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*e prime objective of the current study is to examine the effects of third-grade hybrid nanofluid with natural convection utilizing
the ferro-particle (Fe3O4) and titanium dioxide (TiO2) and sodium alginate (SA) as a host fluid, flowing through vertical parallel
plates, under the fuzzy atmosphere. *e dimensionless highly nonlinear coupled ordinary differential equations are computed
adopting the bvp4c numerical approach. *is is an extremely effective technique with a low computational cost. For validation, it
is found that as the volume fraction of (Fe3O4 + TiO2) hybrid nanoparticles rises, so does the heat transfer rate. *e current and
existing results with their comparisons are shown in the form of the tables. *e present findings are in good agreement with their
previous numerical and analytical results in a crisp atmosphere. *e nanoparticles volume fraction of Fe3O4 and TiO2 is taken as
uncertain parameters in terms of triangular fuzzy numbers (TFNs) [0, 0.05, 0.1]. *e TFNs are controlled by α − cut and the
variability of the uncertainty is studied through triangular membership function (MF).

1. Introduction

Researchers have been attracted by natural convection (NC)
flow because of its numerous uses in engineering and sci-
entific problems like heat exchangers, building ventilation,
insulation, solar energy collection, refrigeration, nuclear
waste repositories, petroleum reservoirs geothermal systems,
and chemical catalytic reactors. Convection is used signif-
icantly in the manufacturing of solar panels, microstructures
during the cooling of molten metals, and free air cooling
without the need for fans in real-world applications. Various
researchers have looked into the NC-based flow of non-
Newtonian and Newtonian fluids between two infinite
parallel vertical plates such as Bruce and Na [1] who in-
vestigated the heat transfer of NC between vertical flat plates

using non-Newtonian Powell–Eyring fluids. Later on,
Rajagopal and Na [2] studied the extensive thermodynamic
analysis on fundamental functions. *e influences of the
third-grade non-Newtonian fluid on heat transfer (HT) were
examined by Ziabakhsh and Domairry [3] through the
homotopy analysis method (HAM). Using the least square
method (LSM), Maghsoudi et al. [4] inspected the NC flow
of third-grade fluid between two infinite vertical flat plates
with a porous media. Mansoor et al. [5] studied the natural
convective flow between two vertical plates with the help of
the volume of parameter method (VPM) and Runge–Kutta
method (RKM). *ey show that VPM is better than RKM.
Some researchers have explored different flows of fluids
between vertical parallel plates analytically and numerically
[6, 7].
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Because of the escalation in energy prices, HT man-
agement is extremely important in energy systems. So the
nanofluids are the mixtures of liquid and nanoparticles
which are used to improve the rate of heat transfer. *e
performance of nanoparticles in a heat transfer mechanism
is excellent as compared to regular fluid. *is is due to the
dispersed ultrafine particles boosting the thermal conduc-
tivity of the fluid and therefore increasing their energy
transfer competency. In this way, convective HTof nanofluid
is a challenging problem. When a non-Newtonian fluid is
moving in a structure, natural convection analysis is a
difficult task. *e nanoparticle adds to the base fluid and
then heat transfer may be increased and this added nano-
particle in the base fluid is named nanofluid [8, 9]. Nu-
merous literatures [10, 11] disclose the low volume fractions
(1–4 volume %) for better performance of thermal con-
ductivity of the fluids. We can utilise nanoparticle con-
centrations of greater than 20% [12]. When two or more
distinct nanoparticles are added to the base fluid, it is re-
ferred to as “hybrid nanofluid,” also the thermal conduc-
tivity is greater than as compared to nanofluid and regular
fluid. In the field of heat transfer, hybrid nanofluids have
received a lot of attention such as nuclear system cooling,
drug reduction, automobile radiators, thermal storage,
welding, electronic cooling, solar heating, lubrication, the
coolant in machining, generator cooling, defence, bio-
medical, heating, and refrigeration, etc. Saqib et al. [13]
studied the NC flow problem on Jaffry hybrid nanofluid
using CNTs (single- and multiwall carbon nanotubes) with
carboxy-methyl-cellulose (CMS) as a base fluid between two
vertical parallel plates. Hatami and Ganji [14] applied the
differential transform method (DTM) to investigate the NC
flow of sodium alginate (SA) as a host fluid and silver (Ag)
and copper (Cu) as nanofluids between two vertical parallel
plates. Maghsoudi et al. [15] investigated natural convective,
thermal radiation, HT, and magnetic field of the non-
Newtonian nanofluid flow between two infinite vertical flat
plates utilizing the Galerkin method (GM). Using the HAM,
Rahmani et al. [16] explored the NC flow of non-Newtonian
nanofluids between two vertical plates. *ey observed that
HAM is better than the numerical RK method. *e NC flow
of non-Newtonian nanofluids between two vertical plates
using the generalized decomposition method (GDM) was
also studied by Kezzar et al. [17]. *ey observed that GDM is
better than the numerical RK method. Biswal et al. [18, 19]
used the HPM in an uncertain environment to examine the
NC of nanofluid flow between two parallel plates. *e
volume fraction of nanoparticle was considered as TFN and
also shows the fuzzy result is better than a crisp result. Gabli
et al. [20] studied the NC flow of non-Newtonian ferro-
particle (Fe3O4) nanofluids between two vertical plates with
thermal radiation using the Adomian decomposition
method (ADM). *ey observed that ADM is better than the
RK-Feldberg-based shooting method. Devi and Devi [21]
inspected the HT and flow problems of hydro-magnetic
hybrid nanofluids (Al2O3 + (Cu/H2O)) through a stretched
sheet.

Fluid flow with heat transfer is essential in science and
engineering. Because of extensive physical properties such as
chemical diffusion, magnetic effect, and heat transfer,
governing fluid equations are converted into linear or
nonlinear DEs. After controlling these physical issues, they
are transformed into linear or nonlinear DEs.*e solution of
DEs is strongly affected by the physical problems with as-
sociated parameters and initial, geometry, coefficient, and
boundary conditions. *en, these are not crisp due to the
mechanical defect, experimental error, and measurement
error, etc. In this scenario, fuzzy sets theory (FST) is a more
accurate instrument than assuming genuine physical
problems for getting a better understanding of the facts
under investigation. To be more specific, FDEs are useful for
decreasing uncertainty and determining the best way to
define a physical problem with unknown parameters and
initial and boundary conditions.

*e FSTwas first presented by Zadeh [21] in 1965. FSTis a
fantastic approach for describing circumstances when in-
formation is unclear, imprecise, or uncertain. Later on,
Dubois and Prade [22] developed arithmetic procedures on
fuzzy numbers (FNs). *e trapezoidal, triangular, and
Gaussian FNs are three forms of FNs that may be classified.
For thoroughness, we will look at TFNs now. *e FN is a
variable that has a range from 0 to 1. Each numerical value in
the range is given amembership grade, with 0 being the lowest
grade and 1 being the strongest possible grade. *e infor-
mation contained in crisp partial or ordinary differential
equations models of dynamical systems is sometimes in-
complete, imprecise, or ambiguous. FDEs are a useful ap-
proach for modelling dynamical systems with ambiguity or
uncertainty. FNs or TFNs can be used to define this im-
preciseness or vagueness mathematically. Many researches
have been conducted in recent years around the notion of
FDEs. *e fuzzy differentiability idea was established by
Seikala [23] and Kaleva [24] and then they discussed fuzzy
integration and differentiation.*e FDEs were first presented
in 1987 by Kandel and Byatt [25]. For the solution of FDEs,
Buckley et al. [26] employed two methods: the extension
principle and FNs. For continuous FDEs, Nieto [27] inves-
tigated the Cauchy problem. In [28], Lakshmikantham and
Mohapatra investigated the initial value problems for FDEs.
For the existence and uniqueness solution of FDE, Park and
Hyo [29] employed the successive approximation approach.
*e geometric approach for solving a system of FDEs was
devised by Gasilov et al. [30]. *e system of FDEs with TFNs
was investigated by Nizami et al. [31]. Salahsour et al. [32]
used FDE and TFNs to investigate the fuzzy alley effect and
the fuzzy logistic equation.

In addition, numerous scholars have used FST to achieve
well-known findings in commerce and science, for example,
in bank account model [33], population dynamics model
[34, 35], bacteria culture model [36], HIV model [37],
growth model [38], computational biology [39], modelling
hydraulic [40], predator-prey model [41], quantum optics
and gravity [42], decay model [43], model of friction [44],
civil engineering [45], Laplace transform [46], integro-
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differential equation [47], dengue virus model [48], che-
mostat model [49], and giving up smoking model [50]. *e
adaptive fuzzy controller for uncertain fractional-order
nonlinear systems was proposed by Liu et al. [51], and it was
used to evaluate an unknown nonlinear function. Very
recently, Nadeem et al. [52] recently investigated MHD and
ohmic heating on the third-grade fluid in an inclined
channel under the fuzzy environment. *e triangle mem-
bership function was used to discuss the uncertainty.

Inspired by the earlier investigations, the goal of this
paper is to use the numerical scheme bvp4c to analyze the
hybrid nanofluid flow between two vertical parallel plates in
a fuzzy environment. *e sodium alginate (SA) is the host
fluid, while the hybrid nanoparticles are Fe3O4 and TiO2.
*e impacts of the Eckert number, Prandtl number, and
nanoparticle volume friction on velocity and temperature
profiles are studied. It has been detected that hybrid
nanofluid enhanced the thermal efficiency of the base fluid
rapidly as compared to the other fluid and nanofluids.
Besides, after checking the accuracy of bvp4c so compare the
results of existing work in the literature. *e nanoparticle
volume fraction has also been treated as an uncertain pa-
rameter in this investigation, with fuzzy numbers or tri-
angular fuzzy numbers being used. *e FDEs with α − cut
approach are used to tackle the natural convection problem
in a fuzzy environment.

*e paper is arranged as follows. We discussed some
fundamental preliminaries on FDEs in Section 2. *e for-
mation of the crisp problem is described in Section 3. *e
crisp problem is transformed into FDEs in Section 4. Section
5 contains an explanation of graphs and tables. Section 6
concludes with some closing remarks.

2. Preliminaries

Some fundamental definitions are given in this section.

Definition 1 (see [21, 52]). Fuzzy set is defined as a set of
ordered pairs such that 􏽥U � (y, μ􏽥U(y)): y ∈ X, μ􏽥U(y)􏽮

∈ [0, 1]}, where μ􏽥U(y) is the membership function of 􏽥U,X is
the universal set, and mapping is defined as
μ􏽥U(y): X⟶ [0, 1].

Definition 2 (see [21, 52]). α-cut or α-level of a fuzzy set 􏽥U is
a crisp set Uα and defined by Uα � (y/μ􏽥U(y))≥ α􏽮 􏽯, where
0≤ α≤ 1.

Definition 3 (see [22, 52]). Let 􏽥U � (a1, a2, a3) with mem-
bership function μ􏽥U(y) which is called a TFN if

μ􏽥U(y) �

a1 − y

a2 − a1
, fory ∈ a1, a2􏼂 􏼃,

y − a3

a2 − a3
, fory ∈ a2, a3􏼂 􏼃,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

*e TFN with peak (or center) a2, left width a2 − a1 > 0,
right width a3 − a2 > 0, and these TFNs are transformed into
interval numbers through α-cut approach, is written as 􏽥U �

[u1(y; α), u2 (y; α)] � [a1 + (− a1 + a2)α, a3 − (− a2 + a3)α],
where α ∈ [0, 1]. *e membership function is the building
block of FST and it is defined by its membership function.
TFNs 􏽥U � (a1, a2, a3) and α-cut of membership function are
shown in Figure 1. An arbitrary TFN satisfies the following
conditions: (i) u1(y; α) is an increasing function on [0, 1].
(ii) u2(y; α) is a decreasing function on [0, 1]. (iii)
u1(y; α)≤ u2(y; α) on [0, 1]. (iv) u1(y; α) and u2(y; α) are
bounded at [0, 1], respectively. (v) If u1(y, α) � u2(y, α) �

u(y) where u(y) is a crisp number.

Definition 4 (see [23, 25, 52]). Let I be a real interval. A
mapping 􏽥u(y; α): I⟶ F is called a fuzzy process, defined
as 􏽥u(y; α) � [u1(y; α), u2(y; α)], y ∈ I and α ∈ [0, 1]. *e
derivative (d􏽥u(y; α)/dy) ∈ F of a fuzzy process 􏽥u(y; α) is
defined by (d􏽥u(y; α)/dy) � [(du1(y; α)/dy), (du2(y; α)

/dy)].

Definition 5 (see [23, 25, 52]). Let I⊆R, 􏽥u(y; α) be a fuzzy
valued function defined on I. Let
􏽥u(y; α) � [u1(y; α), u2(y; α)] for all α-cut. Assume that
u1(y; α) and u2(y; α) have continuous derivatives or are
differentiable, for all y ∈ I and α, then
(d􏽥u(y; α)/dy) � [(du1(y; α)/dy), (du2(y; α)/dy)]α. Simi-
larly, we can define higher-order ordinary derivatives in the
same way. An FN by an ordered pair of functions
[d􏽥u(y; α)/dy]α and they satisfy the following conditions: (i)
(du1(y; α)/dy) and (du2(y; α)/dy) are continuous on [0, 1].
(ii) (du1(y; α)/dy) is an increasing function on [0, 1]. (iii)
(du2(y; α)/dy)is a decreasing function on [0, 1]. (iv)
(du1(y; α)/dy)≤ (du2(y; α)/dy) on [0, 1].

3. Problem Formulation

In this proposed problem, Figure 2 portrays the main
theme schematically. It consists of two vertical parallel
flat plates separated by a distance 2h apart, in which
there is a non-Newtonian fluid, which is flowing due to
the free convection. *e walls at x � h and x � − h are held
at constant temperatures T1 andT2, respectively, with
(T1 >T2). *is difference of temperature causes the fluid
near the walls at x � − h to rise and the fluid near the wall
x � b to fall. *e fluid is a non-Newtonian sodium al-
ginate-based nanofluid containing Fe3O4 and TiO2 hy-
brid nanoparticles. *e base fluid and the
hybrid nanoparticles are considered to be in thermal
equilibrium, with no-slip between them. Some physical
properties of the hybrid nanofluid are arranged in
Table 1.

Using the above assumptions and Boussinesq approxi-
mation [14], the momentum and energy equations of the
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natural convection flow of an incompressible third-grade
nanofluid are as follows [2, 3, 5, 14, 20].

*e equation of motion is

μhnf

d2u
dy

2 + 6β3
du

dy
􏼠 􏼡

2d2u
dy

2 + βTρ( 􏼁hnf T − Tm( 􏼁g � 0, (2)

and the equation of energy is as follow:

Khnf

d2T
dy

2 + μhnf

dV

dy
􏼠 􏼡

2

+ 2β3
dV

dy
􏼠 􏼡

4

� 0, (3)

with the following boundary conditions:

u(y) � 0,

θ(y) � T1, aty � − h,

u(y) � 0,

θ(y) � T2 aty � − h.

(4)

*e dimensionless variables [2]

u (y;α)~

α-cut1 0

(a)
1

0.5 0.5

1
(b)

0

u (y;α)~

u2 (y;0)

u1 (y;0)

u1 (y;0)

u2 (y;0)

yt
y

α-cut=1

α-cut=0u1 (y,1) = u2 (y,1)

u1 (y,1) = u2 (y,1) = u (y)

u (y;α)~

Figure 1: Membership functions of a TFN.

x

g

z

y
0

2h TiO2

Fe3O2

T2T1

Figure 2: Flow geometry.

Table 1: *ermo-physical properties of base fluids and hybrid nanoparticles [14, 20].

Materials ρ (kg/m3) Cρ(J/kg− 1k− 1) K (W/m) βT (k− 1)

Sodium alginate (SA) 989.0 4175.0 0.6376.0 99.0
Ferro-particle (Fe3O4) 5180.0 670.0 9.70 1.18 × 10− 5

Titanium dioxide (TiO2) 4250.0 686.20 8.95380 0.9 × 105
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u �
u

V0
,

y �
y

h
,

θ �
T − Tm

T1 − T2
,

(5)

After removing the bar, we have

d2u
dy

2 +
6β
A2

du

dy
􏼠 􏼡

2d2u
dy

2 +
A3A1θGr

A2
� 0, (6)

d2θ
dy

2 +
PrEc

A
1 − ϕ1( 􏼁

2.5 1 − ϕ2( 􏼁
2.5 du

dy
􏼠 􏼡

2

+
2βPrEc

A

du

dy
􏼠 􏼡

4

� 0,

(7)

And dynamic and thermal boundary conditions are

u(y) � 0,

θ(y) � − 0.5, at � − 1,

u(y) � 0,

θ(y) � 0.5, aty � 1.

(8)

Pr �
μf ρCp􏼐 􏼑

f

ρfkf

,

Ec �
V

2
0ρf

T1 − T2( 􏼁 ρCp􏼐 􏼑
f

,

β �
6V

2
0β3

h
2μf

,

Gr �
Tw − T∞( 􏼁g ρβT( 􏼁f

h
2 ,

(9)

where the dimensionless Grashof number (Gr), the Eckert
number (Ec), Prandtl number (Pr), and the non-Newtonian
viscosity (β).

A1 �
ρhnf

ρf

� − ϕ2 + 1( 􏼁 1 − ϕ1( 􏼁 +
ρs1

ρf

ϕ1􏼨 􏼩 + ϕ2
ρs2

ρf

􏼢 􏼣,

A2 � μhnf �
μf

1 − ϕ1( 􏼁
2.5 1 − ϕ2( 􏼁

2.5,

A3 �
βT( 􏼁hnf

βT( 􏼁f

� ϕ2
βT( 􏼁s2

βT( 􏼁f

+ 1 − ϕ1( 􏼁 + ϕ1
βT( 􏼁s1

βT( 􏼁f

⎡⎣ ⎤⎦ 1 − ϕ2( 􏼁,

A �
khnf

knf

�
2knf + 2ϕ1 ks1

− knf􏼐 􏼑 + ks1

2knf − ϕ1 ks1
− knf􏼐 􏼑 + ks1

,

knf

kf

�
2kf + 2ϕ2 ks2

− kf􏼐 􏼑 + ks2

2kf − ϕ2 ks2
− kf􏼐 􏼑 + ks2

,

(10)

where ρhnf, khnf, μhnf, (βT)hnf, (ρCp) hnf, ϕ1, andϕ2 denote
the density, thermal conductivity, viscosity, thermal ex-
pansion coefficient, specific heat, Fe3O4 nanoparticles vol-
ume fraction, and TiO2 nanoparticles volume fraction of
hybrid nanofluids, respectively. [53].

4. Formulation of the Crisp Problem into a
Fuzzy Problem Using FDEs

*e velocity and temperature of nanoparticles are affected
by small changes in their volume fraction. Some re-
searchers take the nanoparticles volume fraction in this
range [0.01–0.04], implying that fluid flow is solely de-
pendent on these values. *en, due to the fixed crisp
values of the volume fraction of nanoparticles, uncertainty
develops.

Since ϕ1 representing the volume fraction of Fe3O4
and ϕ2 represents the volume fraction of TiO2, so, in
a fuzzy environment, it is preferable to address a
complex situation by accepting both volume fractions as
FN.

For fuzzy solutions, equations (6)–(8) can be converted
into FDE using α − cut approach. So, according to Defini-
tions 4 and 5, we have
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d2

dy
2 u1(y, α), u2(y, α)􏼂 􏼃 +

6β
A2

d2

dy
2 u1(y, α), u2(y, α)􏼂 􏼃

d
dy

u1(y, α), u2(y, α)􏼂 􏼃􏼠 􏼡

2

+
A1A3Gr

A2
θ1(y, α), θ2(y, α)􏼂 􏼃 � 0,

(11)

d2

dy
2 θ1(y, α), θ2(y, α)􏼂 􏼃 +

PrEc
A

1 − ϕ1( 􏼁
2.5 1 − ϕ2( 􏼁

2.5 d
dy

u1(y, α), u2(y, α)􏼂 􏼃􏼠 􏼡

2

+
2βPrEc

A

d
dy

u1(y, α), u2(y, α)􏼂 􏼃􏼠 􏼡

4

� 0,

(12)

u(y, α) � 0,

θ(y, α) � − 0.5, aty � − 1,

u(y, α) � 0,

θ(y, α) � 0.5, aty � − 1,

(13)

where 0≤ α≤ 1 u1(y, α) is the lower bound and u2(y, α) is
the upper bound of fuzzy velocity profiles. Similarly, the
fuzzy temperature profiles are θ(y, α) � [θ1(y, α), θ2
(y, α)], 0≤ α≤ 1.

Table 2 presents the crisp values and TFNs of these FNs.
*e TFN defined the variation of FN at each α − cut.*e
TFNs are used to define the triangular MFs of the FNs which
is ranging from 0 to 1, see Figure 1.*is investigated range is
commonly used to develop the aforementioned problem.

Now, we present a boundary value problem solver nu-
merical procedure for controlling crisp differential equations
(equations (6)–(8)) and FDEs (equations (11)–(13)) with
boundary conditions, which are called bvp4c. It is a Lobatto IIIa
formula with three stages based on the finite-difference algo-
rithm. It has a collocation polynomial, and in [a, b], the col-
location formula yields a sixth-order accurate uniform C1
continuous solution. For error control and mesh selection, the
continuous solutions residual is employed.*e aforementioned
ODEs are transformed into a first-order system as follows:

Let

u(y) � m(1),

u′(y) � m′(1) � m(2),

u″(y) � m′(2),

(14)

m′(2) �
− A1A3m(3)Gr

1 + 1/A2( 􏼁6β(m(2))
2, (15)

θ(y) � m(3),

θ′(y) � m′(3) � m(4),

θ″(y) � m′(4),

(16)

m′(4) � −
1
A
PrEc 1 − ϕ1( 􏼁

− 2.5 1 − ϕ2( 􏼁
− 2.5

(m(4))
2

􏽨

+ 2β(m(4))
4
􏽩,

(17)

and boundary conditions are

ma(1) � 0,

ma(3) � − 0.5 aty � − 1,

mb(3) � 0,

mb(3) � 0.5, aty � 1.

(18)

For the required solution, equations (14) to (18) are
coded in MATLAB software.

5. Results and Discussion

*e SA is chosen as host fluid and Fe3O4 + TiO2 are hybrid
nanoparticles added into the base fluid to improve the rate of
heat transfer between two vertical flat plates. *e numerical
solutions of governing coupled nonlinear DEs are obtained
via the built-in MATLAB numerical technique bvp4c. *e
effect of thermo-physical parameters, such as Eckert number
(Ec), Prandtl number (Pr), viscous dissipation parameter,
Grashof number (Gr), third-grade fluid parameter (β), and
nanoparticles volume fraction ϕ1 and ϕ2 on velocity and
temperature fields are drawn in Figures 3–9.

Tables 3 and 4 show the comparison of velocity and
temperature fields at ϕ1 � ϕ2 � 0,
β � 0.5,Gr � Pr � Ec � 1, with studies by Ziabakhsh and
Domairry [3], Manshoor et al. [5], and Biswal et al.
[18, 19]. For the validation, the current study findings
were found to be in excellent agreement.

Figure 3 displays the influence of the Prandtl number
(Pr) on the velocity and temperature fields while other
physical parameters are fixed. *e velocity and temperature
fields of the hybrid nanofluid rise as Pr increases due to
upsurges in the thickness of the boundary layer.

*e impact of the viscous dissipation parameter (Ec)
on the velocity and temperature fields is demonstrated in
Figure 4. It can be observed that the velocity and tem-
perature of the hybrid nanofluid enhance with growing
the values of Ec. When Ec increases, the dissipation of
heat on the boundary layer region increases and also the
heat transfer rate increases. *e impact of third-grade
fluid parameter (β) on the velocity and temperature field
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Table 2: TFNs of fuzzy nanoparticles of volume fraction.

Fuzzy number Crisp value TFN α − cut approach
ϕ1 [0.01–0.04] [0, 0.05, 0.1] [0.05α, 0.1 − 0.05α], α ∈ [0, 1]

ϕ2 [0.01–0.04] [0, 0.05, 0.1] [0.05α, 0.1 − 0.05α], α ∈ [0, 1]
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Figure 3: Effect of Pr on the u(y) (a) and θ(y) (b).
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Figure 4: Effect of Ec on the u(y) (a) and θ(y) (b).

Computational Intelligence and Neuroscience 7



of the hybrid nanofluid is examined in Figure 5. In
Figure 5(a), when β increases, then the velocity declines
in the region − 0.9 < y < − 0.1 and it is increasing in the
region 0.4 < y < 0.8. *e reason for this is that when the
viscosity of the hybrid nanofluid increases, the boundary
layer thickens and the velocity declines. In Figure 5(b),
when the value of β increases, the temperature falls. *e
temperature profile shows very small variations on large
values of β because the rate of shear increases and de-
creases in the boundary layer thickness. *e impact of

buoyancy forces (Gr) on the velocity profile is portrayed
in Figure 6. It can be seen that when Gr is amplified, then
the velocity profile displays an increasing trend. Physi-
cally, large values of Gr boost the buoyancy force,
resulting in a higher thermal force through the use of the
viscous force and hence there is an upsurge in hybrid
nanofluid velocity. Figures 7 and 8 demonstrate the
impact of hybrid nanoparticles volume friction (ϕ1, ϕ2)
on velocity and temperature fields. *ese profiles are
plotted for hybrid nanofluids ((Fe3O4 + TiO2)/SA). In
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Figure 5: Effect of β on the u(y) (a) and θ(y) (b).
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Figure 7(a), the velocity of hybrid nanofluid increases
with an increase in ϕ1 and Figure 7(b) shows the tem-
perature profile increases because of increased heat
transfer at ϕ2 � 0.01. *e reason is that the friction of
solid particles decreases the host fluid viscosity. Similarly,
Figure 8(a) shows that the velocity of hybrid nanofluids
increases with an increase in ϕ2 and Figure 8(b) shows
that the temperature profile increases because of in-
creased heat transfer at ϕ1 � 0.01. Physically, the inter-
molecular forces between the particles of hybrid
nanofluids become weaker, and consequently, the hybrid
nanofluid velocity accelerates. Further, it is detected that
the thermal boundary layer thickness increases because

the temperature profile increases due to higher values of
hybrid nanoparticle’s volume friction. Figure 9 repre-
sents the comparison of nanofluids Fe3O4/SA and
TiO2/SA and hybrid nanofluid ((Fe3O4 + TiO2)/SA) at
ϕ1 � ϕ2 � 0.04. *e velocity and temperature profiles of
Fe3O4/SA are calculated at ϕ1 � 0.04 andϕ2 � 0, whereas
the velocity and temperature profiles of TiO2/SA were
calculated at ϕ2 � 0.04 andϕ1 � 0. *e velocity and tem-
perature profiles of Fe3O4 are greater than the velocity
and temperature profiles of TiO2. Also, the velocity and
temperature profiles of hybrid nanofluids
((Fe3O4 + TiO2)/SA) are greater than Fe3O4 and TiO2.
Physically, this is correct because Fe3O4 has a higher heat
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Figure 7: Effect of ϕ1 on the u(y) (a) and θ(y) (b).
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conductivity than TiO2. However, the temperature profile
shows the same behaviour as that of the velocity profile, as
Fe3O4 has larger thermal conductivity than TiO2. As a
result, Fe3O4 conducts more heat than TiO2 and is less

dense, resulting in Fe3O4 having a higher temperature
than TiO2. Considering these factors, this study recom-
mends using Fe3O4 to improve heat transmission since
Fe3O4 conducts more heat and is more stable than TiO2.
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Figure 9: Comparison of Fe3O4, TiO2, and hybrid nanofluids on the u(y) (a) and θ(y) (b).

Table 3: Comparison of velocity profile when ϕ1 � ϕ2 � 0, β � 0.5,Gr � Pr � Ec � 1, with the existing result for regular fluid.

Y Present results
(bvp4c)

Ziabakhsh and Domairry [3]
(HAM) Biswal et al. [18] (HPM) Biswal et al. [19] (GM) Manshoor et al. [5]

(VPM)
− 1 0 0 0 0 0
− 0.8 0.02244430 0.02391937 0.02416171 0.02368610 0.033923604
− 0.6 0.03122643 0.03217274 0.03262933 0.03170120 0.032183540
− 0.4 0.02712964 0.02840695 0.02901579 0.02794809 0.027143138
− 0.2 0.01603016 0.01661778 0.01731154 0.01632954 0.016274634
0 − 0.00002592 0.00080780 0.00152009 0.00074834 0.000922405
0.2 − 0.01448865 − 0.01508225 − 0.01441546 − 0.01489272 − 0.015143973
0.4 − 0.02683483 − 0.02710348 − 0.026554082 − 0.02669087 − 0.028257013
0.6 − 0.03070475 − 0.03122988 − 0.03081889 − 0.03074332 − 0.031223835
0.8 − 0.02313980 − 0.02342875 − 0.02320304 − 0.02314729 − 0.023274354
1 0 0 0 0 0

Table 4: Comparison of temperature profile when ϕ1 � ϕ2 � 0, β � 0.5,Gr � Pr � Ec � 1, with the existing result for regular fluid.

Y Present results
(bvp4c)

Ziabakhsh and Domairry [3]
(HAM) Biswal et al. [18] (HPM) Biswal et al. [19] (GM) Manshoor et al. [5]

(VPM)
− 1 0.49999999 0.49999999 0.49987599 0.50000000 0.500000000
− 0.8 0.40009178 0.40073588 0.40157624 0.40097357 0.400246306
− 0.6 0.30116719 0.30117737 0.30269966 0.30172607 0.309367078
− 0.4 0.20863343 0.20159090 0.20321740 0.20225927 0.201548465
− 0.2 0.10108217 0.10192749 0.10350286 0.10257493 0.101925345
0 − 0.00299024 0.00206049 0.00350177 0.00267484 0.002174325
0.2 − 0.09501960 − 0.09807006 − 0.09677903 − 0.09743924 − 0.098174536
0.4 − 0.19536608 − 0.19840851 − 0.19733286 − 0.19776553 − 0.198546725
0.6 − 0.29679969 − 0.29882852 − 0.29812783 − 0.29830227 − 0.298765434
0.8 − 0.39825954 − 0.39927474 − 0.39909138 − 0.39904768 − 0.400465233
1 − 0.49999999 − 0.500000000 − 0.50012401 − 0.50000000 − 0.500000000
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Now, we discuss the nanoparticles volume fraction of
Fe3O4 (ϕ1) and TiO2 (ϕ2) in a fuzzy environment. *e
nanoparticles volume fraction ϕ1 and ϕ2 are said to be TFN,
as shown in Table 1, and analyzed by α-cut approach
(0≤ α≤ 1), as discussed in Section 3.4 in detail.

Figures 10 and 11 show the nanoparticles volume
fraction of Fe3O4 (ϕ1) and TiO2 (ϕ2) considered as TFNs
(see in Table 2) and then the u(y, α) and θ(y, α) are con-
trolled by α − cut for some particular values of α − cut
(α � 0, 0.3, 0.7, 1). In Figure 10, when ϕ1 is a TFNs, then the

u(y, α) and θ(y, α) convert into lower and upper bounds of
the velocity and temperature fields. When α − cut � 0,
u1(y, α) and θ1(y, α) represent the nanofluid while u2(y, α)

θ2(y, α) represent hybrid nanofluid at ϕ2 � 0.04. When α −

cut increases the width between u1(y, α) and u2(y, α) de-
creases and at α − cut � 1, they coherent with one another. It
is noted that the width between u1(y, α) and u2(y, α) is very
less, so the vagueness is less. Similarly, in the case of the
θ(y, α), as α rises, the width between θ1(y, α) and θ2(y, α)

reduces, and α � 1, they are coherent with one another. It is
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Figure 10: Effect of ϕ1 on the fuzzy velocity (a) and temperature (b) profiles if ϕ1 is a TFN.
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Figure 11: Effect of ϕ2 on the fuzzy velocity (a) and temperature (b) profiles if ϕ2 is a TFN.
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vital to keep in mind that the width between θ1(y, α) and
θ2(y, α) is quite narrow, indicating that the uncertainty is
very less. Consequently, in Figure 11, when ϕ2 is a TFN, then
the u(y, α) and θ(y, α) convert into u1(y, α), u2(y, α),
θ1(y, α), and θ2(y, α). It is essential to note that the width
between the lower and upper bounds of velocity and tem-
perature fields is very narrow, which indicates that the
uncertainty is minimal.

Figures 12 and 13 show the triangular membership
functions of the u(y, α) and θ(y, α) for various values of y.

In these diagrams, we investigated two different cases. *e
black lines represent the case where ϕ1 is used as the TFN
and ϕ2 � 0.04. *e green and red dashed lines indicate the
representation of ϕ2 as TFN, whereas ϕ1 � 0.04. *e hori-
zontal axis displays the u(y, α) and θ(y, α) for varying y,
while the vertical axis displays the membership values of the
u(y, α) and θ(y, α) for varying α − cut. From Figure 12, it
can be seen that the width between u1(y, α) and u2(y, α) is
less, therefore the uncertainty is less for numerous values
of y. *e width between θ1(y, α) and θ2(y, α) is moderately

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

α-
cu

t

0.029 0.02905 0.0291 0.02915 0.0292 0.02925 0.0293

u1 (-0.75, α) when ϕ1 is TFN

u1 (-0.75, α) when ϕ2 is TFN
u2 (-0.75, α) when ϕ2 is TFN

u2 (-0.75, α) when ϕ1 is TFN

u1 (y, α) u2 (y, α)

1

0.8

0.6

0.4

0.2

0

α-
cu

t

-0.02523 -0.02522 -0.02521 -0.0252 -0.02519 -0.02518
u (y, α)–u (y, α)–

u1 (-0.75, α) when ϕ1 is TFN

u1 (-0.75, α) when ϕ2 is TFN
u2 (-0.75, α) when ϕ2 is TFN

u2 (-0.75, α) when ϕ1 is TFN

1

0.8

0.6

0.4

0.2

0

α-
cu

t

0.02405 0.0241 0.02415 0.0242 0.02425 0.0243 0.02435

u1 (-0.25, α) when ϕ1 is TFN

u1 (-0.25, α) when ϕ2 is TFN
u2 (-0.25, α) when ϕ2 is TFN

u2 (-0.25, α) when ϕ1 is TFN

1

0.8

0.6

0.4

0.2

0

α-
cu

t

-0.01474 -0.0147 -0.01466 -0.01462 -0.01458
u (y, α)–u (y, α)–

u1 (-0.25, α) when ϕ1 is TFN

u1 (-0.25, α) when ϕ2 is TFN
u2 (-0.25, α) when ϕ2 is TFN

u2 (-0.25, α) when ϕ1 is TFN
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slight in Figure 13, demonstrating that the impreciseness is
neglectable for various values of y. As a result, the uncertain
parameters are controlled through TFNs.

6. Conclusion

*e current study focused on the natural convection flow of
third-grade (Fe3O4 + TiO2)/SA hybrid nanofluid across
vertical parallel plates in a fuzzy environment. *e impacts
of the Eckert number (Ec), the non-Newtonian viscosity (β),
Prandtl number (Pr), Grashof number (Gr), and nano-
particles volume fraction (ϕ1,ϕ2) on the temperature and
velocity profiles have been studied for (Fe3O4 + TiO2)/SA

hybrid nanofluid. *e volume fractions of nanoparticles of
Fe3O4 (ϕ1) and TiO2 (ϕ2) are considered as TFNs with the
help of α − cut (0≤ α≤ 1) which control fuzziness. For
various values of y, triangular membership plots of fuzzy
velocity and temperature profiles were also examined. *e
following significant finding comes from this investigation:

*e velocity and temperature profiles rise as the values
of Pr, Gr, and Ec increase, whereas the velocity and
temperature profiles decrease when the value β
increases.
*e rate of heat transfer upsurges by growing volume
fractions of nanoparticles ϕ1 and ϕ2.
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*e present results obtained from numerical technique
via bvp4c are found to be in excellent agreement as
compared to existing results.
*e hybrid nanofluid (Fe3O4 + TiO2)/SA shows a
higher heat transfer rate as compared to nanofluids
Fe3O4/SA and TiO2/SA.
*e results indicate that the crisp solution is always in-
between the upper and lower solutions when α − cut to
increase from 0 to 1.
*e sensitivity of the assumed TFN is held influenced
by the unfluctuating width of the fuzzy velocity or
temperature.
According to the triangular membership plots, the
uncertain width of the fuzzy velocity and temperature is
less, so the assumed TFNs are less sensitive. Finally, the
TFN is represented visually for better understanding.
As a result, the TFNs may be used to different heat
transfer problems.
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