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Abstract
In this work, we discuss the inverse problem for second order differential pencils with
boundary and jump conditions dependent on the spectral parameter. We establish
the following uniqueness theorems: (i) the potentials qk(x) and boundary conditions
of such a problem can be uniquely established by some information on
eigenfunctions at some internal point b ∈ (π2 ,π ) and parts of two spectra; (ii) if one
boundary condition and the potentials qk(x) are prescribed on the interval
[π /2(1 – α),π ] for some α ∈ (0, 1), then parts of spectra S⊆ σ (L) are enough to
determine the potentials qk(x) on the whole interval [0,π ] and another boundary
condition.
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1 Introduction
Inverse spectral problems are a branch of science that seeks to determine the coefficients
of the boundary value problems from their spectral characteristics. This kind of prob-
lems often arise in mathematics, mechanics, physics, electronics, geophysics, and various
branches of natural sciences and engineering [2, 3, 14, 17, 18, 24]. First studies and results
of inverse problems for classical Sturm–Liouville operators were given by Ambartsumyan
in 1929 [1], and this field of science has been developed by many researchers in the next
years [8, 21, 29, 33, 37, 38]. In particular, some aspects of the inverse problem theory for
differential pencils and for spectral jump and boundary conditions have been investigated
in [4, 6, 23, 29–35].

In this paper, we investigate the boundary value problem L := L(q1, q0, h1, h0, H1, H0,α,
β ,γ ) for the differential pencil

–y′′ +
(
2ρq1(x) + q0(x)

)
y = ρ2y, x ∈ (0,π ), (1.1)
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with boundary conditions

U(y) := y′(0) – (h1ρ + h0)y(0) = 0, (1.2)

V (y) := y′(π ) + (H1ρ + H0)y(π ) = 0, (1.3)

and the interior discontinuity

y
(

π

2
+ 0,ρ

)
= αy

(
π

2
– 0,ρ

)
,

y′
(

π

2
+ 0,ρ

)
= α–1y′

(
π

2
– 0,ρ

)
+ (βρ + γ )y

(
π

2
– 0,ρ

)
.

(1.4)

The parameters hk , Hk , k = 0, 1 (h1, H1 �= ±i),α > 0,β and γ are complex, and ρ is a spectral
parameter. The complex-valued functions qk(x) belong to the space W k

2 (0,π ).
Some special cases of problem (1.1)–(1.4) arise after an application of the method of the

separation of variables to the varied assortment of physical problems. For example, some
of the problems with boundary conditions depending on the spectral parameter occur in
the theory of small vibrations of a damped string and freezing of the liquid [19, 26]. These
problems also appear in the connection with an acoustic wave propagation in a rectangu-
lar duct with a uniform mean flow profile and walls with finite acoustic impedance [13].
Moreover, boundary value problems with discontinuity conditions arise in heat and mass
transfer problems [16], in vibrating string problems when the string is loaded additionally
with point masses [26], and in diffraction problems [27].

To recover the potential on all interval and all coefficients in boundary conditions in
the usual case, it is necessary to know two spectra of the boundary value problem with
different boundary conditions [36]. Indeed, if a finite number of eigenvalues are deleted,
the potential is not uniquely determined by one full spectrum and one partial spectrum.
Mochizuki and Trooshin [20] showed that the spectral data of parts of two spectra and a
set of values of eigenfunctions at some internal point suffice to determine the potential,
and they addressed the interior inverse problem of Sturm–Liouville operators on the fi-
nite interval [0,1]. Afterwards, this technique has been used by some authors to survey
the inverse problem of Sturm–Liouville operators in various forms [10, 22, 25, 29, 33].
Alongside this method, in [9], Hochstadt and Lieberman found the half inverse prob-
lem method and showed that if the potential is prescribed on [1/2, 1], one spectrum can
uniquely determine the potential on the whole interval [0, 1]. Hochstadt–Lieberman type
theorem was also investigated by many scholars for differential operators in the next years
[4, 11, 12, 30, 31]. Then Gesztesy and Simon generalized Hochstadt–Lieberman type the-
orem and recovered the Sturm–Liouville operator with Robin boundary conditions from
parts of one spectrum and partial information on the potential [7]. They showed that if
the coefficient h0 and the potential are provided on [0, 1/2 + α/2] for some α ∈ (0, 1), then
parts of one spectrum can give the coefficient h1 and the potential on all of [0, 1]. Insofar as
we know, Mochizuki–Trooshin and Hochstadt–Lieberman type theorems for differential
pencils with spectral boundary and jump conditions have not been considered before. The
target of this work is to investigate two inverse problems to L by these two techniques. We
would like to investigate the inverse problems for L by some information on eigenfunc-
tions at some internal point and parts of two spectra taking Mochizuki–Trooshin type
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theorem as well as from partial information on the potentials and parts of a finite num-
ber of spectra by Gesztesy–Simon type theorem. This brings certain difficulties, and the
results obtained are a generalization of the classical Sturm–Liouville problems.

The main goal of this paper is to present the potentials qk(x) and the parameters
hk , Hk , k = 0, 1 by developing the ideas of the Mochizuki–Trooshin and Gesztesy–Simon
methods [7, 20]. The present paper is organized as follows. Section 2 is devoted to some
preliminaries. In Sect. 3, two uniqueness theorems for boundary value problem (1.1)–(1.4)
are proved.

2 Preliminaries
In the first part of the paper, we provide the solution of the boundary value problem L and
its spectral characteristics. At first, we remind the following notation from [5].

The values of the parameter λ = ρ2 for which L has nonzero solutions are called eigen-
values, and the corresponding nontrivial solutions are called eigenfunctions. The set of
eigenvalues is called the spectrum of L.

Let y(x,ρ) be the solution of differential pencil (1.1) under the initial conditions y(0,ρ) =
1, y′(0,ρ) = h1ρ +h0 and jump conditions (1.4). From [23, 34], this solution can be obtained
in the following form for sufficiently large ρ :

y(x,ρ) = cos
(
ρx – Q(x)

)
+ h1 sin

(
ρx – Q(x)

)
+ O

(
1
ρ

exp
(|�ρ|x)

)
, x <

π

2
, (2.1)

y(x,ρ) =
(

α+ –
1
2
βh1

)(
cos

(
ρx – Q(x)

)
+ A1 sin

(
ρx – Q(x)

))

+
(

α– +
1
2
βh1

)(
cos

(
ρ(π – x) – Q(π ) + Q(x)

)

+ A2 sin
(
ρ(π – x) – Q(π ) + Q(x)

))

+ O
(

1
ρ

exp
(|�ρ|x)

)
, x >

π

2
, (2.2)

where Q(x) =
∫ x

0 q1(t) dt, A1 = 2α+h1+β

2α+–βh1
, and A2 = 2α–h1–β

2α–+βh1
in which α± = 1

2 (α ± α–1). Since

1
√

1 + h2
1

= cos

(
1
2i

ln
i – h1

i + h1

)
,

h1√
1 + h2

1
= sin

(
1
2i

ln
i – h1

i + h1

)
,

and analogously

1
√

1 + A2
j

= cos

(
1
2i

ln
i – Aj

i + Aj

)
,

Aj√
1 + A2

j

= sin

(
1
2i

ln
i – Aj

i + Aj

)
, j = 1, 2,

we have formulae (2.1) and (2.2) as follows for sufficiently large ρ :

y(x,ρ) =
√

1 + h2
1 cos

(
1
2i

ln
i – h1

i + h1
–

(
ρx – Q(x)

)
)

+ O
(

1
ρ

exp
(|�ρ|x)

)
, x <

π

2
, (2.3)

y(x,ρ) =
(

α+ –
1
2
βh1

)√
1 + A2

1 cos

(
1
2i

ln
i – A1

i + A1
–

(
ρx – Q(x)

))
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+
(

α– +
1
2
βh1

)√
1 + A2

2 cos

(
1
2i

ln
i – A2

i + A2
–

(
ρ(π – x) – Q(π ) + Q(x)

))

+ O
(

1
ρ

exp
(|�ρ|x))

, x >
π

2
. (2.4)

Moreover, we know that these functions and derivatives with respect to x are entire in ρ

of exponential type.
We denote by 	(ρ) := V (y(x,ρ)) the characteristic function for L. This relation together

with (1.3) and (2.4) gives for sufficiently large ρ :

	(ρ) = ρ

√
1 + H2

1

((
α+ –

1
2
βh1

)

×
√

1 + A2
1 sin

(
1
2i

ln
i – H1

i + H1
+

1
2i

ln
i – A1

i + A1
–

(
ρπ – Q(π )

))

+
(

α– +
1
2
βh1

)√
1 + A2

2 sin

(
1
2i

ln
i – H1

i + H1
+

1
2i

ln
i – A2

i + A2

))

+ O
(
exp

(|�ρ|π))
.

The roots of this characteristic function are the eigenvalues of L [5], and these eigenvalues
have the following asymptotic formula for sufficiently large n:

ρn = n + ω + O
(

1
n

)
, (2.5)

where ω = 1
π

Q(π ) + 1
2π i ln i–H1

i+H1
+ 1

2π i ln i–A1
i+A1

. Also, using the known method [5], one gets

∣∣	(ρ)
∣∣ ≥ Cδ|ρ| exp

(|�ρ|π)
(2.6)

for large enough ρ ∈ Gδ := {ρ ∈ C; | ρ – ρn |≥ δ,∀n, } and some positive constant Cδ .
In virtue of Ref. [7, 15], we bring the following lemma which is momentous to demon-

strating the main results of our article.

Lemma 2.1 For any entire function g(ρ) �= 0 of exponential type, the following inequality
holds:

lim
r→∞

n(r)
r

≤ 1
2π

∫ 2π

0
hg(θ ) dθ ,

where n(r) is the number of zeros of g(ρ) in the disk |ρ| ≤ r and hg(θ ) := lim supr→∞
ln |g(reiθ )|

r
with ρ = reiθ .

Lemma 2.2 Assume that f (z) is an entire function of order less than one. If
lim|x|−→∞,x∈R f (ix) = 0, then f (z) = 0 on the whole complex plane.

3 Inverse problem with partial information
In this section, two uniqueness theorems are brought that are the main results of this
work. We would like to recover the differential pencil and the coefficients used in
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boundary conditions from some information on eigenfunctions at some interior point
and parts of two spectra in Theorem 3.1. Taking partial information on the poten-
tials and a subset of eigenvalues, we also study this inverse problem in Theorem 3.3.
So, we consider a boundary value problem L̃ := L(̃q1, q̃0, h̃1, h̃0, H̃1, H̃0,α,β ,γ ) beside
L := L(q1, q0, h1, h0, H1, H0,α,β ,γ ). We note that the parameters α,β , and γ are known
a priori. Also, if a symbol shows an object in L, then the same symbol with tilde shows the
corresponding object in L̃.

Let l(n) and r(n) be two sequences of the natural numbers such that

l(n) =
n
σ1

(1 + ε1n), 0 < σ1 ≤ 1, ε1n −→ 0,

r(n) =
n
σ2

(1 + ε2n), 0 < σ2 ≤ 1, ε2n −→ 0,

and let μn be the eigenvalues of L1 := L(q0, q1, h0, h1,H0,H1,α,β ,γ ), Hk �= Hk ,Hk ∈ R for
k = 0, 1.

Theorem 3.1 Consider two sequences l(n) and r(n) such that σ1 > 2b
π

– 1 and σ2 > 2 – 2b
π

as b ∈ ( π
2 ,π ). If, for any n,

λn = λ̃n, μl(n) = μ̃l(n),

〈yr(n), ỹr(n)〉x=b = 0,

where 〈y, z〉 := yz′ – y′z, then qk(x) = q̃k(x) a.e. on [0,π ] and hk = h̃k , Hk = H̃k , k = 0, 1.

It is needed to express the following lemma to prove Theorem 3.1.

Lemma 3.2 Consider a sequence of natural numbers

m(n) =
n
σ

(1 + εn), 0 < σ ≤ 1, εn −→ 0.

(1) Let σ > 2b
π

for b ∈ (0, π
2 ). If, for any n,

λm(n) = λ̃m(n), 〈ym(n), ỹm(n)〉x=b = 0,

then qk(x) = q̃k(x) a.e. on [0, b] and hk = h̃k , k = 0, 1.
(2) Let σ > 2 – 2b

π
for b ∈ ( π

2 ,π ). If, for any n,

λm(n) = λ̃m(n), 〈ym(n), ỹm(n)〉x=b = 0,

then qk(x) = q̃k(x) a.e. on [b,π ] and Hk = H̃k , k = 0, 1.

Proof Let y(x,ρ) be the solution to equation (1.1) with the initial conditions y(0,ρ) = 1
and y′(0,ρ) = h1ρ + h0. Also, let ỹ(x,ρ) be the solution of the corresponding equation with
tilde and with the initial conditions ỹ(0,ρ) = 1 and ỹ′(0,ρ) = h̃1ρ + h̃0. Multiplying (1.1) by
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ỹ(x,ρ) and the corresponding equation by y(x,ρ), using the difference of these results, and
integrating on [0, b], we get

Gb(ρ) :=
∫ b

0

(
2ρQ1(x) + Q0(x)

)
y(x)̃y(x) dx + (h1 – h̃1)ρ + h0 – h̃0

= y′(b)̃y(b) – y(b)̃y′(b), (3.1)

where Qk(x) = qk(x) – q̃k(x), k = 0, 1. According to the assumptions of the theorem, we have

Gb(ρm(n)) = 0.

In the following, we must show that Gb(ρ) = 0 for all ρ �= ρn.
We hold the following integral representation for two bounded functions Hc(x, t) and

Hs(x, t):

y(x,ρ) = cos
(
ρx – Q(x)

)
+ h1 sin

(
ρx – Q(x)

)

+
∫ x

0
Hc(x, t) cosρt dt +

∫ x

0
Hs(x, t) sinρt dt, x <

π

2
. (3.2)

[34]. Thus, consider Q±(x) = Q(x) ± Q̃(x),

y(x,ρ )̃y(x,ρ) =
1 + h1̃h1

2
cos Q–(x) +

h1 – h̃1

2
sin Q–(x)

+
1 – h1̃h1

2
cos 2

(
ρx – Q+(x)

)
–

h1 + h̃1

2
sin 2

(
ρx – Q+(x)

)

+
∫ x

0
H ′

c(x, t) cos
(
2ρt – Q+(t)

)
dt

+
∫ x

0
H ′

s(x, t) sin
(
2ρt – Q+(t)

)
dt, x <

π

2
, (3.3)

where H ′
c(x, t) and H ′

s(x, t) are bounded functions. Now, by taking (3.3), one gets

∣
∣y(x,ρ )̃y(x,ρ)

∣
∣ ≤ M exp

(
2|�ρ|x)

, (3.4)

and therefore this result together with (3.1) implies that

∣∣Gb(ρ)
∣∣ ≤ (

M1 + M2|ρ|) exp
(
2br| sin θ |). (3.5)

Using the above result and considering the indicator

h(θ ) := lim sup
r→∞

ln |Gb(r exp(iθ ))|
r

, (3.6)

we obtain

h(θ ) ≤ 2b| sin θ |,
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and so

1
2π

∫ 2π

0
h(θ ) dθ ≤ b

π

∫ 2π

0
| sin θ |dθ =

4b
π

. (3.7)

Taking the hypothesis of the lemma and (2.5), one gets, for sufficiently large r,

n(r) ≥ 2
∑

n
σ (1+ ω

n +O(n–2))<r

1 = 2rσ
[
1 + ε(r)

]
,

in which n(r) is the number of roots of Gb(ρ) in the disk |ρ| ≤ r. Thus, for σ > 2b
π

, we obtain
that

lim
r→∞

n(r)
r

≥ 2σ >
1

2π

∫ 2π

0
h(θ ) dθ . (3.8)

Lemma 2.1 together with (3.8) yields that Gb(ρ) = 0 on the whole complex plane.
Now, substituting (3.3) into (3.1), we can write that

(h1 – h̃1)ρ + h0 – h̃0

+
∫ b

0

(
2ρQ1(x) + Q0(x)

)[1 + h1̃h1

2
cos Q–(x) +

h1 – h̃1

2
sin Q–(x)

+
1 – h1̃h1

2
cos 2

(
ρx – Q+(x)

)
–

h1 + h̃1

2
sin 2

(
ρx – Q+(x)

)]
dx

+
∫ b

0

(
2ρQ1(x) + Q0(x)

)[∫ x

0
H ′

c(x, t) cos
(
2ρt – Q+(t)

)
dt

+
∫ x

0
H ′

s(x, t) sin
(
2ρt – Q+(t)

)
dt

]
dx = 0.

This can be rewritten as

(h1 – h̃1)ρ + 2ρ

∫ b

0
Q1(x)

[
1 + h1̃h1

2
cos Q–(x) +

h1 – h̃1

2
sin Q–(x)

]
dx

+ h0 – h̃0 +
∫ b

0
Q0(x)

[
1 + h1̃h1

2
cos Q–(x) +

h1 – h̃1

2
sin Q–(x)

]
dx

+ 2ρ

∫ b

0
cos

(
2ρt – Q+(t)

)[1 – h1̃h1

2
Q1(t) +

∫ b

t
H ′

c(x, t)Q1(x) dx
]

dt

+ 2ρ

∫ b

0
sin

(
2ρt – Q+(t)

)[
–

h1 + h̃1

2
Q1(t) +

∫ b

t
H ′

s(x, t)Q1(x) dx
]

dt

+
∫ b

0
cos

(
2ρt – Q+(t)

)
[

1 – h1̃h1

2
Q0(t) +

∫ b

t
H ′

c(x, t)Q0(x) dx
]

dt

+
∫ b

0
sin

(
2ρt – Q+(t)

)
[

–
h1 + h̃1

2
Q0(t) +

∫ b

t
H ′

s(x, t)Q0(x) dx
]

dt = 0.
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On the base of Riemann–Lebesgue lemma, we have, for sufficiently large ρ ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ b
0 cos(2ρt – Q+(t))[ 1–h1h̃1

2 Q1(t) +
∫ b

t H ′
c(x, t)Q1(x) dx] dt = 0,

∫ b
0 sin(2ρt – Q+(t))[– h1+̃h1

2 Q1(t) +
∫ b

t H ′
s(x, t)Q1(x) dx] dt = 0,

∫ b
0 cos(2ρt – Q+(t))[ 1–h1h̃1

2 Q0(t) +
∫ b

t H ′
c(x, t)Q0(x) dx] dt = 0,

∫ b
0 sin(2ρt – Q+(t))[– h1+̃h1

2 Q0(t) +
∫ b

t H ′
s(x, t)Q0(x) dx] dt = 0,

(3.9)

and
⎧
⎨

⎩
h1 – h̃1 + 2

∫ b
0 Q1(x)[ 1+h1h̃1

2 cos Q–(x) + h1–̃h1
2 sin Q–(x)] dx = 0,

h0 – h̃0 +
∫ b

0 Q0(x)[ 1+h1h̃1
2 cos Q–(x) + h1–̃h1

2 sin Q–(x)] dx = 0.
(3.10)

Equations (3.9) and the completeness of “cos” and “sin” [5] result in that, for k = 0, 1,

Qk(t) +
∫ b

t
H ′′

c (x, t)Qk(x) dx = 0 = Qk(t) +
∫ b

t
H ′′

s (x, t)Qk(x) dx, (3.11)

where the functions H ′′
c (x, t) and H ′′

s (x, t) are bounded. These homogeneous Volterra inte-
gral equations have only zero solution Qk(x) = 0, k = 0, 1 for x ∈ (0, b). So, qk(x) = q̃k(x), k =
0, 1 a.e. on [0, b]. Moreover, from (3.10), one can easily get that hk = h̃k , k = 0, 1.

By use of the change of variable x → π –x, the segment (b,π ) is converted to the segment
(0,π – b). So, by repeating the pervious discussions for the supplementary problem L̂ :=
L(q1, q0, H1, H0, h1, h0,α,β ,γ ), we get

–y′′ +
(
2ρq1(x) + q0(x)

)
y = λy, x ∈ (0,π ),

qk(x) = qk(π – x), k = 0, 1,
(3.12)

U(y) := y′(0) + (H1ρ + H0)y(0) = 0, (3.13)

V (y) := y′(π ) – (h1ρ + h0)y(π ) = 0, (3.14)

y
(

π

2
+ 0,ρ

)
= α–1y

(
π

2
– 0,ρ

)
,

y′
(

π

2
+ 0,ρ

)
= αy′

(
π

2
– 0,ρ

)
– (βρ + γ )y

(
π

2
– 0,ρ

)
,

(3.15)

the subject is proved on (b,π ). Since the conditions of Lemma 3.2 are satisfied to L̂, we
can similarly give that Qk(x) = Qk(π – x) = 0, k = 0, 1 on (0,π – b). So qk(x) = q̃k(x), k = 0, 1
a.e. on [b,π ] and Hk = H̃k , k = 0, 1. The proof is completed. �

Proof of Theorem 3.1 According to Lemma 3.2 and taking the assumptions 〈yr(n), ỹr(n)〉x=b =
0 and λn = λ̃n, we imply that qk(x) = q̃k(x) on x ∈ [b,π ] and Hk = H̃k , k = 0, 1. Therefore it
is enough to show that qk(x) = q̃k(x) for x ∈ [0, b] and hk = h̃k , k = 0, 1.

When b ∈ [ π
2 ,π ], we have (3.1) as follows:

Gb(ρ) :=
∫ b

0

(
2ρQ1(x) + Q0(x)

)
y(x)̃y(x) dx + (h1 – h̃1)ρ + h0 – h̃0
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=
(
y′(x)̃y(x) – y(x)̃y′(x)

)∣∣
π
2 –0 +

(
y′(x)̃y(x) – y(x)̃y′(x)

)∣∣b
π
2 +0. (3.16)

Because yn(x) and ỹn(x) have a similar condition in x = π and q̃k(x) = qk(x), k = 0, 1 on
x ∈ [b,π ], we infer that

yn(x) = αñyn(x), n ∈ N, x ∈ [b,π ] (3.17)

for constants αn. Together with (3.16) and equality 〈y, z >〉x= π
2 –0 = 〈y, z〉|x= π

2 +0, this yields
Gb(λn) = 0 and analogously Gb(μl(n)) = 0.

The total of roots λn, i.e., nλn (r) = 1 + r[1 + ε(r)], and μl(n), i.e., nμl(n) (r) = 1 + rσ1[1 + ε(r)],
inside the disc of radius r is n(r) = 2 + r[1 + σ1 + ε(r)]. So we get, for σ1 > 2b

π
– 1,

lim
r→∞

n(r)
r

≥ (1 + σ1) >
1

2π

∫ 2π

0
h(θ ) dθ . (3.18)

Lemma 2.1 together with (3.18) yields that Gb(λ) = 0.
Now, similar to the proof of Lemma 3.2, we can show that qk(x) = q̃k(x) a.e. on [0, b] and

hk = h̃k , k = 0, 1. The proof is completed. �

Another result of this paper is achieved by the Gesztesy–Simon method, in which a
subset of eigenvalues and partial information on the potentials are used to establish the
uniqueness theorem for L.

Theorem 3.3 Consider σ (L) as the spectrum of L. If the coefficient Hk and the potentials
qk(x), k = 0, 1 are provided on [π/2(1 – α),π ] for some α ∈ (0, 1), then a subset S ⊆ σ (L)
satisfying the following inequality for sufficiently small ε > 0 and whole large enough λ0 ∈R

�{λ ∈ S;λ ≤ λ0} ≥ (1 – α)�
{
λ ∈ σ (L);λ ≤ λ0

}
+

α

2
+ ε

is sufficient to determine the coefficient hk and the potentials qk(x), k = 0, 1 on [0,π ].

Proof Multiplying (1.1) by ỹ(x,ρ) and the corresponding equation by y(x,ρ), using the
difference of these results and integrating on [0,π ], we infer that

∫ π

0

(
2ρQ1(x) + Q0(x)

)
y(x)̃y(x) dx

=
(
y′(x)̃y(x) – y(x)̃y′(x)

)∣∣
π
2 –0

0 +
(
y′(x)̃y(x) – y(x)̃y′(x)

)∣∣π
π
2 +0. (3.19)

By regards to qk(x) = q̃k(x), k = 0, 1, for x ∈ [π/2(1 – α),π ], we can give

Gα(ρ) :=
∫ π/2(1–α)

0

(
2ρQ1(x) + Q0(x)

)
y(x)̃y(x) dx + (h1 – h̃1)ρ + h0 – h̃0

= y′(π )̃y(π ) – y(π )̃y′(π ). (3.20)

On the base of the assumption of the theorem, we have Gα(ρn) = 0 for ρn ∈ S. Now we
must show that Gα(ρ) = 0 for all ρ .
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By virtue of (3.4) and (3.20), we infer that

Gα(ρ) ≤ (
M′

1 + M′
2|ρ|) exp

(|�ρ|(1 – α)π
)

for constants M′
1, M′

2 > 0. Hence, for λ = ix, one obtains that

Gα(ix) ≤ (
M′

1 + M′
2|

√
x|) exp

(�√
i|√x|(1 – α)π

)
. (3.21)

We denote an entire function

φ(ρ) =
Gα(ρ)
	α(ρ)

, (3.22)

where 	α(ρ) =
∏

λn∈S(1 – λ
λn

). Inasmuch as the characteristic function 	(ρ) is an entire
function of order 1

2 , there exists a positive constant C such that

N	α (ρ0) ≤ N	(ρ0) ≤ C
√

λ,

in which N	α (ρ0) := �{λ ∈ S;λ ≤ λ0} and N	(ρ0) := �{λ ∈ σ (L);λ ≤ λ0}. Using the hypoth-
esis of the theorem, we get

N	α (ρ0) ≥ (1 – α)N	(ρ0) +
α

2
+ ε. (3.23)

Some standard computations in Refs. [7, 28] conclude that

ln
∣
∣	α(ix)

∣
∣ = (1 – α) ln

∣
∣	(ix)

∣
∣ +

(
α

4
+

ε

2

)
ln

(
1 + x2).

Consequently,

∣∣	α(ix)
∣∣ =

∣∣	(ix)
∣∣1–α · (1 + x2) α

4 + ε
2 . (3.24)

Since σ (L) is the spectrum of L, we have

∣∣	(ix)
∣∣ ≥ C

√|x| exp
(�√

i|√x|π)
(3.25)

for sufficiently large x. Now, together with (3.24), this gives

∣
∣	α(ix)

∣
∣ ≥ C

√
|x|(1–α) exp

(�√
i|√x|(1 – α)π

) · (1 + x2) α
4 + ε

2 . (3.26)

This result together with (3.21) and (3.22) implies that

φ(ix) = O
(

1
|x|ε

)
. (3.27)

From Lemma 2.2, we can get φ(ρ) = 0 for all ρ , and therefore Gα(ρ) = 0 for all ρ .
Now, by repeating the arguments in the same manner with Theorem 3.1, we get qk(x) =

q̃k(x) a.e. on [0,π/2(1 – α)] and hk = h̃k , k = 0, 1. The proof is completed. �
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