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Abstract

The notion of coupled fixed point was introduced by Guo and

Laksmikantham [12]. Later Gnana Bhaskar and Lakshmikantham in

[11] investigated the coupled fixed points in the setting of partially or-

dered set by defining the notion of mixed monotone property. Very re-

cently, the concept of tripled fixed point was introduced by Berinde and

Borcut [7]. Following this trend, Karapınar[19] defined the quadruple

fixed point. In this manuscript, quadruple fixed point is discussed and

some new fixed point theorems are obtained on partial metric spaces.
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1. Introduction and Preliminaries

The existence of fixed points in partially ordered metric spaces was con-
sidered first by Ran and Reurings [37]. After this remarkable paper, several
authors have studied such problems (see e.g. [32, 33, 34, 11, 29, 30, 45, 9, 8] ).
The notion of coupled fixed point was introduced by Guo and Laksmikantham
[12]. After the interesting paper of Gnana Bhaskar and Lakshmikantham [11],
many authors focused on coupled fixed point theory and proved several results
(see e.g. [29, 30, 45, 9, 8, 18, 17]).
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We recall the basic definitions and results from which our quadruple fixed
point is inspired. The triple (X, d,≤) is called a partially ordered metric spaces
if (X,≤) is a partially ordered set and (X, d) is a metric space. Further, if (X, d)
is a complete metric space, then the triple (X, d,≤) is called partially ordered
complete metric spaces.

Definition 1.1 (see [11]). Let (X,≤) be a partially ordered set and F : X ×
X → X . We say that F has mixed monotone property if F (x, y) is monotone
non-decreasing in x and is monotone non-increasing in y, that is, for any x, y ∈
X ,

x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y), for x1, x2 ∈ X, and

y1 ≤ y2 ⇒ F (x, y2) ≤ F (x, y1), for y1, y2 ∈ X.

Definition 1.2 (see [11]). An element (x, y) ∈ X × X is said to be a couple
fixed point of the mapping F : X ×X → X if

F (x, y) = x and F (y, x) = y.

We endow the product space X ×X with the following partial order:

(1.1) (u, v) ≤ (x, y) ⇔ u ≤ x, y ≤ v; for all (x, y), (u, v) ∈ X ×X.

Two results of Bhaskar and Lakshmikantham [11] can be unified as follows:

Theorem 1.3. Let (X,≤) be a partially ordered set endowed with a metric d

on X such that (X, d) is a complete metric spaces. Let F : X ×X → X have
the mixed monotone property on X. Assume that there exists a k ∈ [0, 1) with

(1.2) d(F (x, y), F (u, v)) ≤
k

2
[d(x, u) + d(y, v)] , for all u ≤ x, y ≤ v.

Suppose either F is continuous or X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn ≤ x, ∀n;
(i) if a non-increasing sequence {yn} → y, then y ≤ yn, ∀n.

If, in addition, there are x0, y0 ∈ X such that x0 ≤ F (x0, y0) and F (y0, x0) ≤
y0, then, there exists x, y ∈ X such that x = F (x, y) and y = F (y, x).

We notice that Theorem 1.3 was extended to class of cone metric spaces in
[17].

Inspired by Definition 1.1, Berinde and Borcut [7] introduced the following
definition:

(1.3) (u, v, w) ≤ (x, y, z) if and only if x ≥ u, y ≤ v, z ≥ w,

where (u, v, w), (x, y, z) ∈ X3.

Definition 1.4 (see [7]). Let (X,≤) be a partially ordered set and F : X ×
X ×X → X . The mapping F is said to has the mixed monotone property if
for any x, y, z ∈ X

x1, x2 ∈ X, x1 ≤ x2 =⇒ F (x1, y, z) ≤ F (x2, y, z),
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y1, y2 ∈ X, y1 ≤ y2 =⇒ F (x, y1, z) ≥ F (x, y2, z),

z1, z2 ∈ X, z1 ≤ z2 =⇒ F (x, y, z1) ≤ F (x, y, z2),

The following is the main tripled fixed point result of Berinde and Borcut
[7].

Theorem 1.5. Let (X,≤) be partially ordered set and (X, d) be a complete
metric space. Let F : X × X ×X → X be a continuous mapping having the
mixed monotone property on X. Assume that there exist constants a, b, c ∈
[0, 1) such that a+ b + c < 1 for which

(1.4) d(F (x, y, z), F (u, v, w)) ≤ ad(x, u) + bd(y, v) + cd(z, w)

for all x ≥ u, y ≤ v, z ≥ w. If there exist x0, y0, z0 ∈ X such that

x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0), z0 ≤ F (x0, y0, z0)

then there exist x, y, z ∈ X such that

F (x, y, z) = x and F (y, z, y) = x and F (z, y, x) = z

The notion of metric space was introduced by Maurice René Fréchet [10] in
1906. Pseudometric space, quasimetric space, semimetric space, partial met-
ric space are some examples of the generalizations of metric space. In this
manuscript, we discuss partial metric space, introduced by Matthews (see e.g.
[31]).

The concept of the metric space started to apply to computer science around
1970.

By using Baire metric, G. Khan [16] modeled a parallel computation. It
consists of a set computing via sending unending streams of information by
using infinite sequences. Hence, with this paper, reservoir of the theory of
metric space started to be used in the branches of computer science, such as,
domain theory and semantics. The handicap of this approaches is, in com-
puter science, infinite sequence corresponding to unterminated programs. But,
in computer science, unterminated program is bad. This un-solicited status
solved by Matthews with his suggestion of non-zero self distance in metric con-
struction. In the last decade, on partial metric spaces remarkable number of
papers were reported (see e.g. [1]-[6],[13]-[15],[24]-[28],[39]-[55])

A mapping p : X × X → [0,∞) is called partial metric (see e.g.[31]) on a
nonempty set X if the following conditions are satisfied:

(PM1) p(x, y) = p(y, x) (symmetry)
(PM2) If p(x, x) = p(x, y) = p(y, y) then x = y (equality)
(PM3) p(x, x) ≤ p(x, y) (small self-distances)
(PM4) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z) (triangularity)

The pair (X, p) is called a partial metric space (PMS). Additionally, a triple
(X, p,≤) is called a partially ordered partial metric space if (X, p) is a partial
metric space and (X,≤) is a partially ordered set.
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For a partial metric p on X , the functions dp, dm : X ×X → R
+ given by

(1.5) dp(x, y) = 2p(x, y)− p(x, x) − p(y, y)

and

(1.6) dm(x, y) = max{p(x, y)− p(x, x), p(x, y) − p(y, y)}

are (usual) metrics on X . It is clear that dp and dm are equivalent. Moreover,

(1.7) lim
n→∞

dp(x, xn) = 0 ⇔ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm)

Each partial metric p on X generates a T0 topology τp on X with a base of
the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X :
p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

Example 1.6 (see e.g. [31, 24, 3]). ConsiderX = [0,∞) with p(x, y) = max{x, y}.
Then (X, p) is a partial metric space. It is clear that p is not a (usual) metric.
Note that in this case dm(x, y) = |x− y| and dp(x, y) =

1
2 |x− y|.

Example 1.7 (see [31]). Let X = {[a, b] : a, b,∈ R, a ≤ b} and define
p([a, b], [c, d]) = max{b, d} −min{a, c}. Then (X, p) is a partial metric spaces.

Example 1.8 (see [31]). Let X := [0, 1]∪ [2, 3] and define p : X ×X → [0,∞)
by

p(x, y) =

{

max{x, y} if {x, y} ∩ [2, 3] 6= ∅,

|x− y| if {x, y} ⊂ [0, 1].

Then (X, p) is a partial metric space.

Example 1.9 (see [31]). Let S be a non-empty set. By Sω, we denote the
set of all infinite sequence x = {x0, x1, · · · } over S. For all such sequences
x, y ∈ Sω define dS(x, y) = 2−k, where k is the largest number (possibly ∞)
such that xi = yi for each i < k, that is,

dS(x, y) = 2− sup{n|∀i<n∋xi=yi}.

Clearly, (Sω, dS) is a metric space which is also known as Baire metric space.
Suppose now that the definition dS is extended to S̄ = Sω ∪ S∗, where S∗ is
the set of all finite sequences. Then (X, dS̄) is a partial metric space. But if x
is finite then dS̄(x, x) = 1

2k
for some k < ∞, which is not zero since xi = xi

can only hold if xi is defined.

Definition 1.10 (see e.g. [31]).

(i) A sequence {xn} in (X, p) converges to x ∈ X if p(x, x) = limn→∞ p(x, xn),
(ii) A sequence {xn} in (X, p) is called a Cauchy if limn,m→∞ p(xn, xm)

exists (and finite),
(iii) (X, p) is said to be complete if every Cauchy sequence {xn} in X

converges, with respect to τp, to a point x ∈ X such that p(x, x) =
limn,m→∞ p(xn, xm).
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(iv) Let P = (x, y, z, w) ∈ X4 and P0 = (x0, y0, z0, w0) A mapping F :
X4 → X is said to be continuous at (x0, y0, z0, w0) ∈ X4 with respect
to τdp

, if

F (x0, y0, z0, w0) = lim
(x,y,z,w)→(x0,y0,z0,w0)

F (x, y, z, w) = F ( lim
P→P0

x, lim
P→P0

y, lim
P→P0

z, lim
P→P0

w).

The following lemma plays an important role to give fixed point results on
partial metric spaces (See [5], [6], [35], [36]).

Lemma 1.11 (see e.g. [31]).

(A) A sequence {xn} is Cauchy in (X, p) if and only if {xn} is Cauchy in
the metric space (X, dp),

(B) (X, p) is complete if and only if the metric space (X, dp) is complete.

Lemma 1.12 (see e.g. [3, 26]). Assume xn → z as n → ∞ in (X, p) such that
p(z, z) = 0. Then limn→∞ p(xn, y) = p(z, y) for every y ∈ X.

Lemma 1.13 (see e.g. [25, 26]). Let (X, p) be a PMS. Then

(A) If p(x, y) = 0 then x = y,
(B) If x 6= y, then p(x, y) > 0.

Remark 1.14. Since dp and dm are equivalent, we can take dm instead of dp in
the above lemma.

Karapınar [19] introduced the concept of quadruple fixed point and proved
some quadruple fixed point theorems in partially ordered metric spaces (see
also [20]- [23]). The aim of this paper is introduce the concept of quadruple
fixed point and prove the related fixed point theorems in the context of partially
ordered partial metric spaces.

2. Quadruple Fixed Point Theorems

Let (X, p,≤) be a partially ordered partial metric spaces. We consider the
following partial order on the product space X4 = X ×X ×X ×X :

(2.1) (u, v, r, t) ≤ (x, y, z, w) if and only if x ≥ u, y ≤ v, z ≥ r, t ≤ w

where (u, v, r, t), (x, y, z, w) ∈ X4. Regarding this partial order, we state the
definition of the following mapping.

Definition 2.1. Let (X,≤) be partially ordered set and F : X4 → X . We
say that F has the mixed monotone property if F (x, y, z, w) is monotone non-
decreasing in x and z, and it is monotone non-increasing in y and w, that is,
for any x, y, z, w ∈ X

(2.2)

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y, z, w) ≤ F (x2, y, z, w),
y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y1, z, w) ≥ F (x, y2, z, w),
z1, z2 ∈ X, z1 ≤ z2 ⇒ F (x, y, z1, w) ≤ F (x, y, z2, w),

w1, w2 ∈ X, w1 ≤ w2 ⇒ F (x, y, z, w1) ≥ F (x, y, z, w2).
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Definition 2.2. An element (x, y, z) ∈ X4 is called a quadruple fixed point of
F : X4 → X if
(2.3)
F (x, y, z, w) = x and F (y, z, w, x) = y and F (z, w, x, y) = z and F (w, x, y, z) = w

For a metric space (X, d), the function ρ : X4 → [0,∞), given by,

ρ((x, y, z, w), (u, v, r, t)) := d(x, u) + d(y, v) + d(z, r) + d(w, t)

is a metric space on X4, that is, (X4, ρ) is a metric induced by (X, d).
The aim of this paper is to prove the following theorem.

Theorem 2.3. Let (X,≤) be partially ordered set and (X, p) be a complete
partial metric space. Let F : X4 → X be a mapping having the mixed monotone
property on X. Assume that there exists a constant k ∈ [0, 1) such that

(2.4) p(F (x, y, z, w), F (u, v, r, t)) ≤
k

4
[p(x, u) + p(y, v) + p(z, r) + p(w, t)]

for all x ≥ u, y ≤ v, z ≥ r, w ≤ t. Suppose there exist x0, y0, z0, w0 ∈ X

such that
x0 ≤ F (x0, y0, z0, w0), y0 ≥ F (y0, z0, w0, x0),
z0 ≤ F (z0, w0, x0, y0), w0 ≥ F (w0, x0, y0, z0).

Suppose either

(a) F is continuous, or
(b) X has the following property:

(i) if {xn} is a non-decreasing sequence xn → x (respectively, zn →
z), then xn ≤ x (respectively, zn ≤ z) for all n,

(ii) if {yn} is a non-increasing sequence yn → y(respectively, wn →
w), then yn ≥ y (respectively, wn ≥ w) for all n,

then there exist x, y, z, w ∈ X such that

F (x, y, z, w) = x, F (y, z, w, x) = y,

F (z, w, x, y) = z, F (w, x, y, z) = w.

Proof. We construct a sequence {(xn, yn, zn, wn)} in the following way: Set

x1 = F (x0, y0, z0, w0) ≥ x0,

y1 = F (y0, z0, w0, x0) ≤ y0,

z1 = F (z0, w0, x0, y0) ≥ z0,

w1 = F (w0, x0, y0, z0) ≤ w0,

and by the mixed monotone property of F , for n ≥ 1, inductively we get

(2.5)

xn = F (xn−1, yn−1, zn−1, wn−1) ≥ xn−1 ≥ · · · ≥ x0,

yn = F (yn−1, zn−1, wn−1, xn−1) ≤ yn−1 ≤ · · · ≤ y0,

zn = F (zn−1, wn−1, xn−1, yn−1) ≥ zn−1 ≥ · · · ≥ z0,

wn = F (wn−1, xn−1, yn−1, zn−1) ≤ wn−1 ≤ · · · ≤ w0,
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Due to (2.4) and (2.5), we have

(2.6)
p(x1, x2) = p(F (x0, y0, z0, w0), F (x1, y1, z1, w1))

≤ k
4 [p(x0, x1) + p(y0, y1) + p(z0, z1) + p(w0, w1)]

(2.7)
p(y1, y2) = p(F (y0, z0, w0, x0), F (y1, z1, w1, x1))

≤ k
4 [p(y0, y1) + p(z0, z1) + p(w0, w1) + p(x0, x1)]

(2.8)
p(z1, z2) = p(F (z0, w0, x0, y0), F (z1, w1, x1, y1))

≤ k
4 [p(z0, z1) + p(w0, w1) + p(x0, x1) + p(y0, y1)]

(2.9)
p(w1, w2) = p(F (w0, x0, y0, z0), F (w1, x1, y1, z1))

≤ k
4 [p(w0, w1) + p(x0, x1) + p(y0, y1) + p(z0, z1)]

Regarding (2.4) together with (2.6),(2.7),(2.8) we have

(2.10)
p(x2, x3) = p(F (x1, y1, z1, w1), F (x2, y2, z2, w2))

≤ k
4 [p(x1, x2) + p(y1, y2) + p(z1, z2) + p(w1, w2)]

(2.11)
p(y2, y3) = p(F (y1, z1, w1, x1), F (y2, z2, w2, x2))

≤ k
4 [p(y1, y2) + p(z1, z2) + p(w1, w2) + p(x1, x2)]

(2.12)
p(z2, z3) = p(F (z1, w1, x1, y1), F (z2, w2, x2, y2))

≤ k
4 [p(z1, z2) + p(w1, w2) + p(x1, x2) + p(y1, y2)]

(2.13)
p(w2, w3) = p(F (w1, x1, y2, z1), F (w2, x2, y2, z2))

≤ k
4 [p(w1, w2) + p(x1, x2) + p(y1, y2) + p(z1, z2)]

Recursively we have
(2.14)
p(xn+1, xn+2) = p(F (xn, yn, zn, wn), F (xn+1, yn+1, zn+1, wn+1))

≤ k
4 [p(xn, xn+1) + p(yn, yn+1) + p(zn, zn+1) + p(wn, wn+1)]

(2.15)
p(yn+1, yn+2) = p(F (yn, zn, wn, xn), F (yn+1, zn+1, wn+1), xn+1)

≤ k
4 [p(yn, yn+1) + p(zn, zn+1) + p(wn, wn+1) + p(xn, xn+1)]

(2.16)
p(zn+1, zn+2) = p(F (zn, wn, xn, yn), F (zn+1, wn+1, xn+1, yn+1))

≤ k
4 [p(zn, zn+1) + p(wn, wn+1) + p(xn, xn+1) + p(yn, yn+1)]

(2.17)
p(wn+1, wn+2) = p(F (wn, xn, yn, zn), F (wn+1, xn+1, yn+1, zn+1))

≤ k
4 [p(wn, wn+1) + p(xn, xn+1) + p(yn, yn+1) + p(zn, zn+1)]
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For simplicity, we can use the matrix notation as follow. Set

M =









1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4









, Dn =









p(xn+1, xn)
p(yn+1, yn)
p(zn+1, zn)
p(wn+1, wn)









and R =
(

1
4

1
4

1
4

1
4

)

. Notice that

(2.18) RM = R and Mn = M for all n ∈ N.

So we have,

(2.19) D1 ≤ kD0,

(2.20) D2 ≤ kMD1 ≤ k2M2D0 = k2MD0,

and, inductively

(2.21) Dn ≤ kMDn−1 ≤ knMD0.

(2.22) p(xn+1, xn+2) ≤ kRDn









p(xn, xn+1)
p(yn, yn+1)
p(zn, zn+1)
p(wn, wn+1)









Hence, by (2.18),(2.4) and (2.5), we have
(2.23)
p(xn+1, xn+2) = p(F (xn, yn, zn, wn), F (xn+1, yn+1, zn+1, wn+1))

≤ k
4 [p(xn, xn+1) + p(yn, yn+1) + p(zn, zn+1) + p(wn, wn+1)]

≤ kRDn ≤ kn+1RMD0 ≤ kn+1RD0.

We shall show the sequences {xn} are Cauchy easily by using (2.14)-(2.21).
Without loss of generality, we may assume that m > n. By using (2.14)-(2.21)
together with triangle inequality, we obtain that

(2.24)

p(xm, xn) ≤ p(xm, xm−1) + p(xm−1, xm−2) + · · ·+ p(xn+1, xn)
≤ km−1RD0 + · · ·+ knRD0

≤ kn(1 + · · ·+ km−n−1)RD0

≤ kn 1
1−k

RD0

Letting n → ∞ in (2.24) and recalling that k ∈ [0, 1), we get that lim
n→∞

p(xn, xm) =

0. By definition,

dp(xn, xm) = 2p(xn, xm)− p(xn, xn)− p(xm, xm) ≤ 2p(xn, xm).

Thus, we have

(2.25) lim
n→∞

dp(xn, xm) = 0.
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Since (X, p) is a complete partial metric space, then by Lemma 1.11, (X, dp)
is a complete metric space. Thus, {xn} converges in (X, dp), say x. Again by
1.11, we have

(2.26) p(x, x) = lim
n→∞

p(xn, xm) = lim
n→∞

p(xn, x) = 0.

Analogously, one can prove that {yn}, {zn} and {wn} are Cauchy sequences.
Since (X, dp) is complete metric space, there exists x, y, z, w ∈ X such that

(2.27)

p(y, y) = lim
n→∞

p(yn, ym) = lim
n→∞

p(yn, y) = 0,

p(z, z) = lim
n→∞

p(zn, zm) = lim
n→∞

p(zn, z) = 0,

p(w,w) = lim
n→∞

p(wn, wm) = lim
n→∞

p(wn, w) = 0.

Suppose now the assumption (a) holds. Then by (2.26) and (2.27), we have

(2.28)

x = lim
n→∞

xn = lim
n→∞

F (xn−1, yn−1, zn−1, wn−1)

= F ( lim
n→∞

xn−1, lim
n→∞

yn−1, lim
n→∞

zn−1, lim
n→∞

wn−1)

= F (x, y, z, w)

Analogously, we also observe that

(2.29)

y = lim
n→∞

yn = lim
n→∞

F (xn−1, wn−1, zn−1, yn−1) = F (x,w, z, y)

z = lim
n→∞

zn = lim
n→∞

F (zn−1, yn−1, xn−1, wn−1) = F (z, y, x, w)

w = lim
n→∞

wn = lim
n→∞

F (zn−1, wn−1, xn−1, yn−1) = F (z, w, x, y)

Thus, we have

F (x, y, z, w) = x, F (x,w, z, y) = y,

F (z, y, x, w) = z, F (z, w, x, y) = w.

Suppose now the assumption (b) holds. Since {xn}, {zn} are non-decreasing
and xn → x, zn → z and also {yn}, {wn} are non-increasing and yn →
y, wn → w, then by assumption (b) we have

xn ≥ x, yn ≤ y, zn ≥ z, wn ≤ w

for all n. Due to (2.26) and (2.27), we have
(2.30)

p(F (x, y, z, w), F (x, y, z, w)) ≤
k

4
[p(x, x) + p(y, y) + p(z, z) + p(w,w)] = 0.

Consider now,
(2.31)
p(xn, F (x, y, z, w)) = p(F (xn−1, yn−1, zn−1, wn−1), F (x, y, z, w))

≤ k
4 [p(xn−1, x) + p(yn−1, y) + p(zn−1, z) + p(wn−1, w)]

Letting n → ∞ in (2.31), by Lemma 1.12 we get

(2.32) p(x, F (x, y, z, w)) ≤
k

4
[p(x, x) + p(y, y) + p(z, z) + p(w,w)]
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Regarding (2.26) and (2.27), we conclude that p(x, F (x, y, z, w)) = 0. Hence,
by (2.26),(2.30),(2.32) and definiton
(2.33)
dp(x, F (x, y, z, w)) = 2p(x, F (x, y, z, w))−p(F (x, y, z, w), F (x, y, z, w))−p(x, x) = 0.

Thus, we have

x = F (x, y, z, w).

analogously we we get

F (y, z, w, x) = y,

F (z, w, x, y) = z, F (w, x, y, z) = w.

Thus, we proved that F has a quadruple fixed point. �

3. Uniqueness of Quadruple Fixed Point

In this section we shall prove the uniqueness of quadruple fixe point. For a
product X4 of a partial ordered set (X,≤) we define a partial ordering in the
following way: For all (x, y, z, t), (u, v, r, t) ∈ X4

(3.1) (x, y, z, w) ≤ (u, v, r, t) ⇔ x ≤ u, y ≥ v, z ≤ r, w ≥ r.

We say that (x, y, z, w) is equal (u, v, r, t) if and only if x = u, y = v, z = r

and w = t.

Theorem 3.1. In addition to hypothesis of Theorem 2.3, suppose that for all
(x, y, z, t), (u, v, r, t) ∈ X×X×X×X, there exists (a, b, c, d) ∈ X×X×X×X

that is comparable to (x, y, z, t) and (u, v, r, t), then F has a unique quadruple
fixed point.

Proof. The set of quadruple fixed point of F is not empty due to Theorem 2.3.
Assume, now, (x, y, z, t) and (u, v, r, t) are the quadruple fixed point of F , that
is,

F (x, y, z, w) = x, F (u, v, r, t) = u,

F (y, z, w, x) = y, F (v, r, t, u) = v,

F (z, w, x, y) = z, F (r, t, u, v) = r,

F (w, x, y, z) = w, F (t, u, v, r) = t,

We shall show that (x, y, z, w) and (u, v, r, t) are equal. By assumption, there
exists (a, b, c, d) ∈ X×X×X×X that is comparable to (x, y, z, t) and (u, v, r, t).
Define sequences {an}, {bn}, {cn} and {dn} such that

a = a0, b = b0, c = c0, d = d0 and

(3.2)

an = F (an−1, bn−1, zn−1, dn−1),
bn = F (bn−1, cn−1, dn−1, an−1),
cn = F (cn−1, dn−1, an−1, bn−1),
dn = F (dn−1, an−1, bn−1, cn−1).
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for all n. Since (x, y, z, w) is comparable with (a, b, c, d), we may assume that
(x, y, z, w) ≥ (a, b, c, d) = (a0, b0, c0, d0). Recursively, we get that

(3.3) (x, y, z, w) ≥ (an, bn, cn, dn) for all n.

By (3.3) and (2.4), we have

(3.4)
p(x, an+1) = p(F (x, y, z, w), F (an, bn, cn, dn))

≤ k
4 [p(x, an) + p(y, bn) + p(z, cn) + p(w, dn)]

(3.5)
p(bn+1, y) = p(F (bn, cn, dn, an), F (y, z, w, x))

≤ k
4 [p(bn, y) + p(cn, z) + p(dn, w) + p(an, x)]

(3.6)
p(z, cn+1) = p(F (z, w, x, y), F (cn, dn, an, bn))

≤ k
4 [p(z, cn) + p(w, dn) + p(x, an) + p(y, bn)]

(3.7)
p(dn+1, w) = p(F (cn, dn, an, bn), F ((w, x, y, z)))

≤ k
4 [p(dn, w) + p(an, x) + p(bn, y) + p(cn, z)]

Set γn = p(x, an) + p(y, bn) + p(z, cn) + p(w, dn). Then, due to (3.7)-(3.7), we
have

(3.8) γn+1 ≤ kγn ≤ knγ0, for all n.

�

Since 0 ≤ k < 1, the sequence {γn} is decreasing and bounded below. Thus,
there exists γ ≥ 0 such that

lim
n→∞

γn = γ.

Now, we shall show that γ = 0. Letting n → ∞ in (3.8), and having mind
0 ≤ k < 1, we obtain that

γ ≤ 0.

Therefore, γ = 0. That is,

lim
n→∞

γn = 0.

Consequently, we have

(3.9)
limn→∞ p(x, an) = 0, limn→∞ p(y, bn) = 0,
limn→∞ p(z, cn) = 0, limn→∞ p(w, dn) = 0.

Analogously, we show that

(3.10)
limn→∞ p(u, an) = 0, limn→∞ p(v, bn) = 0,
limn→∞ p(r, cn) = 0, limn→∞ p(s, dn) = 0.

Combining (3.9) and (3.10) yield ,by uniqueness of the limit, that (x, y, z, w)
and (u, v, r, t) are equal. Now, in the following example neither the continuity
of the mapping F is satisfied nor the conditions (a) and (b) given in Theorem
2.3 hold, but we still obtain a quadruple fixed point result.
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Example 3.2. Let X = [0,∞), and p(x, y) = max{x, y} be a partial metric.
Let ”≤” be the usual order on positive half-line. Notice that dp(x, y) = |x− y|
becomes the corresponding metric. It is clear that (X, p) is a complete partial
metric space. Now define F : X4 → X as

F (x, y, z, w) =

{

x−y+z−w

8 , if x+ z ≥ y + w,

0, otherwise .

Then it is easy to see that F has the mixed monotone property. On the other
hand, letting x ≥ u, y ≤ v, z ≥ r, w ≤ t we have

p(F (x, y, z, w), F (u, v, r, t)) = max{F (x, y, z, w), F (u, v, r, t)}
= x−y+z−w

8

≤ k
4 [p(x, u) + p(y, v) + p(z, r) + p(w, t)]

for k = 1
2 . Hence, the condition (2.4) of Theorem 2.3 holds.

Notice that (0, 0, 0, 0) is the unique quadruple fixed point.
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