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Abstract
In this research, we present the stability analysis of a fractional differential equation of
a generalized Liouville–Caputo-type (Katugampola) via the Hilfer fractional derivative
with a nonlocal integral boundary condition. Besides, we derive the relation between
the proposed problem and the Volterra integral equation. Using the concepts of
Banach and Krasnoselskii’s fixed point theorems, we investigate the existence and
uniqueness of solutions to the proposed problem. Finally, we present two examples
to clarify the abstract result.
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1 Introduction
Fractional calculus is a branch of mathematics that examines the properties of deriva-
tives and integrals of arbitrary non-integer order. This theory has been studied over the
years and was initiated in a letter written to Guillaume de l’Hopital by Gottfried Wilhelm
Leibniz in 1965. Subsequently, the area has become a great area of interest to many fa-
mous mathematicians such as Fourier, Laplace, Abel, Liouville, Riemann, Letnikov etc.
For more interpretation on the fundamentals ideas of fractional calculus, physical and ge-
ometric meanings we refer the reader to see the books, [29, 37, 39, 54] etc.

There are various definitions of fractional order derivatives and integrals, for exam-
ple, we have the Riemann, Liouville, Caputo, Riemann–Liouville, Weyl, Hadamard, and
Grunwald–Letnikov versions. These derivatives do not coincide in general except for
some special cases. This is due to the fact that the authors try to preserve some prop-
erties of these operators. However, the most famous definitions are the ones for Riemann,
Liouville, Riemann–Liouville, and Caputo fractional order derivatives and integrals.
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Fractional differential equations are an area that is related to the fractional calculus and
it played an important role in numerous fields of engineering and scientific areas such
as physics, chemistry, biology, economics, control theory, signal and image processing.
Recently, it was proved that fractional derivatives and integrals of arbitrary order are more
advantageous and pragmatic for characterizing the memory and hereditary properties of
different materials and processes than the integer-order derivatives; see [14, 18, 32].

Existence, uniqueness and stability analyses of fractional differential equations with dif-
ferent types of initial and boundary conditions belong to the most essential parts in the
theory of fractional differential equations to which this paper is devoted. However, many
researchers studied the existence and uniqueness of solutions for boundary value prob-
lems (BVPs) of fractional differential equations with different types of fractional integrals
and derivatives; see for example [5, 7, 13, 17, 25, 33, 36, 40–43, 45, 52, 55]. Hilfer initiated a
new class of Riemann–Liouville fractional derivatives, called Hilfer fractional derivatives.
These fractional derivatives coincide with the classical Riemann–Liouville and Caputo
fractional derivatives. The main advantage of these operators is the degree of freedom
on the initial conditions. Thus, based on this setting, it motivated a lot of researchers
to initiate research and finding the existence, uniqueness and stability results; see [2–
4, 8, 10, 15, 16, 21, 27, 48, 50].

More recently, motivated by Hilfer fractional derivatives and some well-known results in
respect of the generalized classical definitions of Riemann–Liouville and Caputo fractional
derivatives, Oliveira and Capelas [35] proposed new fractional derivatives called Hilfer–
Katugampola fractional derivatives, which incorporate Hilfer and generalized fractional
derivatives. These have been contemplated by some researchers in the field of fractional
calculus, results can be found in [1, 9, 20, 23, 24, 26, 28, 53] and the references therein.
Stability analysis is one of the most important aspects of fractional differential equations.
This notion was initiated by Ulam [22], which motivated many researchers to make con-
tributions in this area [6, 8, 10, 11, 21, 28, 31, 38, 46, 47, 51]. For instance, Ahmed et al. [9]
developed the existence and uniqueness criteria for solutions of boundary value problems
(BVPs) with a generalized nonlocal integral and multi-point conditions described by

⎧
⎪⎪⎨

⎪⎪⎩

ρDν
0+ z(s) = g(s, z(s)), s ∈ J = (0, T], s > 0,

δz(0) =
∑k

j=1 djz(λj), z(T) =
∑m

i=1 bi
ρIq

0+ z(ξi) + c, ξi,λj ∈ J , c, bi, dj ∈R,

0 < ξ1 < · · · < ξi < · · · < ξm < λ1 < · · · < λj < · · · < λk < T ,

(1.1)

and the inclusion problem

⎧
⎪⎪⎨

⎪⎪⎩

ρDν
0+ z(s) ∈ G(s, z(s)), s ∈ J = (0, T], s > 0,

δz(0) =
∑k

j=1 djz(λj), z(T) =
∑m

i=1 bi
ρIq

0+ z(ξi) + c, ξi,λj ∈ J ,

0 < ξ1 < · · · < ξi < · · · < ξm < λ1 < · · · < λj < · · · < λk < T ,

(1.2)

where ρDν
0+ (·) is the generalized fractional derivatives of order (1 < ν ≤ 2) and ρIq

0+ (·) is
a generalized fractional integral of order q > 0, δ = s1–ρ d

ds , ρ > 0, g : (0, T] × R → R is a
continuous function, T > 0 and G : J × R → P(R) is a multivalued function. Recently,
Suphawat et al. [12] initiated research and found existence and uniqueness results for the
boundary value problems (BVPs) which involve Hilfer fractional derivatives and a nonlocal
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condition described by

⎧
⎪⎪⎨

⎪⎪⎩

HDp,q
a+ w(s) = Θ(s, w(s)), s ∈ I = [a, b], b > a > 0,

w(a) = 0, w(b) =
∑m

k=1 bkIrk
a+ z(ξk), ξk ∈ I , bk ∈ R,

a < ξ1 < · · · < ξi < · · · < ξk < b,

(1.3)

where HDp,q
a+ (·) is the Hilfer fractional derivatives of order (1 < p < 2) and the parameter

0 ≤ q ≤ 1, Irk
a+ (·) is the Riemann–Liouville fractional integral of order rk > 0, Θ : I ×R →

R is a continuous function. The authors employed a fixed point approach of the Banach
contraction principle, and the Hölder, Boyd and Wang, Leray–Schauder and Krasnosel-
skii’s approaches to obtain their results.

In [20], Harikrishnan considered an initial value problem with the nonlocal condition
given by

⎧
⎨

⎩

ρDυ,q
a+ u(τ ) = f (τ , u(τ )), τ ∈ I = (a, T],

ρI1–r
a+ u(a) =

∑n
j=1 cju(σj), σj ∈ I,

(1.4)

where ρDυ,q
a+ (·) is the Hilfer–Katugampola fractional derivative of order (0 < υ < 1) and

parameter 0 ≤ q ≤ 1, ρI1–r
a+ (·) is the generalized fractional integral of order 1 – r > 0, ρ > 0,

f : I ×R → R is a continuous function, cj ∈ R and σj ∈ I satisfying 0 < a < σ1 ≤ σ2 ≤ · · · ≤
σn < T for j = 1, 2, . . . , n. Existence results were obtained using Krasnoselskii’s fixed point
theorem.

More recently, Vivek et al.[48] studied an implicit differential equation with nonlocal
condition via Hilfer fractional derivatives described by

⎧
⎨

⎩

Dα,β
0+ v(s) = Θ(s, v(s), Dα,β

0+ v(s)), s ∈ T = [0, b], b > 0,

I1–r
0+ v(0) =

∑m
i=1 eiv(τi), τi ∈ T , r = α + β – αβ ,

(1.5)

where Dα,β
0+ (·) is the Hilfer fractional derivatives of order (0 < α < 1) and type 0 ≤ β ≤ 1,

I1–r
0+ (·) is the Riemann–Liouville fractional integral of order 1 – r > 0, Θ : T ×R

2 →R is a
continuous function, ei ∈R, τi ∈ T satisfying 0 < τ1 ≤ · · · ≤ τm < b. The authors proved the
existence and uniqueness via Schafer’s and Banach’s fixed point theorems. Furthermore,
stability results were also investigated.

Motivated by the above series of papers and some basic ideas of the fractional calculus,
the main objectives of this paper is to extend the results of [9, 12, 19] and also to discuss the
stability analysis in the framework of Ulam–Hyers and generalized Ulam–Hyers theory.
More specifically, we consider the fractional differential equation given by

⎧
⎨

⎩

ρD
p,q
a+ x(t) = f (t, x(t)), t ∈ [a, b], b > a > 0,ρ > 0,

x(a) = 0, x(b) =
∑m

i=1 μ
ρ
i I

ξi
a+ x(δi) + 
, ξi > 0,
,μi ∈R, δi ∈ (a, b),

(1.6)

where ρD
p,q
a+ (·) is the Hilfer–Katugampola fractional derivative of order (1 < p ≤ 2) and

parameter 0 ≤ q ≤ 1, ρI
ξi
a+ (·) is the generalized fractional integral of order ξi > 0, f : [a, b]×

R → R is a continuous function, μi ∈ R and δi ∈ [a, b] satisfying 0 < a < δ1 ≤ δ2 ≤ · · · ≤
δm < b for i = 1, 2, . . . , m. Problem (1.6) is simply called a boundary value problem (BVP).
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Evidently, to the best of our knowledge, stability analysis of boundary value problems
(BVPs) is still in the initial stage. Thus the main contribution of this paper is to investigate
the stability analysis of Ulam–Hyers and generalized Ulam–Hyers theory, which is not es-
tablished in [9, 12, 19]. Besides, we also show the equivalence between problem (1.6) and
the Volterra integral equation and apply the Banach and Krasnoselskii’s fixed point theo-
rems to establish the existence and uniqueness results. Moreover, problem (1.6) coincides
with:

• the Riemann–Liouville and Hadamard fractional derivative when q = 0, ρ → 1;
• the Hilfer and Hilfer–Hadamard fractional derivative (ρ → 1, and ρ → 0+);
• the generalized (defined by Katugampola) and Caputo-type versions (q = 0) and

(q = 1).
We organize the remaining part of the paper as follows: Some preliminary facts, vital

definitions, and theoretical results are recalled in Sect. 2. In Sect. 3, we derive the relation
between the Volterra integral equation and the proposed problem (1.6). Also, with the
help of these equations, the existence and uniqueness of solutions are proven using the
concepts of the Banach and Krasnoselskii fixed point theorems. In Sect. 4, we present cer-
tain criteria under which the proposed problem (1.6) is both Ulam–Hyers and generalized
Ulam–Hyers stable. Furthermore, as an application, two examples are given to show the
applicability of the obtained results. Finally, we summarize the paper in the last section.

2 Preliminaries and theoretical results
This section summarizes the basic definitions and principles of fractional derivatives and
integrals and describes the theoretical findings that are useful in this paper. For further
information, see [29, 35, 37].

Definition 2.1 Let –∞ < a < t < b < ∞, n – 1 < p < n with n ∈ N, n = [p] + 1 and ρ > 0.
Then

(
ρ
I

p
a+ f

)
(t) =

1
Γ (p)

∫ t

a

(
tρ – τρ

ρ

)p–1

τρ–1f (τ ) dτ , (2.1)

which is referred to as a left-sided generalized fractional integral of order p provided the
right side is point-wise defined on (a,∞); Γ (·) denotes the gamma function.

Likewise, the generalized fractional derivative is defined in terms of the generalized frac-
tional integral (2.1),

(
ρ
D

p
a+ f

)
(t) =

(

t1–ρ d
dt

)n(
ρ
I

n–p
a+ f

)
(t)

=
1

Γ (n – p)

(

t1–ρ d
dt

)n ∫ t

a

(
tρ – τρ

ρ

)n–p+1

τρ–1f (τ ) dτ . (2.2)

Definition 2.2 Suppose n – 1 < p ≤ n, 0 ≤ q ≤ 1 with n ∈N and ρ > 1. Then the fractional
operator

(
ρ
D

p,q
a+ f

)
(t) =

(
ρ
I

q(n–p)
a+

(

t1–ρ d
dt

)n
ρ
I

(1–q)(n–p)
a+ f

)

(t), (2.3)
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is called the left-sided Hilfer generalized (or simply Hilfer–Katugampola) fractional
derivative of order p and parameter q.

Remark 2.3 The operator ρD
p,q
a+ can be further simplified as

(
ρ
D

p,q
a+ f

)
(t) =

(
ρ
I

q(n–p)
a+

(

t1–ρ d
dt

)n
ρ
I

(1–q)(n–p)
a+ f

)

(t)

= ρ
I

q(2–p)
a+

ρ
D

r
a+ , (2.4)

where r = p + q(2 – p), 1 < p ≤ 2, 0 ≤ q ≤ 1 and the operators ρIa+ , ρDa+ are defined in
(2.1) and (2.2), respectively.

Next, we consider some important properties of these operators as follows.

Lemma 2.4 Let p, θ > 0, 1 ≤ p < ∞, 0 < a < b < ∞ and ρ, c ∈ R such that ρ ≥ c. Then, for
f ∈ Xp

c (a, b), the following relations hold:

(
ρ
I

p
a+

ρ
I

θ
a+ f

)
(·) =

(
ρ
I

p+θ

a+ f
)
(·)

and

(
ρ
D

p
a+

ρ
I

p
a+ f

)
(·) = f (·).

Lemma 2.5 In view of Eqs. (2.1) and (2.2), for any p, θ ≥ 0, we have

(
ρ
I

p
a+

(
tρ – aρ

ρ

)θ–1)

(x) =
Γ (θ )

Γ (p + θ )

(
tρ – aρ

ρ

)p+θ–1

,

(
ρ
D

p
a+

(
tρ – aρ

ρ

)p–1)

(x) = 0, 0 < p < 1.

Lemma 2.6 If 1 < p ≤ 2, then

ρ
I

p
a+

(
ρ
D

p
a+ f

)
(t) = f (t) –

(ρI1–rf )(a)
Γ (r)

(
tρ – aρ

ρ

)r–1

–
(ρI2–rf )(a)
Γ (r – 1)

(
tρ – aρ

ρ

)r–2

.

3 Main results
In this section, firstly, we establish the relationship between the proposed problem (1.6)
and the Volterra integral equation. Secondly, with the help of these equation, we derive the
existence and uniqueness of solutions based on Banach’s and Krasnoselskii’s fixed point
theorems.

3.1 Equivalence with the Volterra integral equation
We consider the generalized boundary value problem described by

ρ
D

p,q
a+ x(t) = f

(
t, x(t)

)
, b ∈ [a, b], b > a > 0, (3.1)
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where p ∈ (1, 2], q ∈ [0, 1], ρ > 0, subject to the boundary conditions:

x(a) = 0, x(b) =
m∑

i=1

μi
ρ
I

ξi
a+ x(δi) + 
, ξi > 0,
,μi ∈R, δi ∈ (a, b). (3.2)

The following lemma shows the relationship between problem (3.1)–(3.2) and the Volterra
integral equation of the form

x(t) =
ρ1–r

Υ Γ (r)
(
tρ – aρ

)r–1
(

ρ
I

p
a+ f

(
s, x(s)

)
(b) –

m∑

i=1

μ
ρ
i I

p+ξi
a+ f

(
s, x(s)

)
(δi) – 


)

+ ρ
I

p
a+ f

(
s, x(s)

)
(t), (3.3)

where

Υ =
m∑

i=1

μiρ
1–(r+ξi)

Γ (r + ξi)
(
δ

ρ
i – aρ

)r+ξi–1 –
ρ1–r

Γ (r)
(
bρ – aρ

)r–1 �= 0. (3.4)

Lemma 3.1 Let 1 < p ≤ 2, 0 ≤ q ≤ 1 such that r = p + 2q – pq and f (·, x(·)) ∈ C([a, b] ×R).
Then x is a solution of the problems (3.1), (3.2) if and only if it satisfies Eq. (3.3).

Proof Indeed, in view of (2.4), Eq. (3.1) can be written as

ρ
I

q(2–p)
a+

ρ
D

r
a+ x(t) = f

(
t, x(t)

)
. (3.5)

Applying the operator ρI
p
a+ to both sides of Eq. (3.5) and using Lemma 2.6, we get

x(t) =
(ρI1–r

a+ x)(a)
Γ (r)

(
tρ – aρ

ρ

)r–1

+
(ρI2–r

a+ x)(a)
Γ (r – 1)

(
tρ – aρ

ρ

)r–2

+ ρ
I

p
a+ f

(
t, x(t)

)
. (3.6)

Denoting e1 = (ρI2–r
a+ x)(a) and e2 = (ρI1–r

a+ x)(a) in Eq. (3.6) yields

x(t) =
e2

Γ (r)

(
tρ – aρ

ρ

)r–1

+
e1

Γ (r – 1)

(
tρ – aρ

ρ

)r–2

+ ρ
I

p
a+ f

(
t, x(t)

)
. (3.7)

By substituting the boundary condition x(a) = 0 in Eq. (3.7), we get e1 = 0. Thus

x(t) =
e2

Γ (r)

(
tρ – aρ

ρ

)r–1

+ ρ
I

p
a+ f

(
t, x(t)

)
. (3.8)

Substituting t = δi and multiplying through by μi in Eq. (3.8), we have

μix(δi) =
μie2

Γ (r)

(
δ

ρ
i – aρ

ρ

)r–1

+ μi
ρ
I

p
a+ f

(
δi, x(δi)

)
. (3.9)

Applying ρI
ξi
a+ to both sides of Eq. (3.9) and using Lemmas 2.5 and 2.4 yield

μi
ρ
I

ξi
a+ x(δi) =

μie2

Γ (r + ξi)

(
δ

ρ
i – aρ

ρ

)r+ξi–1

+ μi
ρ
I

p+ξi
a+ f

(
δi, x(δi)

)
, (3.10)
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which implies that

m∑

i=1

μi
ρ
I

ξi
a+ x(δi) + 
 = e2

m∑

i=1

μi

Γ (r + ξi)

(
δ

ρ
i – aρ

ρ

)r+ξi–1

+
m∑

i=1

μi
ρ
I

p+ξi
a+ f

(
δi, x(δi)

)
+ 
. (3.11)

Also,

x(b) =
e2

Γ (r)

(
bρ – aρ

ρ

)r–1

+ ρ
I

p
a+ f

(
b, x(b)

)
. (3.12)

From the boundary condition x(b) =
∑m

i=1 μ
ρ
i I

ξi
a+ x(δi) + 
 and in view of Eqs. (3.11), (3.12),

we obtain

e2

Γ (r)

(
bρ – aρ

ρ

)r–1

+ ρ
I

p
a+ f

(
b, x(b)

)
= e2

m∑

i=1

μi

Γ (r + ξi)

(
δ

ρ
i – aρ

ρ

)r+ξi–1

+
m∑

i=1

μi
ρ
I

p+ξi
a+ f

(
δi, x(δi)

)
+ 
, (3.13)

which implies that

e2 =
1
Υ

(

ρ
I

p
a+ f

(
b, x(b)

)
–

m∑

i=1

μi
ρ
I

p+ξi
a+ f

(
δi, x(δi)

)
– 


)

. (3.14)

Therefore, the results follow by substituting Eq. (3.14) in Eq. (3.8). The converse follows
by simple calculation as above. �

Denote by C = C([a, b],R) the Banach space of all continuous functions from [a, b] to R

defined by

‖x‖ = sup
a≤t≤b

∣
∣x(t)

∣
∣,

and define the operator F : C→ C by

(Fx)(t) =
ρ1–r

Υ Γ (r)
(
tρ – aρ

)r–1
(

ρ
I

p
a+ f

(
s, x(s)

)
(b) –

m∑

i=1

μ
ρ
i I

p+ξi
a+ f

(
s, x(s)

)
(δi) – 


)

+ ρ
I

p
a+ f

(
s, x(s)

)
(t). (3.15)

We show that the operator F has a fixed point which is the solutions of the problem (1.6).
For simplicity, we denote

Φ =
ρ1–(p+r)(bρ – aρ)p+r–1

|Υ |Γ (r)Γ (p + 1)
+

ρ1–r(bρ – aρ)r–1

|Υ |Γ (r)

m∑

i=1

|μi| (δρ
i – aρ)p+ξi

ρp+ξiΓ (p + ξi + 1)

+
(bρ – aρ)p

ρpΓ (p + 1)
. (3.16)
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3.2 Existence result via Banach contraction principle
We prove first the existence and uniqueness result of the proposed problem (1.6) by ap-
plying the concept of the Banach contraction principle in this subsection. Thus, before we
state the main theorem, we make the following assumptions:

(T1) Suppose that f : [a, b] ×R →R is a continuous functions such that f (·, x(·)) ∈ C for
any x ∈ C.

(T2) There exists a constant A > 0 such that

∣
∣f (t, x) – f (t, y)

∣
∣ ≤A|x – y|, for all x, y ∈R, t ∈ [a, b].

Theorem 3.2 Suppose that assumptions (T1)–(T2) are satisfied. Then problem (1.6) has a
unique solution on [a, b] provided that

AΦ < 1, (3.17)

where Φ is defined by (3.16).

Proof Firstly, we construct a ball Bχ = {x ∈ C : ‖x‖ ≤ χ}, where

χ ≥ PΦ + ρ1–r (bρ–aρ )r–1|
|
|Υ |Γ (r)

1 – AΦ
, P = sup

t∈[a,b]

∣
∣f (t, 0)

∣
∣.

Then we show that FBχ ⊂ Bχ . Now, for any x ∈ Bχ , we have

∣
∣(Fx)(t)

∣
∣ ≤ sup

t∈[a,b]

{
ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1ρ
I

p
a+

∣
∣f

(
s, x(s)

)∣
∣(b)

+
ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1
m∑

i=1

|μi|ρIp+ξi
a+

∣
∣f

(
s, x(s)

)∣
∣(δi)

+
ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1|
| + ρ
I

p
a+

∣
∣f

(
s, x(s)

)∣
∣(t)

}

≤ ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1ρ
I

p
a+

(∣
∣f

(
s, x(s)

)
– f (s, 0)

∣
∣ +

∣
∣f (s, 0)

∣
∣
)
(b)

+
ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1
m∑

i=1

|μi|ρIp+ξi
a+

(∣
∣f

(
s, x(s)

)
– f (s, 0)

∣
∣ +

∣
∣f (s, 0)

∣
∣
)
(δi)

+
ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1|
| + ρ
I

p
a+

(∣
∣f

(
s, x(s)

)
– f (s, 0)

∣
∣ +

∣
∣f (s, 0)

∣
∣
)
(t)

≤ (
A‖x‖ + P

)
(

ρ1–(p+r)

|Υ |Γ (r)Γ (p + 1)
(
bρ – aρ

)p+r–1

+
ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1
m∑

i=1

|μi|
Γ (p + ξi + 1)

(
δ

ρ
i – aρ

ρ

)p+ξi

+
(bρ – aρ)p

ρpΓ (p + 1)

)

+
ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1|
|
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≤ (
A‖x‖ + P

)
Φ +

ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1|
|

≤ χ . (3.18)

This shows that ‖(F)(x)‖ ≤ χ and hence FBχ ⊂ Bχ . Finally, we show that the operator F
defined by (3.15) is contractive. Indeed, for any x, y ∈ Bχ , we have

∣
∣(Fx)(t) – (Fy)(t)

∣
∣

≤ ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1ρ
I

p
a+

(∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣
)
(b)

+
ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1
m∑

i=1

|μi|ρIp+ξi
a+

(∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣
)
(δi)

+ ρ
I

p
a+

(∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣
)
(t)

≤A|x – y|
(

ρ1–(p+r)

|Υ |Γ (r)Γ (p + 1)
(
bρ – aρ

)p+r–1

+
ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1
m∑

i=1

|μi|
Γ (p + ξi + 1)

(
δ

ρ
i – aρ

ρ

)p+ξi

+
(bρ – aρ)p

ρpΓ (p + 1)

)

≤AΦ|x – y|. (3.19)

Therefore, ‖Fx – Fy‖ ≤ AΦ‖x – y‖. Thus in view of (3.17), the operator F is contractive
and hence by the Banach contraction principle, problem (1.6) has a unique solution on
[a, b]. �

Remark 3.3 We now present some special cases of our Theorem 3.2. For instance, to ob-
tain the result of [12] (see Theorem 3.2), we set the parameters ρ = 1 and 
 = 0, then we
obtain

Φ∗ =
(b – a)p+r–1

|Υ ∗|Γ (r)Γ (p + 1)
+

(b – a)r–1

|Υ ∗|Γ (r)

m∑

i=1

|μi| (δi – a)p+ξi

Γ (p + ξi + 1)
+

(b – a)p

Γ (p + 1)
, (3.20)

where

Υ ∗ =
m∑

i=1

μi

Γ (r + ξi)
(δi – a)r+ξi–1 –

1
Γ (r)

(b – a)r–1. (3.21)

We now state the following corollary.

Corollary 3.4 Suppose that assumptions (T1)–(T2) hold. Then problem (1.6) has a unique
solution provided that AΦ∗ < 1.

Our next existence results are established using the concepts of Krasnoselskii’s fixed
point theorem.
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3.3 Existence result via Krasnoselskii’s fixed point theorem
In this subsection, we establish the existence results via Kransnoselkii’s fixed point theo-
rem [30].

Theorem 3.5 ([30]) Let P be a closed, convex, and nonempty subset of a Banach space X,
and let F1, F2 be operators such that:

(i) F1y + F2z ∈ M whenever y, z ∈ P.
(ii) F1 is compact and continuous.

(iii) F2 is a contraction mapping.
Then there exists w ∈ P such that w = F1w + F2w.

Theorem 3.6 Suppose that f : [a, b] × R → R is a continuous function fulfilling assump-
tion (T2) and the following hypotheses are true:

(T3) |f (t, y)| ≤ υ(t), for all (t, y) ∈ [a, b] ×R and υ : [a, b] →R is a continuous function.
Then problem (1.6) has at least one solution on [a, b], on condition that

Aψ < 1, (3.22)

where

ψ =
ρ1–(p+r)(bρ – aρ)p+r–1

|Υ |Γ (r)Γ (p + 1)
+

ρ1–r(bρ – aρ)r–1

|Υ |Γ (r)

m∑

i=1

|μi|
Γ (p + ξi + 1)

(
δ

ρ
i – aρ

ρ

)p+ξi

. (3.23)

Proof Denoting ‖υ‖ = supt∈[a,b] |υ(t)| and selecting d ≥ ‖υ‖Φ + ρ1–r(bρ–aρ )r–1

|Υ |Γ (r) |
| we con-
sider a set Bd = {x ∈ C : ‖x‖ ≤ d}. Splitting the operator F : C→ C defined by (3.15) on Bd

as F = F + G , where

Fx(t) = ρ
I

p+ξi
a+ f

(
s, x(s)

)
(t), t ∈ [a, b],

and

Gx(t) =
ρ1–r

Υ Γ (r)
(
tρ – aρ

)r–1
(

ρ
I

p
a+ f

(
s, x(s)

)
(b) –

m∑

i=1

μ
ρ
i I

p+ξi
a+ f

(
s, x(s)

)
(δi) – 


)

,

t ∈ [a, b].

Step 1. We show that Fx + Gy ∈ Bd . Indeed, for any x, y ∈ Bd and t ∈ [a, b], we get

∣
∣(Fx)(t) + (Gy)(t)

∣
∣

≤ sup
t∈[a,b]

{ρ

I
p+ξi
a+

∣
∣f

(
s, x(s)

)∣
∣(t) +

ρ1–r(tρ – aρ)r–1

Υ Γ (r)

ρ

I
p
a+

∣
∣f

(
s, x(s)

)∣
∣(b)

+
ρ1–r(tρ – aρ)r–1

Υ Γ (r)

m∑

i=1

|μi|ρIp+ξi
a+

∣
∣f

(
s, x(s)

)∣
∣(δi) +

ρ1–r(tρ – aρ)r–1

Υ Γ (r)
|
|

}

≤ ‖υ‖
(

ρ1–(p+r)

|Υ |Γ (r)Γ (p + 1)
(
bρ – aρ

)p+r–1
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+
ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1
m∑

i=1

|μi|
Γ (p + ξi + 1)

(
δ

ρ
i – aρ

ρ

)p+ξi

+
(bρ – aρ)p

ρpΓ (p + 1)

)

+
ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1|
|

≤ ‖υ‖Φ +
ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1|
|

≤ d. (3.24)

Therefore, ‖Fx + Gy‖ ≤ d, which implies that Fx + Gy ∈ Bd .
Step 2. We show that the operator G is a contraction.
Let x, y ∈ Bd and t ∈ [a, b]. We have

‖Gx – Gy‖ ≤ sup
t∈[a,b]

{
ρ1–r(tρ – aρ)r–1

|Υ |Γ (r)

ρ

I
p
a+

∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣(b)

+
ρ1–r(tρ – aρ)r–1

|Υ |Γ (r)

m∑

i=1

|μi|ρIp+ξi
a+

∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣(δi)

}

≤A
(

ρ1–(p+r)(bρ – aρ)p+r–1

|Υ |Γ (r)Γ (p + 1)

+
ρ1–r(bρ – aρ)r–1

|Υ |Γ (r)

m∑

i=1

|μi|
Γ (p + ξi + 1)

(
δ

ρ
i – aρ

ρ

)p+ξi
)

‖x – y‖

≤Aψ‖x – y‖. (3.25)

Thus, in view of condition (3.23), we conclude that the operator G is a contraction.
Step 3. We show that the operator F is compact and continuous.
Since the function f ∈ C([a, b],R), the operator F is also continuous. Moreover, it is not

difficult to see that the operator F is uniformly bounded. For any x ∈ Bd , we have

‖Fx‖ ≤ (bρ – aρ)p

ρpΓ (p + 1)
‖υ‖ < ∞.

In order to show the compactness of the operator F , we set sup(t,x)∈[a,b]×Bd
|f (t, x)| = f̂ such

that, for any t1, t2 ∈ [a, b] with t1 < t2, one has

∣
∣(Fx)(t2) – (Fx)(t1)

∣
∣ ≤

∣
∣
∣
∣

ρp

Γ (p)

(∫ t1

a
sρ–1[(tρ

2 – sρ
)p–1 –

(
tρ
1 – sρ

)p–1]f
(
s, x(s)

)
ds

+
∫ t2

t1

sρ–1(tρ
2 – sρ

)p–1f
(
s, x(s)

)
ds

)∣
∣
∣
∣

≤ f̂
ρpΓ (p + a)

[
2
(
tρ
2 – tρ

1
)p +

∣
∣(t2 – a)ρp – (t1 – a)ρp∣∣

]

→ ∞, as t2 → t1. (3.26)

This shows that the operator F is equicontinuous and, therefore, is relatively compact
on Bd . Thus, as a result of the Arzelá–Ascoli theorem, it follows that F is compact on
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Bd . Since all the hypotheses of Theorem 3.5 are fulfilled, problem (1.6) has at least one
solution on [a, b]. �

Remark 3.7 We now present a special case of Theorem 3.2. For instance, to obtained the
result of [12] (see Theorem 3.17), we set the parameters ρ = 1 and 
 = 0, then we obtain

ψ∗ =
(b – a)p+r–1

|Υ ∗|Γ (r)Γ (p + 1)
+

(b – a)r–1

|Υ ∗|Γ (r)

m∑

i=1

|μi| (δi – a)p+ξi

Γ (p + ξi + 1)
, (3.27)

where

Υ ∗ =
m∑

i=1

μi

Γ (r + ξi)
(δi – a)r+ξi–1 –

1
Γ (r)

(b – a)r–1. (3.28)

We now state the following corollary.

Corollary 3.8 Suppose that assumptions (T1)–(T3) hold. Then problem (1.6) has at least
one solution on [a, b], provided that Aψ∗ < 1.

4 Stability results
In this section, we present two different types of results for stability, namely Ulam–Hyers
and generalized Ulam–Hyers stability, respectively. Before we state the main theorem, the
following definitions are needed.

Let ε > 0 and θ : [a, b] → [a,∞] be a continuous function. We consider the following
inequalities:

∣
∣ρD

p,q
a+ y(t) – f

(
t, y(t)

)∣
∣ ≤ ε, t ∈ [a, b], (4.1)

∣
∣ρD

p,q
a+ y(t) – f

(
t, y(t)

)∣
∣ ≤ εθ (t), t ∈ [a, b]. (4.2)

Definition 4.1 Problem (1.6) is Ulam–Hyers stable if there exists a constant τ > 0 such
that, for ε > 0 and for each solution y ∈ C of the inequality (4.1), there exists a solution
x ∈ C of problem (1.6) with

∣
∣y(t) – x(t)

∣
∣ ≤ τε, t ∈ [a, b]. (4.3)

Definition 4.2 Problem (1.6) is generalized Ulam–Hyers stable if there exists θf ∈
C(R+,R+) and θf (0) = 0 such that, for each solution y ∈ C of the inequality (4.2), there
exists a solution x ∈ C of problem (1.6) with

∣
∣y(t) – x(t)

∣
∣ ≤ θf (ε), t ∈ [a, b]. (4.4)

Remark 4.3 A function y ∈ C is a solution of the equality (4.1) if and only if there exists a
function z ∈ C (which depends on y) such that:

(i) |z(t)| ≤ ε, t ∈ [a, b].
(ii) ρD

p,q
a+ y(t) = f (t, y(t)) + z(t), t ∈ [a, b].
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Lemma 4.4 Let 1 < r ≤ 2, 0 ≤ p ≤ 1, if a function y ∈ C is a solution of the inequality (4.1),
then y is a solution of the following integral inequality:

∣
∣y(t) – Ey – ρ

I
p
a+ f

(
s, y(s)

)
(t)

∣
∣ ≤ Φε, (4.5)

where

Ey =
ρ1–r(tρ – aρ)r–1

Υ Γ (r)
ρ
I

p
a+ f

(
s, y(s)

)
(b) +

ρ1–r(tρ – aρ)r–1

Υ Γ (r)

m∑

i=1

μ
ρ
i I

p+ξi
a+ f

(
s, y(s)

)
(δi).

Proof Using Lemma 3.1 and Remark 4.3, it follows that

y(t) =
ρ1–r(tρ – aρ)r–1

Υ Γ (r)
ρ
I

p
a+ f

(
s, y(s)

)
(b) –

ρ1–r(tρ – aρ)r–1

Υ Γ (r)

m∑

i=1

μ
ρ
i I

p+ξi
a+ f

(
s, y(s)

)
(δi)

–
ρ1–r(tρ – aρ)r–1

Υ Γ (r)

 + ρ

I
p
a+ f

(
s, y(s)

)
(t) +

ρ1–r(tρ – aρ)r–1

Υ Γ (r)
ρ
I

p
a+ z(b)

–
ρ1–r(tρ – aρ)r–1

Υ Γ (r)

m∑

i=1

μ
ρ
i I

p+ξi
a+ z(δi) –

ρ1–r(tρ – aρ)r–1

Υ Γ (r)

 + ρ

I
p
a+ z(t), (4.6)

which implies that
∣
∣y(t) – Ey – ρ

I
p
a+ f

(
s, y(s)

)
(t)

∣
∣

=

∣
∣
∣
∣
∣

ρ1–r(tρ – aρ)r–1

Υ Γ (r)
ρ
I

p
a+ z(b)

–
ρ1–r(tρ – aρ)r–1

Υ Γ (r)

m∑

i=1

μ
ρ
i I

p+ξi
a+ z(δi) –

ρ1–r(tρ – aρ)r–1

Υ Γ (r)

 + ρ

I
p
a+ z(t)

∣
∣
∣
∣
∣

≤ ε

(
ρ1–(p+r)

|Υ |Γ (r)Γ (p + 1)
(
bρ – aρ

)p+r–1

+
ρ1–r

|Υ |Γ (r)
(
bρ – aρ

)r–1
m∑

i=1

|μi|
Γ (p + ξi + 1)

(
δ

ρ
i – aρ

ρ

)p+ξi

+
(bρ – aρ)p

ρpΓ (p + 1)

)

≤ Φε. (4.7)
�

We now state the main theorem as follows:

Theorem 4.5 Assume that hypotheses (T1) and (T2) are satisfied with AΦ < 1. Then prob-
lem (1.6) is Ulam–Hyers stable and accordingly is generalized Ulam–Hyers stable.

Proof Suppose that y ∈ C is a solution of inequality (4.1) and x ∈ C is a unique solution of
problem (1.6). Then it follows from Lemma 4.1 that

∣
∣y(t) – x(t)

∣
∣ =

∣
∣
∣
∣
∣
y(t) –

ρ1–r(tρ – aρ)r–1

Υ Γ (r)
ρ
I

p
a+ f

(
s, x(s)

)
(b)

–
ρ1–r(tρ – aρ)r–1

Υ Γ (r)

m∑

i=1

μ
ρ
i I

p+ξi
a+ f

(
s, x(s)

)
(δi) –

ρ1–r(tρ – aρ)r–1

Υ Γ (r)
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+ ρ
I

p
a+ f

(
s, x(s)

)
(t)

∣
∣
∣
∣
∣

≤ ∣
∣y(t) – Ey – ρ

I
p
a+ f

(
s, y(s)

)
(t)

∣
∣

+

∣
∣
∣
∣
∣

ρ1–r(tρ – aρ)r–1

Υ Γ (r)
ρ
I

p
a+

(
f
(
s, y(s)

)
– f

(
s, x(s)

))
(b)

–
ρ1–r(tρ – aρ)r–1

Υ Γ (r)

m∑

i=1

μ
ρ
i I

p+ξi
a+

(
f
(
s, y(s)

)
– f

(
s, x(s)

))
(δi)

+ ρ
I

p
a+

(
f
(
s, y(s)

)
– f

(
s, x(s)

)
(t)

)
∣
∣
∣
∣
∣

≤ Φε + AΦ
∣
∣y(t) – x(t)

∣
∣, (4.8)

which implies that

‖y – x‖ ≤ τε,

where

τ =
Φ

1 – AΦ
> 0.

Hence, we conclude that problem (1.6) is Ulam–Hyers stable. In addition, denoting θf (ε) =
τε, such that θf (0) = 0, then problem (1.6) is generalized Ulam–Hyers stable. �

5 Examples
Example 5.1 Consider the Hilfer fractional differential equation with nonlocal boundary
condition of the form

⎧
⎪⎨

⎪⎩

1D
4
3 , 1

2
1
3

+ x(t) = 1
3(23t+1) ( |x(t)|

1+|x(t)| ) + 3
2 , t ∈ [ 1

3 , 3],

x(1) = 0, x(3) =
√

21I
3
2
1
3

+ x( 9
4 ) + 5

3
1I

3
5
1
3

+ x( 8
3 ) + 51I

2
3
1
3

+ x( 7
4 ).

(5.1)

By comparing problems (1.6) with (5.1), it is not difficult to figure out the following values:
ρ = 1, p = 4

3 , q = 1
2 , r = 5

3 , a = 1
3 , b = 3, μ1 =

√
2, μ2 = 5

3 , μ3 = 5, ξ1 = 3
2 , ξ2 = 3

5 , ξ3 = 2
3 ,

δ1 = 9
4 , δ2 = 8

3 , δ3 = 7
4 , 
 = 0, m = 1, 2, 3. Obviously, for any w ∈R and t ∈ [ 1

3 , 3], the function
f : [ 1

3 , 3] ×R→R with

f (t, w) =
1

3(23t + 1)

( |w|
1 + |w|

)

+
3
2

is a continuous function and, for all w, w̄ ∈ R+ and t ∈ [ 1
3 , 3], this yields

∣
∣f (t, w) – f (t, w̄)

∣
∣ ≤ 1

9
(|w – w̄|).

Consequently, it follows that assumptions (T1) and (T2) are satisfied withA = 1
9 . Moreover,

by simple calculations, we get |Υ | ≈ 11.2817, Φ = 5.8525 > 0, ψ = 2.7466 > 0 and

AΦ ≈ 0.6503 < 1,
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which implies that all the assumptions of Theorem 3.2 are satisfied. Hence, problem (1.6)
has a unique solution on [ 1

3 , 3]. Furthermore,

Aψ ≈ 0.3052 < 1,

this shows that all hypotheses of Theorem 3.6 also hold, thus problem (1.6) has at least
one solution on [ 1

3 , 3]. In addition, we can see that τ ≈ 16.7358 > 0. So, according to The-
orem 4.5, problem (1.6) is both Ulam–Hyers and generalized Ulam–Hyers stable.

Example 5.2 Consider the generalized nonlocal boundary value problem which involves
the Hilfer–Katugampola fractional derivative described by

⎧
⎨

⎩

1
2 D

5
2 , 2

3
0+ x(t) = f (t, x(t)), t ∈ [0, 1],

x(0) = 0, x(1) = 2
3

1
2 I

5
4
0+ x( 1

3 ) + 7
3

1
2 I

4
3
0+ x( 2

5 ) + 2.
(5.2)

Here ρ = 1
2 , p = 5

2 , q = 2
3 , r = 3

2 , a = 0, b = 1, μ1 = 2
3 , μ2 = 7

3 , ξ1 = 5
4 , ξ2 = 4

3 , δ1 = 1
3 , δ2 = 2

5 ,

 = 2, m = 1, 2. By substituting these values in Eqs. (3.4), (3.16) and (3.23), we obtain

|Υ | ≈ 1.0188, Φ ≈ 12.2772 > 0 and ψ ≈ 10.5754 > 0.

Denote f (t, x(t)) = e2t+cos(2t)
(4+3t ) ( |x(t)|

1+|x(t)| ) +
√

3
2 . Then, for any u, ū ∈ R+ and t ∈ [0, 1],

∣
∣f (t, u) – f (t, ū)

∣
∣ ≤ 1

25
(|u – ū|).

So assumptions (T1) and (T2) are fulfilled with A = 1
25 and AΦ ≈ 0.4911 < 1. Therefore, all

the assumptions of Theorem 3.2 are satisfied and problem (1.6) has a unique solution on
[0, 1]. Moreover, we can see thatAψ ≈ 0.4230 < 1. Thus, all the hypotheses of Theorem 3.6
hold. Hence, problem (1.6) has at least one solution on [0, 1].

6 Conclusions
In this article, we have shown that the proposed problem (1.6) is equivalent to the Volterra
integral equation. Based on this equation, we have provided some sufficient conditions
for the existence and uniqueness of solutions by utilizing the concepts of the Banach and
Krasnoselskii’s fixed point theorems. Also, we derive stability in the case of Ulam–Hyers
and generalized Ulam–Hyers, respectively. Furthermore, two examples are given as an
application to validate the results obtained. Also, it enables us to make the accompanying
comments:

• If ρ → 1, 
 = 0 problem (1.6) reduces to the problem considered in [12].
• Setting 0 < p < 1, ρ → 1, 
 = 0 and ξi = 0, i = 1, . . . , m, problem (1.6) reduces to the

problem considered in [48].
• Setting 0 < p < 1, 
 = 0 and ξi = 0, i = 1, . . . , m, problem (1.6) reduces to the problem

considered in [20].
• If ρ → 0, 
 = 0 and ξi = 0 for all i = 1, . . . , m, the generalized nonlocal

Riemann–Liouville integral condition reduces to the one considered in [20, 44, 48, 49].
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• If ξi = 1 for all i = 1, . . . , m, the generalized nonlocal Riemann–Liouville integral
condition takes the form

x(b) = μ1

∫ δ1

a
x(τ ) dτ + μ2

∫ δ2

a
x(τ ) dτ + · · · + μm

∫ δm

a
x(τ ) dτ + 
,

which plays a significant role in computational fluid dynamics, ill-posed problems and
mathematical models and yields a better result than the initial condition x(b) = xb

[14, 34].
Therefore, based on this setting, we conclude that our results are new and extend the above
cited results which can be considered as a further development of the qualitative analysis
of fractional differential equations. The analysis of the Ulam–Hyers–Mittag-Leffler func-
tion is to be discussed shortly in the context of Hilfer–Katugampola fractional derivative
with generalized nonlocal conditions proposed in this paper or another mixed boundary
condition.
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