
Case Studies in Thermal Engineering 22 (2020) 100726

Available online 27 July 2020
2214-157X/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Significances of blowing and suction processes on the occurrence 
of thermo-magneto-convection phenomenon in a narrow 
nanofluidic medium: A revised Buongiorno’s nanofluid model 

M. Zaydan a, A. Wakif a,*, I.L. Animasaun b, Umair Khan c, Dumitru Baleanu d,e,f, 
R. Sehaqui a 

a Laboratory of Mechanics, Faculty of Sciences Aïn Chock, University Hassan II of Casablanca, Casablanca, 20000, Morocco 
b Fluid Dynamics and Survey Research Group, Department of Mathematical Sciences, Federal University of Technology, Akure, Nigeria 
c Department of Mathematics and Social Sciences, Sukkur IBA University, Sukkur, 65200, Sindh, Pakistan 
d Department of Mathematics, Cankaya University, 06790, Ankara, Turkey 
e Institute of Space Sciences, 077125, Magurele, Romania 
f Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40447, Taiwan   

A R T I C L E  I N F O   

Keywords: 
Linear stability 
Nanofluid 
Magnetic field 
Throughflow 
Spectral method 

A B S T R A C T   

In this numerical examination, the thermal stability of an electrically conducting nanofluid is 
deliberated comprehensively by considering the presence of an externally applied magnetic field 
along with an imposed vertical throughflow. Additionally, this thin nanofluidic layer is supposed 
to have a Newtonian rheological behavior, heated from below, and confined horizontally between 
two permeable rigid plates of infinite extension. Herein, the governing conservation equations are 
strengthened realistically by the revised version of the Buongiorno’s mathematical model, in 
which the vertical component of the mass flux of solid nanoparticles is presumed to vanish 
entirely at the horizontal permeable boundaries. After specifying the basic state of the present 
nanofluid problem, the linear stability theory and normal mode analysis technique are applied 
properly to obtain the principal stability equations. Finally, the eigenvalue problem derived 
analytically is tackled thereafter numerically via the Chebyshev-Gauss-Lobatto Spectral Method 
(CGLSM), in which the thermal Rayleigh number is chosen as an eigenvalue. As a main result, it 
was demonstrated that the throughflow effect exhibits a dual behavior on the complex dynamics 
of the system. However, the excreted magnetic field has always a stabilizing impact on the 
nanofluidic medium.   

1. Introduction 

The significance of the magnetic field on the motion of electrically conducting liquids can be described as a broad area of interest in 
fluid mechanics with so many open questions. The record shows that the concept is the fundamental basis of the invention of the 
electromagnetic pump by Rossow [1] in the year 1918. Whenever an electrically conducting substance is subjected to a constant 
magnetic field, an electromotive force (e.m.f.) and Lorentz force are generated physically. Consequently, the production of an electric 
current is inevitable. Alfvén [2] remarked that due to the magnetic field, the electric current also generates mechanical forces capable 
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of changing the dynamics of the flowing fluid. Pal and Kumar [3] explained the importance of a uniform magnetic field on 
Rayleigh-Bernard convection flows of low Prandtl number. It was observed that a stronger magnetic field is capable of causing chaotic 
flow. A better description of the effect of the magnetic forces on the behavior of fluid parcels within a continuous medium is articulated 
by Bulatova et al. [4]. Sheikholeslami and Rokni [5] deliberated on the dynamics of heat transfer convection within the laminar flow of 
Newtonian nanofluids by introducing the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) notions. The significance of 
Lorentz force on the flow of non-Newtonian blood flow with magnetic nanoparticles in a stenosed artery, the dynamics of cupric-water 
nanofluid flow in a porous channel, on the flow of Jeffrey fluid, and the motion of three-dimensional nanofluid on a convectively 
heated stretchable surface are discussed comprehensively by Mirza et al. [6], Sheikholeslami [7], Ahmad, A. Ishak [8], and Hayat et al. 
[9]. In another study, the problem of time-dependent mixed convection flow of micropolar fluid on a vertical porous surface subject to 
Lorentz forces, mass, and thermal diffusions was presented by Ibrahim et al. [10]. It was observed that the velocity of the transport 
phenomenon within the boundary layer decreases with an increase in the magnetic field strength. Kandasamy et al. [11] presented the 
problem of chemical reaction, buoyancy, and Lorentz forces on the flow of Newtonian fluids over a thermally stratified surface. It is 
shown that a decrease in the horizontal velocity with an increase in temperature distribution is foreseeable due to an increase in the 
magnitude of Lorentz forces. This leads Sivaraj et al. [12] to study the thermal performance of nanofluids by studying the flow of 29 nm 
copper oxide-based water nanofluid through a magnetic field and an electric field. It was shown that when the Hall effect is 
considerably large, a higher magnitude of horizontal velocity and cross-flow are guaranteed. The characterstics of nanofluid flows 
through a magnetic field situated on an upper horizontal surface of a paraboloid of revolution in the presence of a quartic kind of 
autocatalytic chemical reaction was elaborated by Makinde and Animasaun [13,14]. In these reports, the variable magnetic field was 
adopted due to the thickness of the object. Keeping in mind the importance of using nanofluids in the heat transfer enrichment in many 
industrial applications, several engineering flow problems were recently scrutinized by Das et al. [15] and Acharya et al. [16–20]. 

Later on, Buongiorno [21] developed a non-homogenous mixture model, which is proposed especially for nanofluids to facilitate 
the examination of heat and mass transportations in nanofluidic media based on viable strong theories and many realistic assumptions. 
This innovative nanofluid model includes explicitly the important role of Brownian motion and thermophoresis phenomenon that can 
be happened for the nanoparticles inside a fluidic medium at the nanoscale dimension under certain external physical constraints. 
Since the statement of the Buongiorno’s two-phase nanofluid model in 2006, numerous further proposals have been reported there-
after by Nield and Kuznetsov [22–24] to predict approximately the probable criterion for the appearance of natural convective 
nanofluid flows driven in a confined nanofluidic non-porous/porous medium under the adjusted influence of an imposed negative 
temperature gradient applied vertically between two permeable/impermeable horizontal boundaries in the case where the vertical 
mass flux of nanoparticles is supposed to have vanished on these limiting horizontal boundaries, in which the volumetric fractions of 
these nano-sized chemical species are controlled passively at the boundaries by considering them among the local unknowns of the 
nanofluid problem. In this framework, Wakif et al. [25] conducted a comprehensive numerical spectral analysis on the temporal 
evolution of MHD convective Couette flows along with their thermal and mass features for radiative copper-based water nanofluids in 
the cases of the single and two-phase nanofluid models. To gain more understanding of the mechanisms leading to this expected 
thermal enhancement, Animasaun et al. [26] and Wakif et al. [27] deliberated thoroughly the impact of thermo-migration mechanism 
driven by tiny particles as well as their haphazard motion on the dynamical and physical characteristics of nanofluidic systems. 

Despite the recent widespread usage of the revised two-phase nanofluid model as a more realistic physical approach to adopt in the 
modeling of a huge number of convective nanofluid flow problems, the dealing with the assumption of zero nanoparticles mass flux 
condition in the nanofluid stability problems is still scientifically questionable and should be open to further scrutiny because it was ill- 
posed as well along with the linear stability theory in the methodological mathematical sense to determine the stability parameters 
accurately via the Classical Galerkin Weighted Residuals Technique (CGWRT) as described in Refs. [22–24]. An inclusive survey on 
this topic was first reported by Wakif et al. [28] in 2016 when they had examined analytically and numerically the electroconvection 
stability in a rotating porous medium filled by a dielectric nanofluid. After two years, this remarkable finding was re-confirmed 
comprehensively by Wakif et al. [29] in another nanofluid stability problem by utilizing several innovative computational 
methods, like Power Series Method (PSM), Classical Galerkin Weighted Residuals Technique (CGWRT), Wakif-Galerkin Weighted 
Residuals Technique (WGWRT), Polynomial Collocation Method (PCM), Runge-Kutta-Fehlberg Method (RKFM) and 
Chebyshev-Gauss-Lobatto Spectral Method (CGLSM). From the methodological point of view, it was demonstrated extensively (i.e., 
semi-analytically and numerically) that CGWRT is strictly incapable to tackle correctly the thermal stabilities in a confined nanofluidic 
medium with the assumption of zero nanoparticles mass flux condition and provides unacceptable findings, because of its higher 
deviation in the precision of physical results compared with the aforesaid executed methods. Notwithstanding the much attention paid 
in the above-cited literature survey to the examination of thermal stabilities in confined nanofluidic media, but there are even still exist 
some computational unpredictabilities since the most commonly used CGWRT semi-analytical method can not assure reliable physical 
results for the nanofluid stability problems with the passive control of nanoparticles on the boundaries, which open a vast challenge in 
research to develop robustness methods possessing an excellent capability to predict the manifestation of thermal instabilities in 
nanofluids under the Nield’s boundary conditions [22,23] with a higher level of correctness. Motivating by the surviving lack in this 
bullish research topic as well as by the countless useful applications of nanofluids in many advanced areas and technological so-
phistical processes, the present comprehensive analysis aims to shed light on the significance of a uniform upward/downward 
throughflow (i.e., blowing and suction effects) on the thermal criterion for the onset of thermo-magneto-convection phenomena that 
can take place in horizontal confined nanofluidic media under the impact of a negative temperature gradient applied vertically on the 
nanofluidic layer in the presence on an external uniform magnetic field. By adopting the assumption of zero nanoparticles mass flux 
condition at the isothermal permeable walls along with the modified Maxwell’s equations, the Buongiorno’s two-phase nanofluid 
model was improved physically by incorporating the convective contribution of solid nanoparticles in the thermal energy equation 
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besides the Brownian motion and the thermophoresis processes as reported in Ref. [24]. After applying an approprtiate 
non-dimensionalization procedure on the stated conservation equations, the stationary stability equations were derived via the proper 
use of linear stability theory and normal mode analysis technique. In this stage, the resulting ordinary differential equations along with 
their appropriate boundary conditions were rearranged mathematically and then discretized spatially by utilizing a suitable spectral 
collocation method, whose results are validated broadly with those of other methods in some special cases. Accordingly, to examine 
the thermal stability of the studied nanofluidic medium, the linear discrete system was written in the form of a linear eigenvalue 
problem by selecting the thermal Rayleigh number as its eigenvalue.In this regards, the influences of different involved physical 
parameters are discussed properly via several tabular and graphical representations. 

2. Mathematical formulation 

As presented schematically in Fig. 1, an infinite nanofluidic layer of depth L is heated isothermally from below via an imposed 
negative temperature gradient (TC − TH) /L and exposed horizontally under the effect of a uniform gravitational field g = − gez, where 
TH and TC(<TH) are the temperatures at the lower and upper boundaries, respectively. Additionally, the confined nanofluidic medium 
is supposed to be incompressible, has a Newtonian rheological behavior, electrically conducting, surrounded by an unvarying vertical 
magnetic field H0 = H0ez and subjected to a constant upward/downward velocity V0 = w0ez at the rigid permeable boundaries located 
spatially at z* = 0 and z* = L, where w0 is chosen to take a positive value for the blowing flow control case, whereas it is negative for 
the suction situation. As a physical constraint, the isothermal permeable walls are supposed to be not crossed transversely by any mass 
flux J*

Sz of nanoparticles. A Cartesian coordinate system (x*, y*, z*) is selected along with the unit vectors 
(
ex, ey, ez

)
to facilitate the 

mathematical description of the present nanofluid flow configuration. Moreover, the thermophysical properties of the nanofluid (i.e., 
viscosity, thermal conductivity, specific heat, magnetic permeability, and electrical conductivity) are assumed to remain constant in 
the vicinity of the reference temperature TH of the hot wall, except for the density in the momentum equation, which is done formally 
by the Oberbeck-Boussinesq approximation. Furthermore, the asterisk symbolizations are used in the mathematical formulation to 
distinguish absolutely the dimensional variables/unknowns X* from their corresponding non-dimensional varieties X.

2.1. Governing equations 

Under the aforementioned assumptions, the relevant conservation equations characterizing the magnetohydrodynamic convective 
motion of the electrically conducting nanofluid are stated as follows [24,30–32]: 

∇*.V* = 0, (1)  

ρ0

[
∂V*

∂t*
+ (V*.∇*)V*

]

= − ∇*P* + μ∇*2V* + ρg +
μe

4π (∇* × H*) × H*, (2)  

ρ= ρSφ0 + (1 − φ0)ρ0[1 − β(T* − TH)], (3)  

Fig. 1. Geometrical configuration of the nanofluid stability problem.  
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∂T*

∂t*
+ (V*.∇*)T* =

k
(ρCP)

∇*2T* +
(ρCP)S

(ρCP)

[

DB∇
*φ* − (φ* − φ0)V* +

(
DT

TH

)

∇*T*
]

∇*T*, (4)  

∂φ*

∂t*
+ (V*.∇*)φ* = DB∇

*2φ* +

(
DT

TH

)

∇*2T*, (5)  

∇*.H* = 0, (6)  

∂H*

∂t*
+ (V*.∇*)H* = (H*.∇*)V* + η∇*2H*. (7) 

Here,V*( = (u*, v*,w*) ) represents the vector velocity, t* highlights the dimensional time, ρ0( = ρ(TH) ) marks the reference value 
of the nanofluid density, P* symbolizes the pressure, μ, ρ and k designate the dynamic viscosity, the density and the thermal con-
ductivity of the nanofluid, respectively, ρS shows the density of nanoparticles, β refers to the thermal expansion coefficient of the 
nanofluid, T* denotes the dimensional temperature, φ* indicates the local volume fraction of nanoparticles, φ0 means the initial 
volume fraction of nanoparticles, (ρCP) and (ρCP)S stands for the heat capacitance of nanofluid and solid nanoparticles, respectively, 

α ( = k/(ρCP) ) characterizes the thermal diffusivity of the nanofluid, H*
(
=
(

H*
x,H*

y,H*
z

))
signifies the magnetic field, ∇*( = (∂/∂x*,

∂/∂y*, ∂/∂z*) ) defines mathematically the vector differential operator, μe specifies the magnetic permeability of the medium, η
(
=

(4πμeσ)
− 1
)

expresses the magnetic diffusivity of the nanofluid and σ illustrates the nanofluid electrical conductivity. 

For isothermal permeable rigid plates with the vanishing nanoparticles mass flux condition, the appropriate boundary conditions 
are written as follows: 

⎧
⎪⎪⎨

⎪⎪⎩

w* = w0,
∂w*

∂z* = 0, J*
Sz = 0, T* = TH at z* = 0,

w* = w0,
∂w*

∂z* = 0, J*
Sz = 0, T* = TC at z* = L. (8) 

Further, the nanoparticles mass flux vector J*
S

(
=
(

J*
Sx, J*

Sy, J*
Sz

))
and its vertical component J*

Sz

(
= J*

S.ez
)

are given by Nield and 

Kuznetsov [24] as: 

J*
S = − ρS

[

DB∇
*φ* +

(
DT

TH

)

∇*T* − (φ* − φ0)V*
]

, (9)  

J*
Sz = − ρS

[

DB
∂φ*

∂z* +

(
DT

TH

)
∂T*

∂z* − (φ* − φ0)w*
]

(10) 

By assuming that the horizontal boundaries are electrically non-conducting, so there is no effective current flow can cross these 
boundaries to the exterior region. Also, the induced magnetic field H*is continuous at the boundaries with the external magnetic field 
H0. Consequently, the following additional boundary conditions can be considered [33,34]: 

(∇* × H*)ez = 0 and
(

H*
x ,H*

y ,H
*
z

)
= (0, 0,H0) at z* = 0, L. (11) 

By invoking Eq. (6), the above magnetic boundary conditions reduce to: 

H*
x = H*

y =
∂H*

z

∂z* = 0 , H*
z = H0 at z* = 0,L. (12) 

Moreover, the non-dimensionalization procedure can be applied properly by including the following dimensionless variables: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x, y, z) =
1
L
(x*, y*, z*), t =

(
α
L2

)

t*, V =

(
L
α

)

V*, P =

(
L2

ρ0 α2

)

P*, T =
T* − TC

TH − TC
,

φ =
φ* − φ0

φ0
, JzS =

(
L

ρSDBφ0

)

J*
zS,
(
Hx,Hy,Hz

)
=

1
H0

(
H*

x ,H*
y ,H

*
z

)
(13) 

Therefore, Eqs. (1)–(7) are altered to the following dimensionless forms: 

∇.V = 0, (14)  

∂V
∂t

+ (V.∇)V = − ∇[P + Pr(RM + Ra)z ] + Pr∇2V + Pr(RaT − Rnφ)ez +
Pr2Q
PrM

(∇ × H) × H, (15)  
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∂T
∂t

+ (V.∇)T = ∇2T +
NANB

Le
∇T.∇T +

NB

Le
∇φ.∇T − NBφV.∇T, (16)  

∂φ
∂t

+ (V.∇)φ =
NA

Le
∇2T +

1
Le
∇2φ, (17)  

∇.H = 0, (18)  

∂H
∂t

+ (V.∇)H = (H.∇)V +
Pr

PrM
∇2H. (19) 

Accordingly, the corresponding non-dimensional boundary conditions are expressed as: 
⎧
⎪⎪⎨

⎪⎪⎩

w = Pe,
∂w
∂z

= 0, NA
∂T
∂z

+
∂φ
∂z

− PeLe φ = 0, T = 1, Hz = 1,
∂Hz

∂z
= 0 at z = 0,

w = Pe,
∂w
∂z

= 0, NA
∂T
∂z

+
∂φ
∂z

− PeLe φ = 0, T = 0, Hz = 1,
∂Hz

∂z
= 0 at z = 1.

(20) 

It is worth pointing out that the physical meanings of the non-dimensional parameters shown in Eqs. (15)–(19) as well as their 
explicit expressions are enlisted clearly in Table 1. In this tabular representation, the dynamical microscopic quantities DB and 
DT explore the Brownian and Thermophoresis diffusion coefficients, respectively. Also, it is more practical to discuss the stability of the 
problem via the control parameters Nb and Nt instead of considering the modified parameters NB( = NbLe) and NA( = Nt/Nb). 

2.2. Basic state 

The basic state of the present stability problem is assumed to be quiescent (i.e., ∂/∂t = 0) with the z-spatial dependence, whose 
physical characteristics are written as: 

Vb = Pe ez, Pb = Pb(z), Tb = Tb(z), φb = φb(z), Hb = Hb(z)ez. (21) 

After substituting Eq. (21) into Eqs.(15)–(19), we get: 

∇[Pb(z) + Pr(RM + Ra)z ] = Pr(RaTb(z) − Rnφb(z) )ez +
Pr2Q
PrM

(∇ × Hb(z) ) × Hb(z), (22)  

Pe
dTb(z)

dz
=

d2Tb(z)
dz2 +

NB

Le

(

NA
dTb(z)

dz
+

dφb(z)
dz

− PeLeφb(z)
)

dTb

dz
, (23)  

d
dz

(

NA
dTb(z)

dz
+

dφb(z)
dz

− PeLe φb(z)
)

= 0, (24) 

Table 1 
Physical meanings and expressions of the embedded physical parameters.  

Physical parameters Symbols Expressions 

Density Rayleigh number RM  [ρ0(1 − φ0) + ρSφ0 ]gL3

μα   
Thermal Rayleigh number Ra  ρ0β(TH − TC)gL3

μα   
Nanoparticle Rayleigh number Rn  (ρS − ρ0)gL3φ0

μα   
Magnetic Chandrasekhar number Q  μeH2

0L2

4πμη   
Prandtl number Pr  μ

ρ0α   
Magnetic Prandtl number PrM  μ

ρ0 η   
Modified specific heat increment NB  (ρCP)Sφ0

(ρCP)

Brownian motion parameter Nb  (ρCP)SDBφ0
(ρCP)α   

Lewis number Le  α
DB   

Modified diffusivity ratio NA  DT(TH − TC)

DBφ0TH   
Thermophoresis parameter Nt  DT(ρCP)S(TH − TC)

α(ρCP)TH   
Péclet number Pe  Lw0

α   
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Pe
dHb(z)

dz
=

Pr
PrM

d2Hb(z)
dz2 , (25)  

dHb(z)
dz

= 0. (26) 

Once more, these ordinary differential equations are managed by the following boundary conditions: 
⎧
⎪⎪⎨

⎪⎪⎩

NA
dTb

dz
+

dφb

dz
− PeLe φb = 0, Tb = 1, Hb = 1 at z = 0,

NA
dTb

dz
+

dφb

dz
− PeLe φb = 0, Tb = 0, Hb = 1 at z = 1,

(27) 

The preliminary mathematical integrations of Eqs. (24)–(26) along with the above boundary conditions yield to the following 
results: 

dφb(z)
dz

− PeLe φb(z) = − NA
dTb(z)

dz
, (28)  

Hb(z)= 1. (29) 

By making use of Eq. (28) in Eq. (23), we obtain: 

d2Tb(z)
dz2 = Pe

dTb(z)
dz

. (30) 

This linear thermal differential equation has the following closed-form solution: 

Tb(z) =
exp(Pe) − exp(Pez)

exp(Pe) − 1
. (31) 

By adopting Wakif’s conservative law [29], we can write: 

1
L

∫L

0

φ*
b(z

*)dz* = φ0

⎛

⎝i.e.,
∫1

0

φb(z)dz = 0

⎞

⎠
(32) 

Based on Eqs. (31) and (32), the following exact solution can be derived for Eq (28): 

φb(z) =
(

NALe
Le − 1

)[
exp(PeLez)

exp(PeLe) − 1
−

exp(Pez)
Le(exp(Pe) − 1 )

]

(33) 

In the nonexistence of the blowing/suction effect (i.e., Pe = 0), the thermal and mass basic solutions exhibit a linear variation 
concerning the spatial variable z. In this limiting case, these special solutions take the following forms: 

Tb(z) = lim
Pe→0

Tb(z) = 1 − z, (34)  

φb(z) = lim
Pe→0

φb(z) = NA

(

z −
1
2

)

(35) 

An interesting affirmation can be exclusively stated here for the analytical expressions given by Eqs. (34) and (35) is that the 
analytical expressions of the basic solutions Tb(z) and φb(z) are coincided exactly with the Wakif’s results pointed out previously in 
Refs. [28,29,31,32]. 

2.3. Perturbed state 

The thermal stability of the present basic nanofluid flow model can be examined properly by utilizing the linear stability theory. For 
this purpose, the basic state of the nanofluidic medium (Vb,Tb, Pb,φb,Hb) can be disturbed via an infinitesimal thermal perturbation 
T’ to produce further slight perturbations V’, P’, φ’ and H’ for the other basic quantities Vb, Pb, φb and Hb, respectively. As a result, 
the desired dimensionless solutions are sought to be in the following specific forms: 

V = Vb + V’, T = Tb + T ’, P = Pb + P’, φ = φb + φ’, H = Hb + H’. (36) 

After inserting Eq. (36) into Eqs. (14)–(19) and linearizing the resulting equations, we end up with the following linear perturbation 
equations: 

∇.V’ = 0, (37) 
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∂V’

∂t
= − ∇P’ + Pr∇2V’ − Pe

∂V’

∂z
+ Pr(RaT ’ − Rnφ’)ez +

Pr2Q
PrM

(∇ × H’) × ez, (38)  

∂T ’

∂t
= −

dTb

dz
(1 + NBφb)w

’ +∇2T ’ +

(
NANB

Le
dTb

dz
− Pe

)
∂T ’

∂z
+ NB

dTb

dz

(
1
Le

∂φ’

∂z
− Pe φ’

)

, (39)  

∂φ’

∂t
= −

dφb

dz
w’ +

NA

Le
∇2T ’ +

1
Le

∇2φ’ − Pe
∂φ’

∂z
, (40)  

∇.H’ = 0, (41)  

∂H’

∂t
=

∂V’

∂z
+

Pr
PrM

∇2H’ − Pe
∂H’

∂z
. (42) 

To eliminate the pressure gradient term from Eq. (38), we have applied successively the curl operator twice to this equation along 
with Eqs. (37) and (41). In this situation, the z-component of the ensuing equation is written as: 

∂
∂t
(
∇2w’) = Pr∇4w’ − Pe

∂
∂z
(
∇2w’)+ Pr

(
Ra∇2

HT ’ − Rn∇2
Hφ’)+

Pr2Q
PrM

∂
∂z
(
∇2H’

z

)
(43) 

Here, ∇2
H
(
= ∂2

/∂x2 + ∂2
/∂y2

)
is the horizontal Laplacian operator. 

Additionally, the z-component of Eq. (42) takes the following form: 

∂H’
z

∂t
=

∂w’

∂z
+

Pr
PrM

∇2H’
z − Pe

∂H’
z

∂z
. (44)  

2.4. Normal mode analysis 

The temporal and spatial characteristics of the aforementioned perturbations 
(
w’,T’,φ’,H’

z
)

are scrutinized appropriately by 
regarding them physically as periodic waves, whose analytical expressions are given by: 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w’(x, y, z, t) = W(z)exp
[
i
(
axx + ayy

)
+ λt

]
,

T ’(x, y, z, t) = θ(z)exp
[
i
(
axx + ayy

)
+ λt

]
,

φ’(x, y, z, t) = Φ(z)exp
[
i
(
axx + ayy

)
+ λt

]
,

H’
z(x, y, z, t) = τ(z)exp

[
i
(
axx + ayy

)
+ λt

]
,

(45)  

where λ is the growth rate of the disturbances and 
(
ax, ay

)
are the wave-number components in the x- and y- directions, respectively. 

After substituting Eq. (45) into Eqs. (39), (40), (43) and (44), we get 

[
Pr
(
D(2) − a2 ) − PeD − λ

](
D(2) − a2 )W − PrRa a2θ + PrRn a2Φ +

Pr2Q
PrM

D
(
D(2) − a2 )τ = 0, (46)  

−
dTb

dz
(1 + NBφb)W +

[
(
D(2) − a2 )+

(
NANB

Le
dTb

dz
− Pe

)

D − λ
]

θ + NB
dTb

dz

(
1
Le

D − Pe
)

Φ = 0, (47)  

−
dφb

dz
W +

NA

Le
(
D(2) − a2 )θ +

[
1
Le
(
D(2) − a2 ) − Pe D − λ

]

Φ = 0, (48)  

DW +

[
Pr

PrM

(
D(2) − a2 ) − Pe D − λ

]

τ = 0. (49) 

Here, D(n) ≡ dn/dzn and a2 = a2
x + a2

y , where n is an integer derivative order and D ≡ d/dz. 
The system of Eqs. (46)–(49) is controlled by the following boundary conditions: 

W = DW = θ = NADθ + DΦ − PeLe Φ = Dτ = 0 at z = 0, 1. (50)  

3. Method of solution 

As proved before, the governing stability equations (46)–(49) together with their appropriate boundary conditions (50) constitute a 
linear eigenvalue problem of finite dimension, whose eigenvalues are selected to be the possible values of the thermal Rayleigh number 
Ra. This eigenvalue problem can be solved numerically via the Chebyshev-Gauss-Lobatto Spectral Method (CGLSM) [25,35,36]. To 
apply correctly this innovative numerical procedure, it is recommended to consider a novel spatial variable ξ, which is defined as: 
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⎧
⎪⎪⎨

⎪⎪⎩

z =
1
2
(ξ + 1) where 0 ≤ z ≤ 1 and − 1 ≤ ξ ≤ 1,

D(n) = 2nD(n) where D(n)
=

dn

dξn.

(51) 

By assuming that the principle of exchange of thermal stability holds for the present nanofluid stability problem, the occurred 
stationary convection mode can be evidenced compressively by introducing the following nanoparticles mass flux unknown: 

Γ = − (NADθ + DΦ − PeLe Φ) (52) 

For further computational simplifications, the final unknown functions (W, θ,Γ, τ) together with the basic solutions (Tb,φb) are 
subjected to the following spatial transformations: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W(z) = W
(

1
2

ξ +
1
2

)

= W(ξ),

θ(z) = θ
(

1
2

ξ +
1
2

)

= θ(ξ),

Γ(z) = Γ
(

1
2

ξ +
1
2

)

= Γ(ξ),

τ(z) = τ
(

1
2

ξ +
1
2

)

= τ(ξ),

Tb(z) = Tb

(
1
2

ξ +
1
2

)

= Tb(ξ),

φb(z) = φb

(
1
2

ξ +
1
2

)

= φb(ξ)

(53) 

Therefore, the stationary forms of Eqs. (46)-(49) can be rearranged as: 

AW W + Aθθ + AΓΓ + Aττ = Ra Eθθ, (54)  

BW W +Bθθ + BΓΓ = 0, (55)  

CW W +Cθθ + CΓΓ = 0, (56)  

DW W +Dττ = 0, (57)  

where 

W =DW = θ = Γ = Dτ = 0 at ξ = − 1, 1. (58) 

It bears noting that the differential operators 
(
AW,Aθ,AΓ ,Aτ,BW,Bθ,BΓ,CW,Cθ,CΓ,DW,Dτ, Eθ

)
used in Eqs. (54)–(57) are 

Table 2 
Expressions of the embedded differential operators.  

Differential operators Expressions 

AW  16D(4)
−

8Pe
Pr

D(3)
− 8a2D(2)

+
2Pe a2

Pr
D+ a4 − 2RnLe

(

Dφb

)

Aθ  − RnNAa2  

AΓ  − 2RnD  
Aτ  2PrQ

PrM
(4D(3)

− a2D)
BW  2(DTb)(1 + NBφb)

Bθ  − 4D(2)
+ 2Pe D+ a2  

BΓ  2NB

Le

(

DTb

)

CW  4(Dφb)D − 4NA(D
(2)Tb)

Cθ  − PeNAa2  

CΓ  1
Le

(
4D(2)

− 2PeLe D − a2
)

DW  2D  
Dτ  4Pr

PrM
D(2)

− 2Pe D −
Pra2

PrM  
Eθ  a2   
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summarized in Table 2. Additionally, these equations can be assembled in the matrix form as follows: 
⎛

⎜
⎜
⎝

AW Aθ AΓ Aτ
BW Bθ BΓ 0
CW Cθ CΓ 0
DW 0 0 Dτ

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

W
θ
Γ
τ

⎞

⎟
⎟
⎠ = Ra

⎛

⎜
⎜
⎝

0 Eθ 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

W
θ
Γ
τ

⎞

⎟
⎟
⎠ (59) 

The linear eigenvalue problem described by Eq. (59) is discretized spatially using CGLSM along with the Gauss - Lobatto Collo-
cation Grid Points (GLCGPs), which are defined as [37–41]: 

ξi = cos
(

πi − π
N − 1

)

, (60)  

where 1 ≤ i ≤ N and ξN ≤ ξi ≤ ξ1. 

Further, the first-order derivative matrix D =

((

d̃ij

)

1≤i,j≤N

)

and its corresponding nth- order derivative D(n) =

((

d̃
(n)

ij

)

1≤i,j≤N

)

are given by Canuto et al. [42] and Trefethen [43] as: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d̃ij=
2(N − 1)2

+1
6

when i= j=1,

d̃ij=−
ξi

2
(
1− ξ2

i

) when i= j∕=1,N,

d̃ij=
(− 1)i+jCi

Cj
(
ξi − ξj

) when i∕=j,

d̃ij=−
2(N − 1)2

+1
6

when i= j=N,

(61)  

{
Ci = 2 for i = 1,N,

Ci = 1 for i ∕= 1,N,
(62)  

d̃
(n)

ij =
∑N

k=1

(

d̃
(n− 1)

ik d̃kj

)

(63) 

Based on the numerical procedure CGLSM, the derivative terms appeared in Eqs. (54)–(57) and defined in Table 2 can be 

Table 3 
Expressions of the used matrix elements.  

Matrix elements Expressions 
(
AW
)

ij  16D̃(4)
ij −

8Pe
Pr

D̃(3)
ij − 8a2D̃(2)

ij +
2Pe a2

Pr
D̃ij +

[

a4 − 2RnLe
(

Dφb

)

i

]

δij  
(
Aθ
)

ij  − RnNAa2δij  
(
AΓ
)

ij  − 2Rnd̃ij  
(
Aτ
)

ij  
2PrQ
PrM

(4 ˜̃D
(3)
ij − a2 ˜̃Dij)

(
BW
)

ij  2
(

DTb

)

i

[

1 + NB

(

φb

)

i

]

δij   
(
Bθ
)

ij  − 4d̃
(2)
ij + 2Pe d̃ij + a2δij  

(
BΓ
)

ij  2NB

Le

(

DTb

)

i
δij   

(
CW
)

ij  4
(

Dφb

)

i
D̃ij − 4NA

(

D(2)Tb

)

i
δij  

(
Cθ

)

ij  − PeNAa2δij  
(
CΓ
)

ij  1
Le

(

4d̃
(2)
ij − 2PeLe d̃ij − a2δij

)

(
DW
)

ij  2D̃ij  
(
Dτ
)

ij  4Pr
PrM

˜̃D
(2)
ij − 2Pe ˜̃Dij −

Pra2

PrM
δij  

(
Eθ
)

ij  a2δij  

Zij  0   
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approximated locally as follows: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D(n)W(ξi) =
∑N

j=1
d̃
(n)
ij W

(
ξj
)
, D(n)θ(ξi) =

∑N

j=1
d̃
(n)
ij θ
(
ξj
)
,

D(n)Γ(ξi) =
∑N

j=1
d̃
(n)
ij Γ
(
ξj
)
, D(n)τ(ξi) =

∑N

j=1
d̃
(n)
ij τ
(
ξj
)
,

(64)  

where 1 ≤ i ≤ N and − 1 ≤ ξi ≤ 1. 
By making use of Eqs. (58)–(64), the following discretized eigenvalue problem is derived: 
⎛

⎜
⎜
⎜
⎝

(
AW

)

ij

(
Aθ

)

ij

(
AΓ

)

ij

(
Aτ
)

ij(
BW

)

ij

(
Bθ

)

ij

(
BΓ

)

ij Zij
(
CW

)

ij

(
Cθ

)

ij

(
CΓ

)

ij Zij
(
DW

)

ij Zij Zij
(
Dτ
)

ij

⎞

⎟
⎟
⎟
⎠

2≤i,j≤N− 1

⎛

⎜
⎜
⎜
⎝

Wj
θj
Γj
τj

⎞

⎟
⎟
⎟
⎠

= Ra

⎛

⎜
⎜
⎝

Zij
(
Eθ

)

ij Zij Zij
Zij Zij Zij Zij
Zij Zij Zij Zij
Zij Zij Zij Zij

⎞

⎟
⎟
⎠

2≤i,j≤N− 1

⎛

⎜
⎜
⎜
⎝

Wj
θj
Γj
τj

⎞

⎟
⎟
⎟
⎠

(65) 

For more clarifications, the above system is built properly in such a way that the final form of the boundary conditions (i.e., Eq. 
(58)) are introduced implicitly in the matrix elements of the eigenvalue problem described by Eq. (65). These modified elements are 
defined tabularly as shown in Table 3 and Table 4. 

The mathematical element δij shown in Table 3 and Table 4 defines the Kronecker symbol, which is given by: 
{

δij = 0 if i ∕= j,
δij = 1 if i = j. (66) 

The generalized linear eigenvalue problem described by Eq. (65) can be also written as: 

M X = Ra M’ X. (67) 

Here, M and M’ represent two (4N − 8) × (4N − 8) square matrices, Ra shows the generalized eigenvalues and X stands for the 
unknown vector column of the present stability problem. 

By using the predefined “eig” Matlab function, the real eigenvalue Ra is determined when the other control parameters are 
specified. For this purpose, the wave-number a can be fixed to determine the (4N − 8) eigenvalues Rai of the system (67). Among 
these (4N − 8) eigenvalues, only N’ positive real eigenvalues can be retained physically (i.e., N’ < 4N − 8). Furthermore, the thermal 
Rayleigh number Ra sought for the wave-number a is computed as follows: 

Ra(a) = min({Rai, where 1 ≤ i ≤ 4N − 8}) (68) 

Accordingly, an eigenvalue spectrum Sa = {Ra(ai),where a1 ≤ ai ≤ a2 } is constructed for specified ranging values of the wave- 
number a

(
i.e., ai ≤ a ≤ af

)
. Based on this set of eigenvalues, the neutral stability curve Ra = f(a) of the stationary convective 

mode can be portrayed accordingly. In this regards, the critical point (aC,RaC) featured the thermal stability of the nanofluidic medium 
is defined as: 

RaC = min(Sa), (69) 

Table 4 
Expressions of the modified matrix elements.  

Modified matrix elements Expressions 
D̃ij  1

(1 − ξ2
i )

[(1 − ξ2
i )d̃ij − 2ξiδij ]

D̃(2)
ij  

1
(1 − ξ2

i )
[(1 − ξ2

i )d̃
(2)
ij − 4ξi d̃ij − 2δij]

D̃(3)
ij  

1
(1 − ξ2

i )
[(1 − ξ2

i )d̃
(3)
ij − 6ξi d̃

(2)
ij − 6d̃ij]

D̃(4)
ij  

1
(1 − ξ2

i )
[(1 − ξ2

i )d̃
(4)
ij − 8ξi d̃

(3)
ij − 12d̃

(2)
ij ]

˜̃Dij  d̃ij + d̃i1αj + d̃iNβj  

˜̃D
(2)
ij  d̃

(2)
ij + d̃

(2)
i1 αj + d̃

(2)
iN βj  

˜̃D
(3)
ij  d̃

(3)
ij + d̃

(3)
i1 αj + d̃

(3)
iN βj  

αj  d̃1Nd̃Nj − d̃NNd̃1j

d̃11 d̃NN − d̃1Nd̃N1  
βj  d̃N1d̃1j − d̃11 d̃Nj

d̃11 d̃NN − d̃1Nd̃N1    
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RaC = Ra(aC) (70) 

Additionally, the optimum values of the critical stability parameters (RaC, aC) depend strongly on the physical parameters 
involved therein, which are highlighted symbolically by Rn,Pe,Q,NB,NA,Pr,PrM and Le. For the monotypic nanofluids Al2O3 − H2O 
conveying tiny-sized alumina nanomaterials, whose spherical diameter dS and volume fraction φ0 are taken respectively in the range 
of 30nm − 45nm and 1% − 4%, the values of the nanofluid parameters Rn,Nb,Nt,NB,NA,Pr, PrM and Le are computed previously by 
wakif et al. [31]. These magnitudes can briefly be summed up as follows: 

Rn ∼ 10− 1 − 100, (Nb,Nt) ∼
(
10− 6, 10− 6), (NB,NA) ∼

(
10− 2, 100), (Pr, PrM) ∼

(
101, 10− 12),Le ∼ 104. (71) 

Moreover, in another related work, wakif et al. [32] proved that the Lewis number Le for the hybrid nanofluids (Al2O3 + CuO) −

H2O can be estimated in the order of 103, when φAl2O3
= φCuO, dS = dAl2O3 = dCuO and dS < 20nm. Keeping in mind that the main 

characteristic parameters Nb,Nt and PrM exhibit nearly lesser degrees of variability towards the growing values of the nanoparticles 
volume fraction φ0 introduced initially in the base fluid. So, it is more practical to control the thermal stability of the nanofluidic 
medium only through the main embedded parameters Rn,Pe,Q and Le.

Fig. 2. Convergence of CGLSM results in terms of the stability parameters (RaC, aC).  
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4. Results and discussion 

As mentioned previously, the thermal stability of the studied nanofluidic layer depends ostensibly on eight parame-
ters (i.e., Rn,Pe,Q,NB,NA,Pr, PrM and Le) By taking into account the previously discussed restrictions, the concerned control pa-
rameters are reduced only to the most significant ones, which are Rn,Pe,Q and Le. In this regards, the parameter values Rn = 0.3, |Pe| =
0.01, Q = 10, Pr = 7 and Le = 1000 are designated as tentative inputs that are required to optimize the critical values (RaC, aC)

controlling the thermal stability of the nanofluidic medium, which are selected as default parameter values unless otherwise indicated 
herein (i.e., graphically or tabularly). These concerned physical parameters are adjusted accordingly during the numerical simulation 
to reflect the behavior of each parameter on the appearance of nanofluid convection in the confined medium. However, the parameters 
Pr, PrM, NB and NA have been kept unchanged in the whole analysis, where Pr = 7, PrM = 10− 12, NB = 10− 2 and NA = 1. 
Furthermore, the stationary neutral stability curves and their corresponding stability parameters (RaC, aC) portrayed in Figs. 6–9 and 
Tables 7–10 are generated properly by choosing N = 32 as the total number of GLCGPs and ranging the wave-number a by a fixed step- 
size of about Δa = 0.0001 to achieve a higher level of absolute accuracy, which is estimated to be of the order of 10− 4 as proved in 
Fig. 2. 

From an efficiency point of view, the robustness and validity of the proposed CGLSM numerical scheme are justified tabularly by 
carrying out various comparative attempts as quantified numerically in Table 5 and Table 6 between the present numerical results and 
those established previously for some limiting cases (i.e., φ0 = 0 and Pe = 0) with the help of other powerful computational methods, 
like Chandrasekhar’s Variational Method (CVM) [44], Runge-Kutta-Fehlberg Method (RKFM) [30], Power Series Method (PSM) [32], 
Generalized Differential Quadrature Method (GDQM) [31] and Wakif-Galerkin Weighted Residuals Technique (WGWRT) [31]. A 
quantitative evaluation of the results of Table 5 and Table 6 indicates that there is an excellent degree of harmony between the CGLSM 
results and those of the existing literature survey. Hence, the validity of the proposed method together with the exactness of the 
obtained results are confirmed reasonably. 

On the other hand, to reveal the thermal and mass features of the basic nanofluid flow against the varying values of the involved 
flow parameters Pe and Le, Eqs. (31) and (33)–(35) are exploited appropriately to plot the basic profiles Tb(z) and φb(z) as exposed in 
Figs. 3–5. From Fig. 3, it is remarked that the amplifying blowing effect (i.e., Pe > 0) has an enhancing trend on the basic temperature 
throughout the nanofluidic medium. However, a noticeable dissimilar tendency is perceived for the suction case (i.e., Pe < 0) Other 
obvious disturbance influences of the wall blowing/suction velocity (i.e., Pe ∕= 0) are demonstrated perfectly via the profiles of φb(z) in 
Fig. 4 for the spatial distribution of nanoparticles inside the medium, in which φb(z → 0) < 0 and φb(z → 1) > 0. In this display, it is 
found that the blowing effect (i.e., Pe > 0) produces a notable top-heavy distribution of nanoparticles near the upper permeable plate 
z = 1 as compared to the suction situation (i.e., Pe < 0) An asymmetrical effect is depicted in the basic volumetric fraction profiles 
φb(z) of solid nanoparticles as a consequence of the augmenting values of the control parameter |Pe|, in a such a way that a certain 
number of solid nanoparticles tends to migrate from the cold region (i.e., z → 1) to concentrate more near the hot region (i.e., z → 0)

according to the conservative volume fraction law
∫1

0

φb(z)dz = 0. Besides the strengthening effect of the throughflow constraint at z =

0 and z = 1 on the nanoscale mass-transportation of solid nanoparticles within the nanofluidic medium, Fig. 5 proves that the partial 
migration of solid nanoparticles illustrated graphically in Fig. 4 can be reinforced more via the larger values of the Lewis numberLe. 

As discussed before, the behavior of an embedded control parameter on the evolution of the stationary neutral stability curves is 
illustrated graphically and tabularly in Figs. 6–9 and Tables 7–10 by keeping the other background parameters fixed at specified 
values. Generally, it is found from these demonstrations that the blowing case (i.e., Pe > 0) provides higher thermal stability to the 
nanofluidic medium compared with the suction situation (i.e., Pe < 0). These findings indicate that the blowing velocity 
w0 (i.e., w0 > 0)crossed vertically the permeable walls z = 0 and z = 1 deferrals the appearance of convection in the medium, whilst 
the suction velocity (i.e., w0 < 0) hastens it. Indeed, the existence of a vertically upward throughflow opposes the Brownian motion of 
solid nanoparticles from the higher concentration region (i.e., z → 1) to the lower concentration region (i.e., z → 0). As a result of this 
prevention in the Brownian diffusion mechanism, the nanoparticles accumulate more near the cold region (i.e., z → 1) to offer relative 
stability to the non-homogeneous mixture. Dissimilarly, the presence of a vertically downward throughflow strengthens more the 
Brownian motion of nanoparticles as demonstrated in Fig. 4. For this reason, the nanofluidic system is less stable thermally in the 
suction configuration as compared with the blowing case, in which the critical size of convection cells LC(= 2π /aC) is higher somewhat 
to those obtained in the blowing situation at the onset of convection. These important findings are completely authenticated via the 
dual behavior of the nanoparticle Rayleigh number Rn towards the stability features of the nanofluidic medium as emphasized in Fig. 6 

Table 5 
Comparison between the present results and those of the existing literature for the regular fluids, when φ0 = Pe = 0.  

Q  Existing Results Present Results 

CVM [44] RKFM [30] PSM [32] CGLSM 

RaC  aC  RaC  aC  RaC  aC  RaC  aC  

0 1707.8 3.13 1707.7617 3.1163 1707.7617 3.1163 1707.7617 3.1163 
100 3757.4 4.00 3757.2301 4.0120 3757.2301 4.0120 3757.2301 4.0120 
200 5488.6 4.45 5488.5332 4.4458 5488.5332 4.4458 5488.5332 4.4458  
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Table 6 
Comparison between the present results and those of the existing literature for the nanofluids, when Rn = 0.1, Le = 5000, Nb = Nt = 10− 6 and Pe =

0.  

Q  Existing Results Present Results 

GDQM [31] WGWRT [31] PSM [32] CGLSM 

RaC  aC  RaC  aC  RaC  aC  RaC  aC  

0 846.86042 2.43637 846.86043 2.43638 846.86043 2.43638 846.86043 2.43637 
100 3091.08440 3.83812 3091.08440 3.83812 3091.08440 3.83812 3091.08440 3.83811 
200 4860.63528 4.33834 4860.63528 4.33833 4860.63528 4.33833 4860.63528 4.33833  

Fig. 3. Behavior of Tb(z) against various values of Pe.  

Fig. 4. Behavior of φb(z) against various values of Pe.
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and Table 7. Additionally, the stabilizing/destabilizing impact of the wall blowing/suction velocity w0 is standed clearly with the 
increasing values of the nanoparticle Rayleigh number Rn indicating that the larger values of the initial volume fraction of solid 
nanoparticles φ0 play a retarding role for the occurrence of convection cells in the medium with a lessening in their critical size LC 
when the permeable walls are traversed by an upward blowing velocity w0. A reverse trend is seen for the case of a downward suction 
velocity w0. Although the blowing configuration promises a sufficient level of stability to the nanofluidic medium as compared with the 
suction arrangement, the heating effect of the increasing positive values of the Péclet number Pe underlined in Fig. 3 renders the 
thermal stability of the nanofluidic medium more sensible to any small upsurge in the temperature difference ΔT(= TH − TC) between 
the lower and the upper boundaries, which leads to destabilization in the system with an enlargement in the critical size of convection 
cells LC, while the cooling effect of the suction strength contributes significantly in the thermal stability of the nanofluidic layer with a 
reduction in the critical size of convection cells LC as evidenced in Fig. 7 and Table 8. Fundamentally, the electrically conducting 
property of the studied nanofluid gives rise to the development of magnetic Lorentz forces in the nanofluidic medium because of the 
mutual interaction between the induced magnetic field and the velocity of the nanofluid. These magnetic forces act oppositely on the 
resulting upward convective motion of the nanofluid. Due to this restive tendency of Lorentz forces, the thermal stability of the 
nanofluid increases remarkably with a diminishing in the critical size of convection cells LC in both throughflow varieties as long as the 

Fig. 5. Behavior of φb(z) against various values of Le.

Fig. 6. Stationary marginal stability curves for increasing values of Rn.
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magnetic Chandrasekhar number Q increases with a more advantageous thermal stability trend in favor of the blowing case as exposed 
in Fig. 8 and Table 9. Physically, an enhancement in the thermal diffusivity of the nanofluidic medium yields to an escalation in the 
value of Lewis number Le. Consequently, a quite reinforcement in the stabilizing/destabilizing feature of the wall blowing/suction 
velocity w0 can be achieved just by intensifying the effect of Lewis number Le as shown in Fig. 9 and Table 10. This physical parameter 
exhibits a dual behavior, it accelerates the happening of convection cells in the blowing configuration with a slight growth in the 
critical size of convection cells LC, while a postponing trend is observed in the suction situation with a decline in the critical size of 
convection cells LC. Hence, the Lewis number Le affects more on the behavior of the convective part of nanoparticles mass flux added in 
the thermal energy equation according to the sense of the applied vertical throughflow. 

5. Concluding remarks 

A robustness numerical algorithm has been developed in this nanofluid stability problem to scrutinize the influence of an externally 
applied magnetic field on the manifestation of stationary thermo-magneto-convection that can be happened in confined nanofluidic 
media under the effective impact of a vertical negative temperature gradient and the presence of blowing/suction dynamical process. 
By adopting an improved Buongiorno’s two-phase nanofluid model, the linear stability theory along with the normal mode analysis 

Fig. 7. Stationary marginal stability curves for increasing values of |Pe|.

Fig. 8. Stationary marginal stability curves for increasing values of Q.
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Fig. 9. Stationary marginal stability curves for increasing values of Le.

Table 7 
Numerical CGLSM estimations of RaC and aC for various values Pe and Rn.

Rn = 0.6  Rn = 0.3  Pe  

aC  RaC  aC  RaC  

3.9526 4947.0470 3.9305 4890.0592 0.010 
3.8853 4581.8140 3.8957 4693.3815 − 0.010  

Table 8 
Numerical CGLSM estimations of RaC and aC for various values Pe.

|Pe| = 0.019  |Pe| = 0.010  Case 

aC  RaC  aC  RaC  

3.9124 4855.1790 3.9305 4890.0592 Blowing 
3.9035 4778.6378 3.8957 4693.3815 Suction  

Table 9 
Numerical CGLSM estimations of RaC and aC for various values Pe and Q.

Q = 40  Q = 10  Pe  

aC  RaC  aC  RaC  

4.3044 6439.3980 3.9305 4890.0592 0.010 
4.2779 6232.2795 3.8957 4693.3815 − 0.010  

Table 10 
Numerical CGLSM estimations of RaC and aC for various values Pe and Le.

Le = 1500  Le = 1000  Pe  

aC  RaC  aC  RaC  

3.9190 4869.9264 3.9305 4890.0592 0.010 
3.9028 4751.7396 3.8957 4693.3815 − 0.010  
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technique has been applied properly to derive the governing stability equations analytically. These resulting differential equations 
were tackled thereafter numerically for the isothermal, no-slip, and zero nanoparticles mass flux conditions by employing the 
Chebyshev-Gauss-Lobatto Spectral Method (CGLSM). Briefly, the main outcomes of primary interest can be itemized as follows:  

- The thermal stability of the medium is affected by the sense of vertical throughflow and its magnitude.  
- The contribution of the convective term of the mass flux on the thermal transportation phenomenon depends greatly on the values 

given to the Péclet number Pe and Lewis number Le.  
- The positive values of the Péclet number Pe show a heating effect on the nanofluidic medium, while a cooling impact is revealed for 

the negative values of the Péclet number Pe.  
- The blowing configuration is more stable thermally than the suction arrangement.  
- The resulting gap in thermal stability between the blowing and suction cases can be aggrandized more with the loading of 

nanoparticles via the intensifying values of the nanoparticle Rayleigh number Rn.  
- The Péclet number Pe exhibits a dual behavior on the thermal stability of the nanofluidic medium depending on its sign.  
- The stability feature of the blowing configuration diminishes with the increasing values of the parameter Pe. However, this thermal 

stability increases with the increasing values of |Pe| in the suction case.  
- The suction process reinforces the Brownian motion of nanoparticles, while the blowing mechanism weaknesses this kind of 

motion.  
- The magnetic Chandrasekhar number Q has generally a stabilizing impact on the nanofluidic medium.  
- The Lewis number Le strengthens the stabilizing/destabilizing property of the blowing/suction process.  
- The critical size of convection cells LC varies inversely with the thermal stability of the medium. 
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