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It is considered that there is a fascinating issue in theoretical chemistry to predict the physicochemical and structural properties of
the chemical compounds in the molecular graphs.*ese properties of chemical compounds (boiling points, melting points, molar
refraction, acentric factor, octanol-water partition coefficient, and motor octane number) are modeled by topological indices
which are more applicable and well-used graph-theoretic tools for the studies of quantitative structure-property relationships
(QSPRs) and quantitative structure-activity relationships (QSARs) in the subject of cheminformatics. *e π-electron energy of a
molecular graph was calculated by adding squares of degrees (valencies) of its vertices (nodes). *is computational result,
afterwards, was named the first Zagreb index, and in the field of molecular graph theory, it turned out to be a well-swotted
topological index. In 2011, Vukicevic introduced the variable sum exdeg index which is famous for predicting the octanol-water
partition coefficient of certain chemical compounds such as octane isomers, polyaromatic hydrocarbons (PAH), poly-
chlorobiphenyls (PCB), and phenethylamines (Phenet). In this paper, we characterized the conjugated trees and conjugated
unicyclic graphs for variable sum exdeg index in different intervals of real numbers. We also investigated the maximum value of
SEIa for bicyclic graphs depending on a> 1.

1. Introduction

In chemical graph theory, molecules and macromolecules
(such as organic compounds, nucleic acids, and proteins) are
represented by graphs wherein vertices correspond to the
atoms, whereas edges represent the bonds between atoms
[1, 2]. A topological index is a numerical value associated
with chemical constitution for correlation of chemical
structure with various physicochemical properties [3]. To-
pological indices play a significant role in organic chemistry
and particularly in pharmacology [4, 5]. Physicochemical
properties of chemical compounds such as relative enthalpy
of formation, biological activity, boiling points, melting
points, molar refraction, acentric factor, octanol-water
partition coefficient, and motor octane number are modeled

by topological indices in quantitative structure-property
relation (QSPR) and quantitative structure-activity relation
(QSAR) studies [4, 6–8].

In chemistry, the usage of topological index started in
1947 when the chemistWiener developed theWiener index (a
distance-based topological index) to predict boiling points of
paraffins [9]. Platt index (the oldest degree-based topological
index) was proposed in 1952 for predicting paraffin properties
[10]. *e π-electron energy of a molecular graph was cal-
culated by adding square of degrees (valencies) of its vertices
(nodes) in the year 1972. *e same computational result,
afterwards, was named the first Zagreb index, and in the field
of molecular graph theory, it turned out to be a well-swotted
topological index [11]. For more details about the topological
indices in the field of chemistry, we refer to [6, 8, 12–15].
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Many well-known topological indices such as hyper
Zagreb index [16], variable sum exdeg index [17], and
Zagreb indices [18, 19] have been used to find out sharp
bounds for unicyclic, bicyclic, and tricyclic graphs. Vuki-
cevic [15] propounded variable sum exdeg index for a graph
G and defined it as

SEIa(G) � 􏽘
uv∈E(G)

a
du + a

dv􏼐 􏼑 � 􏽘
u∈V(G)

dua
du􏼐 􏼑, (1)

where a is a positive integer other than 1. *is topological
index is correlated well with octane-water partition coeffi-
cient [15] and is employed to the study of octane isomers (see
[20–22]). *is topological index in the form of polynomial
was proposed by Yarahmadi and Ashrafi, and they find its
application in nanoscience [23]. Chemical application of this
index can be seen in the papers [12, 13, 15].

In this paper, we mainly targeted three main problems.
First of all, we find the extremal values of variable sum exdeg
index (SEIa) for conjugated trees. After that, we investigated
lower and upper bounds of unicyclic conjugated graphs with
respect to the length of this cycle in different intervals. At the
end of this paper, we find upper bounds of SEIa for bicyclic
graphs.*is paper contains seven sections. In the first section,
we have given introduction while in Section 2, we have given
the proofs of some lemmas and preliminary results. In Section
3, we discovered the bounds of a conjugated trees and this
section helps us to find out lower and upper bounds of
unicyclic conjugated graphs with respect to the length of this
cycle in Section 4. In Section 5, we discussed an important
theorem related with conjugated unicyclic graphs. In Section
6, we discovered the upper bounds of bicyclic graphs. In the
last section, we have drawn the conclusion.

2. Preliminary Results

All graphs under consideration in this paper will be con-
nected, simple, and finite. Suppose G � (V(G), E(G)) is a
simple and finite graph, whereas set of vertices is denoted by
V(G) and the set of edges is denoted by E(G). Let v ∈ V(G)

for which dv is defined as the cardinality of edges incident
with the vertex v. Suppose NG(v) denotes the set of all
vertices which are adjacent with the vertex v and
NG[v] � NG(v)⋃ v{ }. Note that Δ(G) and δ(G) represent
the maximum and minimum degree of a graph G,

respectively. A pendent vertex is a vertex of degree one. An
edge whose one end is a pendent vertex is called pendent
edge. Let B⊆V(G) and B′ ⊆E(G); then, G − B and G − B′
are subgraphs of G which are obtained by deleting the
vertices and edges fromG, respectively. An edge between the
vertices x and y is denoted by e � xy. If B � v{ } and
B′ � xy􏼈 􏼉, then G − B and G − B′ can be expressed as G − v

and G − xy, respectively.
In a graphG, if the vertices x and y are nonadjacent, then

G + xy means there is an addition of an edge between the
vertices x and y in a graph G. We use Sn , Cn, and Pn to
denote the star graph, cycle graph, and path graph on n

vertices, respectively. We assume that graphs (G∗, w1) and
(G∗∗, w2) be rooted at w1 and w2, respectively. *en,
(G∗, w1)⋓ (G∗∗, w2) is obtained by identifying w1 and w2 as
the same vertex. A graph which has no cycle is called a tree. A
graph G is said to be unicyclic graph if it has a unique cycle.
A graph G is said to be bicyclic graph if G has exactly n + 1
edges. Let Ul(n) represent the collection of all those graphs
which have order n and a unique cycle of length l. We denote
Ul(2m, m) the collection of all conjugated unicyclic graphs
of order n in which length of its cycle is l, whereas m is the
matching number of G. Let G ∈ Ul(2m, m) be a unicyclic
graph of length l and it is denoted by Cl. Let G ∈ Ul(2m, m);
if n � 2m � l or n � 2m � l + 1, then its SEIa(G) is unique.
*at is why in this paper we will assume n � 2m≥ l + 2. One
can find terminologies and expressions “indefinito” in
[24–26].

Suppose that G′ is a graph acquired from another graph
G by using some graph alteration such that V(G) � V(G′).
In all sections of this paper, whenever such two graphs are
under debate, we always mean the vertex degree dx the
degree of the vertex x in G.

Lemma 1. Let G be a graph of order n if G contains the
vertices u, v ∈ V(G) such that du � s> 1, dv � t> 1 and s≥ t;
then, there exists a graph G′ such that SEIa(G′)> SEIa(G) for
a> 1.

Proof. Let u, v ∈ V(G) and v1, v2, v3, . . .vk be the pendent
vertices adjacent to the vertex v. We define a new graph G′,
i.e., G′ � G − v1v, v2v, . . . , vkv􏼈 􏼉 + v1u, v2u, . . . , vku􏼈 􏼉 as in
Figure 1. By the definition of SEIa(G), we have

SEIa(G) − SEIa G′( 􏼁 � du.a
du + dv.a

dv􏽨 􏽩 − du + k( 􏼁.a
du+k

+ dv − k( 􏼁.a
dv − k

􏽨 􏽩

� dv.a
dv − dv − k( 􏼁.a

dv− k
􏽨 􏽩 − du + k( 􏼁.a

du+k
− du.a

du􏽨 􏽩

� k a
μ1 1 + μ1 ln a( 􏼁 − a

μ2 1 + μ2 ln a( 􏼁􏼂 􏼃< 0,

(2)

where μ1 ∈ (t − k, t), μ2 ∈ (s, s + k), μ2 > μ1 for a> 1. *us,
the proof of the above lemma is accomplished. □

Lemma 2. Let G be a graph having two components G1and
T1, where G1 is a cycle graph and T1 is a star graph with
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central vertex v. Let u ∈ V(G1) and du � p, such that uv is an
edge in G. Let v1, v2, v3, . . .vk be the pendent vertices adjacent
with the vertex v, i.e., NG(v) − u{ } � v1, v2, v3, . . . , vk􏼈 􏼉. We
define G′ � G − v1v, v2v, . . . , vkv􏼈 􏼉 + v1u, v2u, . . . , vku􏼈 􏼉 such
that SEIa(G′)> SEIa(G).

Proof. Let G be a graph having two components G1and T1
where G1 is a cycle graph and T1 is a star graph with central
vertex v. Let u ∈ V(G1), du � p, such that uv is an edge in G.
Let v1, v2, v3, . . .vk be the pendent vertices adjacent with the
vertex v, i.e., NG(v) − u{ } � v1, v2, v3, . . .vk􏼈 􏼉. We define
G′ � G − v1v, v2v, . . . , vkv􏼈 􏼉 + v1u, v2u, . . . , vku􏼈 􏼉 as in
Figure 2. By the definition of SEIa, we have

SEIa(G) − SEIa G′( 􏼁 � du.a
du + dv.a

dv􏽨 􏽩 − du + k( 􏼁.a
du+k

+ dv − k( 􏼁.a
dv − k

􏽨 􏽩

� dv.a
dv − dv − k( 􏼁.a

dv− k
− du + k( 􏼁.a

du+k
− du.a

du
􏽨 􏽩.􏽨

(3)

If p≥ k + 1, then

SEIa(G) − SEIa G′( 􏼁 � dv.a
dv − dv − k( 􏼁.a

dv− k
􏽨 􏽩

− du + k( 􏼁.a
du+k

− du.a
du

􏽨 􏽩

� k a
μ1 1 + μ1 ln a( 􏼁 − a

μ2 1 + μ2 ln a( 􏼁􏼂 􏼃< 0,

(4)

where μ1 ∈ (1, k + 1), μ2 ∈ (p, p + k), μ2 > μ1, and
a> 1SEIa(G′)> SEIa(G).

If p≤ k + 1, then

SEIa(G) − SEIa G′( 􏼁 � du.a
du

− dv − k( 􏼁.a
dv− k

􏽨 􏽩

− du + k( 􏼁.a
du+k

− dv.a
dv􏽨 􏽩

� z. a
μ1 1 + μ1 ln a( 􏼁 − a

μ2 1 + μ2 ln a( 􏼁􏼂 􏼃< 0,

(5)

where μ1 ∈ (1, p), μ2 ∈ (k + 1, k + p), μ2 > μ1, z � p − 1
and a> 1. *us, we have SEIa(G′)> SEIa(G). □

3. Extremal Values of Variable Sum Exdeg
Index for Conjugated Trees

First we introduce some notations which will be used in the
following lemmas and theorems. Suppose that T(n, m) be
the collection of all trees with n vertices and m-matching
number with n≥ 2m. When m − 1 pendent vertices are at-
tached with each certain non-central vertices of Sn− m+1, then

the resulting graph is denoted by T0(n, m). If we choose
n � 2m, then it means every tree from T(n, m) and T0(n, m)

contains perfect matching.

Lemma 3 (see [26]). If an n-vertex tree T has perfect
matching, then there must exist at least two vertices of degree
one with neighbouring vertices of degree two, where n≥ 3.

Lemma 4 (see [26]). If an n-vertex tree T has an m-matching
with n> 2m, then there must exist a pendent vertex u which is
not saturated by m-matching.

In the following, we will find two theorems which will
give extreme values of SEIa for all trees T in T(2m, m).

Theorem 1. Let m≥ 1, n≥ 4, and a> 1 be integers and
T ∈ T(2m, m); then, SEIa(T)≤m.am + 2(m − 1)a2 + am,
where equality meets when T � T0(2m, m).

Proof. Suppose T ∈ T(2m, m). If the tree T is isomorphic to
T0(2m, m), then SEIa(T) � SEIa(T0(2m, m)). On the other
hand, if T is not isomorphic to T0(2m, m), then we assume
that the vertex u ∈ V(T), i.e., du � Δ(T) where du ≥ 2.
Lemma 3 assures that there exist vertices u1 and v1 adjacent
by an edge with du1

� 2 and dv1
� 1. Let N(u1) − v1􏼈 􏼉 � w1.

We define T(1) � T − u1w1 + u1u. It is clear that
T(1) ∈ T(2m, m). By the definition of SEIa, we have

u

G

v

v1
v2

vk

(a)

u

v1
v2

vk

G′

v

(b)

Figure 1: (a) G and (b) G′ is constructed from G.
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SEIa(T) − SEIa T
(1)

􏼐 􏼑 � du.a
du + dw1

.a
dw1􏽨 􏽩

− du + 1( 􏼁.a
du+1

+ dw1− 1􏼐 􏼑.a
dw1 − 1􏼐 􏼑

􏼢 􏼣

� dw1
.a

dw1 − dw1− 1􏼐 􏼑.a
dw1 − 1􏼐 􏼑

􏼢 􏼣

− du + 1( 􏼁.a
du+1

− du.a
du􏽨 􏽩

� a
μ1 1 + μ1 ln a( 􏼁 − a

μ2 1 + μ2 ln a( 􏼁< 0,

(6)

where μ1 ∈ (dw1
− 1, dw1

), μ2 ∈ (du, du + 1), and μ2 > μ1 for
a> 1.

Note that T∗ � T1 − u1, v1􏼈 􏼉; then, obviously
T∗ ∈ T(2(m − 1), m − 1). *en, by the construction of T∗

and keeping Lemma 3 in our mind, we can choose u2 and v2
in T∗ where du2

� 2 and dv2
� 1. It is clear that

du(T∗) � Δ(T) � Δ(T∗). Let N(u2) − v2􏼈 􏼉 � w2. We set
T∗∗ � T∗ − u2w2 + u2u. Similarly, SEIa(T∗∗)> SEIa(T∗).
We define T2 � T1 − u2w2 + u2u; then,

SEIa T
(2)

􏼐 􏼑 − SEIa T
(1)

􏼐 􏼑 � du + 2( 􏼁.a
du+2

+ dw2
− 1􏼐 􏼑.a

dw2− 1
􏽨 􏽩

− du + 1( 􏼁.a
du+1

+ dw2
.a

dw2􏽨 􏽩

� du + 2( 􏼁.a
du+2

− du + 1( 􏼁.a
du+1

􏽨 􏽩

− dw2
.a

dw2 − dw2
− 1􏼐 􏼑.a

dw2− 1
􏽨 􏽩

� a
μ4 1 + μ4 ln a( 􏼁 − a

μ3 1 + μ3 ln a( 􏼁> 0,

(7)

where μ3 ∈ (dw2
− 1, dw2

), μ4 ∈ (du + 1, du + 2), and μ4 > μ3
for a> 1.

*is implies that SEIa(T(2)) − SEIa(T(1))> 0. We repeat
the above process on the graph T again and again and we
obtain a sequence of graphs T1, T2, . . . , T(s), . . . with the
relation SEIa(T(1)) < SEIa(T(2))< . . . SEIa(T(s))< . . .

For some positive integerp, we have T(p) � T(p+1) and
T(p) � (T0(2m, m)).

Hence, SEIa(T)< SEIa(T0(2m, m)). □

Theorem 2. Suppose that m≥ 1, n≥ 4, and a> 1 be integers.
If T ∈ T(2m, m), then SEIa(T)≥ 2a + 2(2m − 2)a2, where
equality meets when T � P2m.

Proof. We claim that T � P2m; then, SEIa(T) � SEIa(P2m).
If we apply the above-defined process (in previous *eorem

1) on T, then we will obtain the expression
SEIa(T(1))< SEIa(T(2))< . . . SEIa(T(s))< . . . for some
positive integer p≥ 1SEIa(T)p > SEIa(P2m). Hence,
SEIa(T)≥ SEIa(P2m) � 2a + 2(2m − 2)a2 equality meets
when T � P2m. □

4. Extremal Values of Variable Sum Exdeg
Index for Conjugated Unicyclic Graphs

In this portion of the paper, we will find extreme values for
SEIa(G) among all the conjugated unicyclic graphs in
Ul(2m, m) for a> 1. In this concern, we will prove some
lemmas which will support our main theorems.

Lemma 5 (see [26]). For any tree T from T(2m + 1, m), we
find at least one vertex of degree 1 which will be adjacent with
a vertex v of degree 2, i.e., dv � 2.

Lemma 6. Suppose that m≥ 1, a> 1 and T ∈ T(2m + 1, m);
then, SEIa(T)≥ SEIa(P2m+1), where sign of equality meets
when T � P2m+1.

Proof. Let T ∈ T(2m + 1, m); then, by Lemma 4, we find a
pendent vertex u in T which is not saturated by an
m-matching of T. Obviously, the vertices in T − u{ } are
saturated by the maximal m− matching. *is implies that
T − u{ } ∈ T(2m, m). Assume that N(u) � w{ }; then,
SEIa(T) � SEIa(T − u{ }) + dwadw + duadu − (dw − 1)adw− 1.
According to *eorem 2, we have

SEIa(T)≥ SEIa P2m( 􏼁 + dwa
dw + a − dw − 1( 􏼁a

dw− 1

� 2a + 2(2m − 2)a
2

+ dwa
dw + a − dw − 1( 􏼁a

dw− 1

� 2a + 2(2m − 1)a
2

− 2a
2

+ dwa
dw + a − dw − 1( 􏼁a

dw− 1

≥ 2a + 2(2m − 1)a
2

� SEIa P2m+1( 􏼁.

(8)

*e above inequality holds if dwadw

− (dw − 1)adw− 1 − (2a2 − a)≥ 0.
If dw � 2, then

dwa
dw − dw − 1( 􏼁a

dw− 1
− 2a

2
− a􏼐 􏼑 � 0. (9)

If dw ≥ 3, then we have

G1 T1

G: u

vk

v2

v1

v

(a)

vk

v2

v1

uG′:
v

(b)

Figure 2: (a) Graph G; (b) the graph G′ is obtained from G.
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a
μ2 1 + μ2 ln a( 􏼁 − a

μ1 1 + μ1 ln a( 􏼁> 0, (10)

where μ1 ∈ (1, 2), μ2 ∈ (dw − 1, dw), and μ2 > μ1 for a> 1.
Finally, we have SEIa(T)≥ SEIa(P2m+1). □

Lemma 7. Let T ∈ T(2m + 1, m); then, SEIa(T)≤ SEIa

(T0(2m + 1, m)) equality meets when T � T0(2m + 1, m)

where m≥ 1, a> 1.

Proof. Let T ∈ T(2m + 1, m); then, by Lemma 4, we find a
pendent vertex u in T which is not saturated by a maximal
m′-matching of T. Suppose that N(u) � z1􏼈 􏼉. Suppose v is a
vertex in T, i.e., dv � Δ(T). Define T′ � T − uz1 + uv; then,
clearly T′ − u{ } ∈ T(2m, m). With the help of*eorem 1, we
have SEIa(T′) − u{ }≤ SEIa(T0(2m, m)), so we have

SEIa T′( 􏼁 � SEIa T′ − u( 􏼁 + dua
du + dv + 1( 􏼁a

dv+1
− dva

dv

≤ a + SEIa T
0
(2m, m)􏼐 􏼑 + dv + 1( 􏼁a

dv+1
− dva

dv

∗∗∗ < a + SEIa T
0
(2m, m)􏼐 􏼑 +(m + 1)a

m+1
− ma

m

� a + ma
m

+ 2a
2
(m − 1) + a.m +(m + 1)a

m+1
− ma

m

� a + ma
m

+ 2a
2
(m − 1) + a.m +(m + 1)a

m+1
− ma

m

� 2a
2
(m − 1) +(1 + m)a +(m + 1)a

m+1

� SEIa T
0
(2m + 1, m)􏼐 􏼑.

(11)

If we show that (dv + 1)adv+1 − dvadv <
(m + 1)am+1 − mam, then it will be enough for the existence
of the expression ∗∗ ∗ . Since we know that
Δ(T0(2m, m)) � m, T is not isomorphic to T0(2m + 1, m)

and dv ≤m. If we assume dv � m, then
(dv + 1)adv+1 − dvadv − (m + 1)am+1 + mam � 0. If we as-
sume dv <m, then

� dv + 1( 􏼁a
dv+1

− dva
dv􏽨 􏽩 − (m + 1)a

m+1
− ma

m
􏽨 􏽩

� a
μ1 1 + μ1 ln a( 􏼁 − a

μ2 1 + μ2 ln a( 􏼁< 0,
(12)

where μ1 ∈ (dv, dv + 1), μ2 ∈ (m, m + 1), μ2 > μ1 and a> 1.
Hence, SEIa(T)< SEIa(T′)< SEIa(T0(2m + 1, m)). So,

we conclude that SEIa(T)≤ SEIa(T0(2m + 1, m)), and sign
of equality meets when T � T0(2m + 1, m).

We define a set B � xi ∈ V(Cl): dxi
≥ 3􏽮 􏽯. Remember

that T(xi) represents the connected component having the
vertex xi of the graph G − xi− 1xi, xixi+1􏼈 􏼉. □

Lemma 8 (see [26]). Let G ∈ Ul(2m, m); then, for every
xi ∈ B, T(xi) ∈ T(ni, ni/2) or T(xi) ∈ T(ni, ni − 1/2).

Lemma 9. Let G ∈ Ul(2m, m) such that SEIa(G) is mini-
mum if T(xi) � Pni

where xi ∈ B, ni � n(T(xi)), a> 1 and xi

is one of the pendent vertices of Pni
.

Proof. SupposeG ∈ Ul(2m, m) withminimum variable sum
exdeg index.We also assume that xi ∈ B and the vertices xi− 1
and xi+1 are the neighbouring vertices of the vertex xi along
Cl. Here we consider the expression

Q � dxi
a

dxi − dxi
− 2􏼐 􏼑a

dxi
− 2

􏽨 􏽩 + dxi− 1
a

dxi− 1 − dxi− 1
− 1􏼐 􏼑a

dxi− 1− 1
􏽨 􏽩

+ dxi+1
a

dxi+1 − dxi+1
− 1􏼐 􏼑a

dxi+1 − 1
􏽨 􏽩.

(13)

We assume that G∗ is the connected component of G −

xixi− 1, xixi+1􏼈 􏼉 which does not contain the vertex xi. We
can write the expression, SEIa(G) � SEIa (G∗) +

Q + SEIa(Txi
). According to Lemma 8, T(xi) ∈ T(ni, ni/2)

or T(xi) ∈ T(ni, ni − 1/2). In either situation, there exists
the following relation: SEIa(G)≥ SEIa(G∗) + Q + SEIa(Pni

)

according to *eorem 2 and Lemma 6. Furthermore, the
sign of equality meets iff T(xi) � Pni

. Next we will prove
that the vertex xi is one of the pendent vertices of Pni

such
that dxi

� 3. We suppose that dxi
≥ 4, so there must exist

two vertices u and v, i.e., N(xi) − xi− 1, xi+1􏼈 􏼉 � u, v{ }. *en,
there must be one edge of xiu, or xiv which is not included
in m-matching. Without loss of generality, suppose
that xiu does not belong to the m-matching. Let P(v) �

v1, v2, . . . vq where q≥ 2 represents the path with v � v1 as a
pendent vertex of P(v). Define G′ � G − xiu + uvq; it is
clear that G′ ∈ Ul(2m, m). By the definition of SEIa, we
have

SEIa G′( 􏼁 − SEIa(G) � dxi
− 1􏼐 􏼑a

dxi
− 1

+ dvq
+ 1􏼒 􏼓a

dvq
+1

􏼔 􏼕

− dxi
􏼐 􏼑a

dxi + dvq
a

dvq􏼔 􏼕

� dvq
+ 1􏼒 􏼓a

dvq
+1

− dvq
􏼒 􏼓a

dvq􏼔 􏼕

− dxi
a

dxi − dxi
− 1􏼐 􏼑a

dxi
− 1

􏽨 􏽩

� a
μ1 1 + μ1 ln a( 􏼁 − a

μ2 1 + μ2 ln a( 􏼁< 0,

(14)

where μ1 ∈ (dvq
, dvq

+ 1), μ2 ∈ (dxi
− 1, dxi

), μ2 > μ1 and
a> 1.

SEIa(G′)< SEIa(G) which contradicts our choice of
G. □

Lemma 10. If G ∈ Ul(2m, m), a> 1 with maximum
SEIa(G); then, for every vertex xi ∈ B, there exist T(xi) which
will be isomorphic to T0(ni, ni/2) or T0(ni, ni − 1/2). If T(xi)

is isomorphic to T0(ni, ni/2), then dxi
− 2 will be equal to

Δ(T0(ni, ni/2)). If T(xi) is isomorphic to T0(ni, ni − 1/2),
then the vertex xi will be the one end vertex of T0(ni, ni − 1/2)

and (xi) will be adjacent to some maximum degree vertex of
T0(ni, ni − 1/2).

Proof. Let G ∈ Ul(2m, m) with maximum variable sum
exdeg index.We also assume that xi ∈ B and the vertices xi− 1
and xi+1 are the neighbouring vertices of the vertex xi along
Cl. Here we consider the expression

Q � dxi
a

dxi − dxi
− 2􏼐 􏼑a

dxi
− 2

􏽨 􏽩 + dxi− 1
a

dxi− 1 − dxi− 1
− 1􏼐 􏼑a

dxi− 1− 1
􏽨 􏽩

+ dxi+1
a

dxi+1 − dxi+1
− 1􏼐 􏼑a

dxi+1
− 1

􏽨 􏽩.

(15)

We assume that G∗ is the connected component of G −

xixi− 1, xixi+1􏼈 􏼉 which does not contain the vertex xi. We
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can write the expression SEIa(G) � SEIa(G∗)+ Q + SEIa
(T(xi)).

According to *eorem 1, Lemma 7, and Lemma 8, we
have

SEIa(G)≤ SEIa G
∗

( 􏼁 + Q + SEIa T
0

ni,
ni

2
􏼒 􏼓􏼒 􏼓, (16)

or

SEIa(G)≤ SEIa G
∗

( 􏼁 + Q + SEIa T
0

ni,
ni − 1
2

􏼒 􏼓􏼒 􏼓, (17)

for ni being even or odd, respectively. Above two inequalities
hold iff T(xi) � T0(ni, ni/2) and T(xi) � T0(ni, ni − 1/2),
respectively. Next we will prove that

(1) If T(xi) � T0(ni, ni/2), then dxi
− 2 � Δ

(T0(ni, ni/2)).
(2) If T(xi) � T0(ni, ni − 1/2), then (T0(ni, ni − 1/2))

has the vertex xi as a pendent vertex that is adjacent
to the vertex of maximum degree in T0(ni, ni − 1/2).

For the proof of (i), we assume that dxi
− 2<

Δ(T0(ni, ni/2)). Let y ∈ V(T), i.e., dy � Δ(T0(ni, ni/2)). We
define G′ � G − xixi− 1− xixi+1 + xi− 1y + xi+1y. By the defi-
nition of SEIa(G),

SEIa(G) − SEIa G′( 􏼁 � dxi
a

dxi + dya
dy􏽨 􏽩

− dxi
− 2􏼐 􏼑a

dxi
− 2

+ dy + 2􏼐 􏼑a
dy+2

􏽨 􏽩

� dxi
a

dxi − dxi
− 2􏼐 􏼑a

dxi
− 2

􏽨 􏽩

− dy + 2􏼐 􏼑a
dy+2

− dya
dy􏽨 􏽩.

(18)

If dxi
≥ dy, then

SEIa(G) − SEIa G′( 􏼁 � dya
dy − dxi

− 2􏼐 􏼑a
dxi

− 2
􏽨 􏽩

− dy + 2􏼐 􏼑a
dy+2

− dxi
a

dxi􏽨 􏽩

� z. a
μ1 1 + μ1 ln a( 􏼁 − a

μ2 1 + μ2 ln a( 􏼁􏼂 􏼃< 0,

(19)

where μ1 ∈ (dx − 2, dy), μ2 ∈ (dxi
, dy + 2), μ2 > μ1 , a> 1,

and z � dy − dxi
+ 2.

SEIa(G′)> SEIa(G) which contradicts our choice of G.
If dxi
< dy, then

SEIa(G) − SEIa G′( 􏼁 � dxi
a

dxi − dxi
− 2􏼐 􏼑a

dxi
− 2

􏽨 􏽩

− dy + 2􏼐 􏼑a
dy+2

− dy􏼐 􏼑a
dy􏽨 􏽩

� 2. a
μ1 1 + μ1 ln a( 􏼁 − a

μ2 1 + μ2 ln a( 􏼁􏼂 􏼃< 0,

(20)

where μ1 ∈ (dxi
− 2, dxi

), μ2 ∈ (dy, dy + 2), μ2 > μ1, and
a> 1.

SEIa(G′)> SEIa(G) which contradicts our choice of G.
For the proof of (ii), we will just show that dxi

� 3 and
dw1

� Δ(T(vi)) where w1 � N(xi) − xi+1, xi− 1􏼈 􏼉.
Since G ∈ Ul(2m, m) and T(xi) is isomorphic to

T0(ni, ni − 1/2), dxi
− 2<Δ(T0(ni, ni − 1/2)).

Note that any vertex w2 other than the vertex of max-
imum degree in T0(ni, ni − 1/2) has the degree 2 or 1. If
dxi

− 2 � 2, this implies that in T0(ni, ni − 1/2), there will be
a vertex which is not saturated by the maximal matching of
G. Here a contradiction arises for dxi

− 2 � 1. *is implies
dxi

� 3. If we assume dw1
<Δ(T0(ni, ni − 1/2)), then once

again we find a vertex in T0(ni, ni − 1/2) which is not sat-
urated by the maximal matching in G and again we will find
a contradiction. From the above discussion, the proof is
accomplished. □

Theorem 3. Suppose G ∈ Ul(2m, m); then, SEIa ≥ 1 + 3a3 +

2(2m − 2)a2 for a> 1 and the sign of equality meets when
G � (Cl, xi)⋓(P2m− k+1, xi) where xi ∈ Cl is a pendent vertex
of P2m− k+1.

Proof. Suppose G ∈ Ul(2m, m) having minimum SEIa.
According to Lemma 9, for the minimum SEIa(G), T(xst

)

will be isomorphic to Pnst
for every xst

∈ B where
nst

� n(T(xst
)). For |B| � 1, the above result holds. Now we

discuss the above result for |B|≥ 2. We have
T(xst

) � Pnst
(t � 1, 2, . . . , |B|). So, we denote T(xst

)

� yt
0y

t
1 . . . yt

bt
(bt ≥ 1), where yt

0 � xst
(t � 1, 2 . . . .|B|). We

define G∗ � G − y2
0 y2

1 − y3
0y

3
1 . . . − y

|B|
0 y

|B|
1 + y1

b1
y2
1 +y2

b2
y3
1 + · · · + y

|B|− 1
b|B|− 1

y
|B|
1 . It is clear that G∗ ∈ Ul(2m, m); then, by

the definition of SEIa,

SEIa G
∗

( 􏼁 − SEIa(G) � (|B| − 1) 2a
2

− a􏼐 􏼑 − 3a
3

− 2a
2

􏼐 􏼑􏽨 􏽩

� (|B|− 1) a
μ1 1 + μ1 ln a( 􏼁 − a

μ2 1 + μ2 ln a( 􏼁􏼂 􏼃<0,

(21)
where μ1 ∈ (1, 2), μ2 ∈ (2, 3), μ2 > μ1, and a> 1.

SEIa(G∗)< SEIa(G) which contradicts our choice of G.
Hence, the proof of above theorem is finished. □

5. Main Result

Theorem 4. Let G ∈ Ul(2m, m) and a> 1; then, the fol-
lowing results must hold:

(1) If 2m � l + 2, then SEIa ≤ 2a + 2(l − 2)a2 + 3a3 and
the sign of equality meets when G is not isomorphic to
(Cl, P3).

(2) If 2m≥ l + 3 and l is odd, then SEIa

(G)≤ (m − l − 1/2)a + 2(m + l − 3/2)a2 + (m − l − 5
/2)am− l− 5/2 sign of equality meets iff G �

(Cl, xi)⋓(T0(2m − l + 1, 2m − l + 1/2), xi).
(3) If 2m≥ l + 3 and l is even, then SEIa(G)≤

(m − l/2)a + 2(m + l/2 − 2)a2 + 3a3 + (m − l/2 + 1)

am− l/2+1 sign of equality meets iff G � (Cl,

xi)⋓(T0(2m − l + 1, 2m − l/2), xi), where dxi
� 3,

N(xi) − xi− 1, xi+1􏼈 􏼉 � y, and y � Δ(T0

(2m − l + 1, 2m − l/2), xi).

Proof. Let G ∈ Ul(2m, m), a> 1 with maximum SEIa(G).
According to Lemma 8, we are sure that T(xi) is isomorphic
to T0(ni, ni − 1/2) or T0(ni, ni/2) where xi ∈ B.
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For |B| � 1, we have no graph G≇(Cl, P3) for which
2m � l + 2. Whenever 2m � l + 2, then G must be isomor-
phic to (Cl, P3) where G ∈ Ul(2m, m). According to *e-
orem 3, we can find a graph G′ such that
SEIa(G′)> SEIa(Cl, P3) � SEIa(G) for G′ ≠ (Cl, P3) which
contradicts the choice of G. With the help of Lemma 10, the
proof of (2) or (3) is satisfied. For |B|≥2, we may have the
below cases.

Case 1. Let 2m � l + 2; then, for any two graphs G∗and
G∗∗, both graphs are not isomorphic to (Cl, P3) and
SEIa(G∗) � SEIa(G∗∗). According to *eorem 3, we
have SEIa(G)> SEIa((Cl, P3)) where G≇ (Cl, P3), and
hence (1) satisfies.
Case 2. For 2m≥ l + 3, we make the following subcases.
Let xst
∈ B, t � 1, 2, . . . , |B| and n(T(xst

)) � nt.

Subcase 2.1. Let nt � 2 for every xst
∈ B; then, we have

the following set of vertices: V(G)− V(Cl) � y1,􏼈

y2, . . . , y|B|} and N(yt) � xst
, t � 1, 2, . . . , |B|. Let

N(xst
) − yt􏼈 􏼉 � xst

− 1, xst
+ 1􏽮 􏽯, t � 1, 2, . . . , |B|.

Choose |B|≥ 3. If |B| � 3, we define G∗ � G − xs2
y2 −

xs3
y3 + xs1

y2 + y2y3. If |B|≥ 4, we define G∗ � G −

xs2
y2 − xs3

y3 − xs2− 1xs2
− xs2

xs2+1 − xs3
xs3+1 + xs2− 1

xs2+1 + xs2
xs3

+ xs2
xs3+1 + xs1

y2 + y2y3
In both above G∗, we have G∗ ∈ Ul(2m, m) and we
have the expression

SEIa G
∗

( 􏼁 − SEIa(G) � 4a
4

− 3a
3

􏼐 􏼑 + 2a
2

− a􏼐 􏼑

− 2 3a
3

− 2a
2

􏼐 􏼑 � 4a
4

− 3.3a
3

􏼐 􏼑

+ 3.2a
2

− a􏼐 􏼑> 0,

(22)

which contradicts our choice of G.
Subcase 2.2. Let xs

l′
∈ B, i.e., nl′ � 3; here we have

|B|≥ 2; there must exist a vertex xs
t′
in B − xs

l′
􏼚 􏼛. We

define G∗ � G − xs
l′
yl′ + xs

t′
yl′ ; then, clearly

G∗ ∈ Ul(2m, m). By the definition of SEIa(G), we
have

SEIa G
∗

( 􏼁 − SEIa(G) � dxs
t′

+ 1􏼒 􏼓a
dxs

t′
+1

+ 2a
2

􏼔 􏼕

− dxs
t′
a

dxs
t′ + 3a

3
􏼔 􏼕

� dxs
t′

+ 1􏼒 􏼓a
dxs

t′
+1

− dxs
t′
a

dxs
t′􏼒 􏼓􏼔 􏼕

− 3a
3

− 2a
2

􏽨 􏽩.

(23)

Since dxs
t′
≥ 3 and a> 1, this implies that SEIa(G∗) −

SEIa(G)> 0 which is a contradiction to the choice of
G.
Subcase 2.3. Let xst

∈ B and nt ≥ 4. In this concern, two
subcases arise.
Subcase 2.3.1. Suppose that dxsl

� Δ(G) for some
xsl
∈ B; since we have |B|≥ 2, there exists a vertex xsr

in B − xsl
􏽮 􏽯. According to Lemma 8, Lemma 3, and

Lemma 5, there must exist some adjacent vertices say
us and vs in T(xsr

), i.e., dus
� 2 and dvs

� 1. Let
N(us) − vs􏼈 􏼉 � ws􏼈 􏼉. We define G∗ � G − wsus+ xsl

us;
then, clearly G∗ ∈ Ul(2m, m) and

SEIa G
∗

( 􏼁 − SEIa(G) � dxsl

+ 1􏼒 􏼓a
dxsl

+1
− dws

− 1􏼐 􏼑a
dws

− 1
􏼔 􏼕 − dxsl

a
dxsl + dws

a
dws􏼔 􏼕

� dxsl

+ 1􏼒 􏼓a
dxsl

+1
− dxsl

a
dxsl􏼔 􏼕 − dws

a
dws − dws

− 1􏼐 􏼑a
dws

− 1
􏽨 􏽩

� a
μ2 1 + μ2 ln a( 􏼁 − a

μ1 1 + μ1 ln a( 􏼁􏼂 􏼃> 0,

(24)

where μ1 ∈ (dws
− 1, dws

), μ2 ∈ (dxsl

, dxsl

+ 1), μ2 > μ1,
and a> 1.
SEIa(G∗)> SEIa(G) which contradicts our choice of
G.
Subcase 2.3.2. Suppose that dxsl

<Δ(G) for some
xsl
∈ B. Let y be a vertex in G with dy � Δ(G), so this

implies that y ∈ T(xsl
) where l is a positive integer.

Since we have |B|≥ 2, then there exists some vertex xsr

in B − xsl
􏽮 􏽯. According to Lemma 8, Lemma 3, and

Lemma 5, there must exist some adjacent vertices say
us and vs in T(xsr

), i.e., dus
� 2 and dvs

� 1. Let
N(us) − vs􏼈 􏼉 � ws􏼈 􏼉.

Remaining portion of the under discussion subcase is
similar to subcase 2.3.1 and once again we find the

contradiction. According to all above discussion and ar-
gument, we follow the desired result. □

Theorem 5. Let G ∈ Ul(2m, m), a> 1, and n(T(xi))≥ 3 for
every xi ∈ B; then,

(1) If 2m≥ l + 3 and l is odd, then
SEIa(G)≤ (m − l − 1/2)a + 2(m + l − 3/2)a2 + (m −

l − 5/2)am− l− 5/2 sign of equality meets iff
G � (Cl, xi)⋓(T0(2m − l + 1, 2m − l + 1/2), xi).

(2) If 2m≥ l + 3 and l is even, then SEIa(G)≤
(m − l/2)a + 2(m + l/2 − 2)a2 + 3a3 + (m− l/2 + 1)

am− l/2+1 sign of equality meets iff G �

(Cl, xi)⋓(T0(2m − l + 1, 2m − l + 1/2), xi), where
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dxi
� 3, N(xi) − xi− 1, xi+1􏼈 􏼉 � y, and

y � Δ(T0(2m − l + 1, 2m − l/2), xi).

6. Extremal Values of Variable Sum Exdeg
Index for Bicyclic Graphs

Here we are going to define some notations. Let G(n, n + 1)

be the collection of bicyclic graphs or all those graphs which
have n vertices and n + 1 number of edges. Note that if
G ∈ G(n, n + 1), then there exist two cycles say Ci and Cj in
G.

(i) A(i, j) is the collection of graphs G ∈ G(n, n + 1) in
which cycles Ci and Cj share a single vertex only.

(ii) B(i, j) is the collection of graphs G ∈ G(n, n + 1) in
which cycles Ci and Cj share no common vertex.

(iii) C(i, j, l) is the collection of graphs G ∈ G(n, n + 1)

in which cycles Ci and Cj share a common path of
length l.

6.1. Extremal Graphs in A(i, j). Suppose Sn(i, j) is a graph
from the collection A(i, j), i.e., there are k � n − i − j + 1
pendent vertices adjacent to a common vertex of Ci and Cj

as shown in Figure 3.

Lemma 11. Let G ∈ A(i, j); if G≇Sn(i, j), then
SEIa(G)< SEIa(Sn(i, j)) for a> 1.

Proof. Let G ∈ A(i, j); then, by Lemma 2, we obtain another
graph say G′ for which SEIa(G′)> SEIa(G). Further by
Lemma 1, the graph G′ can be changed into another graph
say G″ in which pendent vertices will be attached with some
common vertex u, of Ci andCj. If u is a not a common vertex
of Ci and Cj, then G″≇Sn(i, j). By the definition of SEIa(G),
we have

SEIa Sn(i, j)( 􏼁 − SEIa G″( 􏼁 � (k + 4).a
k+4

+ 2a
2

􏽨 􏽩

− (k + 2).a
k+2

+ 4a
4

􏽨 􏽩.
(25)

Case − 1: for k � n + 1 − i − j � 1, a> 1, we have

SEIa Sn(i, j)( 􏼁 − SEIa G″( 􏼁 � (k + 4).a
k+4

− 4a
4

􏽨 􏽩 − (k + 2).a
k+2

− 2a
2

􏽨 􏽩

� a
μ2 1 + μ2 ln a( 􏼁 − a

μ1 1 + μ1 ln a( 􏼁􏼂 􏼃> 0,

(26)

where μ1 ∈ (2, k + 2), μ2 ∈ (4, k + 4), μ2 > μ1, a> 1.
Case − 2: for k � n + 1 − i − j≥ 2, a> 1, we have

SEIa Sn(i, j)( 􏼁 − SEIa G″( 􏼁 � (k + 4).a
k+4

− (k + 2).a
k+2

􏽨 􏽩 − 4a
4

− 2a
2

􏽨 􏽩

� k. a
μ2 1 + μ2 ln a( 􏼁 − a

μ1 1 + μ1 ln a( 􏼁􏼂 􏼃> 0,

(27)

where μ1 ∈ (2, 4), μ2 ∈ (k + 2, k + 4), μ2 > μ1, a> 1.
From the above two cases, we conclude that

SEIa(Sn(i, j))> SEIa(G″). □

Lemma 12. Let Sn(i, j) ∈ A(i, j); then,

(a) SEIa(Sn(i, j))< SEIa(Sn(i − 1, j)), a> 1, i> 3.
(b) SEIa(Sn(i, j))< SEIa(Sn(i, j − 1)), a> 1, j> 3.

Proof. By the definition of SEIa(G), we have

SEIa Sn(i, j)( 􏼁 − SEIa Sn(i − 1, j)( 􏼁 � 2a
2

− a􏽨 􏽩 − (k + 5)a
k+5

− (k + 4)a
k+4

􏽨 􏽩

� a
μ1 1 + μ1 ln a( 􏼁 − a

μ2 1 + μ2 ln a( 􏼁< 0,
(28)

where μ1 ∈ (1, 2), μ2 ∈ (k + 4, k + 5), μ2 > μ1 and
a> 1SEIa(G′)> SEIa(G).

Proof of (ii) is the same as proof of (i). □

Theorem 6. If G ∈ A(i, j), then SEIa(G) will be maximal if
G � Sn(i, j) and for all i≥ 3, j≥ 3, the graph from A(i, j)

with maximum SEIa is Sn(3, 3).

Proof. Proof of this theorem can be obtained by Lemma 11
and Lemma 12. □

6.2. Extremal Graphs in B(i, j). Here we define that T r
n(i, j)

is a graph which is obtained by joining Ci and Cj by a path P

of length r and the remaining number of vertices k � n −

i − j − r + 1 are attached to the same end vertex of P as
shown in Figure 4.

Lemma 13. Let G ∈ B(i, j); if G≇ T r
n(i, j), then

SEIa(G)< SEIa(T r
n(i, j)) for a> 1.

Proof. Let G ∈ B(i, j); then, by Lemma 2, we obtain another
graph say G′ for which SEIa(G′)> SEIa(G). Further by

Cj

Ci

Figure 3: Sn (i, j) graphs.
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Lemma 1, the graph G′ can be changed into another graph
say G″ in which pendent edges are attached with same vertex
u, i.e., SEIa(G″)> SEIa(G′). If u is not end vertex of path P,
then we will show SEIa(T r

n)> SEIa(G″). By the definition of
SEIa, we have

SEIa T
r
n( 􏼁 − SEIa G″( 􏼁 � (k + 3)a

k+3
− (k + 2)a

k+2
􏽨 􏽩 − 3a

3
− 2a

2
􏽨 􏽩

� a
μ2 1 + μ2 ln a( 􏼁 − a

μ1 1 + μ1 ln a( 􏼁> 0,

(29)

where μ1 ∈ (2, 3), μ2 ∈ (k + 2, k + 3), μ2 > μ1, a> 1, and
k � n + 1 − i − j − r. □

Lemma 14. Let T r
n ∈ B(i, j); then,

(a) SEIa(T r
n(i − 1, j))> SEIa(T r

n(i, j)), a> 1, i> 3.
(b) SEIa(T r

n(i, j − 1))> SEIa(T r
n(i, j)), a> 1, j> 3.

(c) SEIa(T r− 1
n (i, j))> SEIa(T r

n(i, j)), a> 1, r> 1.

Proof. By the definition of SEIa(G),

θ � SEIa T
r
n(i − 1, j)( 􏼁 − SEIa T

r
n(i, j)( 􏼁

� (k + 4)a
k+4

− (k + 3)a
k+3

􏽨 􏽩 − 2a
2

− a􏽨 􏽩

� a
μ2 1 + μ2 ln a( 􏼁 − a

μ1 1 + μ1 ln a( 􏼁> 0,

(30)

where μ1 ∈ (1, 2), μ2 ∈ (k + 3, k + 4), μ2 > μ1, a> 1, and
k � n + 1 − i − j − r. *is implies that θ> 0.

Proof of (ii) is the same as proof of (i). □

Proof. By the definition of SEIa(G),

θ � SEIa T
r− 1
n (i, j)􏼐 􏼑 − SEIa T

r
n(i, j)( 􏼁

� (k + 4)a
k+4

− (k + 3)a
k+3

􏽨 􏽩 − 2a
2

− a􏽨 􏽩

� a
μ2 1 + μ2 ln a( 􏼁 − a

μ1 1 + μ1 ln a( 􏼁> 0,

(31)

where μ1 ∈ (1, 2), μ2 ∈ (k + 3, k + 4), μ2 > μ1, a> 1. *is
implies that θ> 0.

SEIa(T r− 1
n (i, j))> SEIa(T r

n(i, j)). After proving Lemma
13 and Lemma 14, we are able to present the following
theorem. □

Theorem 7. If G ∈ B(i, j), then SEIa(G) will be maximal if
G � Tn(i, j) and for all i≥ 3, j≥ 3, the graph from B(i, j)

with maximum SEIa is Tn(3, 3).

6.3.ExtremalGraphs inC(i, j, l). Here we define thatΛl
n(i, j)

is a graph which is obtained by attaching n + l + 1 − i − j

edges to one of the vertices of degree 3 in G ∈ C(i, j, l) (see
Figure 5). Here we define some lemmas but skip their proofs.
We refer Lemma 13 and Lemma 14 for the proof of following
lemmas.

Lemma 15. Let G ∈ C(i, j, l); if G≇Λl
n(i, j), then

SEIa(G)< SEIa(Λl
n(i, j)) for a> 1.

Lemma 16. Let Λl
n(i, j) ∈ C(i, j, l); then,

(a) SEIa(Λl
n(i − 1, j)> SEIa(Λl

n(i, j)), i> 3.
(b) SEIa(Λl

n(i, j − 1)> SEIa(Λl
n(i, j)), j> 3.

(c) SEIa(Λl− 1
n (i, j)> SEIa(Λl

n(i, j)), l> 1.

Theorem 8. For a> 1 and the graph from the collection
C(i, j, l) with maximum SEIa(G) for all i≥ 3, j≥ 3 and l> 1 is
Λ1n(3, 3).

Theorem 9. A graph G ∈ G(n, n + 1) has maximum variable
sum exdeg index if and only if G � Λ1n(3, 3) for a> 1.

Proof. Since Sn(3, 3), T1
n(3, 3), and Λ1n(3, 3) belong to

G(n, n + 1). All the previous lemmas and theorems make it
very clear and easy to understand that Sn(3, 3), T1

n(3, 3), and
Λ1n(3, 3) havemaximum SEIa(G), andSn(3, 3), T1

n(3, 3), and
Λ1n(3, 3) belong toA(i, j), B(i, j), and C(i, j, l), respectively,
for n≥ 6. Now we just need to compare the SEIa of Sn(3, 3),
T1

n(3, 3), and Λ1n(3, 3).

θ1 � SEIa Λ
1
n(3, 3)􏼐 􏼑 − SEIa Sn(3, 3)( 􏼁

� (n − 1).a
n− 1

+ 3.a
3

+ 2.2a
2

+(n − 4)a􏽨 􏽩

− (n − 1).a
n− 1

+ 4.2a
2

+(n − 5)a􏽨 􏽩

� 3a
3

− 2.2a
2

+(n − 5)a> 0.

(32)

*is implies that θ1 > 0.

Ci

Cj

Figure 4: Tr (i, j) graphs.

Ci Cj

Figure 5: Λl
n(i, j) graphs.
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θ2 � SEIa Sn(3, 3)( 􏼁 − SEIa T
1
n(3, 3)􏼐 􏼑

� (n − 1).a
n− 1

+ 4.2a
2

+(n − 5)a􏽨 􏽩

− (n − 3).a
n− 3

+ 4.2a
2

+ 3.a
3

+(n − 6)a􏽨 􏽩

� (n − 1)a
n− 1

− (n − 3)a
n− 3

􏽨 􏽩 − 3a
3

− a􏽨 􏽩

� 2 a
μ2 1 + μ2 ln a( 􏼁 − a

μ1 1 + μ1 ln a( 􏼁􏼂 􏼃> 0,

(33)

where μ1 ∈ (1, 3), μ2 ∈ (n − 3, n − 1), μ2 > μ1, a> 1. *is im-
plies that θ2 > 0. From the above discussion, we conclude
that Λ1n(3, 3)>Sn(3, 3)> T1

n(3, 3). □

7. Conclusion

Ascertaining the upper and lower bounds on any molecular
structure descriptor with regard to various graph parameters
is a significant job. We have sought the maximum value of
SEIa for unicyclic graphs. Sharp bounds have also been
investigated for conjugated trees and conjugated unicyclic
graphs. We also investigated the extremal graphs for each
upper and lower bounds. Following are the main points of
conclusion.

(i) We have provided maximum and minimum values
of SEIa for conjugated trees.

(ii) We have also provided lower and upper bounds of
SEIa for unicyclic conjugated graphs with respect to
the length of this cycle.

(iii) At the end of this paper, we have determined the
maximum value of SEIa for bicyclic graphs or
(n, n + 1) − graphs.
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