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Abstract
Mental number representation relies on mapping numerosity based on nonsymbolic stimuli to symbolic magnitudes. It is known
that mental number representation builds on a logarithmic scale, and thus numerosity decisions result in underestimation. In the
current study, we investigated the temporal dynamics of numerosity perception in four experiments by employing the
response-deadline SAT procedure. We presented random number of dots and required participants to make a numerosity
judgment by comparing the perceived number of dots to 50. Using temporal dynamics in numerosity perception allowed us to
observe a response bias at early decisions and a systematic underestimation at late decisions. In all three experiments, providing
feedback diminished the magnitude of underestimation, whereas in Experiment 3 the absence of feedback resulted in greater
underestimation errors. These results were in accordancewith the findings that suggested feedback is necessary for the calibration
of the mental number representation.
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How we perceive numerosity is an intriguing subject of psy-
chophysics with its relevance to understanding the mental
number representation, magnitude perception, and mathemati-
cal concept formation (Crollen et al., 2011; Crollen et al., 2013;
Dehaene et al., 2008; DeWind et al., 2019; Krueger, 1972;
Mundy & Gilmore, 2009). In numerosity perception tasks,
nonsymbolic stimuli, such as a collection of dots, are used as
stimuli, and participants are asked to respond with a symbolic
output such as Arabic numerals (Crollen et al., 2011; Izard &
Dehaene, 2008; Krueger, 1972; Reinert et al., 2019).
Approximate Number System (ANS) is proposed to be the
mechanism that is responsible for processing nonsymbolic
stimuli that are utilized in numerosity perception tasks, produc-
ing a percept of numbers without requiring to count or to cal-
culate, but rather to estimate the numbers indirectly (Anobile
et al., 2016; Dehaene, 2003; Dietrich et al., 2015; Guillaume &
Gevers, 2016; Guillaume & Van Rinsveld, 2018; Mejias &
Schiltz, 2013; Van den Berg et al., 2017).

In addition to findings for human adults, the ANS is also
found in infants, and other species (Anobile et al., 2016; Burr
et al., 2018; Dehaene, 2003; Fornaciai et al., 2016; Nieder,
2016; Piazza, 2010; Whalen et al., 1999; Xu & Spelke,
2000), which is considered as an innate mechanism
(Dehaene, 2011), having evolutionary advantages. Detecting
an approximate number for sets of objects may have survival
value such as detecting potential predators instantaneously
(Burr et al., 2018; Nieder, 2016; Norris & Castronovo, 2016;
Piazza, 2010). Studies on ANS and numerosity perception
suggest that humans use a mental representation of a number
line that is logarithmically scaled (Castronovo & Seron, 2007;
Cordes et al., 2001; Crollen et al., 2011; Crollen & Seron,
2012; Dehaene, 1992, 2011; Dietrich et al., 2015; Izard &
Dehaene, 2008; Reinert et al., 2019).

In numerosity perception tasks, there is a mapping from
nonsymbolic representation to symbolic representation, which
directly links the logarithmically scaled mental number line to
the actual linear number line (Dehaene, 2011; Piazza et al.,
2007; Verguts & Fias, 2004). Consequently, the mapping of
the logarithmic mental number line to the linear number line
results in systematic underestimation (Crollen et al., 2011;
Krueger, 1972, 1982). Since the mental number line is loga-
rithmically compressed, the subjective representation of non-
symbolic stimuli will be mapped on the linear number line
with a smaller numerical value. The underestimation of the
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subjective magnitude compared with the objective magnitude is
a result of this compression in the mental number line. However,
Izard and Dehaene (2008) explains how scalar variability was
still predicted by their model as the increase in numerosity results
in an increase in the standard deviation of responses.

The underestimation of the subjective magnitude is a general
finding when feedback was not provided to the participants
(Bevan & Turner, 1964; Crollen et al., 2011; Crollen et al.,
2013; Indow & Ida, 1977; Izard & Dehaene, 2008; Krueger,
1982; Reinert et al., 2019). Izard and Dehaene (2008) investigat-
ed the effects of feedback on calibrating the mental number rep-
resentation by presenting inducers to the participants. In a
numerosity perception experiment, they presented feedback,
which they referred to as inducers, prior to the trials, and manip-
ulated three types of inducers: overestimated, underestimated,
and exact. For all the types, participants were told that the
inducers contained 30 dots, while only for the exact inducers
30 dots were presented, but for the overestimated inducers 25
dots and for the underestimated inducers 39 dots were displayed.
The results showed that the participants readapted their responses
according to the inducers, which was the feedback that they
received prior to the task. Izard and Dehaene (2008) proposed
a model for numerosity perception and developed their model to
account for the findings that calibration of themental number line
benefits from feedback. In their model, the width of the distribu-
tion of activation on the logarithmic mental number line corre-
sponds to sensitivity in signal detection theory, and represents the
amount of noise in the numerosity representation. The activation
on the logarithmic mental number line takes place during
encoding of numerosity. They postulate that the representation
on the number line is then transformed into a verbal numerical
response corresponding to a segment which is divided according
to a list of criteria, defined as the response grid. When no feed-
back is provided, numerosity estimations are generated based on
the spontaneous response grid. However, in the presence of feed-
back, an affine transformation is applied to the response grid,
resulting in calibration. Therefore, the response bias in their mod-
el corresponds to the response grid, defining the position of the
response criteria. The results of their study suggested that the
calibration is a global process due to the response selection stage
(response bias) and is not due to encoding of numerosity (sensi-
tivity). Similar findings of calibration, or in other words a reduc-
tion of underestimation in numerosity due to usage of feedback,
also comes from studies that provide feedback during the task,
not being presented in the form of inducer but presented after
every trial (Krueger, 1984; Price et al., 2014).

Current study

In the current study, we investigated the role of feedback on
numerosity perception. After presenting randomly displayed
dots on the screen, we collected responses from a two-choice

decision task. In the decision task, participants either selected
the option that indicated the number of dots exceeded one
criterion value (50 in the current experiment), or the other
option, indicating that the number of dots stayed below that
criterion value. Immediately following the response, we pro-
vided the actual number of dots that were displayed on the
screen. Our feedback was intended to investigate how the
mental number representation was calibrated when partici-
pants received the actual number of nonsymbolic representa-
tions, and thus, if a correct mapping occurred between sym-
bolic and nonsymbolic representations.

In addition to investigating how calibration of mental num-
ber representation benefits from presenting actual numbers
tested, we examined the temporal course of numerosity per-
ception. In traditional studies of numerosity perception, par-
ticipants are given either a production task (Crollen et al.,
2011) or a choice decision task (e.g., Ratcliff, 2006) that re-
quires a selection of one response among two alternatives. The
responses in two-choice decision tasks are subject to speed–
accuracy trade-offs, such that fast responses are likely to be
incorrect while the accurate responses are likely to be slower.
The responses obtained from standard choice tasks might be
biased towards either one. To obtain unbiased measures of
speed and accuracy, we applied the response-deadline
speed–accuracy trade-off (SAT) procedure in a two-choice
numerosity decision task. As a result, we had the opportunity
to observe the time course of numerosity perception, which is
explained in more detail in the following section.

Finally, controlling for the speed of processing in a
two-choice numerosity decision task allowed us to measure
unbiased estimates of numerosity. Specifically, we can ob-
serve whether there is a systematic underestimation when
the speed of responding is controlled and whether their esti-
mates become more accurate when people are given more
time to process the dot patches. To answer these questions,
we employed the response deadline SAT procedure to obtain
conjoint measures of accuracy (sensitivity) and response time
in numerosity perception.

Response deadline speed–accuracy trade-off
procedure

The response-deadline SAT procedure provides conjoint mea-
sures of speed and accuracy (Kılıç & Öztekin, 2014; Ratcliff,
2006; Ratcliff & McKoon, 2018). Due to being subject to
speed–accuracy trade-offs, traditional response-time measures
may provide biased measures of speed and accuracy. On the
other hand, by providing the full time course of processing,
SAT procedure yields independent assessment of accuracy
and speed of processing (Reed, 1973).

In SAT, participants are cued to respond with a response
signal presented at one of several time points, typically
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ranging from 60 to 3,000 ms after the display onset. The
random assignment of lag between stimulus onset and the
response signal to test trials provides a control for the speed
of processing. In a practice session, participants are trained to
give a response within 500 ms after the response cue.

SAT functions can describe changes in accuracy as a func-
tion of total processing time, the total time that passes from
stimulus onset to the response after the response cue is pre-
sented. The SAT functions typically start with a period of
performance where the two choices are selected randomly.
Later, a rapid increase or decrease in the selection of a re-
sponse, which shows the rate of information accrual over ad-
ditional processing time. Finally, an asymptote is observed,
indicating the response rate, which does not further improve
with additional time. The shape of this function is usually well
fit by an exponential approach to a limit (see Fig. 1, left panel).

Four parameters describe the SAT function for the proba-
bility of selecting either one option: (a) The first asymptote
(λ1), reflecting overall limitations of selecting either response
(greater or less than the criterion value) as an increase in total
processing time does not result in additional increase (or de-
crease) in response rates; (b) the prior asymptote (λ2),
reflecting the response rate early at decision and prior to the
responses being differentiated; (c) an intercept (δ), indicating
the point in time at which performance departs from randomly
responding; and (d) a rate (β) of rise from random responding
to a differentiated responding. Parameter λ1 indicates the max-
imum response rate that can be reached and λ2 parameter
indicates bias, if there is any, towards either one of the re-
sponses, while the intercept and the rate parameters constitute
the speed of processing.

Experiment 1

In this experiment, we investigated how numerosity was per-
ceived bymaking a decision about whether the number of dots
presented on the screen was greater than 50 or not. There were
three aims of this experiment: (1) Participants received

feedback on the actual number of dots immediately following
their response, which allowed them to compare their response
with the probability of dots being greater than 50. This feed-
back gave participants the opportunity to calibrate their mental
number line. (2) By employing the response deadline proce-
dure, we controlled the speed of processing. This provided the
additional advantage to measure when accuracy reached its
maximum, and whether there was a tendency towards either
response prior to the evidence accumulation. (3) Providing a
feedback on the mental number line along with measuring the
asymptotic proportion of responses allowed us to measure
whether underestimation in numerosity judgments occurs,
once accuracy reaches its maximum.

Method

Participants

Ten students from Middle East Technical University, with a
mean age of 25 years (SD = 2.32), took part in the experiment
and received monetary compensation for their participation.
One participant dropped out of the experiment after the first
session. Eight of the remaining nine participants were female,
and nine were right-handed.

Stimuli

The experiment was conducted on PsychoPy2 using the
DotStim function (Peirce et al., 2019) with 10-px sized dots
presented in a 600 × 600 pixels circle field centered on a 1,280
× 720 pixels monitor. The location of each dot was sampled
from a uniform distribution, which consequently suggests a
random density condition for each trial. The number of dots
presented was sampled randomly from the Binomial distribu-
tion with a size of 100 dots and four probability conditions,
0.30, 0.45, 0.55, and 0.70, randomly assigned for each trial.
However, note that in the .45 and .55 probability conditions,
the set of sampled number of dots exceeded (e.g., 53) or were
under (e.g., 47) the threshold of 50 dots. These trials were still

Fig. 1 Illustration of hypothetical speed–accuracy trade-off function (left) and distribution of dots presented in the experiments (right)
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considered in the .45 or in the .55 probability conditions re-
spectively in the subsequent analysis (see Fig. 1 for the
distribution of dot numbers). Dots were presented in white
ink on a black background, and the response signal (i.e.,
'&#&#&#&#&') was presented in yellow ink.

Design and procedure

Participants completed three sessions, which included four
blocks of 140 trials after the practice block in each session
making a total of 1,680 trials for each participant. In each trial,
dots were presented at the center of the screen. The number of
dots ranged from 10 to 90 as they were sampled from four
different binomial distributions, with a size of 100 and prob-
abilities of 0.30, 0.45, 0.55, and 0.70 occurrences (see Fig. 1
for the histogram of how the dots were distributed throughout
the experiment). The presentation of dots was followed by a
signal that cued the participant to respond at 60, 100, 200, 500,
700, 1,500, 3,000 ms after the stimulus onset. Through the
practice blocks, participants were trained to respond within
500ms after the signal, and they received feedback on latency.
If they failed to respond within 500 ms after signal onset, they
received a warning saying “please respond within 500 ms,”
but the trials until 600 ms were counted in the subsequent
analysis. If the participants responded before they were cued
with a signal, they received a warning to wait for the signal,
and these trials were excluded for the subsequent analysis. As
for the response, participants were asked to decide whether the
number of dots exceed 50, and if so, they were instructed to
press “m” (otherwise, “z”) on the keyboard. Later, participants
were presented with the exact number of dots on the screen to
calibrate their responses in the subsequent trials and required to
press a key to proceed (see Fig. 2 for an illustration of a trial).

The experiment was a 7 (lag conditions: 60, 100, 200, 500,
700, 1500, and 3000 ms) × 4 (dot condition: 0.30, 0.45, 0.55,
0.70) within-subjects factorial design. There were 60 trials for
each response lag and dot condition, adding up to a total of
1,680 (60 × 7 × 4) trials for each participant. All conditions
were presented in a random order. Trials with latency greater
than 600 ms and responses given earlier than the signal were
removed for the subsequent analysis. On average, the

remaining number of trials were 229.67 (SD = 6.38, 95% of
all trials), 233.78 (SD = 4.74, 97%), 229.34 (SD = 5.64, 95%),
223.77 (SD = 6.88, 93%), 225.66 (SD = 8.25, 94%), and
218.11 (SD = 11.59, 91%) for 60, 100, 200, 300, 500, 700,
1,500, and 3,000 ms response lag conditions, respectively.1

Results and discussion

Response rates

We first analyzed the probability of accepting the number of
dots as greater than 50 across response lag and dot conditions.
A 7 × 4 repeated-measures analysis of variance (ANOVA) on
the response rates revealed a main effect of dot condition, F(3,
24) = 426.08, p < .001,MSE = 0.018, ηp

2 = 0.982. The prob-
ability of responding “greater than 50” was less for the dots
that were sampled from the .30 condition, M = .114 (SE =
0.02), compared with the dots that were sampled from the
.45 condition (M =.391 , SE = 0.02), t(24) = −11.56, p <
.001, as suggested by the repeated contrasts. The probability
of responding “greater than 50” increased more when compared
with the dots sampled from .55 condition (M =.696, SE = 0.02),
t(24) = −12.68, p < .001, as was the increase in the .70 condition
(M =.914 , SE = 0.02), t(24) = −9.131, p < .001. These results
imply that with an increase in the probability of dot sampling,
more dots exceeded the threshold of 50, and consequently people
accepted more trials as being greater than 50.

Additionally, the main effect of lag was significant, F(6,
48) = 16.76, p < .001,MSE = 0.013, ηp

2 = 0.677, suggesting a
change in the probability of responding “greater than 50” as
the response signal delays. The repeated contrasts indicated a
decrease in the probability from the earliest lag, 60 ms (M =

Fig. 2 Illustration of a trial presented in the experiment

1 Note that the percentage of removed trials was comparable across deadline
conditions (e.g., 60 ms versus 700 ms) when the delay after cue onset was set
to 600 ms or less. This might indicate that the participants waited to fully
process the screen in early cues, whereas they responded before receiving
the cue in the latest deadline condition (3,500 ms). However, when the delay
after cue onset was set to 500 ms or less, the percentage of the remaining trials
dropped to 83%, 90%, 94%, 94%, 92%, 93%, 90% for each deadline condi-
tion, respectively. That said, the asymptotes of the best fitting model did not
differ while the speed parameters showed faster processing in general. The
results of the additional analysis are presented in the supplementary materials
for all experiments.
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.671, SE = 0.036), t(48) = 2.68, p < .01, to the probability at
100 ms (M = .599, SE = 0.21), averaged across all dot condi-
tions. A similar decrease was observed from 100ms to 200ms
(M = .509, SE = 0.18), t(48) = 3.39, p < .001, and after 200 ms,
the probability of responding “greater than 50” stayed steady
at around .50. Together, these findings indicate that at early
lags participants responded “greater than 50” more often than
they did in later lags, independent of the dot condition. Half of
the trials had dots greater than 50 while the other half had less
than 50. This would suggest that if participants were
responding based on the perceptual evidence, theywould have
responded .50 in all response conditions. However, the data
showed that at the earliest lags (60 ms and 100 ms) partici-
pants overestimated the number of dots presented on the
screen.

The interaction between lag and dot condition was signif-
icant, F(18, 144) = 18.536, p < .001,MSE = 0.018, ηp

2 = 0.70.
Below, we presented the SAT function that explained the
interaction between lag and dot condition in more detail.

Speed–accuracy trade-off functions

Figure 3 presents the time course of responding “greater than
50,” along with the function that is obtained by the best fitting
SAT parameters. Decisions made at early lags indicate the
probability of responding “yes” to the question before the
evidence accumulation starts—in other words, performance
at chance level. Here, performance at chance would be expect-
ed to be 0.5, as the probability of responding “greater than 50”
would be independent of the number of dots due to lack of
evidence accumulation. Values greater than .5, as shown in
the ANOVA results, would indicate a bias towards the “great-
er than 50” response. Similarly, values less than .5 would
indicate a bias towards the “less than 50” response. After a
point in time, as evidence starts to accumulate, the probability
of responding “greater than 50” becomes differentiated based

on the dot conditions. For the 0.30 condition, the probability is
expected to decrease while it is expected to increase for the .70
condition. Later, the probability of “greater than 50” response
reaches an asymptote, an indication of maximum evidence
accumulation. As the limits for processing are reached,
allowing longer time to process the number of dots does not
have additional benefits. The asymptotic probability to re-
spond “greater than 50” is expected to change as a function
of the probability parameter used in the sampling binomial
distribution. For example, the probability of responding
“greater than 50” is expected to be lowest in the .30 dot con-
dition and to be highest in the .70 condition. Finally, the rate of
evidence accumulation is expected to be the same across dot
conditions, as is the time point that indicates when responses
depart from chance. That is due to the fact that while partici-
pants were asked to respond whether the number points pre-
sented on the screen was greater than 50, they did not know
about the dot conditions or the response lag conditions. Thus,
there was no reason not to assume that the rate of evidence
accumulation and the point at which evidence accumulation
starts would be different across dot conditions.

The probability to respond “greater than 50” is estimated with
an exponential function, which provides independent and unbi-
ased estimates of asymptotic probabilities and processing speed.
The following exponential function can be employed for further
investigation of the response bias observed in early lags:

P Dots > 50ð Þ ¼ λ1 þ λ2−λ1ð Þ e−β t−δð Þ
� �

; t > δ; else λ2; ð1Þ

where P(‘yes’) is the probability to respond that the number of
dots being greater than 50; λ1is the asymptotic probability to
accept the number of dots as being greater than 50 at the late
response lags; λ2 is the asymptotic probability to accept the num-
ber of dots as being greater than 50 at the early response lag
conditions (at chance level before the information begins to

Fig. 3 Speed–accuracy trade-off functions across all experiments
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accumulate); β is the rate of accumulation towards the asymptot-
ic probability at later lags; δ is the time point when the informa-
tion begins to accumulate, which shows the point when the prob-
ability departs from chance; and t is the total processing time that
includes the time before signal onset and latency.

The data were fitted with the exponential function
(Equation 1) using the optim function in R (R Core Team,
2019) to estimate the seven parameters with the maximum
likelihood estimation (MLE) method. Initially, the group data,
averaged across participants were fit with seven parameters:
four λ1 for each response condition (.30, .45, .55, and .70); a
unique λ2 across all dot conditions, which shows the bias prior
to evidence accumulation; and, similarly, β and δ were also
unique across all dot conditions. The best fitting parameter
values are presented in Table 1, along with the model fit
values. The parameter values of λ1 shows an increase in the
probability of responding “greater than 50” as a function of an
increase in the probability of sampling the dot numbers from
the Binomial distribution. For example, when the probability
of sampling from the Binomial distribution increased from .30
to .70, the probability of responding “greater than 50” in-
creased from .002 to .95. As was observed in the results of
response rate analyses (ANOVA), the value of λ2 indicates
that participants had a tendency to respond “greater than 50”
prior to accumulating perceptual evidence. That is, on average
81% of the trials would have received “greater than 50” re-
sponses prior to the point in time at which evidence started to
accumulate. The intercept parameter (δ) also suggests that
after 452 ms, evidence started to accumulate towards the λ1
asymptote of the corresponding dot condition. Similarly, the
rate parameter showed that 1% change in the probability of
responding “greater than 50” occurred in 5 ms (1/ β =
1/21.60). That is, the evidence for greater or less than 50
points accumulated over the course of processing at 5 ms in-
tervals. Finally, the R2 value of .986 shows that 98% of the
variance in the averaged data is explained by the proposed
model parameters.

When the data obtained from each participant were fit with
the same model (Equation 1), and the obtained parameters
were averaged across participants, similar values were found

(see Table 2). The average λ1 values were .002 (SD = 0.003),
.30 (SD = 0.057), .675 (SD = 0.056), and .975 (SD = 0.025) for
the .30, .45, .55, and .70 dot conditions, respectively. The average
λ2 value was .80 (SD = 0.175), replicating the bias towards
“greater than 50” response observed above. Similarly, the aver-
aged speed parameters were close to the parameters obtained
from the averaged data. The rate of accumulation, β, was
21.707 (SD = 6.18) and the point in time when information
starts to accumulate, δ, was 419 ms (SD = 122).

Finally, we investigated the systematic underestimation of
numerosity once the asymptotic probability of responding
“greater than 50” was reached starting from the 500-ms lag
condition. When the probability of sampling from the binomi-
al distribution was .45, for the trials in which the number of
dots exceeded 50, the average number of dots presented across
lag conditions and participants was 53.17 (SD = 2.32).
Participants responded “greater than 50” for only 63% (SD =
.14) of those trials. This value increased to 76% (SD =0.07)
when the probability of sampling from the binomial distribu-
tion was .55 and the average of the actual number was 56.84
(SD = 3.95) across all lag conditions greater than 500 ms.
Finally, the highest proportion of responding “greater than
50” was for the trials in which the probability of sampling
from the binomial distribution was .70 with 95% (SD =
0.04). As expected, the highest mean of actual number of dots
presented was observed in the .70 dot condition, 69.74 (SD =
4.59). Note that as the average number of dots increased as a
function of the probability of sampling from the binomial
distribution, the proportion of responding “greater than 50”
increased. Additionally, the fact that the reduced proportion
compared with 1 indicates underestimation of dot numbers,
even for the .70 dot condition. That is because all of these
trials were in fact presenting dot patches numbered greater
than 50. As Weber’s law posits, the difference between the
criterion value, 50 in this experiment, and the actual value is
numerically close to one another, the performance gets closer
to chance compared with when those numbers are farther.

To summarize, the results of Experiment 1 showed that
receiving the actual number of dots presented in the preceding
numerosity perception task resulted in a calibration of the

Table 1 Parameter values of the best fitting exponential function

λ1 30 λ1 45 λ1 55 λ1 70 λ2 β δ Deviance R2

Experiment 1 .004 .288 .669 .950 .802 21.52 0.449 −46.787 .985

Experiment 2 .010 .338 .695 .957 .765 22.88 0.459 −45.665 .980

Experiment 3 .011 .205 .492 .768 .678 29.44 0.436 −26.730 .730

Experiment 4 .015 .322 .720 .969 .799 8.80 0.432 −44.590 .943

Note. Parameter values are obtained from the fits to the data averaged across participants. λ1 is the asymptotic probability of accepting the number of dots
to be greater than 50 for each dot condition, 30, 45, 55, and 70, respectively. λ2 is the probability of accepting the number of dots to be greater than 50 at
chance and indicates the bias at early retrieval. β is the rate of accumulation towards asymptote, and δ is the time point at which the probability of
accepting the number of dots start differing from bias (λ2)
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mental number line. Participants were able to respond
with a matching probability of the number of dots ex-
ceeding 50 in a given dot patch. Next, employing the
response deadline procedure resulted in an observation
of prior response bias. That is, participants had a tenden-
cy to respond greater than 50, before the accumulation of
perceptual evidence starts. Finally, the parameter values
obtained from the SAT curve showed that participants
reached their maximum accuracy after onset of 500-ms
response condition earliest. Once accuracy reached its
maximum, participants still showed somewhat underesti-
mation, even when the number of dots on average
exceeded 70. In the following experiment, we further
investigated whether a similar prior bias towards “greater
than 50” response occurred when participants were asked
to respond “less than 50.”

Experiment 2

The aim of this experiment was to further investigate the
bias towards “greater than 50” response, by requiring
participants to respond to a contrasting question, whether
the number of dots was less than 50. Similar to
Experiment 1, participants received the actual number
of dots presented in the trial that precedes their response,
allowing them to calibrate their mental number line. As
in Experiment 1, the response deadline procedure was
employed to obtain independent and unbiased measures
of speed and accuracy (sensitivity) in processing of
numerosity perception. Specifically, the prior bias will
be measured by obtaining the probability of responding
“greater than 50” as in Experiment 1 before perceptual
evidence accumulation starts. The only difference in
Experiment 2 was requiring the participants to answer

the question of whether the number of dots presented
were less or not, instead of asking whether they were
greater or not. Afterwards, the asymptotic probability
of responding “greater than 50” was measured, and sim-
ilarly, were further tested on the possible underestima-
tion results across higher number of sampling probabili-
ties, such as .45, .55, .70.

Method

Participants

Eleven students from Middle East Technical University, with
a mean age of 23 years (SD = 3.57), took part in the experi-
ment and received monetary compensation for their participa-
tion. Six were female, and 11 were right-handed.

Stimuli

The stimuli were identical to those of Experiment 1.

Design and procedure

The Design and Procedure were identical to those of
Experiment 1. Similar to Experiment 1, trials with latency
greater than 600ms and responses given earlier than the signal
were removed for the subsequent analysis. On average, the
remaining number of trials were 210.00 (SD = 43.40, %88
of all trials in each response deadline condition), 217.91 (SD
= 33.17, %90), 225.09 (SD = 27.94, %94), 221.18 (SD =
23.22, %92), 218.72 (SD = 27.18, %90), 216.18 (SD =
26.32, %90), 210 (SD = 25.15, %88) for the 60, 100, 200,
300, 500, 700, 1,500, and 3,000-ms lag conditions, respective-
ly, for each participant.

Table 2 Parameter values of the best fitting exponential function to individual data in Experiment 1

Participants λ1 30 λ1 45 λ1 55 λ1 70 λ2 β δ Deviance R2

1 .006 .287 .614 .930 .709 27.64 0.447 −42.447 .932

2 .005 .240 .637 .958 .542 3.15 0.100 −42.466 .957

3 .001 .264 .665 .960 .730 14.55 0.424 −41.902 .961

4 .001 .256 .687 .978 .982 30.00 0.513 −41.541 .793

5 .014 .328 .619 .902 .672 18.33 0.473 −37.545 .932

6 .001 .221 .609 .941 .990 24.69 0.465 −36.146 .763

7 .001 .358 .721 .978 .512 5.19 0.352 −43.955 .949

8 .001 .326 .789 .990 .599 25.64 0.424 −44.362 .971

9 .005 .279 .705 .965 .959 28.39 0.468 −44.031 .955

Note. Parameter values are obtained from the fits to each participant data. λ1 is the asymptotic probability of accepting the number of dots to be greater
than 50 for each dot condition, 30, 45, 55, and 70, respectively. λ2 is the probability of accepting the number of dots to be greater than 50 at chance and
indicates the bias at early retrieval. β is the rate of accumulation towards asymptote, and δ is the time point at which the probability of accepting the
number of dots start differing from bias (λ2)
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Results and discussion

Response rates

In this experiment, participants were asked to compare the
perceived number of dots to a criterion of 50 as in
Experiment 1. However, different from Experiment 1, partic-
ipants were asked to judge whether the number of dots was
less than 50. As they responded with the same keys—that is,
pressing “m” on the keyboard for indicating that the number
of dots was greater than 50, and pressing “z” on the keyboard
for indicating that the number of dots was less than 50—the
same analyses were conducted on the probability of
responding “greater than 50” as in Experiment 1.

Similar to Experiment 1, a 7 × 4 repeated-measures
ANOVA on the response rates revealed a main effect of dot
condition, F(3, 30) = 539.60, p < .001, MSE = 0.018, ηp

2 =
0.982. The probability of responding “greater than 50” de-
creased for the dots that were sampled from the .30 condition,
M = .10 (SD = 0.13), compared with the dots that were sam-
pled from the .45 condition (M =.41 , SD = 0.18), t(30) =
−14.24, p < .001. The probability of responding “greater than
50” increased when compared with the dots sampled from .55
condition (M =.71 , SD = 0.12), t(30) = −13.91, p < .001, as
was the increase in the .70 condition (M =.92, SD = 0.09),
t(30) = −9.339, p < .001. These results imply that with an
increase in the probability of dot sampling, more dots
exceeded the criterion of 50 and consequently participants
accepted more trials to be greater than 50.

The main effect of lag was significant, as expected, F(6,
60) = 8.25, p < .001,MSE = 0.124, ηp

2 = 0.461, suggesting a
change in the probability of responding “greater than 50” as
the response signal was received later. The repeated contrasts
indicated a marginal decrease in the probability from the ear-
liest lag, 60 ms (M = .63, SD = 0.23), t(60) = 1.95, p = .06, to
the probability at 100 ms (M = .58, SD = 0.28), averaged
across all dot conditions. A decrease was also observed from
100 ms to 200 ms (M = .53, SD = 0.32), t(60) = 1.96, p = .06,
and after 200 ms, the probability of responding “greater than
50” stayed steady at around .50. As in Experiment 1, partici-
pants responded “greater than 50” more often at early lags
than they did in later lags, independent of the dot condition.
This was a replication of the finding that participants had a
bias towards the “greater than 50” response prior to accumu-
lation of evidence as shown in Experiment 1. The interesting
finding here is that in contrast to Experiment 1, participants
were asked whether the number of dots was fewer than the
criterion value of 50. The ANOVA results indicated a similar
prior bias observed in Experiment 1.

The interaction between lag and dot condition was signif-
icant, F(18, 180) = 19.12, p < .001,MSE = 0.005, ηp

2 = 0.66.
In the next section, the SAT functions will be analyzed in
more detail for the interaction between lag and dot condition.

Speed–accuracy trade-off functions

Figure 3 depicts the time course of responding “greater than
50,” along with the function that is obtained by the best fitting
SAT parameters. The probability to respond “greater than 50”
was estimated with the exponential function presented in
Equation 1. The modeling routine was the same as in
Experiment 1. There were 7 free parameters, which measured
the probability to respond “greater than 50” once the asymp-
tote is reached, represented by λ1, one for each dot condition,
then λ2, representing the prior bias, then the speed parameters,
β and δ, which measure the rate of evidence accumulation and
the point in time when the probabilities differentiate from each
other. The best fitting parameter values are presented in
Table 1, along with the model fit values. As in Experiment
1, when the probability of sampling from the Binomial distri-
bution increased from .30 to .70 across conditions, the param-
eter values of λ1 increased from .01 to .34, .70, .96 respective-
ly. When the prior bias was evaluated, the value of λ2 indi-
cates that the participants had a tendency to respond “greater
than 50” prior to accumulating perceptual evidence. On aver-
age 77% of the trials would have received “greater than 50”
responses prior to the point in time at which evidence started
to accumulate. The time at which evidence starts to accumu-
late is represented by δ, suggesting that after 458 ms, evidence
started to accumulate with a rate of 4 ms (1/ β = 1/22.91) per
1% increase in the evidence. That is, the evidence for greater
or less than 50 points accumulated over the course of process-
ing at 5 ms intervals similar to Experiment 1. Finally, the R2

value of .98 shows that 98% of the variance in the averaged
data is explained by the proposed model parameters.

When the data obtained from each participant was fit with
the same model (Equation 1) and the obtained parameters
were averaged across participants, similar values were found
(see Table 3). The average λ1 values were .01 (SD = 0.01), .33
(SD = 0.09), .71 (SD = 0.04), and .96 (SD = 0.04) for the .30,
.45, .55, and .70 respectively. The average λ2 value was .72
(SD = 0.18), replicating the bias towards “greater than 50”
response observed in Experiment 1. Similarly, the averaged
speed parameters were close to the parameters obtained from
the averaged data. βwas 15.69 (SD = 10.43) and δwas 390ms
(SD = 110). The best fitting parameter values obtained from
the averaged data and the averaged parameter values obtained
from fitting individuals’ data were in congruence with each
other.

As in Experiment 1, a similar systematic underestimation
of numerosity was observed when the probability of
responding “greater than 50” reached its maximum starting
at the 500 ms lag condition. When the sampling probability
in the binomial distribution was .45 and the trials with the
number of dots exceeding 50, the average number of dots
presented was 53.22 (SD = 0.55). As in Experiment 1, partic-
ipants responded “greater than 50” for only 63% (SD = .48) of
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the trials. An increase in the percentage of responding “greater
than 50” was observed as 76% (SD =0.42) when the sampling
probability from the binomial distribution increased to .55 and
the average of the actual number size was 56.84 (SD = 0.28) at
the asymptotic lag conditions. The highest proportion of
responding “greater than 50”, 95% (SD = 0.19), was observed
for the .70 dot condition with the highest mean of actual num-
ber of dots, 70.03 (SD = 0.32). A similar underestimation of
dot numbers was observed as in Experiment 1, even for the .70
dot condition. These results, as in Experiment 1, indicate that
Weber’s law holds, when the difference between the criterion
value, 50 in this experiment, and the actual value is numeri-
cally close to one another, the performance gets closer to
chance compared with when those numbers are farther.

To summarize, the results of Experiment 2 replicated the
results of Experiment 1. First, asking subjects to make their
decisions by changing the direction of comparison did not
have a differential effect on the numerosity judgments. A re-
sponse bias towards responding “greater than 50” was ob-
served even though participants were asked whether the num-
ber of dots was less than 50. This finding suggests that when
participants judge the numerosity of a collection of dots, they
do not evaluate the direction of the judgment (greater or less).
As the final point, similar to the findings observed in
Experiment1, once accuracy reached its maximum, partici-
pants still showed a slight underestimation, even when the
number of dots on average exceeded 70. In the following
experiment, we further investigated the underestimation when
participants were not given any feedback on the actual number
of dots that they have been required to judge. An absence of a
feedback would result in an uncalibrated mental number line,
and as a result, an increased underestimation at the asymptotic
probabilities.

Experiment 3

The aim of this experiment was to investigate whether not
receiving feedback would harm the calibration of the mental
number line. In Experiment 1 and 2, participants received the
actual number of dots presented on the preceding numerosity
trial and their probability of responding “greater than 50”
matched with the probability of the trials having dots greater
than 50. Although there was a slight underestimation, espe-
cially after when the probabilities reached its asymptote, a
greater underestimation would be expected in an experiment
when no feedback was provided to the participant. The current
experiment applies the same procedures of Experiment 1,
where there were 4 dot conditions with 4 different probabili-
ties to sample the number of dots in each trial. Participants
were asked whether the number of dots exceeded the criterion
value, 50. Different from the previous experiments, partici-
pants were not provided with feedback on the actual number
of dots presented in the experiment. The response deadline
procedure was employed as was in Experiment 1 and 2, in
order to obtain independent measures of speed and accuracy
in the numerosity task.

Method

Participants

Ten students from Middle East Technical University with a
mean age of 22.5 (SD = 1.97) took part in the experiment and
received monetary compensation for their participation. Data
from one participant was removed from the subsequent
analysis because they did not comply with the

Table 3 Parameter values of the best fitting exponential function to individual data in Experiment 2

Participants λ1 30 λ1 45 λ1 55 λ1 70 λ2 β δ Deviance R2

1 .001 .169 .530 .873 .703 35.00 0.419 −40.558 .903

2 .001 .317 .763 .990 .977 35.00 0.581 −41.564 .874

3 .009 .333 .659 .944 .956 13.66 0.437 −36.076 .950

4 .001 .370 .714 .989 .692 24.31 0.463 −41.029 .963

5 .002 .367 .664 .948 .684 3.59 0.291 −43.012 .959

6 .005 .293 .626 .970 .653 26.80 0.408 −39.554 .935

7 .002 .309 .692 .962 .913 33.95 0.475 −41.940 .873

8 .004 .281 .739 .982 .755 35.00 0.422 −41.483 .963

9 .018 .386 .759 .990 .335 4.98 0.257 −40.925 .957

10 .008 .442 .778 .960 .624 10.99 0.359 −40.354 .965

11 .022 .409 .785 .977 .492 4.55 0.478 −45.177 .992

Note. Parameter values are obtained from the fits to each participant data. λ1 is the asymptotic probability of accepting the number of dots to be greater
than 50 for each dot condition, 30, 45, 55, and 70, respectively. λ2 is the probability of accepting the number of dots to be greater than 50 at chance and
indicates the bias at early retrieval. β is the rate of accumulation towards asymptote, and δ is the time point at which the probability of accepting the
number of dots start differing from bias (λ2)
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instructions. Five of the remaining participants were fe-
male and 8 were right-handed.

Stimuli

The stimuli were identical to those of Experiment 1 and 2.

Design and procedure

The Design and Procedure were identical to those of
Experiment 1, except that the participants did not receive
any feedback in the current experiment. Similar to the previ-
ous experiments, trials with latency greater than 600 ms and
responses given earlier than the signal were removed for the
subsequent analysis. On average, the remaining number of
trials were 215.66 (SD = 28.22, 89% of the trials), 227 (SD
= 18.41, 95% ), 229.44 (SD = 10.88, %96), 227.88 (SD =
9.48), 225.22 (SD = 9.84), 220.22 (SD = 9.98, %92), 217
(SD = 12.96, %90) ms for 60, 100, 200, 300, 500, 700,
1500, and 3000 ms lag conditions, respectively averaged
across participants.

Results and discussion

Response rates

In this experiment, participants were asked to make a decision
on whether the number of dots exceeded 50, as in Experiment
1. Different from the previous experiments, however, partici-
pants did not receive any feedback regarding the actual num-
ber of dots presented for the trial that they have just responded
to.

Similar to the previous exper iments , a 7 × 4
repeated-measures ANOVA on the response rates revealed a
main effect of dot condition, F(3, 24) = 71.12, p < .001,MSE
= 0.08, ηp

2 = 0.90. The probability of responding “greater than
50” decreased for the dots that were sampled from the .30
condition, M = .08 (SE = 0.06), compared with the dots that
were sampled from the .45 condition (M =.29 , SE = 0.06),
t(24) = −4.41, p < .001. The probability of responding “greater
than 50” increased when compared with the dots sampled
from .55 condition (M =.52 , SE = 0.06), t(24) = −4.73, p <
.001, as was the increase in the .70 condition (M =.75, SE =
0.06), t(24) = −4.67, p < .001. Note the relatively smaller
probabilities of responding “greater than 50” in the .55 and
the .70 dot conditions compared with those in Experiments 1
and 2, where the feedback was provided. These results might
imply that the increase in number of dots in a trial might have
resulted in the tendency to underestimate when the mental
number line was not calibrated by feedback.

The main effect of lag was significant, F(6, 48) = 7.57, p <
.001, MSE = 0.02, ηp

2 = 0.48, suggesting a change in the
probability of responding “greater than 50” as the response

signal was delayed. The repeated contrasts indicated a mar-
ginal decrease in the probability from the earliest lag, 60 ms
(M = .0.52, SE = 0.06), t(48) = 2.31, p = .03, to the probability
at 100 ms (M = .45, SE = 0.06), averaged across all dot con-
ditions. After the 100 ms lag condition, no significant differ-
ence was observed across lag conditions. The average proba-
bility of responding “greater than 50” stayed steady around
0.38, suggesting that the participants used the “lower than 50”
response more often than the other response.

The interaction between lag and dot condition was signif-
icant,F(18, 144) = 9.11, p < .001,MSE = 0.006, η p

2 = 0.53. In
the next section, the SAT functions will be analyzed in more
detail for the interaction between lag and dot condition.

Speed–accuracy trade-off functions

Figure 3 depicts the time course of responding “greater than
50,” along with the function that is obtained by the best fitting
SAT parameters. The probability to respond “greater than 50”
was estimated with the exponential function presented in
Equation 1. The modeling routine was the same as in the
previous experiments. The best fitting parameter values are
presented in Table 1, along with the model fit values. As in
previous experiments, when the probability of sampling from
the binomial distribution increased from .30 to .45, the prob-
ability of responding “greater than 50,” λ1 , increased from .01
to .22. Similarly, as the sampling probability increased from
.45 to .55, the probability of responding “greater than 50”
increased to .51 and finally, this value increased to .77 for
the .70 dot condition. Again, note that the λ1 values in this
experiment were lower than the corresponding values in the
earlier experiments, suggesting an underestimation in the ab-
sence of feedback.

The value obtained for λ2suggests that on average 66% of
the trials would have received “greater than 50” responses
prior to the point in time at which evidence started to accumu-
late. In relation to underestimation, the value of λ2 indicates a
bias towards responding “greater than 50”; however, λ2 was
found to be lower in comparison with that of in earlier exper-
iments. That is, the response bias was also affected by the
general underestimation in the absence of feedback and result-
ed in a relatively low value comparedwith when feedbackwas
provided. The speed parameters were in accordance with the
speed parameters obtained from the earlier experiments. δ,
suggested that after 452 ms, evidence started to accumulate
with a rate of 3 ms (1/ β = 1/29.52) per 1% increase in the
evidence. Finally, the R2 value of .73 shows that 73% of the
variance in the averaged data is explained by the proposed
model parameters.

When the data obtained from each participant was fit with
the same model (Equation 1) and the obtained parameters
were averaged across participants, similar values were found
(see Table 4). The average λ1 values were .01 (SD = 0.01), .22
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(SD = 0.14), .51 (SD = 0.24), and .78 (SD = 0.25) for the .30,
.45, .55, and .70 respectively. The average λ2 value was .63
(SD = 0.33), replicating the bias towards “greater than 50”
response observed above. Similarly, the averaged speed pa-
rameters were relatively similar as the parameters obtained
from the averaged data. The rate of accumulation, β, was
19.63 (SD = 9.71) and δ was 407 ms (SD = 70). The best
fitting parameter values obtained from the averaged data and
the averaged parameter values obtained from fitting individ-
uals’ data were in congruence with each other.

As in previous experiments, systematic underestimation of
numerosity was observed when the probability of responding
“greater than 50” reached its maximum starting at the 500 ms
lag condition. When the sampling probability in the binomial
distribution was .45 and the trials with the number of dots
exceeding 50, the average number of dots presented was
53.22 (SD = 2.34). Participants responded “greater than 50”
for only 47% (SD = .50) of the trials. When the sampling
probability from the binomial distribution increased to .55
and the average of the actual number size was 56.67 (SD =
3.88) at the asymptotic lag conditions, the percentage of
responding “greater than 50” increased to 55% (SD =0.50).
Finally, the highest proportion of responding “greater than
50,” 79% (SD = 0.40), was observed in the .70 dot condition,
which had the highest mean of actual number of dots, 69.80
(SD = 4.78). When compared with the results in previous
experiments, when feedback was provided, these results indi-
cate a systematic underestimation. The underestimation was
observed mostly for the larger number of dots, consistent with
the literature. Even for the .70 dot condition, participants
responded 78% of the trials as greater than 50, while the ex-
pected response rate was 1 due to the number of dots being
greater than 50 for all trials. Similar to the results of the pre-
vious experiments, Weber’s law holds, the difference between
the criterion value (50 in this experiment) and the actual value

is numerically close to one another, the performance gets clos-
er to chance compared with when those numbers are farther.
This result was observed in the .45 condition, when the num-
ber of dots exceeded 50, the response rate was lower than
chance, .47. That is, even though the number of dots exceeded
50, participants were less likely to respond as “greater than
50,” which is a demonstration of underestimation.

To summarize, when participants were not presented with a
feedback, such as the actual number of dots in the preceding
trial, underestimation of dots was observed. That indicates
how the calibration of the mental number line is affected by
the absence of feedback. Apart from the underestimation ob-
served especially for larger dot number conditions, the results
obtained from the SAT function in Experiment 3 replicated
the results from the previous experiments. Namely, despite an
underestimation across dot conditions, there was a bias to-
wards the “greater than 50” response prior to accumulation
of evidence. Finally, the speed parameters were comparable
with the previous experiments, proposing that the rate of ac-
cumulation on evidence and the point in time when accumu-
lation starts were similar across feedback conditions. In the
following experiment, we further investigated the prior bias
towards the “greater than 50” response by reversing the
response-key assignment.

Experiment 4

In the previous three experiments, a prominent bias towards
responding “greater than 50” was observed especially prior to
evidence accumulation starts. In this experiment, we investi-
gated whether such bias would occur if the response-key as-
signment was reversed such that the “greater than 50” re-
sponse was assigned on the left side of the keyboard while
the “less than 50” response was assigned on the right side of

Table 4 Parameter values of the best fitting exponential function to individual data in Experiment 3

Participants λ1 30 λ1 45 λ1 55 λ1 70 λ2 β δ Deviance R2

1 .003 .138 .511 .911 .728 35.00 0.440 −26.034 .964

2 .001 .227 .602 .898 .559 20.45 0.424 −25.440 .922

3 .020 .421 .800 .966 .806 4.73 0.240 −23.576 .950

4 .001 .100 .300 .800 .200 18.25 0.454 −26.529 .814

5 .001 .229 .544 .931 .990 17.89 0.341 −25.392 .950

6 .005 .208 .630 .942 .990 35.00 0.448 −25.123 .943

7 .002 .100 .455 .800 .990 27.95 0.444 −24.642 .764

8 .001 .100 .300 .800 .200 4.22 0.299 −25.894 .853

9 .046 .406 .692 .935 .501 18.20 0.452 −24.317 .932

Note. Parameter values are obtained from the fits to each participant data. λ1 is the asymptotic probability of accepting the number of dots to be greater
than 50 for each dot condition, 30, 45, 55, and 70, respectively. λ2 is the probability of accepting the number of dots to be greater than 50 at chance and
indicates the bias at early retrieval. β is the rate of accumulation towards asymptote, and δ is the time point at which the probability of accepting the
number of dots start differing from bias (λ2)
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the keyboard. The question was if the response keys would be
incongruent with the spatial correspondence of the mental
number line, would we still observe a bias towards the “great-
er than 50” response prior to evidence accumulation. If so, we
could claim an automatic bias towards accepting a cloud of
dots as greater than 50, before evidence accumulation starts.

Method

Participants

Thirteen students from Çankaya University, with a mean age of
25.6 years (SD = 6.8), volunteered to take part in the experiment.
Data from four participants were removed from the subsequent
analysis because three of them used the incorrect response-key
assignment, and one performed at chance. All the remaining
participants were female, and eight were right-handed.

Stimuli

The stimuli were identical to those of the previous
experiments.

Design and procedure

The Design and Procedure were identical to Experiment 1,
except that participants were instructed to press “m” to respond
“the number of dots are less than 50” and press “z” to respond
“the number of dots are greater than 50” on the keyboard.
Similar to the previous experiments, trials with latency greater
than 600 ms, and responses given earlier than the signal were
removed for the subsequent analysis. On average, the remain-
ing number of trials were 190.88 (SD = 58.43, 79% of trials),
209.77 (SD = 45.62, 87%), 223.11 (SD = 21.81, 93%), 228.00
(SD = 6.55, 95%), 225.66 (SD = 7.48, 94%), 220.22 (SD =
18.04, 92%), 216.00 (SD = 15.04, 90%) for 60, 100, 200,
300, 500, 700, 1,500, 3,000 lag conditions, respectively, aver-
aged across participants. Note that the average number of trials
was the lowest for 60-ms response lag condition across all
conditions and experiments. That indicates the role of congru-
ency between mental number line and response-key assign-
ment. When participants were required to use opposite keys
for “greater” and “less” responses, they failed to respond within
the allotted time especially in 60 ms response lag condition.

Results and discussion

Response rates

In this experiment, participantswere asked tomake a response on
whether the number of dots presented on the screen exceed the
criterion, 50. Different from the previous experiments, partici-
pants were instructed to use a reverse response-key assignment.

Similar to the previous exper iments , a 7 × 4
repeated-measures ANOVA on the response rates revealed a
main effect of dot condition, F(3, 24) = 275.161, p < .001,
MSE = 0.03, ηp

2 = 0.97. The probability of responding “great-
er than 50” decreased for the dots that were sampled from the
.30 condition, M = .11 (SE = 0.02), compared with the dots
that were sampled from the .45 condition (M =.40 , SE = 0.02),
t(24) = −9.34, p < .001. The probability of responding “greater
than 50” increased when compared with the dots sampled
from .55 condition (M =.73, SE = 0.02), t(24) = −10.96, p <
.001, as was the increase in the .70 condition, (M =.92, SE =
0.02), t(24) = −6.15, p < .001. Even though the response-key
assignment was incongruent, the initial results on response
rates were compatible with the results in Experiments 1 and
2, when participants received feedback and used congruent
response-key assignment.

The main effect of lag was significant, F(6, 48) = 14.80, p <
.001, MSE = 0.01, ηp

2 = 0.65, suggesting a change in the
probability of responding “greater than 50” with an increase
in the response signal. The repeated contrasts indicated a de-
crease in the probability from the earliest lag, 60 ms (M = .65,
SE = 0.06), t(48) = 2.52, p = .02, to the probability at 100 ms
(M = .45, SE = 0.06), averaged across all dot conditions.
Similarly, the rate of responding greater 50 decreased from
100 ms to 200 ms lag condition (M = 0.59, SE = 0.02), t(48)
= 2.30, p < .01. For the longer response lag conditions, no
significant difference was observed. The average probability
of responding “greater than 50” stayed steady around 0.48,
suggesting that the participants calibrated response selection.

The interaction between lag and dot condition was signif-
icant,F(18, 144) = 9.72, p < .001, MSE = 0.006, ηp

2 = 0.55. In
the next section, the SAT functions will be analyzed in more
detail for the interaction between lag and dot condition.

Speed–accuracy trade-off functions

Figure 3 depicts the time course of responding “greater than
50,” along with the function that is obtained by the best fitting
SAT parameters. The probability to respond “greater than 50”
was estimated with the exponential function presented in
Equation 1. The modeling routine was the same as in the
previous experiments. The best fitting parameter values are
presented in Table 1, along with the model fit values. As in
previous experiments, when the probability of sampling from
the binomial distribution increased from .30 to .45, λ1 in-
creased from .02 to .32. Similarly, as the sampling probability
increased from .45 to .55, λ1 increased to .72 and finally, this
value increased to .97 for the .70 dot condition.

The value obtained for λ2suggests that on average 80% of
the trials would have received “greater than 50” responses
prior to the point in time at which evidence started to accumu-
late. This value, compared with the prior bias values in
Experiments 1 and 2, indicate that the bias towards the
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“greater than 50” response was not affected by the
response-key ass ignment . When an incongruent
response-key assignment was employed, the direction of re-
sponse bias at early lags did not change. This suggests that
participants initially have a prior belief that the number of dots
was greater than 50, and once they start processing the per-
ceptual environment, they underestimate the number of dots.

Incongruent response-key assignment slowed the rate of
evidence accumulation. In this experiment, the rate of evi-
dence accumulation was found to be 11 ms (1/ β = 1/8.80)
per 1% increase in the evidence. When the response-key as-
signment was congruent with the mental number line, rate was
found to be 4, and a comparison between these values sug-
gests the incongruency between mental number line and
response-key assignment slows responding. Finally, δwas
similar across all experimental conditions. The R2 value of
.93 shows that 93% of the variance in the averaged data was
explained by the proposed model parameters.

When the data obtained from each participant was fit with
the same model (Equation 1) and the obtained parameters
were averaged across participants, similar values were found
(see Table 5). The average λ1 values were .02 (SD = 0.02), .33
(SD = 0.08), .72 (SD = 0.05), and .97 (SD = 0.02) for .30, .45,
.55, and .70, respectively. The average λ2 value was .84 (SD =
0.14), replicating the bias towards “greater than 50” response
observed above. Similarly, the averaged speed parameters
were relatively similar as the parameters obtained from the
averaged data; β was 13.42 (SD = 9.53) and δ was 451 ms
(SD = 0.05). The best fitting parameter values obtained from
the averaged data, and the averaged parameter values obtained
from fitting individuals’ data were in accordance with each
other Table 5.

As in previous experiments, systematic underestimation of
numerosity was observed when the probability of responding
“greater than 50” reached its maximum starting at the 500-ms

lag condition. When the sampling probability in the binomial
distribution was .45 and the trials with the number of dots
exceeding 50, the average number of dots presented was
52.99 (SD = 2.08). Participants responded “greater than 50”
for 62% (SD = 0.13) of the trials. When the sampling
probability from the binomial distribution increased to .55
and the average of the actual number size was 56.55 (SD =
3.83) at the asymptotic lag conditions, the percentage of
responding “greater than 50” increased to 77% (SD =0.06).
Finally, the highest proportion of responding “greater than
50,” 96% (SD = 0.40), was observed in the .70 dot
condition, which had the highest mean of actual number of
dots, 69.83 (SD = 4.64). These results indicate a systematic
underestimation especially for the trials that the probability of
sampling number size was less than .70. The response rate at
the asymptote was less than 1, suggesting even though the
number of dots was greater than 50, people did not perceive
the size of the patch as greater than 50. However, when these
results were compared with the results presented in the
previous experiments, the probability of responding “greater
than 50” was the greatest in the current experiment,
suggesting a limited underestimation.

To summarize, when the response-key assignment was re-
versed and resulted in an incongruent scale, the SAT functions
showed that the accumulation of evidence slowed compared
with congruent response-key assignments in the previous ex-
periments. However, apart from this change in the parameters,
prior response bias observed in all experiments were compa-
rable. There is a tendency to respond “greater than 50” even
when the response-key assignment was reversed. This finding
suggests this bias towards “greater than 50” response is inde-
pendent of where the response keys are located or whether the
spatial location of the keys are congruent with the mental
number line. In either case, the bias to respond “greater than
50” is observed.

Table 5 Parameter values of the best fitting exponential function to individual data in Experiment 4

Participants λ1 30 λ1 45 λ1 55 λ1 70 λ2 β δ Deviance R2

1 .022 .412 .768 .950 .706 5.04 0.452 −37.939 .948

2 .001 .264 .682 .990 .990 20.29 0.408 −37.414 .947

3 .014 .423 .745 .961 .990 6.09 0.458 −36.825 .772

4 .001 .241 .703 .947 .770 8.37 0.385 −39.135 .901

5 .013 .294 .696 .972 .839 9.85 0.505 −38.106 .820

6 .042 .341 .800 .980 .977 30.00 0.495 −39.313 .944

7 .052 .423 .761 .982 .672 8.57 0.502 −38.480 .913

8 .001 .218 .629 .940 .954 26.38 0.507 −41.244 .915

9 .001 .335 .702 .983 .630 6.25 0.349 −41.190 .970

Note. Parameter values are obtained from the fits to each participant data. λ1 is the asymptotic probability of accepting the number of dots to be greater
than 50 for each dot condition, 30, 45, 55, and 70, respectively. λ2 is the probability of accepting the number of dots to be greater than 50 at chance and
indicates the bias at early retrieval. β is the rate of accumulation towards asymptote, and δ is the time point at which the probability of accepting the
number of dots start differing from bias (λ2)
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General discussion

The current study examined the time course of numerosity
perception by employing the response deadline SAT proce-
dure in a two-choice decision task. In the numerosity percep-
tion task that we administered, participants were presented
with dot patches, of which the dot numbers were sampled
from four probability distributions. Four experiments follow-
ed the same routine. Participants were presented with a set of
dots, later asked to select the option whether the number of
dots exceeded 50 or not, except Experiment 2, in which they
were asked whether the number fell below 50. Immediately
after, they were given feedback on the actual number of dots,
except in Experiment 3, dot number feedback was withheld.
Finally, in Experiment 4, the response-key assignment was
reversed, such that the “greater than 50” response was mapped
on the left-hand side of the keyboard and the “lower than 50”
response was mapped on the right-hand side. The most prom-
inent finding from all experiments was the response bias ob-
served at early lags, which indicates a tendency towards
accepting “greater than 50” response prior to evidence accrual.

The results obtained from all experiments showed an early
bias towards responding yes, independent of the comparison
question (greater or less than 50) or whether receiving feed-
back to calibrate the mental number line or the congruence of
the key placement with the mental number line. For example,
the comparison between the parameter values obtained from
Experiment 1 and the parameter values obtained from
Experiment 2 indicate that the participants were agnostic
about whether the question was asked as greater or less than
50. Similarly, withholding feedback in Experiment 3 did not
reveal a strong difference in the early bias parameter, suggest-
ing that the participants were still biased towards “greater than
50” response at early processing when their number line was
not calibrated. Finally, which key was used to respond “yes”
and “no” did not affect the strong bias towards the “yes”
response even when the response-key mapping was incongru-
ent. These results indicate a strong early bias towards “great-
er” responses.

The effects of time on numerosity estimation and
discrimination have been investigated by Cheyette and
Piantadosi (2019) by using an eye tracker, which contributed
to the explanation of the ANS estimation, suggesting that in-
stead of parallel processing, a serial accumulation process may
be the underlying mechanism, since they showed that the es-
timates increased as visual fixations increased. In their study,
participants estimated numerosity for 100, 333, 1,000 and
3,000-ms time lags and feedback was not provided. Their
results indicated an underestimation for all time conditions,
but this underestimation decreased for longer time lags. This
was consistent with their expectation of quantity accumulation
over time, which was only due to the accumulation of
foveated dots and not due to time. When all the dots were

foveated, the finding of underestimation was eliminated,
which led them to infer that numerosity estimation is a mea-
sure of serial accumulation of foveated dots. They also repli-
cated their findings for numerosity estimation task for their
numerosity discrimination task. Their analysis showed that
for short durations, foveated dots contributed almost twice
as much as the peripheral dots, which provided estimation to
be possible for very short times, but for longer durations, the
contribution of the foveated dots increased, and for the longest
durations, it was only the foveated dots that were used for
numerosity estimation. When we compare our results of tem-
poral effect on numerosity perception with their results, there
is a difference in the pattern such that we come across a re-
sponse bias to overestimate in the short durations, while they
observed more underestimation for shorter times, which de-
creased as duration increased.

The underlying mechanism of the early bias can be built
upon how large and small numbers are in fact processed in a
unified account (Cheyette & Piantadosi, 2020) contrary to
being processed in different systems (see Feigenson et al.,
2004, for a review). It has been suggested that in numerosity
perception there are two separate systems. One processes large
numbers by utilizing an estimation of summary representa-
tions and mapping to ANS (Dehaene et al., 1999), while the
other processes small numbers through subitizing resulting in
a perfect and fast performance (Trick & Pylyshyn, 1994).
Because larger number representations require some form of
computation, the processing becomes error prone and slow.
Recently, Cheyette and Piantadosi (2020) proposed a unified
system suggesting that small and larger numbers can be proc-
essed with the same mechanism that relies on different pro-
cessing capacities based on expectations or prior encounters of
the stimuli. Thus, limited resources will be allocated different-
ly to process small and large numbers. According to this uni-
fied system approach, it is possible that the participants had
different expectancies on the large and relatively smaller num-
ber of patches in the current study. Specifically, the increase in
the dot numbers were selected to be additive from 30 to 45 and
from 55 to 70. That might have resulted in an unbalanced
perceptual discrimination considering Weber’s Law. As
Weber’s law also indicates, the difference from the 50-point
criterion value is harder to discriminate from 70-point patches
(70/50 = 1.40), while 30-point patches are easier to discrimi-
nate (50/30 = 1.67). Thus, expectancy that the smaller number
of dots are processed easier might have caused the participants
to initially respond with the “greater” choice, and as time
passed in later deadline conditions, they corrected their re-
sponse.2 Future studies can consider sampling dots from dif-
ferent distributions that follow Weber’s Law, which would
increase multiplicatively but not additively, and test whether

2 We would like to thank the reviewers for pointing out these possible
explanations.
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a positive bias is still observed under the multiplicatively in-
creasing dot conditions.

In the present study, the numerosity perception of only
relatively large numbers were tested leaving the smaller quan-
tities out of empirical testing. The number of dots ranged
between 15 and 85 across all four experiments, which resulted
in an early bias to respond “greater than 50.” However, the
reported bias could be limited to the number of dots used in
this study. Further studies using smaller ranges of dots (e.g.,
1–15) are required to generalize this bias to numerosity per-
ception of any range of quantities.

Results from Experiment 3 showed a systematic underesti-
mation in numerosity judgment in the absence of feedback
when compared with results from Experiment 1. The asymp-
totic response rates of the .70 condition across the two exper-
iments showed a decrease when the participants were not giv-
en any feedback. Specifically, all the trials in the .70 dot con-
dition contained dot patches that exceed 50 dots, but the as-
ymptotic response rate values were lower than 1 in
Experiment 3 because participants did not have a chance to
calibrate their mental number representation (as shown by
Izard & Dehaene, 2008; Krueger, 1984; Price et al., 2014).
Similarly, for the .55 condition, only almost 30% of trials had
dot patches lower than 50, but the asymptotic response rate
was .50, half of all the trials in .50 dot condition in Experiment
3, while this value was .67 in Experiment 1. Although the
usual finding of underestimation was still present even for
Experiments 1, as the proportion of responding “greater than
50” was not 1 as expected, the magnitude of underestimation
was not as high as the one observed in Experiment 3. These
findings further supported the well-established benefit of feed-
back on numerosity judgements.

Finally, the results from Experiment 4 revealed a slowing
in numerosity processing due to incongruent response-key
assignment. The asymptote parameters, which indicate the
total response rate that can be reached with enough processing
time, did not change as a function of response-key mapping.
However, the parameter values obtained for the speed param-
eters, especially the evidence accumulation rate parameter
showed that 1% change in the response rate slowed for
Experiment 4, compared with that of in other experiments.
These results support the idea that congruency in multisensory
associations and responses are important even at the percep-
tual level (Kim, Seitz, & Shams, 2008).

Ratcliff (2006) proposed a theoretical explanation for SAT
functions obtained from the response deadline procedure and
he applied a numerosity perception task to test the model. The
model was based on the diffusion model (Ratcliff, 1978), a
dynamic variant of the signal detection theory. In the diffusion
model, evidence is sampled sequentially, and compared with a
criterion at each time point until sampling terminates. Two
responses (yes and no) are represented as boundaries and once
the accumulated evidence reaches one boundary, the process

is terminated. The speed of the process is measured by the
amount of time that it is required to drift towards either
boundary. Once the boundary is reached, the response is pro-
duced as either correct or incorrect, depending on the bound-
ary. The bias towards either response is measured by the
point at which the drift process starts—specifically, where
that point lies between the two response boundaries. For ex-
ample, a starting point that is proximate to the “yes” bound-
ary would result in a tendency towards the “yes” response, as
in the findings observed in the current experiment. Ratcliff
further advanced the model to account for the data obtained
from the response deadline procedure by including a second
state. Specifically, a response is produced if evidence accu-
mulation reaches either boundary prior to signal onset as in
standard reaction time measures. In that case, the reported
response is the boundary that has been reached before the
signal is provided. The second state takes place if the bound-
ary has not been reached before the signal onset. In that case,
either partially accumulated evidence is used to generate a
response, or the response is guessed due to the absence of
partial information. The data obtained from the current study
can be fit with this model and compared with the fits of the
original diffusion model. Later, if the fit statistics of the par-
tial model is preferred over the original model, we can claim
that numerosity perception is automatic, such as the bound-
aries are reached even before the signal is presented. This
claim requires further investigations.

In all experiments, the number of dots were generated ran-
domly from the binomial distribution with means of 30, 45,
55, and 70. In the model that we fit, we kept the rate parameter
constant across all dot conditions. However, the variance of
the binomial distribution is in fact different for the easier con-
ditions (30 and 70 dots) compared with the harder conditions
(45 and 55 dots). Specifically, to discriminate 30 (or 70) dots
from the 50 dots criterion is much easier compared with dis-
criminating 45 (or 55) dots from the 50 dots criterion. The
easier and harder dot conditions have different variance values
of the binomial distribution, which are 21 (100 × 0.3 × 0.7) for
the easier condition and 24 (100 × 0.45 × 0.55) for the harder
condition. These two different variances in the dot distribu-
tions might have caused a difference in the rate of information
accumulation across dot conditions.3 To test this possibility,
we also ran a set of models where the rate parameter differed
across the 30/70 and 45/55 dot conditions. Best fitting model
parameters were presented in the supplementary materials
along with the model indices (AIC and BIC). The results re-
vealed that the reduced model (4λ1-λ2-β-δ) is more parsimo-
nious compared with the two-rate parameter model
(4λ1-λ2-2β-δ), and a singleβ value is sufficient for explaining
the SAT function.

3 We would like to thank Reviewer 2 for pointing out this possibility.
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The ability to estimate numbers using numerosity per-
ception tasks, as in other perceptual tasks such as loud-
ness, brightness, and distance, requires mapping from
subjective internal states to formal measurements. To pro-
cess all these perceptual stimuli, observing a systematic
underestimation (e.g., Stevens, 1959, 1966; Teghtsoonian
& Teghtsoonian, 1978) suggests a similar underestimation
in other sensory mediums. That is, our perceptual system
can be generalized to all sensory inputs such that they all
build on a form of logarithmic mental representation for
perceptual stimuli.

Conclusion

In the present study, we investigated how the time course
of numerosity perception was affected by receiving feed-
back to calibrate the mental number line representation.
We employed the response deadline procedure in a
two-choice decision task, where participants were asked
to judge whether the number of dots exceeded 50
(Experiments 1, 3, 4) after being presented with a patch
of dots that ranged between 15 and 85 and sampled with
four different probability conditions. In three experiments
(Experiments 1, 2, 4), participants were given feedback on
the actual number of dots in each patch, but were with-
held in one experiment (Experiment 3). The results re-
vealed that when feedback was provided, a decrease in
underestimation in late processing occurred. The novel
finding in this study, demonstrated by all experiments, is
a strong bias towards accepting the number of dots as
greater than 50 at early judgments. Whereas, the results
imply that being provided with feedback allows for a cal-
ibration of mental number line representation later at pro-
cessing. Additionally, being tested on a large number such
as 50 resulted in overestimation at early processing. A
possible explanation for this finding could be an
overcorrection to avoid incorrect responses for patches
with a dot number greater than 50. Such patches would
present greater difficulty of comparison to patches of 70
in contrast to the relative ease of comparison to patches of
30. To test this claim, future studies can be conducted on
a smaller range of dot numbers and a smaller criterion
number for comparison.
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