 

 

4.1 SIPINA (Research Edition) 

SIPINA is software which can extract knowledge from data. 

SIPINA_W© learns from quantitative and qualitative data. It produces 

a lattice graph. The trees are a particular case of a lattice graph. SIPINA 

method is more general than induction trees like C4.5, ID3, and CHAID... 

In this program, the lattice graph issued from the learning step is 

translated in terms of production rules and stored in a Knowledge Base 

System (KBS). SIPINA_W© analyses the rules and detects several 

anomalies such as redundancy, contradictions, and cancels them. 

SIPINA_W© can merge many KBS’s and optimize the final KBS. 

The validation of the learning is performed via an inference engine. For 

that, first you choose a data file and a KBS and then SIPINA_W© predicts 
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the membership class of the examples in the file. In the same manner, the 

generalization is done on any other file. 

Furthermore, you may execute cross-validations and, when working 

with some analysis methods, it is possible to use the pruning techniques 

concerning the induction tree. Moreover, for some methods you are able to 

Use the ‘stop growing’ technique on the construction of the graph. [13] 
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CHAPTER 5 

 

 

 

ALGORITHM SELECTION 

 

 

 

5.1 Selection 

Choosing the best algorithm for a dataset was needed a broad survey on 

machine learning. We studied and investigated on learning and learning 

algorithms in order to make the right decision. After surveys, which we were 

done, finished, we agreed to select the decision tree algorithms. These 

algorithms are QUEST, CHAID, ID3, C4.5 and CART. 

 

5.2 Executing Algorithms 

These algorithms have many different features. To decide which 

parameters are suitable for our dataset is vary from person to person or 
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dataset. We chose the parameters below: 

QUEST was executed with conditions; Estimated priors, minimal node 

size 5,10 or 15, use univariate split, use(unbiased)statistical tests for variable 

selection, alpha value(0.50), splint point method(discriminant analysis), for 

categorical split point use CRIMCOORD and QDA, use 10-fold CV Sample 

pruning CART was also executed with conditions same as QUEST. 

C4.5 was executed with specifications; C.L for pessimistic pruning = 

25, size of leaves = 2, sampling = All Dataset and size of sample is % 50 

with random sampling. 

ID3 was executed with conditions; Confidence level = 0.50, sampling = 

All Dataset and size of sample is % 50 with random sampling. 

CHAID was executed with conditions; P-level for merging nodes = 

0.50 and for splitting nodes = 0.00001, bonferroni adjustments is manual (1), 

sampling = All Dataset and size of sample is % 50 with random sampling., 

SE-rule trees based on number of SEs = 1.00. 

 

5.2.1 Quest 

QUEST showed that it was not an efficient algorithm for our dataset. It 

has the lowest accuracy for classified rules (0.5507). Moreover, it was 

referring that when the minimal node size increased, the misclassification 

cost for confusion matrix decreased. For minimal node size = 5, cost was 

0.4963. For minimal node size = 10, cost was 0.4814. For minimal node size 

= 15, cost was 0.4781. The rules for QUEST: 

Node Left node Right node   Split variable   Predicted class 
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    1        2         3        maxsıcaklık 

    2        4         5        maxsıcaklık 

    4  * terminal node *                         (601000-700000) 

    5  * terminal node *                         (701000-740000) 

    3       88        89        minsıcaklık 

   88  * terminal node *                         (741000-800000) 

   89  * terminal node *                         (801000-900000) 

Classification tree : 

      Node 1: maxsıcaklık <= 16.74 

        Node 2: maxsıcaklık <= 9.519 

          Node 4: (601000-700000) 

        Node 2: maxsıcaklık > 9.519 

          Node 5: (701000-740000) 

      Node 1: maxsıcaklık > 16.74 

        Node 3: minsıcaklık <= 12.22 

          Node 88: (741000-800000) 

        Node 3: minsıcaklık > 12.22 

          Node 89: (801000-900000) 
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5.2.2 Chaid 

CHAID was the least accurate algorithm for our dataset. It has accuracy 

= 0.5330.The average misclassification cost for confusion matrix was 0.4395 

for 5 times execution. It has the rules below: 

For one execution: 

IF maxsıc >=22.30 and minsıc < 13.55 THEN sutüket in [(741000-800000)] 

with accuracy 0.5000 on (18,1,1,0,13,2,1) 

IF maxsıc >=22.30 and minsıc >=13.55 THEN sutüket in [(801000-900000)] 

with accuracy 0.6458 on (0,0,2,0,31,15,0) 

IF maxsıc < 22.30 and maxsıc < 14.00 THEN sutüket in [(601000-700000)] 

with accuracy 0.4688 on (5,29,30,0,0,0,0) 

IF maxsıc < 22.30 and maxsıc >=14.00 THEN sutüket in [(741000-800000)] 

with accuracy 0.5294 on (18,9,6,0,1,0,0) 

 

5.2.3 Cart 

CART has the accuracy = 0.5863.It was the third accurate algorithm. 

Its misclassification cost increased when the minimal node size increased. Its 

rule table: 

Node Left node Right node   Split variable   Predicted class 
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    1        2         3        maxsıcaklık 

    2        4         5        maxsıcaklık 

    4        6         7        maxsıcaklık 

    6  * terminal node *                         (601000-700000) 

    7  * terminal node *                         (701000-740000) 

    5       58        59        minsıcaklık 

   58  * terminal node *                         (741000-800000) 

   59  * terminal node *                         (701000-740000) 

    3       98        99        minsıcaklık 

   98  * terminal node *                         (741000-800000) 

   99  * terminal node *                         (801000-900000) 

Classification tree: 

      Node 1: maxsıcaklık <= 16.74 

        Node 2: maxsıcaklık <= 9.519 

          Node 4: maxsıcaklık <= 6.020 

            Node 6: (601000-700000) 

          Node 4: maxsıcaklık > 6.020 

            Node 7: (701000-740000) 
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        Node 2: maxsıcaklık > 9.519 

          Node 5: minsıcaklık <= -0.3867 

            Node 58: (741000-800000) 

          Node 5: minsıcaklık > -0.3867 

            Node 59: (701000-740000) 

      Node 1: maxsıcaklık > 16.74 

        Node 3: minsıcaklık <= 12.22 

          Node 98: (741000-800000) 

        Node 3: minsıcaklık > 12.22 

          Node 99: (801000-900000) 

 

5.2.4 ID3 

This decision tree algorithm has the second best misclassification cost 

for confusion matrix which was 0.3527 for 5 times execution. And it has the 

second best accuracy which was 6813.It has rules below: 

For one execution: 

IF maxsıc >=22.30 and minsıc < 13.55 THEN sutüket in [(741000-800000)] 

with accuracy 0.5000 on (18,1,1,0,13,2,1) 

IF maxsıc >=22.30 and minsıc >=13.55 THEN sutüket in [(801000-900000)] 

with accuracy 0.6458 on (0,0,2,0,31,15,0) 
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IF maxsıc < 22.30 and maxsıc >=14.00 and yağış < 0.05 THEN sutüket in 

[(601000-700000)] with accuracy 1.0000 on (0,0,3,0,0,0,0) 

IF maxsıc < 22.30 and maxsıc >=14.00 and yağış >=0.05 THEN sutüket in 

[(741000-800000)] with accuracy 0.5806 on (18,9,3,0,1,0,0) 

IF maxsıc < 22.30 and maxsıc < 14.00 and maxsıc < 3.35 THEN sutüket in 

[(601000-700000)] with accuracy 0.7778 on (0,4,14,0,0,0,0) 

IF maxsıc < 22.30 and maxsıc < 14.00 and maxsıc >=3.35 THEN sutüket in 

[(701000-740000)] with accuracy 0.5435 on (5,25,16,0,0,0,0) 

 

5.2.5 C4.5 

C4.5 is the most accurate which has accuracy = 0.6868 of the 5 

algorithm for our dataset. In addition, it has also best misclassification cost = 

0.2604 for 5 times execution. It has classification rules below: 

For one execution: 

IF maxsıc >=22.30 and rüzgar >=7.35 and rüzgar >=14.55 THEN sutüket in 

[(601000-700000)] with accuracy 0.3333 on (0,1,1,0,1,0,0) 

IF maxsıc >=22.30 and rüzgar < 7.35 and nem < 42.35 THEN sutüket in 

[(801000-900000)] with accuracy 0.6667 on (1,0,0,0,2,0,0) 

IF maxsıc >=22.30 and rüzgar < 7.35 and nem >=42.35 THEN sutüket in 

[(741000-800000)] with accuracy 1.0000 on (8,0,0,0,0,0,0) 

IF maxsıc < 22.30 and maxsıc >=14.00 and yağış < 0.05 THEN sutüket in 

[(601000-700000)] with accuracy 1.0000 on (0,0,3,0,0,0,0) 

IF maxsıc < 22.30 and maxsıc >=14.00 and yağış >=0.05 and rüzgar 
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>=13.65 THEN sutüket in [(701000-740000)] with accuracy 0.7143 on 

(1,5,1,0,0,0,0) 

IF maxsıc < 22.30 and maxsıc >=14.00 and yağış >=0.05 and rüzgar < 13.65 

and maxsıc < 21.20 THEN sutüket in [(741000-800000)] with accuracy 

0.7619 on (16,4,0,0,1,0,0) 

IF maxsıc < 22.30 and maxsıc >=14.00 and yağış >=0.05 and rüzgar < 13.65 

and maxsıc >=21.20 THEN sutüket in [(601000-700000)] with accuracy 

0.6667 on (1,0,2,0,0,0,0) 

IF maxsıc < 22.30 and maxsıc < 14.00 and maxsıc < 3.35 THEN sutüket in 

[(601000-700000)] with accuracy 0.7778 on (0,4,14,0,0,0,0) 

IF maxsıc < 22.30 and maxsıc < 14.00 and maxsıc >=3.35 THEN sutüket in 

[(701000-740000)] with accuracy 0.5435 on (5,25,16,0,0,0,0) 

IF maxsıc >=22.30 and rüzgar >=7.35 and rüzgar < 14.55 and minsıc < 

13.40 and rüzgar >=10.55 THEN sutüket in [(901000-1400000)] with 

accuracy 0.4000 on (2,0,0,0,1,2,0) 

IF maxsıc >=22.30 and rüzgar >=7.35 and rüzgar < 14.55 and minsıc < 

13.40 and rüzgar < 10.55 and nem < 45.85 THEN sutüket in [(801000-

900000)] with accuracy 0.7778 on (0,0,1,0,7,0,1) 

IF maxsıc >=22.30 and rüzgar >=7.35 and rüzgar < 14.55 and minsıc < 

13.40 and rüzgar < 10.55 and nem >=45.85 THEN sutüket in [(741000-

800000)] with accuracy 0.5833 on (7,0,0,0,5,0,0) 

IF maxsıc >=22.30 and rüzgar >=7.35 and rüzgar < 14.55 and minsıc 

>=13.40 and maxsıc < 28.90 THEN sutüket in [(801000-900000)] with 

accuracy 0.9167 on (0,0,1,0,11,0,0) 

IF maxsıc >=22.30 and rüzgar >=7.35 and rüzgar < 14.55 and minsıc 
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>=13.40 and maxsıc >=28.90 and rüzgar < 8.50 THEN sutüket in [(901000-

1400000)] with accuracy 1.0000 on (0,0,0,0,0,5,0) 

IF maxsıc >=22.30 and rüzgar >=7.35 and rüzgar < 14.55 and minsıc 

>=13.40 and maxsıc >=28.90 and rüzgar >=8.50 THEN sutüket in [(801000-

900000)] with accuracy 0.6296 on (0,0,0,0,17,10,0) 
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5.3 Comparison Table 

Table 2 – Efficiency Comparison between Algorithms 
  

Algorithm Average 
Accuracy 

Average 
Cost 

C4.5 % 69 0.2604 

ID3 % 68 0.3527 

CART % 59 0.4668 

CHAID %53 0.4395 

QUEST %55 0.4853 
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CHAPTER 6 

 

 

 

CONCLUSION 

 

 

 

In this thesis, we applied  several decision tree algorithms including 

Quest, ID3, C4.5, CART and CHAID on to the problem domain that is 

“Typical of a water distribution system of Ankara city” in order to optimize 

controls and other factors in the domain.  However, optimal control requires 

an ability to precisely predict short-term water demand so that minimum cost 

pumping schedules can be prepared. Based on such an implementation we 

compared the decision tree algorithms with respect to their effectiveness in 

the domain. [14] 

The reason of choosing this domain was optimizing control of 

operations in a municipal water-distribution system so that electricity costs 

can be reduced greatly, which is the most prominent factor in the domain as 

well as realizing other economic benefits. Today majority of water 

distribution systems still uses heuristics of experienced people to control 
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required operations. This thesis provides a step towards an autonomous 

system that takes intelligent decisions to control and coordinate the 

operations in a typical water distribution system. With minimized human 

factors, effects of incorrect decisions will also be minimized. 

 A great effort is given for data gathering (knowledge acquisition) and 

pre-processing phase of data. For this purpose, data’s has taken from the 

Government Meteorological Head office in Kalaba and İvedik Water 

distribution and Refinery organization. 

There were many attributes in meteorological data. However, we chose 

the best attributes to define the appropriate dataset. These attributes are; Day 

of the week, maximum temperature, minimum temperature, humidity, 

rainfall and snowfall and average wind speed.  

After collection of data, pre-processing part comes first. In the pre-

processing part, one of the essential parts of data preparation is attribute 

categorization, an important and potentially overlooked piece of the data-

mining puzzle. If attributes are improperly categorized, then the data-mining 

analyst will miss significant results. Categorizing attributes allows the data 

miner to find patterns about groups of numbers. The goal of any data miner 

is to find meaningful results, and properly categorizing attributes can help to 

do so. A standard categorization will be grouping numbers. There are five 

factors that an analyst may consider when categorizing data. The first factor 

is the number of categories. Too many categories can make the data overly 

specific and by doing so, the data miner may miss general patterns. A second 

factor is the distribution of the data set into the categories. One method of 

data categorization will have the data evenly distributed into the categories. 

A third factor is the range of the categories. If a range of a category is too 

big, it may contain data that should not logically be grouped together. A 

fourth factor is the consistency of the range of the categories. Keeping the 

range of the categories consistent helps keep the analysis of the attribute well 
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organized. The last factor to consider when categorizing data is logical 

breaks between categories. According to these rules, we made attribute 

categorization for water consumption data. 

The algorithms, which we were, choose, may or may not be the best 

algorithms in decision tree learning. However, we decided to choose them 

and applied on our dataset. Therefore, the results showed that C4.5 and ID3 

are the most accurate and less costly algorithms that we have. Of course, 

other three algorithms have some advantages on different ways, someone 

who want to execute different parameters for different domains. 

In the future, some other methods of supervised learning, neural 

network applications can be done on this domain. We can expand the dataset 

not for a city but for all cities of Turkey. 
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