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This article studies a class of implicit fractional differential equations involving a Caputo-Fabrizio fractional derivative under
Dirichlet boundary conditions (DBCs). Using classical fixed-point theory techniques due to Banch’s and Krasnoselskii, a
qualitative analysis of the concerned problem for the existence of solutions is established. Furthermore, some results about the
stability of the Ulam type are also studied for the proposed problem. Some pertinent examples are given to justify the results.

1. Introduction and Preliminaries

The concerned area of fractional order differential equations
(FODEs) have many concentrations in real-world problems
and have paid close attention to numerous researchers in
the past few decades [1–5]. The mentioned area has been
studied from several aspects, such as the existence and
uniqueness of solutions via using the classical fixed-point
theory, the numerical analysis, the optimization theory, and
also the theory of stability corresponding to various frac-
tional differential operators like Caputo, Hamdard, and
Riemann-Liouville (we refer few as [6–9]). In the aforemen-
tioned operators, there exists a singular kernel. Therefore,
recently some authors introduced some new types of frac-
tional derivative operators in which they have replaced a sin-
gular kernel by a nonsingular kernel. The nonsingular kernel
derivative has been proved as a good tool to model real-world
problems in different fields of science and engineering [10,
11]. In fractional, it is called nonsingular exponential type
or Caputo-Fabrizio fractional differential (CFFD) operator.
The CFFD operator introduced two researchers, Caputo
and Fabrizio for the first time in 2015 [12]. They replaced

the singular kernel in the usual Caputo and Riemann-
Liouville derivative by an exponential nonsingular kernel.
The new operator of this type was found to be more practical
than the usual Caputo and Riemann-Liouville fractional
differential operators in some problems (see some detailed
references such as [13–15]). Recently, many researchers have
studied the existence and uniqueness of the solutions at the
initial value problems for FODEs under the said operator.
But the investigation has been limited to initial value prob-
lems only. On the other hand, boundary value problems have
significant applications in engineering and other physical sci-
ences during modeling numerous phenomena (we refer to
see [16–19]). Furthermore, during optimization and numer-
ical analysis of the mentioned problems, researchers need
stable results from theoretical as well as practical sides. A sta-
ble result may lead us to a stable process. Therefore, the
stability theory has also got proper attention during the last
many decades. It is well known fact that stability analysis
plays an important role. Various stability concepts such as
exponential stability, Mittag-Lefler stability and Hayers-
Ulam’s stability have been adopted in literature to study the
stability of different systems of FODEs. The analysis of
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Hyers-Ulam’s stability has been recognized as a simple form
of investigation. For historical background on the stability of
Hyers-Ulam, we refer to see previous articles [20–23]. But
recently, that type of problem has not been adequately stud-
ied for a new type of CFFD operator. Therefore, in this work,
we will investigate an implicit class of FODEs involving the
CFFD operator under DBCs

CF
c Dμ

wz wð Þ = f w, z wð Þ,CFc Dμ
wz wð Þ� �

, 1 < μ ≤ 2,w ∈ c, d½ �,
z cð Þ = 0, z dð Þ = 0 and c, d ∈ R,

(

ð1Þ

where CFD is used for CFFD and I = ½c, d�, f : I × R × R→ R
is a continuous function. In this article, we investigate
uniqueness and existence of solutions to the proposed prob-
lem (1) by classical fixed-point theorems due to Banach’s and
Krasnoselskii. Further, we investigate some pertinent analysis
about the stability theory due to Ulam, and Hyers is investi-
gated for the mentioned problem (1). For the authenticity
of the presented work, two concrete examples are also
studied.

Throughout the paper, C½I, R� is a Banach space with
norm kzk =maxw∈I jzðwÞj.

Definition 1 (see [24]). For any zðwÞ ∈ C½I, R�, we defined the
derivative of Caputo-Fabrizio for nonsingular kernel as

CF
c Dμ

wz wð Þ = D μð Þ
1 − μ

ðw
c
z′ wð Þ exp

−μ w−ζð Þ
1−μ dζ, ð2Þ

where DðμÞ > 0 is the normalization function with Dð0Þ =D
ð1Þ = 1 satisfying.

Definition 2 (see [24]). The integral of Caputo-Fabrizio for
nonsingular kernel type is given by

CF
c Iμwz wð Þ = 1 − μ

D μð Þ z wð Þ + μ

D μð Þ
ðw
c
z ζð Þdζ, ð3Þ

where CFI is used for Caputo-Fabrizio integral operator.

Definition 3 (see [25]). Let n < μ ≤ n + 1 and f be such that
f ðnÞ ∈H1ðc, dÞ. Set α = μ − n. Then, α ∈ ½0, 1� and we define

CFC
c Dμ

wf wð Þ= CFC
c Dα

wf
nð Þ wð Þ,

CFR
c Dμ

wf wð Þ= CFR
c Dα

wf
nð Þ wð Þ,

CF
c Iμwf wð Þ= cInwCF

c Iαwf nð Þ wð Þ:
ð4Þ

Lemma 4. For zðwÞ defined on ½c, d� and μ ∈ ½n, n + 1�, for
some n ∈N0, we have

CF
c IμwCF

c Dμ
wz wð Þ = z wð Þ − 〠

n

k=0

zk cð Þ
k!

w − cð Þk: ð5Þ

2. Results and Discussion

In this part, we investigate the solution of the proposed prob-
lem (1) and also study the uniqueness and existence of the
solutions.

Lemma 5. The solution of

CF
c Dμ

wz wð Þ = ψ wð Þ, 1 < μ ≤ 2,w ∈ c, d½ �,
z cð Þ = 0, z dð Þ = 0 and c, d ∈ R,

(
ð6Þ

is given by

z wð Þ = −
2 − μ w − cð Þ
d − cð ÞD μ − 1ð Þ

ðd
c
Ψ ζð Þdζ

−
μ − 1 w − cð Þ
d − cð ÞD μ − 1ð Þ

ðd
c
d − ζð ÞΨ ζð Þdζ

+ 2 − μ

D μ − 1ð Þ
ðw
c
Ψ ζð Þdζ

+ μ − 1
D μ − 1ð Þ

ðw
c

w − ζð ÞΨ ζð Þdζ:

ð7Þ

Proof. Let zðwÞ be a solution to problem (6). Applying
Caputo-Fabrizio integral on both sides and then using
Lemma 4 and Definition 3, we have

CF
c IμwCF

c Dμ
wz wð Þ= CF

c IμwΨ wð Þ, ð8Þ

which implies that

z wð Þ = c0 + c1 w − cð Þ + 2 − μ

D μ − 1ð Þ
ðw
c
Ψ ζð Þdζ

+ μ − 1
D μ − 1ð Þ

ðw
c

w − ζð ÞΨ ζð Þdζ:
ð9Þ

Using boundary conditions zðcÞ = zðdÞ = 0, we have

c0 = 0,

c1 = −
2 − μ

d − cð ÞD μ − 1ð Þ
ðd
c
Ψ ζð Þdζ

−
μ − 1

d − cð ÞD μ − 1ð Þ
ðd
c
d − ζð ÞΨ ζð Þdζ:

ð10Þ

Putting c0, c1 in (9), we get

z wð Þ = −
2 − μ w − cð Þ
d − cð ÞD μ − 1ð Þ

ðd
c
Ψ ζð Þdζ

−
μ − 1 w − cð Þ
d − cð ÞD μ − 1ð Þ

ðd
c
d − ζð ÞΨ ζð Þdζ

+ 2 − μ

D μ − 1ð Þ
ðw
c
Ψ ζð Þdζ

+ μ − 1
D μ − 1ð Þ

ðw
c

w − ζð ÞΨ ζð Þdζ:

ð11Þ
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For simplification, use some notations; we use Gμ = ð2
− μÞ/Dðμ − 1Þ,G∗

μ = ðμ − 1Þ/Dðμ − 1Þ and give the solution
of (1) as bellow.

Corollary 6. In view of 6, the solution of the considered prob-
lem (1) is given by

z wð Þ = −
Gμ w − cð Þ

d − cð Þ
ðd
c
f ζ, z ζð Þ,CFc Dμ

ζz ζð Þ
� �

dζ

−
G∗
μ w − cð Þ
d − cð Þ

ðd
c
d − ζð Þf ζ, z ζð Þ,CFc Dμ

ζz ζð Þ
� �

dζ

+Gμ

ðw
c
f ζ, z ζð Þ,CFc Dμ

ζz ζð Þ
� �

dζ

+G∗
μ

ðw
c

w − ζð Þf ζ, z ζð Þ,CFc Dμ
ζz ζð Þ

� �
dζ:

ð12Þ

Further, for the existence and uniqueness of the solution of
problem (1), we use some fixed point theorems. For this, we
need to define an operator as N : C½I, R�→ C½I, R� by

N z wð Þ½ � = −
Gμ w − cð Þ

d − cð Þ
ðd
c
f ζ, z ζð Þ,CFc Dμ

ζz ζð Þ
� �

dζ

−
G∗
μ w − cð Þ
d − cð Þ

ðd
c
d − ζð Þf ζ, z ζð Þ,CFc Dμ

ζz ζð Þ
� �

dζ

+ Gμ

ðw
c
f ζ, z ζð Þ,CFc Dμ

ζz ζð Þ
� �

dζ

+ G∗
μ

ðw
c

w − ζð Þf ζ, z ζð Þ,CFc Dμ
ζz ζð Þ

� �
dζ:

ð13Þ

To proceed further, using Corollary (6) to convert the pro-
posed problem (1) is to a fixed point problem asNzðwÞ = zðwÞ,
where the operator N is given by (13). Therefore, Problem (1)
has a solution if and only if the operator N has a fixed point,
where λðwÞ = f ðw, zðwÞ, λðwÞÞ and λðwÞ= CF

c Dμ
wzðwÞ. We

assume that
(H1) There exist certain constant Df > 0 and 0 < Ef < 1,

such that

f w, z wð Þ, λ wð Þð Þ − f w, �z wð Þ, �λ wð Þ� ��� ��
≤Df z wð Þ − �z wð Þj j + Ef λ wð Þ − �λ wð Þ�� ��, ð14Þ

for all z, �z, λ, �λ ∈ R:

Theorem 7. Under the hypothesis (H1), the mentioned prob-
lem (1) has a unique solution if

2Gμ d − cð Þ −G∗
μ d − cð Þ2

� � Df

1 − Ef
< 1: ð15Þ

Proof. Suppose zðwÞ, �zðwÞ ∈ C½I, R�, we have

Nz wð Þ −N�z wð Þj j ≤ Gμ w − cð Þ
d − cð Þ

ðd
c
λ ζð Þ − �λ ζð Þ�� ��dζ

+
G∗
μ w − cð Þ
d − cð Þ

ðd
c
d − ζð Þ λ ζð Þ − �λ ζð Þ�� ��dζ

+ Gμ

ðw
c
∣λ ζð Þ − �λ ζð Þ∣dζ

+ G∗
μ

ðw
c

w − ζð Þ∣λ ζð Þ − �λ ζð Þ∣dζ:

ð16Þ

where λðwÞ, �λðwÞ ∈ C½I, R� are given by λðwÞ = f ðw, zðwÞ, λ
ðwÞÞ and �λðwÞ = f ðw, �zðwÞ, �λðwÞÞ by using hypothesis
(H1), we have

λ wð Þ − �λ wð Þ�� �� = f w, z wð Þ, λ wð Þð Þ − f w, �z wð Þ, �λ wð Þ� ��� ��
≤Df z wð Þ − �z wð Þj j + Ef λ wð Þ − �λ wð Þ�� ��:

ð17Þ

Repeating the above process, we get

∣λ wð Þ − �λ wð Þ∣ ≤ Df

1 − Ef
z wð Þ − �z wð Þj j: ð18Þ

Using (18) in (16), we have

Nz wð Þ −N�z wð Þj j ≤ Gμ w − cð Þ Df

1 − Ef
z wð Þ − �z wð Þj j

−
G∗
μ w − cð Þ d − cð Þ

2
Df

1 − Ef
z wð Þ − �z wð Þj j

+Gμ w − cð Þ Df

1 − Ef
z wð Þ − �z wð Þj j

−
G∗
μ w − cð Þ2

2
Df

1 − Ef
z wð Þ − �z wð Þj j:

ð19Þ

Applying maximum on both sides, we have

max
w∈I

Nz wð Þ −N�z wð Þj j

≤max
w∈I

Gμ w − cð Þ Df

1 − Ef
z wð Þ − �z wð Þj j

 !

−max
w∈I

G∗
μ w − cð Þ d − cð Þ

2
Df

1 − Ef
z wð Þ − �z wð Þj j

 !

+max
w∈I

Gμ w − cð Þ Df

1 − Ef
z wð Þ − �z wð Þj j

 !

−max
w∈I

G∗
μ w − cð Þ2

2
Df

1 − Ef
z wð Þ − �z wð Þj j

 !
,

Nz −N�zk k ≤ 2Gμ d − cð Þ −G∗
μ d − cð Þ2

� � Df

1 − Ef
z − �zk k:

ð20Þ
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Thus, operator N is a contraction; therefore, the operator
N has a unique fixed point. Hence, the corresponding prob-
lem (1) has a unique solution.

Our next result is to show the existence of the solution to
the proposed problem (1) which is based on Krasnoselskii’s
fixed-point theorem. Therefore, the given hypothesis hold.

(H2) There exist constant pf , qf , rf > 0 with 0 < r f < 1
such that

f w, z wð Þ, λ wð Þð Þj j ≤ pf + qf z wð Þj j + r f λ wð Þj j: ð21Þ

Theorem 8 (see [26]). LetH ⊂ C½I, R� be a closed, convex non-
empty subset of C½I, R�; then, there exist N1,N2 operators such
that

(1) N1z1 +N2z2 ∈H for all z1, z2 ∈H
(2) N1 is a contraction, and N2 is compact and

continuous

Then, there exist at least one solution z ∈H such that N1
z +N2z = z:

Theorem 9. If the hypothesis (H2) is satisfied, then (1) has at
least one solution if

0 <
4Gμ d − cð Þ − G∗

μ d − cð Þ2
2

 !
Df

1 − Ef
< 1: ð22Þ

Proof. Suppose we define two operators from (13) as

N1z wð Þ = −
Gμ w − cð Þ

d − cð Þ
ðd
c
λ ζð Þdζ

−
G∗
μ w − cð Þ
d − cð Þ

ðd
c
d − ζð Þλ ζð Þdζ +Gμ

ðw
c
λ ζð Þdζ:

N2z wð Þ = G∗
μ

ðw
c

w − ζð Þλ ζð Þdζ:

ð23Þ

Let us define a set F = fz ∈ C½I, R�: ∥z∥≤rg, since f is con-
tinuous, so we show that the operator N1 is contraction. For
this z, �z ∈ C½I, R�, we have

N1z wð Þ −N1�z wð Þj j

≤
Gμ w − cð Þ

d − cð Þ
ðd
c
λ ζð Þ − �λ ζð Þ�� ��dζ

+
G∗
μ w − cð Þ
d − cð Þ

ðd
c
d − ζð Þ λ ζð Þ − �λ ζð Þ�� ��dζ

+Gμ

ðw
c
∣λ ζð Þ − �λ ζð Þ∣dζ,

ð24Þ

using (18), and then taking the maximum on both sides, we
have

N1z wð Þ −N1�z wð Þj j
≤ 2Gμ w − cð Þ Df

1 − Ef
z wð Þ − �z wð Þj j

−
G∗
μ w − cð Þ d − cð Þ

2
Df

1 − Ef
z wð Þ − �z wð Þj j

max
w∈I

N1z wð Þ −N1�z wð Þj j

≤max
w∈I

2Gμ w − cð Þ Df

1 − Ef
z wð Þ − �z wð Þj j

 !

−max
w∈I

G∗
μ w − cð Þ d − cð Þ

2
Df

1 − Ef
z wð Þ − �z wð Þj j

 !

N1z −N1�zk k ≤ 4Gμ d − cð Þ −G∗
μ d − cð Þ2

2

 !
Df

1 − Ef
z − �zk k:

ð25Þ

Hence,N1 is contraction. Next, to prove that the operator
N2 is compact and continuous, for this zðwÞ ∈ C½I, R�, we
have

N2z wð Þj j = ∣G∗
μ

ðw
c

w − ζð Þλ ζð Þdζ∣ ≤G∗
μ

ðw
c

w − ζð Þ∣λ ζð Þ∣dζ,

ð26Þ

where λðwÞ ∈ R, λðwÞ = f ðw, zðwÞ, λðwÞÞ; now, using
hypothesis (H2), we have

λ wð Þj j = f w, z wð Þ, λ wð Þðj j,
≤ pf + qf z wð Þj j + r f λ wð Þj j, ð27Þ

repeating the above process, so we get

λ wð Þj j ≤ pf + qf
1 − rf

z wð Þj j: ð28Þ

Now, using (28) in (26) and then taking the maximum on
both sides, we have

N2z wð Þj j ≤ G∗
μ w − cð Þ2

2
pf + qf
1 − rf

 !
z wð Þj j

max
w∈I

N2z wð Þj j ≤max
w∈I

G∗
μ w − cð Þ2

2
pf + qf
1 − r f

 !
z wð Þj j

 !

N2zk k ≤ G∗
μ d − cð Þ2

2
pf + qf
1 − r f

 !
zk k:

ð29Þ
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Which implies that

N2zk k ≤ G∗
μ d − cð Þ2

2
pf + qf
1 − rf

 !
r ≤ A∗: ð30Þ

Therefore, N2 is bounded. Next, let w1 <w2 in I, we have

N2z w2ð Þ −N2z w1ð Þj j
= G∗

μ

ðw2

c
w2 − ζð Þλ ζð Þdζ −G∗

μ

ðw1

c
w1 − ζð Þλ ζð Þdζ

����
����

= ∣G∗
μ

ðw2

c
w2 − ζð Þλ ζð Þdζ +G∗

μ

ðc
w1

w1 − ζð Þλ ζð Þdζ∣

≤ G∗
μ

ðw2

c
w2 − ζð Þ ∣ λ ζð Þ ∣ dζ +

ðc
w1

w1 − ζð Þ ∣ λ ζð Þ ∣ dζ
 !

:

ð31Þ

Now, using (28) in (31), we have

N2z w2ð Þ −N2z w1ð Þj j

≤
G∗
μ

2
pf + qf
1 − rf

 !
w1 − cð Þ2 − w2 − cð Þ2� �

z wð Þj j: ð32Þ

Applying maximum on right-hand side of the above
inequality, we take

N2z w2ð Þ −N2z w1ð Þj j

≤
G∗
μ

2
pf + qf
1 − r f

 !
max
w∈I

z wð Þj j w1 − cð Þ2 − w2 − cð Þ2� �

≤
G∗
μ

2
pf + qf
1 − r f

 !
zk k w1 − cð Þ2 − w2 − cð Þ2� �

≤
G∗
μ

2
pf + qf r

1 − rf

 !
w1 − cð Þ2 − w2 − cð Þ2� �

:

ð33Þ

Obviously, from (33), we see that w1 →w2; then, the
right-hand side of (33) goes to zero, so ∣N2zðw2Þ −N2zðw1Þ
∣→ 0 as w1 →w2. Hence, the operator N2 is continuous.
Also, NðHÞ ⊂H; therefore, the operator N2 is compact, and
by the Arzela-Ascoli theorem, the operator N has at least
one fixed point. Therefore, the mentioned problem (1) has
at least one solution.

3. Stability Theory

In this portion, we develop several consequences concerning
the stability of Hyers-Ulam and generalize Hyers-Ulam type.
Before progressing further, we provide various notions and
definitions:

Definition 10. The proposed problem (1) is Hyers-Ulam
stable if at any ε > 0 for the given inequality

∣CFc Dμ
wz wð Þ − f w, z wð Þ,CFc Dμ

wz wð Þ� �
∣ < ε, for allw ∈ I, ð34Þ

there exist a unique solution �zðwÞ with a constant K f such
that

z wð Þ − �z wð Þj j ≤ Kf ε, for allw ∈ I: ð35Þ

Further, the considered problem (1) will generalize
Hyers-Ulam stable if there exists nondecreasing function
ϕ : ðc, dÞ→ ð0,∞Þ such that

z wð Þ − �z wð Þj j ≤ Kf ϕ εð Þ, for allw ∈ I, ð36Þ

with ϕðcÞ = 0 and ϕðdÞ = 0.

Also, we state an important remark as:

Remark 11. Let there exist a function ψðwÞ which depends on
z ∈ C½I, R� with ψðcÞ = 0 and ψðdÞ = 0 such that

ψ wð Þj j ≤ ε, for allw ∈ I,
CF
c Dμ

wz wð Þ = f w, z wð Þ,CFc Dμ
wz wð Þ� �

+ ψ wð Þ, for allw ∈ I:

ð37Þ

Lemma 12. The solution of the given proposed problem

CF
c Dμ

wz wð Þ = f w, z wð Þ,CFc Dμ
wz wð Þ� �

+ ψ wð Þ, for all w ∈ I,
z cð Þ = 0, z dð Þ = 0:

ð38Þ

is

z wð Þ = −
Gμ w − cð Þ

d − cð Þ
ðd
c
λ ζð Þdζ − G∗

μ w − cð Þ
d − cð Þ

ðd
c
d − ζð Þλ ζð Þdζ

−
Gμ w − cð Þ

d − cð Þ
ðd
c
ψ ζð Þdζ − G∗

μ w − cð Þ
d − cð Þ

ðd
c
d − ζð Þψ ζð Þdζ

+ Gμ

ðw
c
λ ζð Þdζ + G∗

μ

ðw
c

w − ζð Þλ ζð Þdζ +Gμ

ðw
c
ψ ζð Þdζ

+ G∗
μ

ðw
c

w − ζð Þψ ζð Þdζ, for all w ∈ I,

ð39Þ

where Gμ = ð2 − μÞ/Dðμ − 1Þ, G∗
μ = ðμ − 1Þ/Dðμ − 1Þ, and

λðwÞ = f ðw, zðwÞ, λðwÞÞ: Moreover, the solution of the given
inequality, we have
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z wð Þ −
�
−
Gμ w − cð Þ

d − cð Þ
ðd
c
λ ζð Þdζ − G∗

μ w − cð Þ
d − cð Þ

ðd
c
d − ζð Þλ ζð Þdζ

����
+Gμ

ðw
c
λ ζð Þdζ +G∗

μ

ðw
c

w − ζð Þλ ζð Þdζ
�����

≤ 2 Gμ d − cð Þ −G∗
μ d − cð Þ2

� �
ε:

ð40Þ

Proof. The solution of (39) can be acquired straightforward
by using Lemma 5. Although from the solution, it is clear
to become result (40) by using Remark 11.

Theorem 13. Under the Lemma 12, the solution of the pro-
posed problem (1) is Hyers-Ulam stable and also generalized
Hyers-Ulam stable if ð2Gμðd − cÞ − G∗

μðd − cÞ2ÞðDf /ð1 − Ef ÞÞ
< 1:

Proof. Let zðwÞ ∈ C½I, R� be any solution of the considered
problem (1) and �zðwÞ ∈ C½I, R� be a unique solution of the
said problem; then, we take,

z wð Þ − �z wð Þj j = z wð Þ −
�
−
Gμ w − cð Þ

d − cð Þ
ðd
c

�λ ζð Þdζ
����
−
G∗
μ w − cð Þ
d − cð Þ

ðd
c
d − ζð Þ�λ ζð Þdζ

+Gμ

ðw
c

�λ ζð Þdζ + G∗
μ

ðw
c
w − ζð Þ�λ ζð Þdζ

�����,
= z wð Þ −

�
−
Gμ w − cð Þ

d − cð Þ
ðd
c
λ ζð Þdζ

����
−
G∗
μ w − cð Þ
d − cð Þ

ðd
c
d − ζð Þλ ζð Þdζ

+Gμ

ðw
c
λ ζð Þdζ + G∗

μ

ðw
c
w − ζð Þλ ζð Þdζ

�

+
�
−
Gμ w − cð Þ

d − cð Þ
ðd
c
λ ζð Þdζ − G∗

μ w − cð Þ
d − cð Þ

ðd
c
d − ζð Þλ ζð Þdζ

+Gμ

ðw
c
λ ζð Þdζ + G∗

μ

ðw
c
w − ζð Þλ ζð Þdζ

�

−
�
−
Gμ w − cð Þ

d − cð Þ
ðd
c

�λ ζð Þdζ − G∗
μ w − cð Þ
d − cð Þ

�
ðd
c
d − ζð Þ�λ ζð Þdζ +Gμ

ðw
c

�λ ζð Þdζ

+G∗
μ

ðw
c
w − ζð Þ�λ ζð Þdζ

�����,
≤ z wð Þ −

�
−
Gμ w − cð Þ

d − cð Þ
ðd
c
λ ζð Þdζ

����
−
G∗
μ w − cð Þ
d − cð Þ

ðd
c
d − ζð Þλ ζð Þdζ

+Gμ

ðw
c
λ ζð Þdζ + G∗

μ

ðw
c
w − ζð Þλ ζð Þdζ

�����
+
Gμ w − cð Þ

d − cð Þ
ðd
c
λ ζð Þ − �λ ζð Þ�� ��dζ

+
G∗
μ w − cð Þ
d − cð Þ

ðd
c
d − ζð Þ λ ζð Þ − �λ ζð Þ�� ��dζ

+Gμ

ðw
c
λ ζð Þ − �λ ζð Þ�� ��dζ +G∗

μ

ðw
c
w − ζð Þ λ ζð Þ − �λ ζð Þ�� ��dζ:

ð41Þ

Using (40) and (18) in the above inequality, then taking
maximum on both sides, we have

z wð Þ − �z wð Þj j ≤ 2 Gμ d − cð Þ −G∗
μ d − cð Þ2

� �
ε

+Gμ w − cð Þ Df

1 − Ef

 !
z wð Þ − �z wð Þj j

−
G∗
μ w − cð Þ d − cð Þ

2
Df

1 − Ef

 !
z wð Þ − �z wð Þj j

+Gμ w − cð Þ Df

1 − Ef

 !
z wð Þ − �z wð Þj j

−
G∗
μ w − cð Þ2

2
Df

1 − Ef

 !
z wð Þ − �z wð Þj j,

z − �zk k ≤ 2 Gμ d − cð Þ −G∗
μ d − cð Þ2

� �
ε

+ 2Gμ d − cð Þ Df

1 − Ef

 !
z − �zk k

−G∗
μ d − cð Þ2 Df

1 − Ef

 !
z − �zk k,

z − �zk k ≤ 2 Gμ d − cð Þ −G∗
μ d − cð Þ2

� �
ε

+ 2Gμ d − cð Þ −G∗
μ d − cð Þ2

� � Df

1 − Ef

 !
z − �zk k:

ð42Þ

Hence, from the above inequality, we have

z − �zk k ≤
2 Gμ d − cð Þ −G∗

μ d − cð Þ2
� �

ε

1 − 2Gμ d − cð Þ − G∗
μ d − cð Þ2

� �
Df / 1 − Ef

� �� � :
ð43Þ

Therefore, the solution is Hyers-Ulam stable. Further, let

Kf =
2 Gμ d − cð Þ −G∗

i d − cð Þ2� �
1 − 2Gμ d − cð Þ − G∗

μ d − cð Þ2
� �

Df / 1 − Ef

� �� � , ð44Þ

and there exist nondecreasing function ϕ ∈ Cððc, dÞ, ð0,∞ÞÞ.
Then, from (43) we can write as

∥z − �z∥ ≤ kf ϕ εð Þ, with ϕ cð Þ = 0, ϕ dð Þ = 0: ð45Þ

4. Examples of Our Analysis

In this part of our analysis, we justify certain obtained results
through some counter examples which are given below.
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Example 14. Suppose, we take the boundary value problem of
implicit type as

CF
c D1/3

w z wð Þ = w3

35 + cos z wð Þj j + cos CF
c D1/3

w z wð Þ�� ��
55 +w3 ,w ∈ 0, 1½ �,

z 0ð Þ = 0, z 1ð Þ = 0:

8><
>:

ð46Þ

Clearly, c = 0, d = 1 and f ðw, zðwÞ, λðwÞÞ = ðw3/35Þ +
ðcos ∣ zðwÞj+cosjCFc D1/3

w λðwÞ∣/55 +w3Þ is a continuous func-
tion for all x ∈ ½0, 1�: Further, suppose that z, �z, λ, �λ ∈ C½I, R�;
then, we consider as

f w, z wð Þ, λ wð Þð Þ − f w, �z wð Þ, �λ wð Þ� ��� ��
= w3

35 + cos ∣ z wð Þ +cosj jCFc D1/3
w λ wð Þ ∣

55 +w3 −
w3

35

�����
−
cos ∣ �z wð Þ −cosj jCFc D1/3

w
�λ wð Þ ∣

55 +w3

�����,
≤

cos z wð Þj j − cos �z wð Þj j
55 +w3

����
���� + cos λ wð Þj j − cos �λ wð Þ�� ��

55 +w3

�����
�����,
ð47Þ

which implies that

f w, z wð Þ, λ wð Þð Þ − f w, �z wð Þ, �λ wð Þ� ��� ��
≤

1
55 z wð Þ − �z wð Þj j + λ wð Þ − �λ wð Þ�� ��� �

:
ð48Þ

Since from (48), one hasDf = 1/55, Ef = 1/55, and μ = 1/3.
Further, also consider

f w, z wð Þ, λ wð Þð Þj j = w3

35 + cos ∣ z wð Þ +cosj jCFc D1/3
w λ wð Þ ∣

55 +w3

�����
�����

≤
w3

35

����
���� + cos ∣ z wð Þ ∣

55 +w3

����
���� + cosjCFc D1/3

w λ wð Þ ∣
55 +w3

�����
�����

≤
1
35 + 1

55 z wð Þj j + 1
55 λ wð Þj j:

ð49Þ

Therefore, pf =1/35, qf = 1/55, rf = 1/55. and Gμ = 1/3,
G∗
μ = 1/3, c = 0, and d = 1. Then

2Gμ d − cð Þ − G∗
μ d − cð Þ2

� � Df

1 − Ef

 !
= 1
27 < 1: ð50Þ

Therefore, the conditions of Theorem 7 are satisfied. Thus,
the problem (46) has a unique solution. Further, we need to
satisfy some conditions of theorem (9).

0 <
4Gμ d − cð Þ − G∗

μ d − cð Þ2
2

 !
Df

1 − Ef
= 1
18 < 1: ð51Þ

Hence, the conditions of Theorem 9 also hold. Therefore,
(46) has at least one solution. Furthermore, proceed to verify
the stability results; we see that

2Gμ d − cð Þ − G∗
μ d − cð Þ2

� � Df

1 − Ef

 !
= 0:370 < 1: ð52Þ

Hence, the solution of the mentioned problem (46) is
Hyers-Ulam stable and consequently generalized Hyers-
Ulam stable.

Example 15. Take another boundary value problem of
implicit type as

CF
c D3/7

w z wð Þ = w + e2w

15 + e3w sin z wð Þj j
45 +w2 + 3w2 sin CF

c D3/7
w z wð Þ�� ��

65 ,w ∈ 0, 1½ �,
z 0ð Þ = 0, z 1ð Þ = 0:

8><
>:

ð53Þ

Clearly c = 0, d = 1 and f ðw, zðwÞ, λðwÞÞ = ððw + e2wÞ/
15Þ + ððe3w sin jzðwÞjÞ/ð45 +w2ÞÞ + ðð3w2 sin jCFc D3/7

w λðwÞjÞ
/65Þ is a continuous function for all w ∈ ½0, 1�: Further let
z, �z, λ, �λ ∈ C½I, R�, then consider, we have

f w, z wð Þ, λ wð Þð Þ − f w, �z wð Þ, �λ wð Þ� ��� ��
= w + e2w

15 + e3w sin z wð Þj j
45 +w2 + 3w2 sin ∣CFc D3/7

w λ wð Þ��
65

�����
−
w + e2w

15 −
e3w sin �z wð Þj j

45 +w2 −
3w2 sin

��CF
c
D3/7

w
�λ wð Þ ∣

65

�����
≤

e3x

45 +w2 z wð Þ − �z wð Þj j + 3w2

65 λ wð Þ − �λ wð Þ�� ��,
ð54Þ

which implies that the maximum on right side to the
above inequality, we have

f w, z wð Þ, λ wð Þð Þ − f w, �z wð Þ, �λ wð Þ� ��� ��
≤

1
45 z wð Þ − �z wð Þj j + 3

65 λ wð Þ − �λ wð Þ�� ��: ð55Þ

Thus from (55), one has Df = 1/45, Ef = 3/65, and
μ = 3/7. And also consider we have

7Journal of Function Spaces



f w, z wð Þ, λ wð Þð Þj j

= w + e2w

15 + e3w sin z wð Þj j
45 +w2 +

3w2 sin
��CF
c
D3/7

w λ wð Þ ∣
65

�����
�����

≤
w + e2w

15

����
���� + e3w sin z wð Þj j

45 +w2

����
���� + 3w2 sin

��CF
c
D3/7

w λ wð Þ ∣
65

�����
�����

≤
1
15 + 1

45 z wð Þj j + 3
65 λ wð Þj j,

ð56Þ

where pf = 1/15, qf = 1/45, rf =3/65, and then Gμ = 1/200,
G∗
μ = 1/150. Then

2Gμ d − cð Þ − G∗
μ d − cð Þ2

� � Df

1 − Ef

 !
= 13
167400 < 1: ð57Þ

Therefore, the conditions of Theorem 7 are satisfied.
Thus, the problem (53) has a unique solution. Further,
we need to satisfy some conditions of Theorem (9), we
have

0 <
4Gμ d − cð Þ −G∗

μ d − cð Þ2
2

 !
Df

1 − Ef
= 13
83,700 < 1: ð58Þ

Hence, the conditions of Theorem (9) also hold.
Therefore, (53) has at least one solution. Furthermore,
proceed to verify stability results; we see that

2Gμ d − cð Þ −G∗
μ d − cð Þ2

� � Df

1 − Ef

 !
= 0:00007765 < 1:

ð59Þ

Hence, the solution of the mentioned problem (53) is
Hyers-Ualm stable and consequently generalized Hyers-
Ulam stable.

5. Conclusion

We have successfully attained several essential conditions
consistent to existence theory and stability theory for implicit
type problem of DBCs with involving Caputo-Fabrizio frac-
tional operator. By classical fixed point theory, we used some
fixed point theorem like Krasnoselskii’s fixed-point and
Banach’s contraction. Further, we studied certain stability
results of Hyers-Ulam and generalized Hyers-Ulam stability.
By appropriate illustrations, we have established the obtained
investigation.
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