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1. INTRODUCTION

Convex functions, a function class that has a very useful structure in terms of both
definition and features, are a unique and important part of the theory of inequality.
This function class has reinforced its importance with its use in inequality theory
studies and has been used in various application areas by sourcing new types of in-
equality. Jensen inequality, which is one of the cornerstones of the theory of inequal-
ity, has been the focus of many researchers and many articles on different versions
of this famous inequality have been brought into the literature. Jensen-Mercer in-
equality, a new variant of Jensen inequality introduced for convex functions, is a well
known inequality proved for convex functions in theory. A famous inequality proved
by using convex functions is called Jensen’s inequality and is given as follows. As-
sume that 0 < x; <xp < ... <x, and u = (,ul,yz, ...,,u,,) are non-negative weights
such that )} | w = 1. The celebrated Jensen inequality (see [ ]), in the literature
states that T is convex functions on the interval [0, 9], then

T(i .uka> < (i M T(xk)> (1.1)
k=1 k=1
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Vi €10,9] and all y €10,1], (k=1,2,...,n).

Now we will remind another important inequality that is obtained by using convex
functions. Hermite-Hadamard inequality, which gives the upper and lower limits of
the average value of a convex function depending on the averages of real numbers,
has been the focus of researchers for nearly a hundred years with its applications in
inequality theory, numerical analysis and applied mathematics. Numerous general-
izations, expansions, new variants and improvements have been achieved regarding
this inequality.

The following statement;

f(a—i—b)S ! a/bﬂx)dng(“)*f(”)

2 b—a 2

holds and known as Hermite-Hadamard inequality. Both inequalities hold in the
reversed direction if f is concave.

There have been many studies on the Jensen inequality, and one of the most notable
studies is the Jensen-Mercer inequality, a new version of the Jensen inequality given
by Mercer in [17]. Later, inspired by this impressive work, Matkovic et al. Jensen-
Mercer generalized the inequality to operators and enriched them with applications
(see [16]). Over the years, the Jensen-Mercer inequality has attracted the attention of
many researchers, and many studies have been conducted in different ways such as
taking this inequality to a higher dimension, obtaining it for superquadratic functions,
reverse Jensen-Mercer inequality and finding various generalizations (see the papers

[_99 s ) ’ s ])

Theorem 1 (see [16]). If Tis a convex function on [8,9], then

’C(G—i—ﬁ—zykxk) S’C(G)—F’C(ﬂ)—zyk’i(xk), (1.2)
k=1 k=1

Vi €10, and all y €10,1], (k=1,2,...,n).

We will proceed with some concepts that will be useful for our findings. Con-
sider the definitions of the Euler Gamma function I'(.) and Beta function B(. , .),
respectively:

r(0)= / T MO,
0

1
B(r,s):/ Wl (1=0)
0

The solution of some differential equations where the definition of classical deriv-
atives was insufficient remained a problem that mathematicians wondered for years.
This curiosity has also pushed mathematicians into a new quest for the real-world ap-
plications where classical analysis is desperate. As a result of this search, fractional
derivative and integral operators have been identified and studies in fractional analysis
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have gained speed. Today, many different fractional derivative and integral operator
definitions and properties are given. The functionality of these operators was revealed
by making various comparisons by examining the singularity, locality and some other
features of each operator. Some of these operators came to the forefront due to gener-
alizing a few others. Now, we are in a position to recall Riemann-Liouville fractional
(RLF) integrals and certain generalized fractional integral operators that generalize
Riemann-Liouville, Hadamard and generalized integral operators in a single form.

Definition 1 ([15]). Let T € [,9]. The Riemann-Liouville integrals J§, T and J§ T
of order o0 > 0 with 6,9 > 0 are defined by

1 y
(HﬁﬂwZIRQAOFWW”ﬂMdM y> 0, (13)

and | o
<@wa:rﬁwé<x—w*%@wn; y< o, (1.4

respectively, where I'(.) is the Euler Gamma function and (Jg, )t(y) = (J§_)t(y) =
Uy)-

In [12], Jarad et al. have defined new conformable fractional integral operator as

follows:
By L (-0 -0"\"" ()
By T(y)—F(B)/e ( _ ) gt (09

and

LG S L ) A 10}
b0 = p | <( ) = (B4 ) M e
) Jy o (0—21)
New conformable fractional integral operator has some special cases and connections
according to special values of parameters as follows:

Remark 1. 1) If we set 6 =0 and oo = 1 in (1.5), then the integral operator that
is defined with the equation (1.5) reduces to the Riemann-Liouville integral operator
that is given in (1.3).

ii) If we choose 8 = 0 and a@ — 0, the equation (1.5) coincides with the Hadamard
fractional integral that is defined in [14]. Also, if we select 8 = 0, the new fractional
integral operator reduces to Katugampola fractional integral operator.

iii) Similar connecitons can be established for (1.6). The operator that is defined in
(1.6) reduces to the Riemann-Liouville integral operator that is given in (1.4), if we
set 0 = 0 and oo = 1. It also coincide with the Hadamard fractional integral that is
given in [14] when we set & = 0 and o0 — 0 in (1.6).

For more results in inequality theory and various operators in fractional analysis
and detailed information on these operators, we recommend readers ([6-8, 11,12, 14,

s s - ])
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The main motivation in this study is to obtain new Jensen-Mercer-like Hermite-
Hadamard type inequalities by using fractional integrals defined in (1.5) and (1.6)
based on Jensen-Mercer inequality for functions whose derivatives are convex. Then,
with the help of Holder inequality and useful variants, inequalities similar to Jensen-
Mercer inequality were obtained. Many special cases have been demonstrated to
verify inequalities in the literature.

2. HERMITE-JENSEN-MERCER LIKE INEQUALITIES FOR NEW CONFORMABLE
FRACTIONAL INTEGRALS

With the help of the operator known as the fractional integral introduced as a new
generalization in fractional analysis, an Hermite-Jensen-Mercer type inequality is
given as follows:

Theorem 2. Suppose that T : [0,9] — R is a convex mapping. Then the following
inequality for fractional integrals holds:

x+y) < 28 1o (B+1)
2 )7 -0

t<6+1‘)—

(0+0—** (6+0—2)

<x(0)+3(0) - ("),

X{B )J("’t(64r19—)c)+ﬁJ°C T(9+ﬁ)’)}

2.1
where Vx,y € [6,9] , o, >0 and T'(.) is the Euler Gamma function.

Proof. Let’s start proving the first part of inequality with the fact that T is convex,
then we can write

1<9+13—

< T(O+%—x1) + T(O+0—y1)

— 2 b
Y x1,y1 € [0,9]. Hence if we setx; = %x—i— %ky and y; = %x—i—%y ,forx,y €10,0]
and A € [0,1], we get

xX+y A 2—A
. < — — [
2’6(94—6 > > ’c(G—i—ﬂ (2x—|— > y >>

2—A A
(oo (32 2).

x1+y1) :T<9+ﬁ—x1+6+ﬁ—y1>
2 2

(2.2)
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Now, to combine the above inequality with the operator, we multiply both sides of

1—(1—2)*\ P! o1 . . .. o
(2.2) by (T) (I —A)" " and then integrating the resulting inequality with
respect to A over [0, 1], we have

21 <9+ﬂ—x;y) /0l (l_u_x)a)ﬁl (1-2)*"dr

o

[ 0

X <1: <9+ﬁ— <72”x+2;7“y )) +t<6+1‘}— (2;7”x+§y)>>dx
B
(

ap
= (y_zx) {F(B) ﬁJ?GJHS,%)T(G—Fﬁ—Y)%—F(B) e+ﬁ_x§y)fa1(9+ﬁ—X)}.
It is obvious that
L= (1= w1
/O<a> (1= dh= o 2.3)

As a consequence,

x4+ 1
(oo 1)

2\ . .
<(2) {T® Py s 010 DBy, c@ 400}

Thus, this completes the proof of the first inequality of (2).
Again, to prove the second part, we remember that T is convex mapping, then for
A €[0,1], we can write

(oo (e 258)) <s@+v0) - (Grw+ 220,

and

r<e+1s— (2;7‘x+72‘y>> <1(8)+1(0) <2;7\"c(x)+>2\"t(y)> |

By adding the inequalities of (2.4) and (2.5), we have

A 2—A 2—A A

< 2(t(8) +1(B)) — (v(x) +T(¥))-

(2.6)
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ECERNCAN _
Now multiplying (2.6) by (%) (1—2)*" and then integrating the result-

ing inequality with respect to A over [0, 1], we obtain

/01 <1 —(L—M“)Bl(l !
X {r (e+e— <§x+2;7” )) +r<e+e— <2;7“x+72”y)>}dx

< {2c@+s0)-Gw o} [ (L

Namely,

2\ . .
<y_x> {F(B) BJ(G_H}_%)T(G-F@_Y)—FF(B) [(‘ML%)J r(e+e—x)}

B—1
) (1—=2)*"an.

1
< 3o {2E0) +30) - e +20) .
This completes the proof. O

Remark 2. (i) If we take x = 0 and y = in Theorem 2 , then we get (Theorem

2.1, [11]).
(ii) If we take v = 1, x = 0 and y = ¥ in Theorem 2, then we get (Theorem 2, [ ]).

Theorem 3. Suppose that T : [0,0] — R be a convex mapping. Then the following
inequality for fractional integrals holds:

. B
. (ew—;y) ST(e)H(ﬂ)—"m{ Bt (y) + Eﬂr(x)}
§T(6)+T(ﬁ)—1<x;y>

Q2.7)
and
1(64—19—)642”)
< T(O+0—x)+T(0+0—y) <2(0)+(0)— T(x)+71(y)
- 2 - 2
(2.8)

where ¥x,y € [0,9] , o, >0 and I'(.) is the Euler Gamma function.
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Proof. By making use of the Jensen-Mercer inequality, we get
T <9+ﬁ— xl;yl) <(8)+1(0) — W
(2.9)

Vx1,y1 € [0,0]. By changing of variables x; = Ax+ (1 —A)y and y; = (1 —A)x+ Ay,
forx,y € [0,9] and A € [0, 1] in (2.9), we can write
Xty T+ (1 =My +1((1-A)x+1Ay)

r(6+ﬁ—2>§r(6)+r(ﬁ)— 7 .

(2.10)

1

1—(1-0)* B a—1 . .
— (1 —A)"" " and then integrating the res-

Now by multiplying (2.10) by <

ulting inequality with respect to A over [0, 1], we success to reach the statement of
new conformable fractional operator;

r((—)—kﬁ—)Cery) /01 <1(10€7L)()L>B(1—k)“_]d7»

of (S o

R e

By making some simplyfing processes, we obtain

T <6+13—x;y> §1(9)+1(19)—(m{ By (y) + E,J%(x)}.

(2.11)
This completes the proof of the first inequality of (2.7).

Now, for the proof of second inequality of (2.7), we first note that if T is convex
function, then for A € [0,1], we obtain

T(x—;y) :T<M+(1—7L)y—;—(1—7»)x+7ty>
< T(Ax+(1=A)y)+t((1=A)x+Ay)
- 2

2.12)
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ECERNCAN _
By multiplying (2.12) by (%) (1—2)%" and then integrating the resulting

inequality with respect to A over [0, 1], we have

()L ()

</1 (1—(1—%)“)3(1_}00‘1{r(kx—i—(l—k)y)—i—’c((l—k)x+7»y)}dk’
0

o 2

after simplification and change of variables, we get

1«_<x+y>§oc31"(5+1) {sjgr(y)JrEJaT(x)}

2 2(y—x)%
_r< : )z— o { ot(y) + By ’c(x)}
(2.13)
adding t(0) +t(9) to both side of (2.13), we obtain
1(9)+t(ﬂ)—r<x;y>
p
zr(e>+r(ﬁ)—“r(5+ig{ngr<y)+§m(x)}.
2(y—x)
(2.14)

By combining (2.11) and (2.14), we prove (2.7). To prove (2.8), we will start with
the convexity of T,

q’_<e_1_ﬂ_x1—i-y1> :T<9+ﬂ—x1—;9+ﬂ—y1>
< TO+%—x1) +T(0+9—y1)
= 2 )

(2.15)

V x1,y1 € [6,9]. By change of variables such that x; = Ax+ (1 —A)y and y; =
(I1=M)x+Ay , forx,ye[0,8] and A € [0,1] in (2.15), we get

T(ewjy)

< {T(G—H‘)—(kx—k(l—k)y))qztt(e—kﬁ—((1 —A)x+1Ay)) }

(2.16)
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To combine the above inequality with the operator, we multiply (2.16) by

1—(1-0)% B- o—1 . . .. . .
(T) (1=2) and then integrating the resulting inequality with respect
to A over [0,1], we have

ﬂ:<6+19—x;y> /01 (1 _(106_7“>Q>B(1—x)“1dx
B

[ (U2

" {I(G—i—ﬂ—(kx+(1—7\.)y))—|—1(6+1‘)—((1 —A)x+Ay)) }dl
2 Y

By making use of the necessary operations, we get

t(@%—f)—x;y)

- aPT(B+1)
2(y—x)*

0+0—y

{ Py s Tt(O+0—y)+ P J“’c(6+ﬁx)}

(2.17)
On the other hand, using the convexity of T, we can write
TAO+O—x)+(1-A)(8+V0—y)) <AT(O+0—x)+(1-A)T(O+VO~y)
and
T((1=A)(B+3—x)+A(0+0—y) < (1-X)T(0+F—x)+AT(0+3—Y)

By adding above two inequalities and using the celebrated Jensen-Mercer inequality,
we have

TAO+D—x)+(1—A) (O+D—y)) +T((1—A) 0+ —x)+A(B+D—))
<T(O+0—x)+T(O+D—y) <2(t(0) +T(D) - (t(x) +1(y)).

(2.18)

1\ B! _
! (1(1 ) ) (1—2)*" and then integrating the resulting

Bynmhmwng(z1&by(
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inequality with respect to A over [0, 1], we have

/01 <1—(1—7V)a>ﬁ(1_}\‘)°‘1{1(7\.(9—1-19—)5)4‘(1_7“)(6+ﬁ_y))

o

FT((1-2) (9+13—x)+k(9+13—y))}dk

(1 —0\P
S2(1(6)+t(ﬁ))—(t(x)+1(y))/1 (1(17“)> (1= an,

0 (04

Again some basic operations, we get
T (B+1)

of { ﬁ‘]g+157x1(e+ﬂ7y)+ 9B+0y']at(e+ﬁx)}
2(y—x)

<a®)+eo) - (“UF),

2.19)

Finally, by combining (2.17) and (2.19), we get (2.8). Which completes the proof.
O

Remark 3. Under the assumptions of Theorem 3 with oo = 3 = 1, one has
x+y !
(i) t(0+0-"2) <3 +2(9)— [ 0x+(1-My)ah
T(0)+7T(V)—7 <XJ2Fy>

(i) T <9+19—x+y)
()+()

<T(6)+7(9) -
The Remark 3 is proved in (Theorem 2.1, [ ]).

and
T(0+0—A)dA

Y=

Lemma 1. Assume that ©: [0,0] — R is differentiable mapping on (0,9) with
0 <. If v € L[D,V)], then the following equation holds for fractional integrals:

2081 BT (B+1)
(y—x)*%

x{'éew_x?)Jar(eJrﬂ )+BJ(e+ﬁ ) (e+ﬁ—y)}

xX+y
0+ —
ro- )
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_ 0= ocﬁ/;(l—%—x)“)B

, 2—A A , A 2—A
x{‘c <9+13—( 7 x+2y>>—‘c <9+1‘}— <2x+2 y))}d?»,

(2.20)
where ¥x,y € [0,0], &, >0 and I'(.) is the Euler Gamma function.
Proof. 1t suffices to note that,
1= 2B —n)
4
2.21)

where

== 2-0 A 5y
YA A 22
pe [ (Y e (oo (35 )

Integrating by parts, we have

and

A A N

N 2(15[3 /9+ﬁ—x <<y_x>0€_<x _(e—i_ﬁ_x_’_y))a)[il
Ocﬁ—l(y—)c)ocBH CEEVE 2 ! 2

(i (00— 3)"

2 x+y
S R
ob (y—x) ( " 2 >

2 oc[.’)+ll“([3+1) B )
+-<y——x> 446$:T47(9+ﬁ_§g)f T(0+0—x)

(2.23)
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Similarly,

h_.Al(1_(:_Ma>ﬁﬂ<e+ﬁ-(gx+2;ky>>dk

2 x+y
Lh=——1(04+0——
B (y—x) < 2)
2 af+1 F(B + 1)
_ AP Bja _
<y—x> P (TR T(6+9-y).
(2.24)
By connecting the equations (2.23) and (2.24) with (2.21) and get (2.20). Thus the
proof is completed. g

Remark 4. (1) If we take x = 0 and y = U, then we can get (Lemrna 3.1, [ ]).
(ii) If we take o =1 and x =6,y = ¥ in Lemma 1, it reduces to (Lemma 1.1, [ ]).

Lemma 2. Assume that ©: [0,0] — R is differentiable mapping on (8,9) with
0 < 0. If v € L[B,V)], then the following equation holds for fractional integrals:

T0+8—x)+1(6+0—y) aPT(B+1)
2 2(y—x)*?

B JYT(0+0—x)+ P, 0+0—

X ooy’ TOFD—x)+ PG s T(O+D—Y)

e et ]

<7 (040 — (r+(1—A)y))dA,

where Vx,y € [0,9], a, >0 and I'(.) is the Euler Gamma function.

et (10 (1220

XxT(0+9—(Ax+(1—2X)y))dA

Proof.

Oab
(v 2)a<U1—b}.

1

(2.25)
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o
C1r@+9—x) B 11—\
_$ y—x _y—x 0 ( o >
X (1= 11 (0+8— (Ax+(1—1)y))dA

- arerton IO Lo, <oy

PRI
11:/01 <1(17“)> V(040 — O+ (1 —1)y))dh

aB y__x (y_x)ocBH
(2.26)
Lrr—ae\P
122/ < ) T(O+9—(Ax+(1—1)y))dr
1t +0-y) TB+1) 8 o
TP y—x i (y —x)°BFL | oo SO +D—x) 0,
2.27)
combining equations (2.26) and (2.27) with (2.25) and get (2.25). Which completes
the proof. U

Corollary 1. If we take 0. = 3 = 1 in Lemma 2, the we have the following equality:

TO@+d—x)+1(0+%—y) 1 /9+6"
2 y—xJe

t(A)dA

09—y
. 1
ZYT"/O (2A—1)7 (8+9 — (hx+ (1 -1)y))d\
(2.28)

Remark 5. 1If we take x = 0 and y = ¥ in Corollary 1, then the equality (2.28)
reduces to the equality as following

T<9) - e/ dx_ﬁ @17 (1-18+19) an.

which is proved in (Lemma 2.1, [ ]).

Theorem 4. t:[0,9] — R is differentiable mapping on (6,0) with 8 <O and

v € L[0,9]. If|V'] is convex function on [0,0], then the following inequality holds for
fractional integrals:

25 TaPT(B+1) [p

(y— X)OCB (6+0—2)

xX+y
—tle+d—
(0=

O"c(e—i—ﬁ )+ BJ(GJH& r+x) (94"&_)))}
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(2.29)
where V x,y € [6,9] ,a, >0, A€ [0,1] andT'(.), B(.,.) are the Euler Gamma
and Beta function

Proof. By using Lemma 1 with Jensen-Mercer inequality and the convexity of ||,
we can write

208~ laﬁr(5+1)
’ —x)%

o)
<ol [ (U
1

{@%_%m T(O+0 ) +PUE ‘C(G—I—l‘)—y)}

X (\T'(G)\—Hr’(ﬁ)b/ol<1_(1a—7h)a>ﬁd7»
ool [(SU 2R e [ (U
o) [ (S

- ’m)y/ol(l‘“a‘ (X)B;‘dxﬂr \/< ) 2-4 x)}
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By making use of the necessary computations, we get (2.29). Which completes the
proof. n

Remark 6. (i) If we take x = 0 and y = O in Theorem 4 , then we get (Theorem

3.1, [11]).
(i) If we take o = 1, x = 0 and y = ¥ in Theorem 4 and ¢ = 1 in Theorem 5 of [25]

are found to yield the same result.

Theorem 5. t: [0,8] — R is differentiable mapping on (6,9) with® <Y and v €
L[8,9]. If |T'|7 is convex function on [0,0] for some fixed g > 1, then the following
inequality holds for fractional integrals:

26 ToP T (B+1) a
) {?ew%y)J T(0+0— )+BJ(6H} ) T (9+ﬁ—y)}

)

o (La(penl))”
(1o (oo (s+1.3)
I
B

{0 e o) +(02)
O (g (8(p1.5) +2 (p1.5))) |
+ (RO +[< )<< pri (B“l>>>
A ror (g (s (p1.2) -#(p1.5)))
ol (s (2(0r15) w2 (6+12)) }}

where V x,y € [0,0] ,0, >0, A€ [0,1] and T'(.), B(.,.) are the Euler Gamma
and Beta function, p~! +47! = 1.

Q=

(2.30)

Proof. By using Lemma 1 with Jensen-Mercer inequality, by using convexity of
|7'|* and well-known power-mean inequality, we have
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yop-1 (xBF(B+1) (0+0—x)+ BJ(9+1‘> o) (G—I—ﬁ—y)}

(y—x)* {?M_%J%
o)
: {<< )

=
22 Mt ;“\Tf(yw))dx)‘l’}.

((rer+ron- (%
(2.31)

g

Making necessary simplifications, we get (2.30). The proof is completed
Remark 7. (i) If we take x = 0 and y = in Theorem 5 , then we get (Theorem

3.2,[11]).
(i1) If we take o =1, x = 0 and y = 0 in Theorem 5 reduces to Theorem 5 in [25]
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Theorem 6. T : [0,9] — R is differentiable mapping on (6,0) with 8 <O and
v € L[0,9]. If |T'|7 is convex function on [0,9], then the following inequality holds
for fractional integrals:

20B—1 B C(B+1) o .
(=) Voo 70100 Wiy 5040

(6-+0—12
-1 <9+ﬁ— : y> ‘
2
1

y—X g 1 1yY»
“ <ocl3p+1B<Bp+1’oc>)

IN

4
x { <‘T’ ©0)]"+ |7 (9)|" - <3lr’ (x)|q:|l./ (y)|q>>;
+ (\r/(e)}q+ I ()] - <\r’(x)|qz3h,(y)|q)>; }

(2.32)

where ¥ x,y € [0,9], a,p >0, A€ [0,1], ¢ >0 and T'(.), B(.,.) are the Euler
Gamma and Beta function, p~' + ¢~ ' = 1.

Proof. If we proceed a similar argument to the proof of the previous theorem, by

using Lemma 1 with Jensen-Mercer inequality and familiar Holder integral inequal-
ity, we can write

2% TP T (B+1) {B

o _ |3 o _
(y—x)(xﬁ (9+137%)J T(e‘i‘ﬂ X)+ J(eﬂ}_%)’t(e—i—ﬁ y)}

< %aﬁ (/01 (1_(la_x)a>ﬁpdt>lg
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By applying the convexity of |T'|?, we have

q

<Y ( [ (1—(106—7»“)3”%)}’

(/01 <‘Tl ®)]" + [ (0)]" - (2;k kd (x)\q+7£h' (y)‘q>>>31dx
[ (rerror-(Grwr2e <y>rf))>‘l’dx }
y=X p <od311)+13<l3p+1’i>);

4
{ (@@ - (R0 W))i

+ (\r’(e)}"+\r’(ﬁ)|q_ <\r’(x)|qz3|r,(y>|q>>; }

which completes the proof. U

+

IN

Corollary 2. If we choose o. =1 in Theorem 6, then we have the following in-
equality

0+09—x
1/ r(x)dx—r(ew—”y)
0

Yy =X Jo+0—y 2

< x| (F@+F©)- (Arers rr'<y>|q>)é

y (pr' O (”'q))‘l’ 1

Theorem 7. T : [0,8] — R is differentiable mapping on (8,%) with 6 < ¥ and
v € L[0,9]. If |T'|7 is convex function on [0,9], q > 1, then the following inequality




HERMITE-JENSEN-MERCER LIKE INEQUALITIES VIA FRACTIONAL INTEGRALS
holds for fractional integrals:

25T oPT(B+1) o
o0 {(ew_xg-v)J T(O+0—x)+ BJ(e+ﬁ o) (049 )}

o)
< 0209 e gy e (B(B“’&))

(XB+1

LB+
(Pt n bl ) ey
B

g
+< e 2ocB+1(B+1 ))’T'(Y)!qy
(

g

B(B+1,1
Koo (2E5H)
B(B+1, L2)\
( £ 2od3+1(ﬁjL )>}T(x)‘q

S )>>r'<y>\">;},

where Il x,y € [6,9], o, >0, A€ [0,1] and T'(.)
and Beta function, p~' +¢7 ' = 1.

B(.,.) are the Euler Gamma
Proof. By using Lemma 1 with Jensen-Mercer inequality, convexity of |t'|? and
familiar Holder integral inequality, we obtain

25T oPT(B+1) o
o0 {(ew_xgy)J T(O+0—x)+ BJ((M) o) (049 )}

X+y
h———2
“ofare-13)]
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()
(L) e oro- (b))
([ )

([ v (o)) )

By making necessary changes, we get (2.33). 0

-

Theorem 8. t:[0,9] — R is differentiable mapping on (6,%) with 6 <& and
v € L[0,9]. If || is convex function on [0,0], then the following inequality holds for
fractional integrals:

T(0+0—x)+1(0+0—y) oI (B+1)
2 2(y—x)*

x.{%+ﬁ”J“r(e4—ﬁ~—x)+-ﬁjg+ﬂ,ﬂr(e4—ﬂ~—y)}‘

< b-ye? H(\T’(G)\ +\r’(ﬁ)|>3(é’ﬁ+l)

o1
‘JZSN{Bﬁ(;ﬁ+i>+3(iﬁ+l>_3<;ﬁ+l)}
{B; <;>ﬁ“> ‘B@’B*l) }}
HA(ror o) el
e, (1500 o000
(o) s (o))
(2.33)

where ¥V x,y € [0,9], o, B >0, A€ [0,1] and T'(.),B(.,.) are the Euler Gamma
and Beta function.
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Proof. By a similar way with the proof the previous theorem, we get

T(0+8—x)+1(6+0—y) aPT(B+1)
2 2(y—x)*%

<Pyt T OF0—x)+ I T(G+ﬁ—y)}’
g(y_;)“ﬁfol (I—(IOC—M“)B_ (1_&m>s
<1_(1a_7‘)a>ﬁ_ (1 ;ka>ﬁ

- (y—;) o /01

« { 0)]+ 7 (8)] = (A7 @)+ (1= 1) [ ) } a

()]

(y—x)aP [ 12
<= [/0
x{\T'(e>}+|c'<ﬁ>y_(xyrf<x>|+(1_x>|1'<y);)}dx
Y02

« { 0)]+ 7 (8)] = (¢ @)+ (1= 1) [ ) } dk].

This completes the proof. g

7 (840 — (Ax+(1—1)y))| dr

3. NEW INEQUALITIES VIA IMPROVED HOLDER INEQUALITY

Theorem 9. T : [0,9] — R is differentiable mapping on (6,0) with 8 < and
v € L[0,9]. If |T'|1 is convex function on [0,0], q > 1, then the following inequality
holds for fractional integrals:

25T oPT(B+1) o .
-0 Uo7 0-04 2 yri00-)|

(0+d—*3*
-1 (9—H9— x;y) ‘




710 SAAD IHSAN BUTT, AHMET OCAK AKDEMIR, JAMSHED NASIR, AND FAHD JARAD

—x)ab 2 Bp+1 ’
S(y )oc H( (OLBIfH ))

v (6 |q+( o /s 1
(12‘ W[*+ 12|T/<y)‘q>

1
q

+

B(iBp+1)-— (a,Bp+1)>;

aBP+1

("
( 1
x(“l PO (Fwr+glrolr)) )
("
(=
("

1
N B p+1
(Xﬁp-‘rl
(6 !“rlT o1
12

!

T (x)

X

_l’_

aBp+1

B(LBp+1)— (a,Bp—i-l))”

><< Iq;rlt( ) <é}r’(x)\"+;]r’@)ﬁ))é}]’
3.1)

where ¥ x,y € 10,9], a, B >0, A€ [0,1] and T'(.), B(.,.) are the Euler Gamma
and Beta function, p~' +q¢7 ! = 1.

Proof. By using Lemma 1 with Jensen-Mercer inequality, convexity of |t'|? and
applying the Holder-Iscan integral inequality that is given in (Theorem 14, [ ]),
we can write

2% 0P T (B+1) .
(y—x)aﬁ {[(Sewx;r)] T(0+0—x)+ BJ((H’3 ) (e+~a—y)}

xX+y
p——"12
G|
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SWH (Al(l_x)(WOZWJL)B”dk);

[an [ieorspor- (35 rar-dror) o)

< | 2=
([ (=) a)

(Ao ror- (G rwrEror) |a) )

q

<(fa-n|RError- (Gror 2 wor) | o)

N (/le{\c'(e)m\c'(a)v_ <’2‘;r'<x)w+2‘2%f<y>|q)] dx); H

By using calculus tools, one can have the required result. ([l

Theorem 10. t: [0,9] — R is differentiable mapping on (8,9) with 6 < © and

v € L[0,9]. If |T'|7 is convex function on [0,0], for some q > 1, then the following
inequality holds for fractional integrals:

2% 1o T(B+1) [

(y o x)(XB (9+ﬁ—%)

)

JET(O+0—x)+ Bj?ewf%) r(éH—ﬁ—y)}
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= H( :f*“)
>< a£“>>

i B“ +B( B+1))

cb-
(e
(

208+!1

“1B+"T/(y)‘q< (oc’B“) B(WB+1>>>>;
+ B(é’ﬁ+1)—?(§,ﬁ+1)>l—é

2
< ! 2
X E(T'(O)qu 7 ()] <B(a7ﬁ+1) —j(a,BjL 1)>

ab

)
T
-(;

“Blh ( WPt - (B+1)>

+ sogrT \r()\"(( s+1)+3( B+1)>)>‘;
B+1 B+1>

(%
(GRS \)( B+Lﬁl(,ﬁ+1)>
(s

(B B1) - ( B+1)+B(

Q| w

208+ 1’

W“ O (B(é’ﬁ“) (avBH))));}]?

)

,B+1)>
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3.2)

where ¥V x,y € [0,9], o, >0, A€ [0,1] and I'(.), B(.,.) are the Euler Gamma
and Beta function, p~' +¢~ ' = 1.

Proof. By using Lemma 1 with Jensen-Mercer inequality, convexity of |tT'|? and
applying the Improved power-mean integral inequality (Theorem 1.5, [ ]) , we have

2981 BT (B+1) .
-0 Uoso-s @001+ M syslo+0-)}

fatp)
S (foon( o)
s

1
, C(2-A A 1 !
x( r<6+ﬂ < > x+§y dh
1 1 o B lfé
([ (S )
0 o
1
1= (1-0)"\P| 2-L A ‘
x(/0k< " ) <9+19—< 7 x+2y>> d\ }
1 1 (1 }\.) B 1_%
+{</ (1—x)< - )dl)
0 o
1
! 1—(1-0)™"\P| Ao 2-A N\ 7 )¢
x(/o (1—x)< ; ) T<6+ﬁ—(2x+2y>> .
1 1 o B 1=
(LA )
0 (04
1= (1=-0)"\P| A 2=A N\ )¢
x</0x<a ) 1(6+ﬁ—<2x+2 y>> dA H
By computing the above integrals, one can have the required result. O
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