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1. Introduction

The theory of convex functions has a wide range of potential applications in many fascinating and
intriguing fields of research. In addition, this theory also plays a magnificent role in many different
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areas, such as physics, information theory, coding theory, engineering, optimization, and inequality
theory. Currently, this theory has a remarkable contribution to the extensions and improvements of
numerous areas of mathematical and applied sciences. Many authors examined, celebrated, and
performed their work on the idea of convexity and extended its numerous versions in useful ways
using fruitful techniques and innovative ideas. Several new families of classical convex functions have
been proposed in the literature. For the attention of the readers, see the references [1-5].

Many authors and scientists have always been trying to do good work and meaningful
contributions to the theory of inequalities. The term integral inequalities on convex functions, both
derivative and integration, has also been a hot and absorbing topic of discussion for research activities
from the current decade. The theory of inequalities has momentous investigations in the variability of
applied analysis, for example, geometric function theory, impulsive diffusion equations, coding
theory, numerical analysis, and fractional calculus. Recently, Sun [6] and co-researchers [7]
generalized the Hermite-Hadamard inequality for harmonically convex function and s-preinvex
function using the local fractional integral operator. For the attention of the readers, see the
references [8—13].

Recently, several authors have elaborated new variants of inequalities for different kinds of
convexities, preinvexities, statistical theory, and so on. Several discussions represent a close
relationship between the theory of inequalities and convex functions. In the year 1981, for the very
first time invex function concerning bifunction 7(.,.) was investigated by Hanson (see [14]). After
Hanson’s work, Ben-Israel and Mond tried to further investigate related invexity and for the first time
elaborated the idea of invex sets and preinvex functions (see [15]). Mohan and Neogy [16]
commented that the preinvex and invex functions in the form of differentiability are equivalent under
suitable conditions. In 2005, Antczak [17] for the first time investigated and explored the properties of
the preinvex functions. Many authors have passed the comments, these functions have a wide range of
applications in optimization theory and mathematical programming. The concept of preinvexity is
more general than convexity. Due to useful and elegant importance, these functions have been
generalized and extended in numerous directions. In current time, Iscan et.al explored and
investigated s-type convex function in a published article [18]. The magnificent concept of this article
may energize and enthusiast for further research activities and be useful to generate the Mandelbrot
and Julia sets for a quadratic and cubic polynomial with s-convexity [19,20].

2. Preliminaries

In this section, we recall some known concepts.

Definition 2.1. [21] Letn : X X X # () — R be a real valued function, then X is said to be invex with
respect to 7(.,.) if v, + kn(vy, v,) € X, for the all mentioned conditions, i.e., for every v;,v, € X and
k €[0,1].

Note that, in literature the invex set X is also known as a p-connected set.

We clearly see that, if we choose 1(vy,v,) = v{ — v, then as a result we attain classical convexity.
Therefore, every convex set is an invex with respect to n(vy, v,) = v| — v,, but its converse is not true in
general, means that 3 invex sets which are not convex (see [17] and [21] ).

In the year 1988, mathematicians namely Weir and Mond [22] used the idea of an invex set and to
perform and explore the idea of preinvexity.
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Definition 2.2. [22] Let X # 0 € R be an invex set with respect ton : X X X # () — R. Then the
function ¢ : X — R is said to be preinvex with respect to 7 if

YO +kn(vi,v) < kp(v)+A - (), Yvi,vmeXkel0,1].

The function ¢ is said to be preincave if and only if ¢ is preinvex. We clearly see that, if we choose
n(vy,v2) = vi — v,, then as a result we attain the classical convex function from the more general form
of function namely preinvexity [23].

We also want the following hypothesis regarding the function n which is due to Mohan and
Neogy [16].

Condition: Let X C R" be an open invex subset with respect to 7 : X X X — R. For any v, v, € X and
k €10,1]

nvay,va+kn(vi,v2) = —knvi,v),
nvi,va+kn(vi,v)= -« nv,n). (2.1

For any vy, v, € X and ki, k; € [0, 1] from condition C, we have

nm+kan(vi,v) , vatkin(v,m) = (k—k)n,n).

In the year 2007, Pakistani famous mathematician, Noor [24] established and examined Hermite-
Hadamard type inequality for the preinvex functions, which is stated by

Theorem 2.3. Let  : X = [vi,v; + n(v2,v1)] = (0,00) be a preinvex functions on the interval of
real numbers X° and v,v, € X with vi < vi + n(vy,v2). Then the following Hermite-Hadamard type
inequality holds:

w(zvl +n(vZ,vl>) ] f“*ﬂw” Joodx < ) + 4 ()
2 77(V2,V1) Y 2

In 2011, another team of mathematicians namely A. Barani, A. G. Gahazanfari and S. S. Dragomir
worked on the idea of preinvexity in the published article [25] and first time explored and established
Hermite-Hadamard type for the differentiable preinvex function, which is stated by

Theorem 2.4. Let X C R be an open invex subset with respect ton : X X X — R. Suppose ¢y : X - R
is a differentiable function. If /| is preivex on X then, for every vy, v, € A withn(v,,v,) # 0. Then the
following Hermite-Hadamard type inequality holds:

Y + (v +n(va, vy) 1 VI+1(v201)
2 B n(va, v1) j; w(x)dx

[wOr) +¥(n)].

< (v, vi)I
8

Later on, different authors presented and collaborated there perspectives on the idea of preinvex
functions. For author’s good work and attractions for the readers, see the published articles [26-29].

Definition 2.5. [30] A nonnegative function ¢ : X — R is called s-type convex function if for every
vi.vaeX,neN,se[0,1]and x € [0, 1], if

Ykvi+ (A =0)vy) < [1=(s(L=xNJY (vi) + [1 = skl (v2). (2.2)
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Definition 2.6. [31] Two functions ¢ and ¢ are said to be similarly ordered if

W) =¥ ())e(v) — () 20, Vv, €R. (2.3)

Owing to the aforementioned trend and inspired by the ongoing activities, the rest of this paper
is organized as follows. First of all, in Section 3, we will define and explore the newly introduced
idea about preinvex functions and their algebraic properties. In Section 4, we derive the novel version
of Hermite-Hadamard type inequality. In Section 5, we will make two new lemmas, and based on
these new lemmas and with the help of the newly introduced definition, we will find and attain the
refinements of Hermite-Hadamard type inequality. Finally, we will give some applications in support
of the newly introduced idea in Section 6 and conclusion.

3. s-type preinvex function and its properties

In this section, we are to add and introduce a new notion for a new family of convex functions
namely s-type preinvex function.

Definition 3.1. Let X C R be a nonempty invex set with respect to 7 : X X X — R. Then the function
Y : X — Ris called s-type preinvex, if

Y(va + kn(vi,v2)) < [1 = (s(1 = )] (vi) + [1 = skl (v2) (3.1)
holds for every vi,v, € X, s € [0, 1] and « € [0, 1].

Remark 1. (i) Taking s = 1 in Definition 3.1, then we attain a definition which is called preinvex
function which is first time explored by Weir and Mond [22].

(if) Taking n(vy,v2) = vi — v, in Definition 3.1, then we attain a published definition namely s-type
convex function which is first time explored by Iscan et al. [30].

(iii) Taking s = 1 and n(vy, v2) = v; — v, in Definition 3.1, then we obtain a definition namely convex
function which is investigated by Niculescu et al. [31].

Lemma 3.2. The following inequalities
k<[1=(s(1=x)] and 1—-k<][1 - sk].
are holds, if for all k € [0, 1] and s € [0, 1].
Proof. The rest of the proof is clearly seen. O

Proposition 1. Every nonnegative preinvex function is s-type preinvex function for s € [0, 1].

Proof. By using Lemma 3.2 and definition of preinvexity for s € [0, 1], we have
Y(va + kn(vi,v2)) < ki (V1) + (1 = (v2)
<[ =G =]y () +[1 = sc]y () .

O
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Proposition 2. Every non-negative s-type preinvex function for s € [0, 1] is an h-preinvex function with

h(k) = [1 = (s(1 = ))].

Proof. Using the definition of s-type preinvexity for s € [0, 1] and the mentioned condition A(k) =
[1 - (s(1 —«))], we have

Y2+ kn(vi,v2)) < [1 = (s(0 =)y () + [1 = sl (v2)
< h(p(v1) + h(1 = Y (v2).

O

This means that, the new class of s-type preinvexity is very larger with respect to the known class
of functions, like preinvex functions and convex functions. This is the beauty of the proposed new
Definition 3.1.

Now we make examples in support of the new idea.

Example 1. y(v) = |v|, Vv > 0 is non-negative convex function, so it is non-negative preinvex function
because every convex function is preinvex function (see [32]). By using Proposition 1, it is an s-type
preinvex function.

Example 2. y(v) = €", Vv > 0 is non-negative convex function, so it is non-negative preinvex function
because every convex function is preinvex function (see [32]). By using Proposition 1, it is an s-type
preinvex function.

Note that, every convex function is a preinvex but the converse is not true. Means that every preinvex
function is not a convex function. For example ¥(v) = —|v|.

So next we try to find and make an example of s-type preinvex function with repect to 7 on X, but
it is a non-negative and not convex function.

Example 3. Define the function y(v) : R* — R* as

v v ; 0<v<l1
V) =
1 ; v>1
and
vi—va 3 vi<0,»n<0
vVi—Vy 0§V1§1,V2§1
nvi,v2) =
2-v, ; v<0,0<»<l1
2—V2 5 OSV1S1,V2SO.

The above non-negative function Y(v) is not a convex, but it is a preinvex function with respect to 1.
According to Proposition 1, every non-negative preinvex function is a s-type preinvex functions. Hence
the given function y(v) is s-type preinvex function with respect to n on X.

Example 4. Define the function y(v) : R* — R* as
v+l ; 0<v<l1
Y(v) =

1 cov>1
and
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vitv, 5 viswm
n(vi,v2) =

201 +v); vi>wm
Yvi,v, € RY = [0, +00). The above non-negative function y(v) is not a convex, but it is a preinvex
function with respect to 1. According to Proposition 1, every non-negative preinvex function is a s-type

preinvex functions. Hence the given function y(v) is s-type preinvex function with respect to nn on X.
Now, we will discuss and explore the some properties in the support of the newly introduced idea.

Theorem 3.3. Let 4, : X = [vi,v,] = R.If Y, ¢ be two s-type preinvex functions with respect to
same 1, then

(i) ¥ + @ is an s-type preinvex function with respect to 1.

(ii) For ¢ € R(c > 0), then cy is an s-type preinvex function with respect to n.

Proof. (i) Lety, ¢ be s-type preinvex function with respect to same 17, then for all v, v, € X, s € [0, 1]
and « € [0, 1], we have

W+ @) (2 + kn(vi,v2)) = Y (va + kn(vi, v2)) + o(v2 + kn(vi, v2))

<[1=(s(1 = D]y (v) + [1 = skl (v2)

+[1T=(s(1 =Nl (v) + [1 = skl @ (v2)
[1=(s(1 = NIy 1) + (V)] + [1 = skl [ (v2) + ¢ ()]
[1=(s(L =N+ @)(vi) + [1 = skl (F + @) (v2).

(if) Let ¥ be an s-type preinvex function with respect to n, then for all vy, v, € X, s € [0, 1], c € R(c > 0)
and « € [0, 1], we have

() (v2 + kn(vi,v2)) < cf [1 = (s(1 = D] (1) + [1 = skl (v2)
=[1 = (s =)l ey (V1) +[1 = sl ey (v2)
= [1=(s(X =)l (cyp) () + [1 = sk] (cy) (v2) .
This is the required proof. O

Remark 2. (i) Choosing s = 1 in Theorem 3.3, then we get i + ¢ and ¢y as preinvex functions.

(if) Choosing n(vy,v,) = vi — v, in Theorem 3.3, then we get ¥ + ¢ and ¢y as s-type convex functions.
(iii) Choosing n(vy,v;) = vi — v, and s = 1 in Theorem 3.3, then we get ¥ + ¢ and ¢y as convex
functions.

Theorem 3.4. Let I be a non-negative and non empty set,  : X — I be an s-type preinvex function
with respect to n and ¢ : J — R is non-decreasing function. Then the function ¢ o is an s-type
preinvex function with respect to same .

Proof. For all vi,v, € X, s € [0,1] and « € [0, 1], we have

(o) (va + kn(vi,v2)) = (W (v + kn(vy,v2)))
<ol [1=(s(1 =]y (1) + [1 = skl (v2)

AIMS Mathematics Volume 6, Issue 12, 13907-13930.
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< [1=(s(1 =N (v1) + [1 = skl (¥ (2))
= [I=(s(I =)l (@oyy) (v)) +[1 = skl (¢ o) ().

This is the required proof. O
Remark 3. (i) If s = 1 in Theorem 3.4, then
(o) (v2 + kn(vi, 1)) S k(@ o) (vi) + (1 = k) (@ 0 ) (12) .
(ii) If we put n(vi, v,) = v; — v, in Theorem 3.4, then
(o) (kvi + (1 —K)v2) < [1 = (s(1 =)@ oY) (vi) + [1 = skl(@ oY) (v2).

Theorem 3.5. Let 0 < v, < vy, ¥ : X = [vy,v2] — [0, +00) be a class of s-type preinvex function with
respect to same 1 and y(u) = sup;y;(u). Then y is an s-type preinvex function with respect to n and
U ={velv,v]: () < oo}isan interval.

Proof. Letvi, v, € U, s € [0, 1] and « € [0, 1], then
Y(va + kn(vi,v2)) = SI;P Y i(va + kn(vi, v2))
<[1-(s(1-x)] SIJ}P i) + [1 = sx] SI;P Y (v2)
= [1 = (I =)y (v) +[1 = skl (v2) < 0.
This is the required proof. O

Theorem 3.6. Let v, ¢ : X = [vy,v2] = R.If Y, ¢ be two s-type preinvex function with respect to same
n and ¥, ¢ are similarly ordered functions and [1 — (s(1 — «))] + [1 — sk] < 1, then the product Y is
an s-type preinvex function with respect to 1.

Proof. Let ¥, ¢ be an s-type preinvex function with respect to same 1, s € [0, 1] and « € [0, 1], then
Y(va + kn(vi, v2))p(va + kn(vy, v2)) < [[1 = (s(1 =)y (v1) + [1 = s¢] lﬁ("z)]

x [ [1 = (s(1 = )] @ 0) + [1 = skl @ (v2) ]

<[1 = (s(1 = )P y()e() + [1 = sk]* p(n)p(v2)
+[1 = (s(1 = )] [1 = skl [POr)e(n) + Y(r2)p(r))]
< [1 = (s(1 = )Py + [1 = sk Y(v2)e(v2)
+[1 = (s(1 = N [1 = (O] [WOr)e() + Y(r2)e(n)]

= [[1 = (s(I =)y (v)e(v1) + [1 = skl (v2)p(v2)
x([l —(s(1 =]+ 1 —SK])
< [1 = (s(1 = eNIY(v)e(v1) + [1 = skl Y (v2)e(va).

This shows that the product of two s-type preinvex functions with respect to same 7 is again an
s-type preinvex function with respect to 7. O
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Remark 4. Taking 1(vy,v,) = v; — v, in Theorem 3.6, then we attain the new inequality namely the
product of s-type convex functions

Ylkvy + (1 = v)e(kvy + (1 = €)va) < [1 = (s(I =)y (V1) (v1) + [1 = sklyp (v2) p(v2).
4. Hermite-Hadamard type inequality via s-type preinvex function

The principal intention and main aim of this section is to establish novel version of
Hermite-Hadamard type inequality in the mode of newly discussed concept namely s-type preinvex
functions.

Theorem 4.1. Let X° C R be an open invex subset with respect ton : X° x X° —- R and v, v, € X°
with v, + n(vy,v2) < va. Suppose ¥ : v, + n(vy,v2), v2] and satisfies Condition-C then the following
Hermite-Hadamard type inequalities hold

1 1 1 Y2+ v2) Yy(v1) + ¥(v2)
ﬂ'ﬁ (VZ + EU(VI’VZ)) < U(Vla V) L lﬂ(x)dx < f(z —9).

Proof. Since vi,v, € X° and [° is an invex set with respect to 1, for every « € [0, 1], we have v, +
kn(vy, v,) € X°. From the definition of s-type preinvex function of i, we have that

Y(va + kn(vi,v2)) < [1 = (s(1 =))W (vy) + [1 = sclgp(v2).

Integrating both the sides with respect to k over [0,1], we have

1 1 1
f W2 + K1, v2))di < Y() f [1 = (s(1 = )]k + Y(v) f [1 - skldx.
0 0 0

We also have

1 1 va+1(v1,v2)
f Y(va + kn(vy, v2))dk = f Y(x)dx.
0 n(vi,v2) J,,

Hence,

va+n(vi,v2)
1 f ! V(0 < Y1) + W(Vz)(z 9.
nvi,v) J,, 2

This completes the proof of the right hand side of above desired inequality. For the left hand side,
we use the Definition 3.1, putting « = %, one has

W+ k() < 1= (51 =N + (1= (010),
1
w(y . 5n<x,y>) <|1-(5) ] + v

putting y = v, + kn(vy,v,) and x = v, + (1 — k)n(vy, v2) in above inequality, so first we prove the L. H.
S of above inequality

1 1
l/f(y + En(x, y)) = l//(Vz + in(vl, Vz))-
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So after putting the value of x and y, we get

1 1
v (y + EU(X’ )’)) =y (2 +kn(vi,v) + EU(Vz + (1 = n(vi,v2), va + kn(vi, v2))).

Now by using Condition C, we have

Nz + (A =i, v2), va + kn(vi, v2)) = (1 =k = (v, va),

n(v2 + (A = nvi,v2), va + kn(vi,v2)) = (1 = 2)n(v1, v2).

Now we put the value of 77 in 4.1, then as a result, we get

Now,

1 1
Uly+ Eﬂ(x, V| =v(vs +kn(vi,vy) + 5(1 = 2)n(vy, v2)),

1 1
Uly+ En(x,y) = l//(Vz + (K+ 2 —K)n(vl,Vz)),

1 1
Uly+ EU(X, V| = l//(Vz + EU(Vl,Vz))-

1
l//(Vz + EU(VI’VZ))

<|1-(2 1 Y(va + (1 = n(vi, v2))dk + 1 Y(va + kn(vi, v2))dk
-G 0

Va+n(v1,v2)
= [1 B (%)]n(vlz, V2) L n Y(xdx

< 2[1 - (%)]n(vll, v2) fv:ﬁn(‘/hm Y(x)dx.

This is the required proof.

4.1)

O

Corollary 1. If we put s = 1 and n(vy,v,) = vi — v, in Theorem 4.1, then we get Hermite-Hadamard
inequality in [33].

Note: Moreover we assumed the condition C in the 2" part of proof of Theorem 4.1, so it is necessary
to give an example as above, where 7 fulfils the condition C.

Example 5. Remembering example 2.2 of published article (see [34]) as follows

Let

y(v)=-, VveX

vi—Vva, ifvi=0,v,>0;
vi—Vva, ifvi<0,v,<0;
—2—-vy, ifvi>0,v,<0;
2—-vy, if vi<0,v,>0.

n(vi,v2) =

4.2)

From the above example we claim that or easily investigate that  is an s-type preinvex function
with respect to n if s = 1 and that  and n satisfies the condition C. However s is not a convex function.

AIMS Mathematics
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5. Refinements of Hermite-Hadamard type inequality

The aim of this section is to investigate the refinements of Hermite-Hadamard inequality by using
the newly introduced definition. In order to attain the refinements of Hermite-Hadamard inequality, we
need the following lemmas.

Lemma 5.1. Let ¢ : [vl, v+ (2, vl)] — R be a differentiable mapping on (vl, v+ (2, vl)) with

O<c<landvy+n(vy,vy)>vi>0.1Ify € L (Vl, vi +n(2, vl)), then the following equality holds in
the preinvex setting:

YO HPor FE ) e f s
2 n(VZ’ CV1) Vi

1
= —77(”2’ n) f (1 =26/ (2 + kn(vi, 2)) dx. (5.1)
c 0 c ¢

Proof. Let vy, v, € X. Since X is an invex set w.rtn,V « € [0,1], 2 + kn(vi,*2) € X Integrating by
parts

1
w f (1 =2y’ (2 K0, 2))(11(
C 0 ¢ ‘

_ 02, en) [(1 =200 (2 + kn(n, 2))

2f1 v (2 + knon, %))dkl
0

2c nvi, 2) 0 nvi, 2)
vy, ovy) [ W) + ¥ (32) 2¢ U, Vs
B 2c [ n(va, cvy) B n(va, cvy) j; v (? ko, ?)) dK]
_ Y(v1) + (v + (22, v1)) B c f"l“’(v‘fz"’l) S,
2 n(va, evi) Jy,
Which completes the proof. O

Lemma 5.2. Let  : [vl, v + 77(%2, vl)] — R be a differentiable mapping on (vl, v + 77(%2, vl)) with

O<c<landvy+n(vy,vy)>vi>0.1Ify € L (vl, vi +n(2, vl)), then the following equality holds in
the preinvex setting:

;fwﬂl(?"’])w(x)dx_w(w)
ﬂ(VZ’ CVl) Vi 2

) 1
_ 1, ev1) {f K/ (2 + k(v 2))d/< - f V4 (2 + kn(vy, 2))d/(}. (5.2)
c 0 c c 1/2 ¢ ¢

Proof. Let vy, v, € X. Since X is an invex set w.r.t 17, Yk € [0,1], -2 + kn(vy, 22) € X. Integrating by

parts,
n(va, cvy) b V2 bom %)
P08 (2 ko, D)= [ (24 ko, ) ax
C 0 C C 1/2 C C

AIMS Mathematics Volume 6, Issue 12, 13907-13930.
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K — ” K
n(vi,-2) nvi, )

- c novi, 2)

=n(vz’cv‘)[ Rl | (2 s, )
¢ n(evi,va)  nlevi,va) Jo c c

vy +n(v2,v1))
n(cvl,Vz) (w( V- w( 2¢ ))]

:m fvwfl(vfﬂ’l) Y(x)dx — ¥ (M) .
2,CV1 v

vz, evy) y {Klﬁ(v?z +kn(vi, %)) b fl W( +kn(vi, 2)) W(V—f +kn(vy, %))d ‘}
o Jo !

2c
In this way the proof is completed. O

Theorem 5.3. Let X° C R be an open invex subset with respect ton : X° X X° — R and vy,v, € X°
with v, + n(vy,v2) < vo. Suppose ¥ : [v, + n(vi, v2), v2] be a differentiable mapping on X°. If |{/'| is
s-type preinvex function on (vi, vy + n(va,vy)) for s € [0, 1], then the following inequality holds:

YO+ (v + n(2,m)) . e
2 0, cm)fvl px)dx
< 0, evy)
< - { oo+ (2 )|]} (5.3)

Proof. Using Lemma 5.1, one has

y(v) +¢ (Vl + 77(%, Vl)) c vi+(2 v1)
- f Y(x)dx
2 n(va, evi) J,,

1
=0 [ 2y (2 e, 2)
2c 0 ¢ ¢

Since || is s-type preinvex on (vy, vy + n(v2, v1)), we have

Y(vy) + lﬁ(Vl + U(V—Cz, Vl)) c vi+n(=2.v1)
- f Y(x)dx
2 n(va, evi) Jy,

I
377(’/2—”‘)f 11— 2«] (1 — s =W (vl + (1 - SK)W/(Q)l] dK

"(sz’ ) {W ) f 11— 21 = s(1 = K)dk + |¢/ f 11— 24(1 = SK)dK} (5.4)
Since,
1
f (1-s-x)|1-2«ldk
0
! s—2
= f (1 =s0)|1 = 2k|lds = ———.
0 4
The proof of the Theorem is completed by using these computations in (5.4). O
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Corollary 2. If we choose s = 1 in (5.3), then we attain the following inequality

y(vi) +y (V1 + (2, V1)) c vi+n(2 v1)
- f Y(x)dx
2 (v2,cv1)

% {[W(m)l + 4l (%) ']} '

Corollary 3. If we choose n(vy,v,) = vi — v, (5.3), then we attain the following inequality

IA

pOn) +y(2) c ‘ (v = ev)
e f wd| < 22 { Hwoorew (2 )|]}
Corollary 4. If we choose s = 1 and n(vy,v2) = vy — v, (5.3), then we attain the following inequality
pOvi) + ¥ (2) c o va—ev) ([, (72
2 - vy —cvy) f,,l Yndx < 8c {[W Gl + 4l (?) l]}

Theorem 5.4. Let X° C R be an open invex subset with respect ton : X° X X° — R and v,,v, € X°
with v, + n(vy,v2) < vo. Suppose ¥ : [v, + n(vy,v2), v2] be a differentiable mapping on X°. If || is
s-type preinvex on (v, v +n(v,,v1)) for p,q > 1, [11 + é = 1 and s € [0, 1], then the following inequality
holds:

lﬁ(Vl) + lﬂ (Vl + 7](%, Vl)) c V1+77(V72,v1) p
- n(va, cvy) f windx

2
nom,ev) 1\ (2- [ ( ) ] le
< q q . .
ST (p+ 1) W' vol* + Iy’ | (5.5)
Proof. Using Lemma 5.1 and Holder’s inequality, one has
poy+u(vi+n2v)) e nC2o)
- f Y(x)dx
2 nva, evi) Jy,
_77(V2,CV1) 1 (V2 V2
=T | =2y (2 n0n, D) )l
c 0 c c
n(va,ev) (! e V2 V2 a
s—( f I —2K|Pd/<) ( f W’ (— +K7](V],—)) |qu) . (5.6)
2c 0 0 c c

Since |'|? is s-type preinvex on (vy, v; + n(v,, v1)), we have

f W (22 + sarn, 22 ) P = f (1= s(1 = ks + 1 f (1~ sw)dk.

Now, Eq (5.6) becomes

YOn) +y (vi +1(2, ) ¢ vi+n(2)
- f Y(x)dx
2 rI(V27 CV])
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Up : 1 1/q
s”(”"’“)( ! ) (lw’(vl)lq fo (1= 51 = e + 1y (2] f (1—SK>dK) SR
0

2c p+1
Since,
1 1
-2
f (1-5(1-x)dk = f (1 - sk)dx = ===,
0 0 2
! 1
f |1 — 2«Pdxk = ——.
0 P +1
The proof of the Theorem is completed by using the above computations in (5.7). O

Corollary 5. If we choose s = 1 in (5.5), then we attain the following inequality

Yy + (v +n(2,v)) c (2 m)
- f Y(x)dx
2 n(va, evi) Jy,
nv,ov) (1 7 L(Va) .\
< T (p+1) (1ot + 1w (%))

Corollary 6. If we choose n(vy,v,) = vi — v, in (5.5), then we attain the following inequality
‘w(m +Y(2)

c ? (a—ev)( 1 \""f2-5s / (Y2 e
2 _(vz—cvl)ﬁ Ydx < =0 (p+1) {2 [Wvl)'“'w (?)'q]} '

Corollary 7. If we choose s = 1 and n(vy,v,) = vi —v; in (5.5), then we attain the following inequality

<0 () o ()

Y(vi) +¥(32) c g
2 B (va —cvy) fv] w(xdx

Theorem 5.5. Let X° C R be an open invex subset with respect ton : X° X X° — R and vy,v, € X°
with vy + n(vy, v2) < vo. Suppose ¥ : [v, + n(vy, v2), v2] be a differentiable mapping on X°. If ['|? is
s-type preinvex on (vy, vy +1n(va2,vy)) for p,q > 1, é + é = l and s € [0, 1], then the following inequality
holds:

277 ¢

Yo + ‘ﬁ(Vl + U(%,Vl)) c Vi V1)
- f Y(x)dx
2 n(va,cvi) Jy,
nva,ev)) | 1 2—s[ , (v 1/q
Az {5 o w (2)r]} 58

Proof. Using Lemma 5.1 and Holder’s inequality, one has

Y(vi) + l//(Vl + 77(%2, V1)) c vi+n(-2,v1)
- f Y(x)dx
2 n(va, cvy) Vi
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1
L0 n) f 126 (72 + 07,72
2c 0 ¢ ¢

1
ST [ 2t = 2 (2 o, ) e
C 0 ¢ ¢
1/q

nva,en) [ e , (V2 %)
P2 f 11 = 2«ldk f 11— 2l (— Hp —)) d| . (5.9)
c 0 0 C c

Since || 1s s-type preinvex on (vy, vy + n(va, v1)), we have

1 ! !
(2 o ) = wonr [ s o w (2 [ - sode
0 ¢ c 0 ¢ 0

Now, Eq (5.9) becomes

vo+y (i tnEv)) e et
- f Y(x)dx
2 n(va, evi) Jy,
nva,ev) [ lip 1 v [ 1/q
<=2l (f 11— 2K|d/<) (W(w)qu [T —2«|(1 = s(1 = k)dk+|y/’ (—2) f |1 = 2«|(1 — sk)dk
2c 0 0 & 0
(5.10)
Since,
1 1 §—=2
f 1 —2k|(1 -5 —-k))dk = f |1 -2k (1 —sk)dk = ——,
0 0 4
: 1
f |1 —2«|dk = =.
0 2
The proof of the Theorem gets completed by using these computations in (5.10). O

Corollary 8. If we choose s = 1 in (5.8), then we attain the following inequality

s TS [ 2(%1)] (1w oor 1w (22))

y(v) + ¢ (Vl + 7](1:—?, Vl)) c vi+n(2.v1)
- f Y(x)dx
2 nva, evi) Jy,

Corollary 9. If we choose n(vy,v,) = vi — v, in (5.8), then we attain the following inequality

< (va —Ccvl) [2(:”)] {2 ; s [Iw'(vl)lq + W/(%)yz]}]/q.

P

Y1) +Y(32) c ?
> (w—cvofvl #x)d

Corollary 10. Ifwe choose s = 1 and n(vy,v,) = vi—v, in (5.8), then we attain the following inequality

ezl 2

y(vi) + ¢ (32) c ?
2 ) fl px)dx
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Theorem 5.6. Let X° C R be an open invex subset with respectton : X° X X° - Rand A vi,v, € X°
with v, + n(vy,v2) < vo. Suppose W @ [va + n(vy, v2), v2] be a differentiable mapping on X°. If W'|? is

s-type preinvex on (vy, vy +n(va, v1)) for p,q > 1, cl] + i = 1 and s € [0, 1], then the following inequality
holds:

Yy + (v + n(2,m)) c vitnCZ )
- f Y(x)dx
2 n(va, evi) Jy,

1n(v2, cv1) 1 3-2s —s (w1
N (2<p+1>) H oo+ 2w (2)r]
3 - 1/q
v S22 |

Proof. Using Lemma 5.1 and Holder-Iscan inequality, one has

y(v) + ¢ (Vl + 7](‘:—,2, Vl)) c vi+n(*2,v1)
- f Y(x)dx
2 ’I(Vz, cvy)

U(Vz, CV1) [( l/q
2, vi) f (1=l —2K|PdK f (1 = O’ (— + kn(n, —)) dk
1 1/p 1 1/q
+( f K1 —2K|de) ( f K’ (— +KI7(V1,—)) |qu) } (5.12)
0

Since |y/'|? is s-type preinvex on (vy, vy + 1(v2,v1)), we have

1 1 1
[ (2 o ) pa=wonr [ a-sa o w (2)e [ - sode
0 C C 0 c 0
Now, Eq (5.12) becomes

Yy(vy) + vy + (%2, ) ~ ¢ fwm( vi) )
2 n(va, cvi)

1/p
_—'7(”’”1)[( f (1-K)|1-2K|Pdk) (|W(V1)|q f (1= (1 = s(1 — Kdk

y 1/q
+|l//'(—2)|qf(1—K)(1—SK)dK)
¢ 0

1 1/p 1 1 1/q
+ (f k1 — 2/<|de) (Il//'(vl)qu k(1 = s(1 = k))dk + |y ( )I"f k(1 — SK)dK) } (5.13)
0 0

Since,

25 -3
6

1 1
(1-x00-s0 —K))dsz (1 — s di = —
0 0
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1 1 S—3
f K(l—S(l—K))dK:f(1—K)(1—SK)dK:——
0 0 6

1 1
1
K1—2Kde:f 1 - x|l = 2«|Pdk = .
fo | | o( ) | 2(p+ 1)

The proof of the Theorem is completed by using these computations in (5.13). m|

Corollary 11. If we choose s = 1 in (5.11), then we attain the following inequality

Yy(vi) +y (Vl + 77(%, Vl)) c vi+n(22,v1)
- f Y(x)dx
2 n(va, evi) J,,

: 1\ 1/q Va
st e )]

Corollary 12. If we choose n(vy,v,) = vi — v, in (5.11), then we attain the following inequality
Yy +y(2)

c Z (vy —cvy) 1 3-2s -5 (V2 ta
2 _(VZ—CVI)L ) < =7 (2(p+1)) [{ WOl + (?)'q}

3- 3-2 Va
+{Ts|w'<vl>|q Sw( )|q} ]

Corollary 13. If we choose s = 1 and n(vy,v,) = vy — v, in (5.11), then we attain the following
inequality

i) + (%) c ?
PR (vz—cvl)fvl $x)dx

_ 1 I/P 1 l/q 1 1/‘1
e 20”1)(2@“)) Hglwmw —|¢( )|} +{§|w'<vl>|q —|w( )|} ]

Theorem 5.7. Let X° C R be an open invex subset with respect ton : X° X X° — R and v,v, € X°
with vy + n(v1,v2) < vo. Suppose  : [vo + n(vy, v2), v2] be a differentiable mapping on I°. If |'|7 is
s-type preinvex on (vy,vy + n(va,vy)) for g > 1 and s € [0, 1], then the following inequality holds:

YyOr) + ¢ (Vl + 77(1:—,2, Vl)) c vi+n(*2,v1)
- f Y(x)dx
2 n(va, cvy)

n(VZaCVI) 1 -l 4 —3s =S (V2 laq 4 — 5
S (Z) [{ Wl + (?)rf} +{ -

Proof. Using Lemma 5.1 and Improved power-mean inequality, one has

YOn) +y (vi +1(2, ) ¢ vi+n(2)
- f Y(x)dx
2 rI(VZ? CV])

(cy|

(5.14)

AIMS Mathematics Volume 6, Issue 12, 13907-13930.
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1/q

n(va,cvy) l( : e (V2 V2
<— f (1 — k)|l — 2k|dk f (1 — 0|1 — 2kl (— + kn(vy, —)) |7dk
2c 0 0 c c

1 1-1/q 1 Vs Vs l/q
+(f K1 —2K|dK) (f K1 — 26y’ (— +KT](V1,—)) |qd/<) ] (5.15)
0 0 C C

Since, |’|? is s-type preinvex on (vy, vy + n(v2, v1)), we have

1 1 !
[ (2 o ) v = wonr [ - sa o w (2)p [ a - sode
0 c c 0 ¢ 0

Now, Eq (5.15) becomes

v+ (vi+n2on)) o et
T e, o
1 1-1/q 1
3'7(”2’—;“) [(fo (1-x|l - 2:<|d:<) (W'(vl)wfo (1 - )1 = 2«|(1 = s(1 — k))dk (5.16)

. 1 1/q
+|¢'(—2)|‘1f (1 =1 —2«|(1 — SK)dK)
c 0

1 1-1/q 1 v 1 1/q
+(f K|1—2K|dK) (Iw'(vl)qu K1 = 26|(1 = s(1 = K))di + |/ (—2)|f1f K|1—2K|(1—SK)dK) ]
0 0 c 0

(5.17)
Since,
! ! 3s—4
(1= -2« =51 —-k))dk = k|1 =2k (1 — sk)dk = — ,
0 0 16
! ! s—4
f K|1—2K|(1—S(1—K))dK:f(l—K)|1—2K|(1—SK)dK:— ,
0 0 16
1 1 1
f K|1—2K|dK:f (1 =x)|1 —2«ldk = —.
0 0 4
The proof of the Theorem is completed by using these computations in (5.17). O

Corollary 14. If we choose s = 1 in (5.14), then we attain the following inequality

y(vi) +y (Vl + 77(:—.2, V1)) c vi+n(=2 1)
- f Y(x)dx
2 77(V2a CV[) Vi

_n(Vz,CVl) 1 e 1 ’ 3 (V2 3 ’ 1 , (V2 Ve
=T (4) {T6'””(“>"’+E"” (z)"’} +{T6'*”<“>'“1—6W’ (?)"’} |

Corollary 15. If we choose n(vy,v,) = vi — vy, in (5.14), then we attain the following inequality

1/q
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Y+ p(2) c ?

2 _(vZ—cvl)fy Hx)dx

_ 11—1/61 413 1/q 4_ 1/q
oo [i] o S () o S 2

Corollary 16. If we choose s = 1 and n(vy,v,) = vy — vy, in (5.14), then we attain the following
inequality

A R
> (vz—cvl)fv, Vxdx

va—ov) (1N (1 3 vy ) 3, 1 (va\ )
< (Z) [{1—6|w<vl)|¢I+E|«// (;)w} +{1—6|w(vl>|‘1+1—6|w (;)rf} ]

Theorem 5.8. Let X° C R be an open invex subset with respect ton : X° X X° = R and v, v, € X°
with vy + n(vy, v2) < vo. Suppose ¥ : [v, + n(vy, v2), v2] be a differentiable mapping on X°. If ['|? is
s-type preinvex on (v, vy + n(v,,vy)) for g > 1 and s € [0, 1], then the following inequality holds:

w(Vl) +y (Vl + 7](1—2, Vl)) c fvl+fl(c,vl) J
2 nvon) J,, yeodx
1
va,ev) (1\ 77 (2 = ta
<M (2 wour e (2)e] (5.18)
Proof. Using Lemma 5.1 and power-mean inequality, one has
o +u(nntow) e e
2 - n(v2, cvy) L $ix)da
n(va, cvi) : (V2 V2
<=7 [1 =2« | = + kn(vi, —) | ldk
2c 0 c c
(V cv ) 1 1-1/q 1 v v 1/q
3’722_1(f I —2K|dK) (f 11— 26y’ (—2 +K77(v1,—2)) |‘1d/<) . (5.19)
C 0 0 C C

Since || is s-type preinvex on (vy, vy + n(va, 1)), we have

| 1
f % (2 + kn(vy, 2)) ldk = |1//'(v1)|qf (1 =51 —«)dk + |y’ ( )qu (1 = sk)dk.
0 ¢ c 0

Now, Eq (5.19) becomes

l,//(V]) + l/’ (Vl + T’(V?Z’ Vi )) I Vl""](?a"l)
- f Y(x)dx
2 nva, evi) Jy,

U(V2,CV1)( : )H/q( , !
<— f |1 — 2«|dk % (V1)|qf [T = 2k|(1 — s(1 — k))dk
2C 0 0
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1 l/q
—2) g f 11— 26i(1 - SK)dK) . (5.20)
0
Since,
! ! s=2
f |1—2K|(1—S(1—K))dK:f [T =2« (1 — sk)dx = ———,
0 0 4
! 1
|1 —2«|dk = =.
Il 2
The proof of the Theorem gets completed by using these computations in (5.20). O

Corollary 17. If we choose s = 1 in (5.18), then we attain the following inequality

T2 [ i+ 1w (2 )r]]}l/q.

274 ¢

Y(vi) + 4 (Vl + 77(%, Vl)) c Vi+n(-£.v1)
- f Y(x)dx| <
2 n(v2,cev1) Jy,

Corollary 18. If we choose n(vy,v,) = vi — v, in (5.18), then we attain the following inequality

v + (%) c ? s —ew) (177 [2 - a
- of < 3 e ()
. o —cvl)fy, w(xdx| < = (2) W oDl + 1w/ (2]
Corollary 19. If we choose s = 1 and n(vy,v,) = vy — v, in (5.18), then we attain the following
inequality
Yy +¢(2)

L2 o (2)r])

7C

2 B vy —cvy) j; Wl0dx <

Theorem 5.9. Let X° C R be an open invex subset with respect ton : X° X X° — R and v,,v, € X°
with v, + n(vy,v2) < vo. Suppose ¥ : [v, + n(vy, v2), v2] be a differentiable mapping on X°. If ['|? is
s-type preinvex on (vi,vi +n(v,,vy)) for p,q > 1, [11 + é = 1 and s € [0, 1], then the following inequality
holds:

e fww(vf,w)w(x)dx_ " M
n(VZ’ CV[) Vi 2

1 l/P 2_ 1/q 4_3 ]/‘]
( ) { S[|w’<v1>|4+|w'(§)m} +{ - S[W’(vl)rww'(%)rf]} ]

p+1 2
(5.21)

< T’(VQ’ cVi )
C

Proof. Using Lemma 5.2 and Holder’s inequality, one has

vi+n(“2,v1) Qv +
— f W — g 202 V)
n(va, cvi) Jy, 2c

1 1
_n(va, cvi) {f W/ (2 + k0, 2))d/< - f W (2 +kn(vi, E)) dK}
c 0 c c 12 \¢C ¢
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1 1/p 1/q 1/q

SM l(f Kde) {f [’ (— +KI7(V1,—)) quk} {f [’ (— + kn(vy, —)) |qu} }

C 0 1/2 C

1 1/p 1 / 1 (v 1/q

(p+ 1) {fo [1 - s(1 = Ol (vl)l"dk+f0 [1 - selly (;)wdk}

1 1 Vs 1/q
+{ f [1 = (1= I’ () i + f (1~ sl (—)|‘de} ]

1/2 1/2 ¢

1 1/p 2 _ 1/q 4 _
(p n 1) { 2l ol + (2 )I”]} + { 2
Corollary 20. If we choose s = 1 in (5.21), then we attain the following inequality

vi+n(22 1) vy +
c f WO dx — vi +n(va,v1)
n(va, evi) J,, 2c

1/p 1/q 1/q
(pil) {%[W(w»mw%%)w]} { [+ w2 >|q]} ]

Corollary 21. If we choose n(vy,v,) = vi — v, in (5.21), then we attain the following inequality

SU(Vza cvy)
c

_ n(va,cvy)
c

3 1/q
2w )l + w/(%)m} ] .

< n(va,cvy)
c

c % Vi +Va)
e, o222

| N Ve (4_3 1/
Sﬂ(vzccvl)[(p+ 1) { oo+ 2 >|q]} +{ oo+ 2 >|‘f]} ]

Corollary 22. If we choose s = 1 and n(vi,v,) = vi — v, in (5.21), then we attain the following
inequality

c z V1+V2)
), o5

1 I/P 1 l/q l l/q
(p+ 1) {E[W'(wnqﬂw(%)w]} +{§[|w'(vl>|q+|w'<§>|q]} ]

Theorem 5.10. Let X° C R be an open invex subset with respect ton : X° X X° — R and vy,v, € X°
with v, + n(vy,v2) < vo. Suppose W . [va + n(vy, v2), v2] be a differentiable mapping on X°. If W'|? is
s-type preinvex on (vi,vy + n(va,vy)) for g > 1, and s € [0, 1], then the following inequality holds:

Vo —cCV
S(2 1)
c

vi+1(2 v1) o)
¢ f wCodx — (2 +17(v2,v1)
n(v2,ev1) J,, 2c

oo [(1) (35 3-2s v\ (4-3sy v
N [(5) {6 "6 7} +{T[|w(vl>|‘I+|¢<;>|4]} .

(5.22)
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Proof. Using Lemma 5.2 and power-mean inequality, one has

vi+n(22 1) o)
¢ f wodx — [ 20 n(v2, v1)
n(va,evi) Jy, 2c

| 1
:M {f pd (ﬁ + kn(vy, 2)) dk — f V4 (2 + kn(vy, 2)) dk}
p . c ¢ 1/2 ¢ ¢
1 1-1/q 1 l/q ] "
T TR | A
C 0 0 ¢ ¢ 12 ‘ ‘
1-1/q 1 : "
10, en) [(l) {f k[1 = s(1 = O (1) "dk + f k(1 = sk]ly’ (2) 'qdk}
s 2 0 0 ‘

1 1 Vs 1/q
+{ [1 = s(1— I ) i+ | [1— sy’ (—) m} ]
1/2 c

1/2

1y, cvy) 1\ (3-5 , 3-2s , " V4 (4-3 , . V2 Va
—f[(i) { WO+ —— (?)Iq} +{T[|¢' ol + ly (?)Iq]} -

Corollary 23. If we choose s = 1 in (5.22), then we attain the following inequality

; fV]_H](E,VI) w(x)d-x _ w M
TI(VZ, C'Vl) v 2

1 1-1/q 1 1 1/q 1 1/q
g—”(”’c”‘)[(g) {glw’<v1>|4+g|w'(§)|q} +{§[|w’(vl>|4+|¢’<%>|‘f]} ]

Corollary 24. If we choose n(vy,v,) = vi — v, in (5.22), then we attain the following inequality

c z Vi +V2)
(v2 —cvy) j:l 2 l//( 2c )

_ { 1-1/g 3_ ) 1/q 4_3 1/q
<z [(—) { W o)l + SW(E)W} + {—S oo+ W(ﬁ)w]} ]
c 8 ¢

c 2 6

Corollary 25. If we choose s = 1 and n(vy,v,) = vy — v, in (5.22), then we attain the following
inequality

c 7 Vi +Va)
e | o222

- 1\ (1 1
cazon) [(5) {gwmnq " EIW(%)I"}

c

1/q

1/q
. {% [ W(%)ri]} ] .
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6. Applications

In this section, we recall the following special means of two positive number vy, v, with v; < v,:

(1) The arithmetic mean
+
A=A = 22

(2) The geometric mean
G = G(V],Vz) = V1.

(3) The harmonic mean

2v1v
H=H,v) = — 2

vi+vy
The following relationship are well-known in the literature.

Hy,v2) £ G(vi,v) < A(vi, ).

Proposition 3. Let 0 < vy < v, and s € [0, 1]. then

1 , V) + 2
Vot i) | « TP E DD gy o, (6.1)
2—3s 2 2
Proof. We attained the above inequality (6.1), if we put /(v) = v for v > 0 in Theorem 4.1. O

Proposition 4. Let v,,v, € (0, 1] with vy < v, and s € [0, 1], then

1 1 2—s
InG(vy, < <1 — , . 6.2
S, Vi,72) 20 10 v2) H(Vz + 277(V1 Vz)) > (6.2)

Proof. We attained the above inequality (6.2), if we put (v) = —Inv for v € (0, 1] in Theorem 4.1. O
Proposition 5. Let vy, v, € (0, 00) with vy < v, and s € [0, 1], then
n(vi,v2)
1 ln(l + V—Zz) . 2§

. < < .
2 - 5) [1 _ (%)’] (Vz . Vz)) nvi,v2) H(vy,v2)

(6.3)

Proof. We attained the above inequality (6.3), if we put ¥/(v) = % for v > 0 in Theorem 4.1. O
7. Conclusions

In this article, we addressed a novel idea of generalized preinvex function namely s-type preinvex
function. Some algebraic properties were examined of the proposed definition. In the manner of the
newly proposed definition, we described some novel versions of Hermite-Hadamard type inequality.
Further, we established two new identities. Our presented results employing the new identities can be
considered as refinements and remarkable extensions to the new family of preinvex functions. Our
novel results can be deduced from the previously known results. Applications to special means were
considered. The above estimations on the mentioned lemmas need an interesting and amazing
comparison. Using Lemma 5.1, we examined three Theorems 5.4-5.6, in which we used the Holder
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and Holder-Iscan inequality. On the comparison, the Theorem 5.6 gives the better result as compared
to the other Theorems 5.4 and 5.5. Similarly, employing Lemma 5.1, we examined two Theorems 5.7
and 5.8, in which we used power mean and improved power mean inequality. On the comparison, the
Theorem 5.7 gives the better result as compared to the other Theorem 5.8. We hope the consequences
and techniques of this article will energize and inspire the researchers to explore a more interesting
sequel in this area.
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