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A B S T R A C T

In this article we have discussed the analytical analysis of two dimensional modified Korteweg–de Vries
(mK–dV) equation arising in plasma physics that governs the ion-acoustic solitary waves for their asymptotic
behavior because of the trapping of electrons using auxiliary equation mapping method. By using this technique
we have obtained some quite general and new variety of exact traveling wave solutions which are collecting
some kind of semi half bright, bright, dark, semi half dark, doubly periodic, combined, periodic, half hark
and half bright via three parametric values which is the primary key point of difference of our technique.
These results are highly applicable to develop new theories of quantum mechanics, biomedical problems,
soliton dynamics, plasma physics, nuclear physics, optical physics, fluid dynamics, electromagnetism, industrial
studies, mathematical physics, biomedical problems, and in many other natural and physical sciences. For
detailed physical dynamical representation of our results we have shown them with graphs in different
dimensions via Mathematica 10.4 to get more understanding of different new dynamical shapes of solutions.
1. Introduction and problem formulation

In 1895 Korteweg and de Vries introduced a well known and clas-
sical Kdv model during the study of shallow water waves Kdv is a
well famous governing model derived for the propagation of shallow
water waves [1]. Although many researchers have presented modified
and generalized Kdv equations with potential applications in different
branches of applied physics and natural sciences [2–13]. After the
invention of classical Kdv model Kdv theory has many applications
for example it has an important role to study the problems of blood
appearing in compressible fluids in fluid mechanics [6], to study the
properties of electron plasma present in a cylindrical plasma, to exam-
ine the properties of oceanic water waves [2], to study bubble liquid
type mixture for the detail investigation of pressure waves, to examine
chemical compounds for investigation of mass transports problems [4],
use to study dusty plasma [5], to read different properties of nonlinear
solitary structures, for the study of surface gravity waves, to describe
electrical transmission lies and in the study of many other nonlinear
phenomena, its quite hard to list its all those applications over here.
Other than above mentioned applications, Kdv theory has a significant
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role in quantum plasma for the investigation of electrostatic waves via
setting different parameters appearing in plasma is one of the excited
and fascinated field of research both for mathematicians and physicians
from many years. To examine different properties of electrostatic waves
is particularly important due to their potential applications in the
development of new theories of chemical physics, space environments,
plasma physics, fluid dynamics, astrophysics, optical physics, nuclear
physics, geophysics, dusty plasma, fluid mechanics and different other
fields of applied physics [13–19]. In recent years, to study electrostatic
waves specially to discuss different properties of solitary waves is
the field of soliton dynamics has played a significant role for many
researchers and have received a considerable attention of them. Hence
the present research work is a motivation to extract exact solutions
of a generalized model of Kdv equation called as modified Korteweg–
de Vries (mk–dv) equation introduced by Schamel in 1973 first time
during the study of ion-acoustic nonlinear solitary waves because of
the trapping of electrons [13,14]. He investigated the dependence
of asymptotic behaviors of ion-acoustic waves of small with finite
amplitude on the number of resonant electrons, in the result of which
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he presented after some derivation a Kdv type equation with a strong
nonlinearity given as in dimension less form.

𝑞𝑡 + (1 + 𝑏𝑞
1
2 )𝑞𝑥 +

1
2
𝑞𝑥𝑥𝑥 = 0. (1)

bove ‘‘q(x,t)’’ is a real valued wave function that governs the ion-
coustic solitary waves for their asymptotic behavior because of the
rapping of electrons and here ‘‘b’’ as any arbitrary constant. He pre-
ented a brief theoretical comparison of those waves which are satis-
ying new Kdv type equation with those which are satisfying simple
lassical type Kdv equation given as

𝑡 + 𝑞𝑞𝑥 + 𝜎−2𝑞𝑥𝑥𝑥 = 0. (2)

n above equation ‘‘q(x,t)’’ is the representation of 1-dimensional
eakly dispersive waves governing the time asymptotic behavior of

mall with finite amplitude dispersive waves with 𝜎 as an arbitrary
onstant. He said that a wave equation with satisfying equation type (1)
s same in qualitative manner as that of Kdv type equation satisfying
2). According to his detail studies a great number of solutions which
re of stationary type arise on a very short period of time which
ropagate with high speeds and taking small widths. In 1991 after that
ejoh [15,16] and other two researchers Das and Sen in (1994) [17]
ave introduced a unidirectional nonlinear Kdv type wave equation
overning the non-isothermal plasma with cold ions and electrons is
resented in dimensionless form in the following,

𝑡 + 𝐹 (𝑞)𝑞𝑥 + 𝑞𝑥𝑥𝑥 = 0. (3)

n plasma physics above equation is used to define different properties
f solitary type waves which leads us towards bursting or spiky solitary
aves appearing in plasma physics. Later they developed a more gener-
lized Kdv type 2-dimensional model named as Kadomtsev–Petviashvili
𝐾𝑃 ) equation, that governs the impact of nonlinear acoustic waves
ue to the trapping of electrons appearing in plasma and finally they
roved the existence of some different solitary type waves in relation to
he space plasma and laboratory. In a short summary, many researchers
ave given us the proof of the existence of bursting solitary waves on
he basis of their observations which they have done using different
lasma parameters, all the observations are actually related to those
bservations which are encountered in interplanetary space plasma.

Hence this is the best time to study the extraction of exact solu-
ions of such models because their analytical study have own unique
mportance in literature to understand a complex dynamical process in
more efficient manner. Another important point of exact solutions is
uite important to note that they are useful in the study of comparison
f accuracy of numerical solution, also to check the stability analysis of
hem, in the development of new wide range of different mathematical
oftwares. In this work we have studied the analytical analysis of
odified Kdv equation using our introduced method named as auxiliary

quation mapping method. In the result of which we have obtained
variety of new more general families of exact solution in a more

ompact form [18–35].
Here section first presenting a brief introduction of (𝑚𝐾−𝑑𝑉 ) model.

nd section second is presenting the implementation of our method for
lgorithm and details of this method see Ref. [18] to extract solitons of
he above model to check computational reliability and efficiency of
he method. While section three is presenting the physical description
f our results with respect to graphs in different dimensions. At the last
he discussion of our solutions is given. And section four explaining us
ome of important concluding remarks.

. Modified generalized Korteweg–de Vries (𝒎𝑲−−𝒅𝑽 )𝑰 equation
with mixed nonlinearity

Here we will apply our method see Ref. [18] to extract the variety
2

of solitons of a well known governing model modified generalized
Korteweg–de Vries(𝑚𝐾 − 𝑑𝑉 ) equation [13,14]. The (𝑚𝐾 − 𝑑𝑉 ) model
in dimensionless form is given by

𝑞𝑡 + (1 + 𝑏𝑞
1
2 )𝑞𝑥 +

1
2
𝑞𝑥𝑥𝑥 = 0. (4)

where 𝑞(𝑥, 𝑡) is a real valued wave function that governs ion-acoustic
solitary waves while 𝑏 as any arbitrary constant. While 𝑥 and 𝑡 is the
representation of associated partial derivatives. Eq. (4) is transformed
into 𝑁𝐿𝑂𝐷𝐸 using the below linear wave transformation:

𝑞(𝑥, 𝑡) = 𝑄(𝜉) 𝜉 = (𝑥 − 𝜐𝑡). (5)

Here 𝜐 is the representation of wave frequency, using this linear wave
transformation equation (4) is transformed into the following 𝑁𝐿𝑂𝐷𝐸

−𝜐𝑄′ + (𝑄 + 𝑏𝑄
1
2 )𝑄′ + 1

2
𝑈 ′′′ = 0. (6)

By integrating equation (6) and setting constant of integration equal to
zero then we obtain

−𝜐𝑄 + 1
2
𝑄2 + 𝑏2

3
𝑄

3
2 + 1

2
𝑄′′ = 0. (7)

Further by putting 𝑄
1
2 = 𝑊 , we have the following 𝑂𝐷𝐸

−6𝜐𝑊 2 + 3𝑊 4 + 4𝑏𝑊 3 + 6((𝑊 ′)2 +𝑊𝑊 ′′) = 0. (8)

ext with the help of ‘‘homogeneous principal’’ taking a quite balance
etween the highest order partial derivative 𝑊𝑊 ′′ and highest order
onlinearity term 𝑊 4 we will get 𝑛 = 1, now next using auxiliary
quation mapping method the equation 8 is supposed to consider the
eneral form of solution as mentioned below in the form of a series:

(𝜉) =
𝑛
∑

𝑗=0
𝑎𝑗𝐹

𝑗 (𝜉) +
−𝑛
∑

𝑗=−1
𝑏−𝑗𝐹

𝑗 (𝜉) +
𝑛
∑

𝑗=2
𝑐𝑗𝐹

𝑗−2(𝜉)𝐹 ′(𝜉)

+
−𝑛
∑

𝑗=−1
𝑑−𝑗𝐹

𝑗 (𝜉)𝐹 ′(𝜉). (9)

here the 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 , 𝑑𝑗 are constants which will be calculated later, in
bove equation 𝐹 (𝜉) satisfy the below mentioned auxiliary ordinary
ifferential equation with its associated partial derivatives:

𝐹
′2

= (𝑑𝐹
𝑑𝜉

)2 = 𝑝𝐹 2(𝜉) + 𝑞𝐹 3(𝜉) + 𝑟𝐹 4(𝜉); (10)

𝐹 ′′(𝜉) = 𝑝𝐹 (𝜉) + 3
2
𝑞𝐹 2(𝜉) + 2𝑟𝐹 3(𝜉); (11)

𝐹 ′′′(𝜉) = (𝑝 + 3𝑞𝐹 (𝜉) + 6𝑟𝐹 2(𝜉))𝐹 ′(𝜉). (12)

or 𝑛 = 1, the generalized solution of Eq. (8) takes the following form:

(𝜉) = 𝑎0 + 𝑎1𝐹 (𝜉) +
𝑏1

𝐹 (𝜉)
+ 𝑑1

𝐹 ′(𝜉)
𝐹 (𝜉)

, (13)

By putting Eq. (13) with the help of (10) into Eq. (8), with collecting
all those coefficients of same powers of 𝐹 ′𝑘(𝜉)𝐹 𝑗 (𝜉) (ε𝑘 = 0, 1ε. ε𝑗 =
0, 1, 2, 3, 4, 5, 6,… ......𝑛ε) and setting them equal to zero yields a system
of algebraic equations, via any suitable mathematical tool for example
Matlab, Mathematica 10.4, or Maple, different new and more general
families of exact solutions associated with different values of constants
𝑎0, 𝑎1, 𝑏1, 𝑑1, and frequency are obtained, by putting them into Eq.
(13) we will obtain the variety of new solitons of (4) which are listed
below.

Family 1:

𝑎0 =
−4𝑏
5

, 𝑎1 =
15𝑞
4𝑏

, 𝑏1 = 𝑑1 = 0, 𝑝 = −8𝑏2
75

, 𝑟 =
−75𝑞2

32𝑏2
, 𝜐 = −16𝑏2

75
.

(14)

Next by substituting all values mentioned above into Eq. (13) with the
help of Eq. (10), we will obtain in this family the following solutions
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Fig. 1. The physical plotting of (17) is given in different dimensions. Here (q3-b) shows 3-dimensional plotting of (17) as bright soliton with parametric values 𝜉0 = 0.7, 𝜌 = 1.3,
𝑝 = 0.8, 𝑞 = 1.7, 𝑏 = .5, 𝑟 = 0.5, 𝑠 = 0.8 in intervals (0,5), (−10,10). And (q3-a1) is the 2-dimensional plotting of (17) with same parametric values as used above with in intervals
(−15,15), (0,10). While (q3-a2) is the contour plotting of (17) with the same parametric values as mentioned above with in intervals (−5,5), (0,5). And (q3-a3) shows 1-dimensional
plotting of (17) bright soliton using interval (−5,5) of (17) with parametric values 𝜉0 = 0.9, 𝜌 = 1.3, 𝑝 = 0.8, 𝑞 = 1.8, 𝑏 = .5, 𝑟 = 0.5, 𝑠 = 0.9.
using our method, so the solutions in this family for Eq. (4) are obtained
as below.

𝑞1(𝑥, 𝑡) = 𝑄(𝜉) = (𝑊 (𝜉))2 =
(

−4𝑏
5

−
15𝑝(1 + 𝑠 𝑡𝑎𝑛ℎ[

√

𝑝
2
(𝑥 − 𝜐𝑡) + 𝜉0])

4𝑏

)2

,

𝑝 > 0.
(15)

𝑞2(𝑥, 𝑡) =𝑄(𝜉) = (𝑊 (𝜉))2 =
(

−4𝑏
5

+
15𝑞
8𝑏

√

𝑝
𝑟

(

∐

))2
, 𝑝 > 0.

(16)

𝑞3(𝑥, 𝑡) = 𝑄(𝜉) = (𝑊 (𝜉))2 =
(

−4𝑏
5

−
15𝑝

(

1 + 𝑠 (𝜌
√

1+𝜎2+𝑐𝑜𝑠ℎ
√

𝑝(𝑥−𝜐𝑡))
𝜎+𝑠𝑖𝑛ℎ

√

𝑝(𝑥−𝜐𝑡)

)

4𝑏

)2

,

𝑝 > 0.
(17)

While above ∐

=
(

1 +
𝑠 𝑠𝑖𝑛ℎ

√

𝑝(𝑥−𝜐𝑡)
𝜌+𝑐𝑜𝑠ℎ

√

𝑝(𝑥−𝜐𝑡)

)

.

Family 2:

𝑎 = 0, 𝑎 = −
15𝑞

, 𝑏 = 𝑑 = 0, 𝑝 = 𝜐 , 𝑟 =
−75𝑞2

. (18)
3

0 1 4𝑏 1 1 2 32𝑏2
Next by substituting all values mentioned above into Eq. (13) with
the help of Eq. (10), we will obtain in this family the following solutions
using our method, so the solutions in this family for Eq. (4) are obtained
as below.

𝑞4(𝑥, 𝑡) = 𝑄(𝜉) = (𝑊 (𝜉))2 =
(15𝑝(1 + 𝑠 𝑡𝑎𝑛ℎ[

√

𝑝
2 (𝑥 − 𝜐𝑡) + 𝜉0])

4𝑏

)2
,

𝑝 > 0.
(19)

𝑞5(𝑥, 𝑡) =𝑄(𝜉) = (𝑊 (𝜉))2 =
(

−
15𝑞
8𝑏

√

𝑝
𝑟

(

∐

))2
, 𝑝 > 0. (20)

𝑞6(𝑥, 𝑡) = 𝑄(𝜉) = (𝑊 (𝜉))2 =
(15𝑝

(

1 +
𝑠 (𝜌

√

1+𝜎2+𝑐𝑜𝑠ℎ
√

𝑝(𝑥−𝜐𝑡))
𝜎+𝑠𝑖𝑛ℎ

√

𝑝(𝑥−𝜐𝑡)

)

4𝑏

)2
,

𝑝 > 0.
(21)

While above ∐

=
(

1 +
𝑠 𝑠𝑖𝑛ℎ

√

𝑝(𝑥−𝜐𝑡)
𝜌+𝑐𝑜𝑠ℎ

√

𝑝(𝑥−𝜐𝑡)

)

.

Family 3:

𝑎 = 0, 𝑎 = ±𝑖
√

6𝑟, 𝑏 = 𝑑 = 0, 𝑞 = ± 𝑖𝑏4
√

2√𝑟, 𝜐 = 2𝑝. (22)
0 1 1 1 5 3
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Fig. 2. The physical plotting of (19) is given in different dimensions. Here (q4-b) shows 3-dimensional plotting of (19) as anti kink type soliton with parametric values 𝜉0 = 0.7,
𝜌 = 1.3, 𝑝 = 0.8, 𝑞 = 1.7, 𝑏 = .5, 𝑟 = 0.5, 𝑠 = 0.8 in intervals (0,5), (−10,10). And (q4-a1) is the 2-dimensional plotting of (19) with same parametric values as used above with in
intervals (−15,15), (0,10). While (q4-a2) is the contour plotting of (19) with the same parametric values as mentioned above with in intervals (−5,5), (0,5). And (q4-a3) shows
1-dimensional plotting of (19) anti kink type soliton using interval (−5,5) of (19) with parametric values 𝜉0 = 1, 𝜌 = 1.5, 𝑝 = 0.8, 𝑞 = 0.8, 𝑏 = .5, 𝑟 = 0.5, 𝑠 = 1.
Next by substituting all values mentioned above into Eq. (13) with
the help of Eq. (10), we will obtain in this family the following solutions
using our method, so the solutions in this family for Eq. (4) are obtained
as below.

𝑞7(𝑥, 𝑡) = 𝑄(𝜉) = (𝑊 (𝜉))2 =
(

±𝑖𝑝

√

6𝑟(1 + 𝑠 𝑡𝑎𝑛ℎ[
√

𝑝
2 (𝑥 − 𝜐𝑡) + 𝜉0])

𝑞

)2
,

𝑟 < 0.
(23)

𝑞8(𝑥, 𝑡) =𝑄(𝜉) = (𝑊 (𝜉))2 =
(

±𝑖
√

𝑟
√

3𝑝
2𝑟

(

∐

))2
, 𝑟 < 0. (24)

𝑞9(𝑥, 𝑡) =𝑄(𝜉) = (𝑊 (𝜉))2 =
(

±𝑖
𝑝
√

6𝑟
∏

𝑞

)2
, 𝑟 < 0. (25)

While above ∐

=
(

1 +
𝑠 𝑠𝑖𝑛ℎ

√

𝑝(𝑥−𝜐𝑡)
𝜌+𝑐𝑜𝑠ℎ

√

𝑝(𝑥−𝜐𝑡)

)

and ∏

=
(

1 +
𝑠 (𝜌

√

1+𝜎2+𝑐𝑜𝑠ℎ
√

𝑝(𝑥−𝜐𝑡))
√

)

.

4

𝜎+𝑠𝑖𝑛ℎ 𝑝(𝑥−𝜐𝑡)
Family 4:

𝑎0 = −4𝑏
5
, 𝑎1 = ± 𝑖

√

6𝑟, 𝑏1 = 𝑑1 = 0, 𝑞 = ± 𝑖𝑏4
5

√

2
3
√

𝑟, 𝑝 = −8𝑏2
75

,

𝜐 = −16𝑏2
75

. (26)

Next by substituting all values mentioned above into Eq. (13) with the
help of Eq. (10), we will obtain in this family the following solutions
using our method, so the solutions in this family for Eq. (4) are obtained
as below.

𝑞10(𝑥, 𝑡) = 𝑄(𝜉) = (𝑊 (𝜉))2 =
(

−4𝑏
5

± 𝑖𝑝

√

6𝑟(1 + 𝑠 𝑡𝑎𝑛ℎ[
√

𝑝
2
(𝑥 − 𝜐𝑡) + 𝜉0])

𝑞

)2

,

𝑟 < 0.
(27)

𝑞11(𝑥, 𝑡) =𝑄(𝜉) = (𝑊 (𝜉))2 =
(

−4𝑏
5

± 𝑖
√

𝑟
√

3𝑝
2𝑟

(

∐

))2
, 𝑟 < 0.

(28)
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Fig. 3. The physical plotting of (23) is given in different dimensions. Here (q7-b) shows 3-dimensional plotting of (23) with parametric values 𝜉0 = 0.7, 𝜌 = 1.3, 𝑝 = 0.9, 𝑞 = 1.9,
𝑏 = .5, 𝑟 = −0.5, 𝑠 = 0.8 in intervals (0,5), (−10,10). And (q7-a1) is the 2-dimensional plotting of (23) with same parametric values as used above with in intervals (−15,15), (0,10).
While (q7-a2) is the contour plotting of (23) with the same parametric values as mentioned above with in intervals (−5,5), (0,5). And (q7-a3) shows 1-dimensional plotting of
(23) using interval (−5,5) of (23) with parametric values 𝜉0 = 1.1, 𝜌 = 1.5, 𝑝 = 1.0, 𝑞 = 0.8, 𝑏 = .5, 𝑟 = 0.5, 𝑠 = 1.1.
𝑞12(𝑥, 𝑡) =𝑄(𝜉) = (𝑊 (𝜉))2 =
(

−4𝑏
5

± 𝑖
𝑝
√

6𝑟
∏

𝑞

)2
, 𝑟 < 0. (29)

While above ∐

=
(

1 +
𝑠 𝑠𝑖𝑛ℎ

√

𝑝(𝑥−𝜐𝑡)
𝜌+𝑐𝑜𝑠ℎ

√

𝑝(𝑥−𝜐𝑡)

)

and ∏

=
(

1 +
𝑠 (𝜌

√

1+𝜎2+𝑐𝑜𝑠ℎ
√

𝑝(𝑥−𝜐𝑡))
𝜎+𝑠𝑖𝑛ℎ

√

𝑝(𝑥−𝜐𝑡)

)

.

Family 5:

𝑎0 =

√

2𝑏2 − 9𝑝 + 2
√

𝑏4 − 9𝑏2𝑝
6

, 𝑑1 =

√

2𝑏2 − 9𝑝 + 2
√

𝑏4 − 9𝑏2𝑝

6
√

𝑝
,

𝑏1 = 𝑎1 = 0,

𝜐 =
−9𝑝 + 2

√

𝑏4 − 9𝑏2𝑝 + 2𝑏(𝑏 + 2
√

2𝑏2 − 9𝑝 + 2
√

𝑏4 − 9𝑏2𝑝)
18

, 𝑞 = 𝑟 = 0.

(30)

Next by substituting all values mentioned above into Eq. (13) with the
help of Eq. (10), we will obtain in this family the following solutions
5

using our method, so the solutions in this family for Eq. (4) are obtained
as below.

𝑞13 =

⎛

⎜

⎜

⎜

⎜

⎝

√

2𝑏2 − 9𝑝 + 2
√

𝑏4 − 9𝑏2𝑝
6

+

√

2𝑏2 − 9𝑝 + 2
√

𝑏4 − 9𝑏2𝑝

6
√

𝑝

×
(

(−𝑝
3
2 𝑠 𝑠𝑒𝑐ℎ(

√

𝑝(𝑥−𝜐𝑡)
2 +𝜉0)2)

2𝑞

− 𝑝
𝑞 (1 + 𝑠 𝑡𝑎𝑛ℎ(

√

𝑝(𝑥−𝜐𝑡)
2 + 𝜉0))

)

⎞

⎟

⎟

⎟

⎟

⎠

2

.

(31)

𝑞14 =

⎛

⎜

⎜

⎜

⎜

⎝

√

2𝑏2 − 9𝑝 + 2
√

𝑏4 − 9𝑏2𝑝
6

+

√

2𝑏2 − 9𝑝 + 2
√

𝑏4 − 9𝑏2𝑝

6
√

𝑝

×
(

1
2

√

𝑝
𝑟

(

√

𝑝𝑠 𝑐𝑜𝑠ℎ
√

𝑝(𝑥−𝜐𝑡)
𝜌+𝑐𝑜𝑠ℎ

√

𝑝(𝑥−𝜐𝑡)
−

√

𝑝𝑠 𝑠𝑖𝑛ℎ(
√

𝑝(𝑥−𝜐𝑡))2

𝜌+𝑐𝑜𝑠ℎ(
√

𝑝(𝑥−𝜐𝑡))2

)

√

𝑝
4𝑟 (1 +

𝑠 𝑠𝑖𝑛ℎ
√

𝑝(𝑥−𝜐𝑡)
𝜌+𝑐𝑜𝑠ℎ

√

𝑝(𝑥−𝜐𝑡)
)

)

⎞

⎟

⎟

⎟

⎟

2

.

(32)
⎠
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Fig. 4. The physical plotting of (29) is given in different dimensions. Here (q12-b) shows 3-dimensional plotting of (29) with parametric values 𝜉0 = 0.7, 𝜌 = 1.3, 𝑝 = 6, 𝑞 = 3,
𝑏 = .5, 𝑟 = −0.5, 𝑠 = 0.8 in intervals (0,5), (−10,10). And (q12-a1) is the 2-dimensional plotting of (29) with same parametric values as used above with in intervals (−15,15),
(0,10). While (q12-a2) is the contour plotting of (29) with the same parametric values as mentioned above with in intervals (−5,5), (0,5). And (q12-a3) shows 1-dimensional
plotting of (29) using interval (−5,5) of (29) with parametric values 𝜉0 = 0.7, 𝜌 = 1.3, 𝑝 = 6, 𝑞 = 3.1, 𝑏 = .5, 𝑟 = −0.5, 𝑠 = 1.1.
𝑞15 =

⎛

⎜

⎜

⎜

⎜

⎝

√

2𝑏2 − 9𝑝 + 2
√

𝑏4 − 9𝑏2𝑝
6

+

√

2𝑏2 − 9𝑝 + 2
√

𝑏4 − 9𝑏2𝑝

6
√

𝑝

×
( (

𝑝3∕2𝑠(1+𝜌
√

1+𝜎2𝑐𝑜𝑠ℎ
√

𝑝(𝑥−𝜐𝑡)−𝜎𝑠𝑖𝑛ℎ
√

𝑝(𝑥−𝜐𝑡))
𝑞(𝜎+𝑠𝑖𝑛ℎ

√

𝑝(𝑥−𝜐𝑡))2
)

− 𝑝
𝑞 (1 +

𝑠 𝑐𝑜𝑠ℎ
√

𝑝(𝑥−𝜐𝑡)+𝜌
√

1+𝜎2

𝑠𝑖𝑛ℎ
√

𝑝(𝑥−𝜐𝑡)+𝜎
)

)

⎞

⎟

⎟

⎟

⎟

⎠

2

.

(33)

Family 6:

𝑎0 = −
𝑏2 +

√

𝑏4 − 9𝑏2𝑝
6𝑏

, 𝑑1 =

√

2𝑏2 − 9𝑝 + 2
√

𝑏4 − 9𝑏2𝑝

6
√

𝑝
,

𝑏 = 𝑎 = 0, 𝑞 = 𝑟 = 0, 𝜐 =
−2𝑏2 − 9𝑝 − 2

√

𝑏4 − 9𝑏2𝑝
.

(34)
6

1 1 18
Family 7:

𝑎0 = −2𝑏
3
, 𝑑1 =

√

−9 + 2𝑏2
𝑝 − 2

√

𝑏2(𝑏2−9𝑝)
𝑝

6
, 𝑏1 = 𝑎1 = 0,

𝑞 = 𝑟 = 0, 𝜐 =
−9𝑝 − 14𝑏2 − 2

√

𝑏2(𝑏2 − 9𝑝)
72

,

(35)

One can also construct new solitary wave solutions using the values
of the constants given in family (6, 7) for (4).

3. Physical representation of the solutions

Here we have listed the physical representation or plotting of our
newly obtained solutions in different dimensions in detail which are
including trigonometric type functions, hyperbolic type functions, ra-
tional type functions, combined functions in different shapes to get
more understanding of the physical structures of modified generalized
Korteweg–de Vries (𝐾 − −𝑑𝑉 ) Equation with mixed nonlinearity using
Mathematica 10.4 (see Figs. 1–4).
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Discussion

The purpose of this section is to differentiate the differences and
the similarities of our obtained new families of solutions which are
obtained using our technique with all those results which are available
already in the literature using some other different old mathematical
methods for the same dynamical system.

∙ First: The primary key point of difference of our technique to
obtain new families of solutions is the uniqueness of structural
body of our proposed method (9), which is quite new and different
structure using only three parameters that is of main significance
point to mention here.

∙ Second: To get more understanding about the dynamics of our
newly found results their graphical structures in different dimen-
sions using different sets of values of constants 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 , 𝑑𝑗 are
given using any mathematical software for example Mathematica
10.4, Maple, or Matlab.

∙ It is important to mention here that Eq. (10) gives us different
new and more general forms of exact solutions including trigono-
metric functions, combined functions, rational type functions and
hyperbolic functions.

So, from above comparison we can say that the solutions found by
our method are quite reliable, straight forward with less computational
time, more simplified and helpful in a sufficient manner to get more
understanding about the analytical analysis of other complicated non-
linear dynamical partial differential equations arising in many other
branches of physical and natural sciences.

Conclusion

The focus of our work was to discuss the analytical treatment of
(𝑚𝐾 − 𝑑𝑉 ) model as a result of which we have found some new
and more general families of exact solutions which have potential
applications to read the qualitative analysis of many nonlinear wave
phenomena in a more exact manner, further these results have a high
impact to develop the theories of soliton dynamics, adiabatic parameter
dynamics and in quantum mechanics. These solutions are highly useful
to introduce new mathematical softwares in the market which are
highly helpful in numerical analysis of other complex nonlinear partial
differential equations and also to get more understanding about the
comparison of analytical solutions.

So, the solutions found in this article are quite general and new
with potential applications in the development of theoretical quantum
mechanics, plasma physics, nonlinear optics, nano-technology, and hy-
drodynamics with a richer taste than those solutions which are obtained
in the literature earlier on the topic of extraction exact solutions of
this powerful dynamical system. Next to show a detailed dynami-
cal understanding of our obtained results in different dimensions we
have presented the graphical structures of our solutions in different
dimensions using Mathematica 10.4 which are helpful to learn more
clearly about the dynamics of solutions. In the last its important to
mention here that the less computational time and efficiency of our
technique actually explains the straightforwardness, reliability, accu-
racy, and simplicity of the technique. Hence the presented method is
highly useful to study analytical treatment of other nonlinear complex
dynamical partial differential equations(NLPDES) with the help of three
parameters.
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