
Results in Physics 19 (2020) 103652

A
2
(

Contents lists available at ScienceDirect

Results in Physics

journal homepage: www.elsevier.com/locate/rinp

Symmetry reduction, conservation laws and acoustic wave solutions for the
extended Zakharov–Kuznetsov dynamical model arising in a dust plasma
Shrouk Wael a, Aly R. Seadawy b,∗, O.H. EL-Kalaawy c, S.M. Maowad c, Dumitru Baleanu d,e,f

a Faculty of Computers and Artificial Intelligence, Cairo University, Dr. Ahmed Zewail St. 5, Giza 12613, Egypt
b Mathematics Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
c Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
d Department of Mathematics, Cankaya University, Ankara, Turkey
e Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China
f Institute of Space Sciences, 077125 Magurele, Romania

A R T I C L E I N F O

Keywords:
Extended Zakharov–Kuznetsov equation
Dust plasma
Lie point symmetries
Conservation laws
Similarity reduction

A B S T R A C T

In this article, we consider the extended Zakharov–Kuznetsov (EZK) equation, which describes the nonlinear
plasma dust acoustic waves (DAWs) in a magnetized dusty plasma. Dusty plasmas consist of three components:
electrons, highly negatively charged dust grains, and two-temperature ions (low-temperature ions and high-
temperature ions). We study the Lie symmetries, reductions, conservation laws and new exact solutions of
EZK equations. Conservation laws for EZK equation is derived by applying the new conservation theorem of
Ibragimov. Similarity solution for EZK equation will be obtained using Lie symmetry method. We find the Lie
symmetries group of EZK equation, using similarity variables, get reduction equation, solving the reduction
equations and then get the similarity solution. Solitary wave solutions of the EZK equation are derived from
the reduction equation. Thus, some new exact explicit solutions of the EZK equation are obtained.
Introduction

There are two types of acoustic waves in dusty plasma essential;
a high-frequency dust ion acoustic waves (DIAWs) that include static
dust grains and mobile ions, and low-frequency dust acoustic waves
(DAWs) involving mobile dust grains. These modes have been studied
experimentally and theoretically (and references cited in [1–6]).

The Zakharov–Kuznetsov equation (ZK) is an isotropic nonlinear
evolution equation first derived for weak ionic nonlinear sound waves
in a plasma magnetized by a lossless power in two dimensions [7].
Generally, the ZK can be found many areas of mathematical physics,
plasma physics, and engineering [8]. Especially, The ZK equation can
be found in an electron–ion quantum magnetic plasma troubled by
periodic external influences. ZK type equations can be used to describe
nonlinear waves as solitons, which have been noted in astrophysical
plasmas and in high-intensity laser irradiated plasma such as in Earths
auroral zone and solar corona and oceans (see [9]).

There are several authors who have studied ZK-type equation asso-
ciated shock and solitary waves in physics of plasma. Seadawy [10]
studied the stability analysis of the ZK equation for weakly nonlin-
ear ion acoustic waves in plasmas. Moslem et al. [11] have studied
the nonlinear DIA shock waves in a magnetized dusty plasma. Das

∗ Corresponding author.

et al. [12] were studied effect of dust ion collision on dust ion acoustic
waves in the framework of damped ZK equation in presence of external
periodic force. Roychoudhury and Sahu [13] studied the ZK equation
for ion acoustic waves with superthermal electrons in cylindrical ge-
ometry. Idir and Tribeche [14] have studied alternative DIAWs in a
magnetized charge varying dusty plasma with nonthermal electrons
having a vortex-like velocity distribution. In Ref. [15] they studied the
solution of the SZKB equation in a dusty plasma with non-thermal elec-
trons having a vortex-like velocity distribution. Researchers recently
studied a nonlinear ZK-type equation in dusty plasma and quantum
physics [16–26].

Partial differential equations (PDEs) are commonly used to model
various phenomena in nonlinear sciences, ranging from physics to me-
chanics, biology, chemistry, meteorology, oceans, etc. Several powerful
methods have been identified to construct the solitons, solitary wave
and shock wave solutions, such as inverse scattering method, Bäck-
lund transform method, Painlevé analysis, Hirota’s bilinear transform,
the direct algebraic method, tanh and extended tanh method, auxil-
iary equation method, 𝑒𝑥𝑝(−𝜙(𝜂))-expansion method, elliptic function
method, rational expansion method, extended mapping method [27–
37]. In recent times, several scientists have achieved great success
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and many attempts to construct various kinds of variational principles
in different fields such as fluid dynamics, plasma physics, solid state
physics, meteorology, optics, mathematical biology, etc. Lie symmetries
analysis and conservation laws and can be used to study the properties
of the existence of solutions and their uniqueness and stability [38–
54]. The aim of this paper is to obtain a conservation laws for the
EZK equation are obtained by using the Ibragimov theorem. In addi-
tion, symmetry reduction and exact solutions of the EZK equation are
obtained.

The paper is organized as follows: The introduction is presented in
first section. In second section, Basic equations and problem formula-
tions are presented and the EZK equation is considered. The symmetry
group of EZK equation is presented in third section. Symmetry re-
duction and closed-form solutions of EZK equation are obtained in
fourth section. In fifth section, conservation Laws for EZK equation are
obtained by using the Ibragimov theorem. Finally, the conclusions of
this paper are presents in last section.

Problem formulations

Let us consider the dust acoustic wave (DAW) in a two ion tem-
perature magnetized and non-collisional dusty plasma with single-sized
dust grains. Assume that the waves propagate in the 𝑥-direction and the
tatic external magnetic field is directed along the 𝑧-axis, i.e. 𝐁 = 𝐵0𝐤,

where 𝐤 and 𝐵0 were defined in [21]. Dusty plasmas consist of three
components: highly negatively charged dust grains, two-temperature
ions, and electrons. The dust particles are very larger and so massive
than electrons or ions. At equilibrium, the charge neutrality condition
requires that, 𝑛𝑖ℎ0 + 𝑛𝑖𝑙0 = 𝑛𝑒0 + 𝑍𝑑0𝑛𝑑0, where 𝑛𝑖ℎ0, 𝑛𝑖𝑙0, 𝑛𝑒0 and
𝑑0 are high temperature ion, the number densities of unperturbed
ow temperature ion, dust grains, electron, respectively. 𝑍𝑑0 is the
umber of non-perturbed charges present on the dust grains measured
n unit electron charge. The nonlinear three dimensional DAW can be
escribed by the following system [21]:

𝜕𝑛
𝜕𝑡

+ ∇.
(

𝑛𝑑𝑢𝑑
)

= 0,

𝜕𝑢𝑑
𝜕𝑡

+
(

𝑢𝑑 .∇
)

𝑢𝑑 =
𝑍𝑑
𝑚𝑑

[

∇𝜙 − 𝜔𝑐𝑑
(

𝑢𝑑 × 𝐤
)

]

,

𝜕2𝜙
𝜕𝑥2

+
𝜕2𝜙
𝜕𝑦2

+
𝜕2𝜙
𝜕𝑧2

= 𝑍𝑑𝑛𝑑 + 𝑛𝑒 − 𝑛𝑖𝑙 − 𝑛𝑖ℎ,

(1)

here 𝑢𝑑 = 𝑢𝑑 𝐢 + 𝑣𝑑 𝐣 + 𝑤𝑑𝐤, 𝑚𝑑 , and 𝑛𝑑 point to the dimensionless
velocity, mass of dust grain, and number density, respectively. 𝜙 is
the dimensionless electrostatic potential. 𝑍𝑑 is the dust grain’s charge.
The distribution of ions and electrons is assumed with Maxwell Boltz-
mann distribution functions, so the relevant dimensionless number
densities for electrons, high temperature ions and low temperature
ions are: 𝑛𝑒 = 𝜈𝑒𝑥𝑝(𝑠𝛽1𝜙), 𝑛𝑖ℎ = 𝜇ℎ𝑒𝑥𝑝(−𝑠𝛽2𝜙), 𝑛𝑖𝑙 = 𝜇1𝑒𝑥𝑝(−𝑠𝜙),
where 𝑠 = 𝑇𝑒𝑓𝑓∕𝑇𝑖𝑙, 𝜈 = 𝑛𝑒0∕(𝑍𝑑0𝑛𝑑0), 𝛽1 = 𝑇𝑖𝑙∕𝑇𝑒, 𝛽2 = 𝑇𝑖𝑙∕𝑇𝑖ℎ,
𝜇ℎ = 𝑛𝑖ℎ0∕(𝑍𝑑0𝑛𝑑0), and 𝜇𝑙 = 𝑛𝑖𝑙0∕(𝑍𝑑0𝑛𝑑0). The measured quantities
are given as follows. 𝑇𝑒𝑓𝑓 is The inverse of effective temperature given
by 𝑇𝑒𝑓𝑓 = 𝑛𝑑0𝑍𝑑0

( 𝑛𝑒0
𝑇𝑒

+ 𝑛𝑖𝑙0
𝑇𝑖𝑙

+ 𝑛𝑖ℎ0
𝑇𝑖ℎ

)−1, 𝑇𝑖𝑙 and 𝑇𝑖ℎ are the temperatures
f lower- and higher-temperature ions, and 𝑇𝑒 is the temperature of
lectrons. 𝑍𝑑 is normalized by 𝑍𝑑0, the dust density is normalized by
𝑑0. The velocity 𝑢𝑑 , the space coordinates 𝑥 and 𝑦, time 𝑡, 𝑚𝑑 and the

electrostatic potential 𝜙 are normalized by the effective Debye length
𝜆𝐷𝑑 = (𝑇𝑒𝑓𝑓∕4𝜋𝑒2𝑛𝑑0𝑍𝑑0)1∕2, the effective dust plasma frequency’s
inverse 𝜔−1

𝑝𝑑 = (𝑚𝑑0∕4𝜋𝑒2𝑍2
𝑑0𝑛𝑑0)

1∕2, the effective dust acoustic speed
𝐶𝑑 = (𝑍𝑑0𝑇𝑒𝑓𝑓∕𝑚𝑑0)1∕2, 𝑇𝑒𝑓𝑓∕𝑒, and 𝑚𝑑0. 𝜔𝑐𝑑 = (𝑍𝑑0

𝑚𝑑0
𝑒𝐵0)∕𝜔𝑝𝑑 is the

ust cyclotron frequency normalized to 𝜔𝑝𝑑 . Dong-Ning Gao et al. [21]
derived the Extended Zakharov–Kuznetsov (EZK) equation as

𝑢𝑡 − 𝑢𝑥 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢2𝑢𝑥 + 𝐶𝑢𝑥𝑥𝑥 +𝐷
(

𝑢𝑥𝑦𝑦 + 𝑢𝑥𝑧𝑧
)

= 0, (2)

where 𝐴, 𝐵, 𝐶 and 𝐷 be defined in [21].
2

Lie symmetry analysis for the EZK equation

Lie group analysis plays a basic role in building exact explicit
solutions for N-LEEs and obtaining the invariant solutions. First, let us
consider a one-parameter Lie group of point transformation:

𝑥̃ = 𝑥 + 𝜖 𝜉(𝑥, 𝑦, 𝑧, 𝑡, 𝑢) + 𝑂(𝜖2),

𝑦̃ = 𝑦 + 𝜖 𝜁 (𝑥, 𝑦, 𝑧, 𝑡, 𝑢) + 𝑂(𝜖2),

𝑧̃ = 𝑧 + 𝜖 𝛾(𝑥, 𝑦, 𝑧, 𝑡, 𝑢) + 𝑂(𝜖2),

𝑡 = 𝑡 + 𝜖 𝜏(𝑥, 𝑦, 𝑧, 𝑡, 𝑢) + 𝑂(𝜖2),

𝑢̃ = 𝑢 + 𝜖 𝜂(𝑥, 𝑦, 𝑧, 𝑡, 𝑢) + 𝑂(𝜖2),

ith a small parameter 𝜖 ≪ 1. The vector field related with the above
roup of transformation can be written as

𝐕 = 𝜉(𝑥, 𝑦, 𝑧, 𝑡, 𝑢) 𝜕
𝜕𝑥

+ 𝜁 (𝑥, 𝑦, 𝑧, 𝑡, 𝑢) 𝜕
𝜕𝑦

+ 𝛾(𝑥, 𝑦, 𝑧, 𝑡, 𝑢) 𝜕
𝜕𝑧

+ 𝜏(𝑥, 𝑦, 𝑧, 𝑡, 𝑢) 𝜕
𝜕𝑡

+ 𝜂(𝑥, 𝑦, 𝑧, 𝑡, 𝑢) 𝜕
𝜕𝑢

.
(3)

This vector field equation (3) generates a symmetry of Eq. (2), and 𝐕
must satisfy Lie symmetry conditions

𝑝𝑟(3)𝐕(𝛥)|𝛥 = 0, (4)

here 𝑝𝑟(3)𝐕 is the third prolongation of 𝐕 and 𝛥 is equation (2). Ap-
lying the third prolongation 𝑝𝑟(3)𝐕 to Eq. (2), the invariant conditions
iven by
𝑡 − 𝜂𝑥 +𝐴𝑢𝜂𝑥 +𝐴𝑢𝑥𝜂+𝐵𝑢2𝜂𝑥 +2𝐵𝑢𝑢𝑥𝜂+𝐶𝜂𝑥𝑥𝑥 +𝐷

(

𝜂𝑥𝑦𝑦 + 𝜂𝑥𝑧𝑧
)

= 0, (5)

here 𝜂𝑡, 𝜂𝑥, 𝜂𝑥𝑥𝑥, 𝜂𝑥𝑦𝑦 and 𝜂𝑥𝑧𝑧 being given by

𝜂𝑡 = 𝐷𝑡(𝜂) − 𝑢𝑥𝐷𝑡(𝜉) − 𝑢𝑦𝐷𝑡(𝜁 ) − 𝑢𝑧𝐷𝑡(𝛾) − 𝑢𝑡𝐷𝑡(𝜏),

𝜂𝑥 = 𝐷𝑥(𝜂) − 𝑢𝑥𝐷𝑥(𝜉) − 𝑢𝑦𝐷𝑥(𝜁 ) − 𝑢𝑧𝐷𝑥(𝛾) − 𝑢𝑡𝐷𝑥(𝜏),

𝜂𝑥𝑥𝑥 = 𝐷𝑥(𝜂𝑥𝑥) − 𝑢𝑥𝑥𝑥𝐷𝑥(𝜉) − 𝑢𝑥𝑥𝑦𝐷𝑥(𝜁 ) − 𝑢𝑥𝑥𝑧𝐷𝑥(𝛾) − 𝑢𝑥𝑥𝑡𝐷𝑥(𝜏),

𝜂𝑥𝑦𝑦 = 𝐷𝑦(𝜂𝑥𝑦) − 𝑢𝑥𝑦𝑥𝐷𝑦(𝜉) − 𝑢𝑥𝑦𝑦𝐷𝑦(𝜁 ) − 𝑢𝑥𝑦𝑧𝐷𝑦(𝛾) − 𝑢𝑥𝑦𝑡𝐷𝑦(𝜏),

𝜂𝑥𝑧𝑧 = 𝐷𝑧(𝜂𝑥𝑧) − 𝑢𝑥𝑧𝑥𝐷𝑧(𝜉) − 𝑢𝑥𝑧𝑦𝐷𝑧(𝜁 ) − 𝑢𝑥𝑧𝑧𝐷𝑧(𝛾) − 𝑢𝑥𝑧𝑡𝐷𝑧(𝜏),

(6)

here 𝐷𝑡, 𝐷𝑥, 𝐷𝑦 and 𝐷𝑧 are total derivatives with respect to 𝑡, 𝑥, 𝑦 and
, respectively. Substituting Eq. (6) into Eq. (5) and solving the system,
hen infinitesimal symmetries are given as follows

𝜉 = 𝑥
3
𝛼1 + 𝛼6, 𝜁 =

𝑦
3
𝛼1 + 𝛼3𝑧 + 𝛼4, 𝛾 = 𝑧

3
𝛼1 − 𝛼3𝑦 + 𝛼5,

𝜏 = 𝛼1𝑡 + 𝛼2, 𝜂 = −2
3
𝐵𝑢2 + 𝐴𝑢 − 1

𝐴 + 2𝐵𝑢
𝛼1,

where 𝛼𝑖, 𝑖 = 1,… , 6 are all arbitrary constants. Therefore, Lie algebra
of infinitesimal symmetries of Eq. (2) is extended by the following
vector field

𝜈1 =
𝑥
3

𝜕
𝜕𝑥

+
𝑦
3

𝜕
𝜕𝑦

+ 𝑧
3

𝜕
𝜕𝑧

+ 𝑡 𝜕
𝜕𝑡

− 2
3
𝐵𝑢2 + 𝐴𝑢 − 1

𝐴 + 2𝐵𝑢
𝜕
𝜕𝑢

scaling,

𝜈2 =
𝜕
𝜕𝑡

time translation,

𝜈3 = 𝑧 𝜕
𝜕𝑦

− 𝑦 𝜕
𝜕𝑧

rotation translation,

𝜈4 =
𝜕
𝜕𝑦

space translation,

𝜈5 =
𝜕
𝜕𝑧

space translation,

𝜈6 =
𝜕
𝜕𝑥

space translation.

(7)

The commutation relations of Lie algebra obtained by 𝜈𝑖, 1 ≤ 𝑖 ≤ 6
are shown in Table 1 and we observe that 𝜈𝑖 is closed under the Lie
bracket.

Symmetry group of EZK equation

The main purpose of this section is to find some exact solutions
from known ones, so we should find the Lie symmetry groups from the
concerning symmetries. For this reason, the one parameter group 𝑔𝑖:

̃
𝑔𝑖 ∶ (𝑥, 𝑦, 𝑧, 𝑡, 𝑢) → (𝑥̃, 𝑦̃, 𝑧̃, 𝑡, 𝑢̃), (8)
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Table 1
Commutation table of Lie algebra.
[𝜈𝑖 , 𝜈𝑗 ] 𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6

𝜈1 0 -𝜈2 0 − 1
3
𝜈4 − 1

3
𝜈5 − 1

3
𝜈6

𝜈2 𝜈2 0 0 0 0 0

𝜈3 0 0 0 𝜈5 -𝜈4 0

𝜈4
1
3
𝜈4 0 -𝜈5 0 0 0

𝜈5
1
3
𝜈5 0 𝜈4 0 0 0

𝜈6 - 1
3
𝜈6 0 0 0 0 0

which is created by the vector fields 𝜈𝑖 for 1 ≤ 𝑖 ≤ 6, is formed. For this
purpose, we solve following system of ODEs
𝑑
𝑑𝜖

(𝑥̃, 𝑦̃, 𝑧̃, 𝑡, 𝑢̃) = 𝜎(𝑥̃, 𝑦̃, 𝑧̃, 𝑡, 𝑢̃), (9)

(𝑥̃, 𝑦̃, 𝑧̃, 𝑡, 𝑢̃) ∣𝜖=0= (𝑥, 𝑦, 𝑧, 𝑡, 𝑢), (10)

where 𝜖 is an arbitrary real parameter and

𝜎 = 𝜉𝑢𝑥 + 𝜁𝑢𝑦 + 𝛾𝑢𝑧 + 𝜏𝑢𝑡 + 𝜂𝑢. (11)

For the infinitesimal generator 𝜈 = 𝛼1𝜈1+𝛼2𝜈2+𝛼3𝜈3+𝛼4𝜈4+𝛼5𝜈5+𝛼6𝜈6,
we will take the following different values to get the corresponding
infinitesimal generators:

Case 1. 𝛼1 = 1, 𝛼2 = 𝛼3 = 𝛼4 = 𝛼5 = 𝛼6 = 0, the infinitesimal
generator is 𝜈1 =

𝑥
3

𝜕
𝜕𝑥 + 𝑦

3
𝜕
𝜕𝑦 + 𝑧

3
𝜕
𝜕𝑧 + 𝑡 𝜕𝜕𝑡 −

2
3
𝐵𝑢2+𝐴𝑢−1
𝐴+2𝐵𝑢

𝜕
𝜕𝑢 .

Case 2. 𝛼2 = 1, 𝛼1 = 𝛼3 = 𝛼4 = 𝛼5 = 𝛼6 = 0, the infinitesimal
enerator is 𝜈2 =

𝜕
𝜕𝑡 .

Case 3. 𝛼3 = 1, 𝛼1 = 𝛼2 = 𝛼4 = 𝛼5 = 𝛼6 = 0, the infinitesimal
enerator is 𝜈3 = 𝑧 𝜕

𝜕𝑦 − 𝑦 𝜕
𝜕𝑧 .

Case 4. 𝛼4 = 1, 𝛼1 = 𝛼2 = 𝛼3 = 𝛼5 = 𝛼6 = 0, the infinitesimal
enerator is 𝜈4 =

𝜕
𝜕𝑦 .

Case 5. 𝛼6 = 1, 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 𝛼5 = 0, the infinitesimal
enerator is 𝜈5 =

𝜕
𝜕𝑥 .

Case 6. 𝛼2 = 𝛼4 = 1, 𝛼1 = 𝛼3 = 𝛼5 = 𝛼6 = 0, the infinitesimal
enerator is 𝜈6 =

𝜕
𝜕𝑦 + 𝜕

𝜕𝑡 .
The Lie symmetry group 𝑔 ∶ (𝑥, 𝑦, 𝑧, 𝑡, 𝑢) → (𝑥̃, 𝑦̃, 𝑧̃, 𝑡, 𝑢̃) of above

orresponding the infinitesimal generators are given as follows:

𝑔1 ∶ (𝑥, 𝑦, 𝑧, 𝑡, 𝑢) → (𝑥 + 𝜖𝑥
3
, 𝑦 +

𝜖𝑦
3
, 𝑧 + 𝜖𝑧

3
, 𝑡 + 𝜖𝑡, 𝑢 − 2

3
𝐵𝑢2 + 𝐴𝑢 − 1

𝐴 + 2𝐵𝑢
𝜖),

𝑔2 ∶ (𝑥, 𝑦, 𝑧, 𝑡, 𝑢) → (𝑥, 𝑦, 𝑧, 𝑡 + 𝜖, 𝑢),

𝑔3 ∶ (𝑥, 𝑦, 𝑧, 𝑡, 𝑢) → (𝑥, 𝑦 + 𝜖𝑧, 𝑧 − 𝜖𝑦, 𝑡, 𝑢),

𝑔4 ∶ (𝑥, 𝑦, 𝑧, 𝑡, 𝑢) → (𝑥, 𝑦 + 𝜖, 𝑧, 𝑡, 𝑢),

𝑔5 ∶ (𝑥, 𝑦, 𝑧, 𝑡, 𝑢) → (𝑥, 𝑦, 𝑧 + 𝜖, 𝑡, 𝑢),

𝑔6 ∶ (𝑥, 𝑦, 𝑧, 𝑡, 𝑢) → (𝑥 + 𝜖, 𝑦, 𝑧, 𝑡, 𝑢).

(12)

If 𝑢 = 𝑓 (𝑥, 𝑦, 𝑧, 𝑡) is known solution of Eq. (2), then using the above
groups 𝑔𝑖(𝑖 = 1,… , 6), the corresponding new solutions 𝑢(𝑖)(𝑖 = 1,… , 6)
can be obtained as follows:

𝑢(1) = (𝑥 − 𝜖𝑥
3
, 𝑦 −

𝜖𝑦
3
, 𝑧 − 𝜖𝑧

3
, 𝑡 − 𝜖𝑡, 𝑢 + 𝜖

3
(𝑢 + 1)),

under condition 𝐴 = −2, 𝐵 = −1,

𝑢(2) = 𝑓2(𝑥, 𝑦, 𝑧, 𝑡 − 𝜖),

𝑢(3) = 𝑓3(𝑥, 𝑦 − 𝜖𝑧, 𝑧 + 𝜖𝑦, 𝑡),

𝑢(4) = 𝑓4(𝑥, 𝑦 − 𝜖, 𝑧, 𝑡),

𝑢(5) = 𝑓5(𝑥, 𝑦, 𝑧 − 𝜖, 𝑡),

𝑢(6) = 𝑓6(𝑥 − 𝜖, 𝑦, 𝑧, 𝑡).

(13)

By choosing the arbitrary functions 𝑓𝑖, 𝑖 = 1,… , 6, we can obtain many
3

new solutions using different method like Bäcklund transform method,
inverse scattering method, the extended tanh-function method, Hirota
method, and Lie group analysis. Moreover new solution from those
known using 𝑔2 can be obtained as

𝑢1 = −
𝐴 + 4

√

−6𝐵
[

𝐶𝑐21 +𝐷
(

𝑐22 + 𝑐23
)]

coth
[

2(𝑐1𝑥 + 𝑐2𝑦 + 𝑐3𝑧 + 𝑐4(𝑡 − 𝜖) + 𝑐5)
]

2𝐵
.

(14)

Also, using 𝑔3 another new solution can be found

𝑢2 = −𝐴
𝐵

+

√

−6𝐷
(

𝑐22 + 𝑐23
) (

𝜖2 + 1
)

− 6𝐶𝑐21
𝐵

csch(2𝜑), (15)

where 𝜑 = 𝑐1𝑥 + 𝑐2
(

𝑦 − 𝜖𝑧
)

+ 𝑐3
(

𝑧 + 𝜖𝑦
)

+ 𝑐4𝑡 + 𝑐5. By identifying the
arbitrary constants, one can get many new solutions. Thus, we get the
invariant solutions of Eq. (2) using the corresponding Lagrange system
given below:

𝑑𝑥
𝜉(𝑥, 𝑦, 𝑧, 𝑡)

=
𝑑𝑦

𝜁 (𝑥, 𝑦, 𝑧, 𝑡)
= 𝑑𝑧

𝛾(𝑥, 𝑦, 𝑧, 𝑡)
= 𝑑𝑡

𝜏(𝑥, 𝑦, 𝑧, 𝑡)
= 𝑑𝑢

𝜂(𝑥, 𝑦, 𝑧, 𝑡)
.

ymmetry reductions and exact solutions of the EZK equation

In this section, we reduce the Lagrange equations associated with
he vector fields obtained in the previous section to obtain the reduction
quations and get the similarity solution.
Case 1.
In this case, the symmetry algebra is given as 𝑣1 =

𝑥
3

𝜕
𝜕𝑥 +

𝑦
3

𝜕
𝜕𝑦 +

𝑧
3

𝜕
𝜕𝑧 +

𝑡 𝜕𝜕𝑡 −
𝑢+1
3

𝜕
𝜕𝑢 , has the associated Lagrange system is given by

𝑑𝑥
𝑥
3

=
𝑑𝑦
𝑦
3

= 𝑑𝑧
𝑧
3

= 𝑑𝑡
𝑡

= 𝑑𝑢
− 𝑢+1

3

, (16)

nder condition 𝐴 = −2 and 𝐵 = −1. The group invariant form is
= 𝑡−

1
3 𝐻(𝑋, 𝑌 ,𝑍)−1 where similarity variables are 𝑋 = 𝑥𝑡−

1
3 , 𝑌 = 𝑦𝑡−

1
3

and 𝑍 = 𝑧𝑡−
1
3 . Substituting the group invariant solution into Eq. (2), we

et the following reduced (2+1) non-linear PDE equation

𝐶𝐻𝑋𝑋𝑋 +3𝐷(𝐻𝑋𝑌 𝑌 +𝐻𝑋𝑍𝑍 )−3𝐻2𝐻𝑋 −𝐻 −𝑋𝐻𝑋 −𝑌𝐻𝑌 −𝑍𝐻𝑍 = 0.

(17)

o solve equation (17), we do again symbolic computation to obtain
verdetermined equations. Thus, the following infinitesimal symme-
ries can be derived as

𝑋 = 0, 𝜁𝑌 = 𝛽1𝑍, 𝛾𝑍 = −𝛽1𝑌 , 𝜂𝐻 = 0, (18)

here 𝛽1 is an arbitrary constant. From Eq. (18), corresponding char-
cteristic equation is given by
𝑑𝑋
0

= 𝑑𝑌
𝑍

= 𝑑𝑍
−𝑌

= 𝑑𝐻
0

. (19)

By solving equation (19) we obtain similarity form as

𝐻 = 𝑆(𝑝, 𝑟), where 𝑝 = 𝑋, 𝑟 = 𝑌 2 +𝑍2. (20)

The reduced (1+1) PDE is given as

− 𝑝𝑆𝑝 − 𝑆(3𝑆𝑆𝑝 + 1) + 12𝐷𝑆𝑝𝑟 − 2𝑟(𝑆𝑟 − 6𝐷𝑆𝑝𝑟𝑟) + 3𝐶𝑆𝑝𝑝𝑝 = 0. (21)

Eq. (21) is a non-linear PDE. It is clear that it is difficult to obtain a
general solution to Eq. (21). However, one particular solutions can be
obtained as:

𝑆(𝑝, 𝑟) =
𝜇
√

𝑟
.

Therefore, invariant solution of Eq. (2) is given as

𝑢11 =
𝜇

√

𝑦2 + 𝑧2
− 1, (22)

where 𝜇 is an arbitrary constant.
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Case 2.
For the infinitesimal generator 𝜈2 =

𝜕
𝜕𝑡 , solving the invariant surface

condition
𝑑𝑥
0

=
𝑑𝑦
0

= 𝑑𝑧
0

= 𝑑𝑡
1

= 𝑑𝑢
0
, (23)

yields the group invariant solution is

𝑢 = 𝐻(𝑋, 𝑌 ,𝑍),where 𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧. (24)

Substituting the group invariant solution into Eq. (2), we get the
following reduced (2+1) non-linear PDE equation

−𝐻𝑋 − 2𝐻𝐻𝑋 −𝐻2𝐻𝑋 + 𝐶𝐻𝑋𝑋𝑋 +𝐷(𝐻𝑋𝑌 𝑌 +𝐻𝑋𝑍𝑍 ) = 0. (25)

Looking for more solutions for EZK equation, the Lie symmetry method
will be applied to get infinitesimals of Eq. (25) shown below:

𝜉𝑋 = 𝛽1𝑋 + 𝛽5, 𝜁𝑌 = 𝛽1𝑌 + 𝛽2𝑍 + 𝛽3, 𝛾𝑍 = 𝛽1𝑍 − 𝛽2𝑌 + 𝛽4,

𝐻 = −𝛽1(𝐻 + 1), (26)

here 𝛽1, 𝛽2, 𝛽3, 𝛽4 and 𝛽5 are arbitrary constants. By determining the
ppropriate values of 𝛽𝑖, 1 ≤ 𝑖 ≤ 5 in Eq. (26), we get the following
haracteristic equation:
𝑑𝑋

𝛽1𝑋 + 𝛽5
= 𝑑𝑌

𝛽1𝑌 + 𝛽2𝑍 + 𝛽3
= 𝑑𝑍

𝛽1𝑍 − 𝛽2𝑌 + 𝛽4
= 𝑑𝐻

−𝛽1(𝐻 + 1)
. (27)

Reduced equations and invariant solutions for Eq. (2) for subcases of
vector field 𝜈2 are shown as follow

Subcase 2.1. 𝛽2 = 0.
Substituting 𝛽2 = 0 in Eq. (27), we get reduced Lagrange’s system

iven as:
𝑑𝑋

𝛽1𝑋 + 𝛽5
= 𝑑𝑌

𝛽1𝑌 + 𝛽3
= 𝑑𝑍

𝛽1𝑍 + 𝛽4
= 𝑑𝐻

−𝛽1(𝐻 + 1)
. (28)

Taking 𝛽1 ≠ 0, Eq. (28) becomes
𝑑𝑋

𝑋 + 𝑑1
= 𝑑𝑌

𝑌 + 𝑑2
= 𝑑𝑍

𝑍 + 𝑑3
= 𝑑𝐻

−(𝐻 + 1)
, (29)

where 𝑑1 =
𝛽5
𝛽1

, 𝑑2 =
𝛽3
𝛽1

and 𝑑3 =
𝛽4
𝛽1

. Similarity form is

𝐻(𝑋, 𝑌 ,𝑍) = 1
𝑍 + 𝑑3

𝑆(𝑝, 𝑟) − 1 where 𝑝 =
𝑋 + 𝑑1
𝑍 + 𝑑3

, 𝑟 =
𝑌 + 𝑑2
𝑍 + 𝑑3

. (30)

ubstituting Eq. (30) in Eq. (25), we can get the reduced non-linear
DE as

𝐶+𝐷𝑝2
)

𝑆𝑝𝑝𝑝+𝐷
[

2𝑝
(

3𝑆𝑝𝑝+𝑟𝑆𝑝𝑝𝑟
)

+6𝑟𝑆𝑝𝑟+
(

𝑟2+1
)

𝑆𝑝𝑟𝑟
]

+
(

6𝐷−𝑆2)𝑆𝑝 = 0.

(31)

Infinitesimals of Eq. (31) are

𝛿𝑝 = 𝑝𝑟, 𝛿𝑟 = 𝑟2 + 1, 𝜂𝑆 = −𝑟𝑆. (32)

Hence, using Eq. (32), we get associated characteristic equations
𝑑𝑝
𝑝𝑟

= 𝑑𝑟
𝑟2 + 1

= 𝑑𝑆
−𝑟𝑆

(33)

y solving equation (33), we get a similarity form

= 1
√

1 + 𝑟2
𝑄(𝑤), where 𝑤 =

𝑝
√

1 + 𝑟2
. (34)

Eq. (31) reduces to ODE

(4𝐷 −𝑄2)𝑄′ + 5 𝐷 𝑤 𝑄′′ + (𝐶 +𝐷 𝑤2)𝑄′′′ = 0. (35)

After solving equation (35), we can get two particular solutions as

𝑄(𝑤) = ±𝜅1, 𝑄(𝑤) = ±

√

6𝐶
𝑤

, (36)

here 𝜅1 is an arbitrary constant. Then comprising Eqs. (24), (34), and
36), we get the similarity solutions as

25 =
±𝜅1 − 1, (37)
4

(𝑑1 + 𝑦)2 + (𝑑3 + 𝑧)2
𝑢26 =
±
√

6𝐶
𝑥 + 𝑑1

− 1. (38)

Subcase 2.2. 𝛽1 = 𝛽3 = 𝛽4 = 𝛽5 = 0.
For this subcase the invariant is given as 𝐻 = 𝑆(𝑝, 𝑟) where 𝑝 = 𝑋

and 𝑟 = 𝑌 2 +𝑍2, inserting the value of 𝐻 into Eq. (25), we obtain

𝑆𝑝 + 2𝑆𝑆𝑝 + 𝑆2𝑆𝑝 − 4𝐷(𝑆𝑝𝑟 + 𝑟𝑆𝑝𝑟𝑟) − 𝐶𝑆𝑝𝑝𝑝 = 0. (39)

ne can find new set of generators

𝑝 =
𝑐1
2
𝑝 + 𝑐2, 𝛿𝑟 = 𝑐1𝑟, 𝜂𝑆 = −

𝑐1
2
(𝑆 + 1). (40)

For 𝑐2 = 0, the invariant is given as

= 𝑟−
1
2 𝑄(𝑤) − 1, where 𝑤 = 𝑝𝑟−

1
2 , (41)

nserting the value of 𝑆 from Eq. (41) in Eq. (39), we get

4𝐷 −𝑄2)𝑄′ + 5𝐷𝑤𝑄′′ + (𝐶 +𝐷𝑤2)𝑄′′′ = 0. (42)

olving equation (42), we obtain the group invariant solution as

27 =

√

6𝐶
𝑥

− 1. (43)

Subcase 2.3. 𝛽1 = 𝛽2 = 𝛽4 = 𝛽5 = 0.
The following form of 𝐻 can be written as

= 𝑆(𝑝, 𝑟), where 𝑝 = 𝑋 and 𝑟 = 𝑍, (44)

ubstituting Eq. (44) into Eq. (25), we get

− 𝑆𝑝 − 2𝑆𝑆𝑝 − 𝑆2𝑆𝑝 + 𝐶𝑆𝑝𝑝𝑝 +𝐷𝑆𝑝𝑟𝑟 = 0. (45)

nfinitesimals of Eq. (45) are

𝑝 = 𝑐1𝑝 + 𝑐3, 𝛿𝑟 = 𝑐1𝑟 + 𝑐2, 𝜂𝑆 = −𝑐1(𝑆 + 1). (46)

For 𝑐2 = 𝑐3 = 0, the invariant is given as

𝑆 =
𝑄(𝑤)
𝑟

− 1, where 𝑤 =
𝑝
𝑟
, (47)

inserting the value of 𝑆 from Eq. (47) in Eq. (45), we get

(6𝐷 −𝑄2)𝑄′ + 6𝐷𝑤𝑄′′ + (𝐶 +𝐷𝑤2)𝑄′′′ = 0. (48)

After solving equation (48), it give the same solution in (43).
Subcase 2.4. 𝛽1 = 𝛽2 = 𝛽3 = 𝛽5 = 0.
The group invariant solution of this subcase is given as

= 𝑆(𝑝, 𝑟), where 𝑝 = 𝑋 and 𝑟 = 𝑌 , (49)

substituting the group invariant solution (49) into Eq. (25), we get

− 𝑆𝑝 − 2𝑆𝑆𝑝 − 𝑆2𝑆𝑝 + 𝐶𝑆𝑝𝑝𝑝 +𝐷𝑆𝑝𝑟𝑟 = 0. (50)

Case 3.
For the infinitesimal generator 𝜈3 = 𝑧 𝜕

𝜕𝑦 − 𝑦 𝜕
𝜕𝑧 , The associated

Lagrange system is

𝑑𝑥
0

=
𝑑𝑦
𝑧

= 𝑑𝑧
−𝑦

= 𝑑𝑡
0

= 𝑑𝑢
0
. (51)

The group invariant form is

𝑢 = 𝐻(𝑋, 𝑌 , 𝑇 ) where similarity variables are

𝑋 = 𝑥, 𝑌 = 𝑦2 + 𝑧2, 𝑇 = 𝑡. (52)

The reduced equation is given as

𝐻𝑇 −𝐻𝑋 +−2𝐻𝐻𝑋 −𝐻2𝐻𝑋 +𝐶𝐻𝑋𝑋𝑋 + 4𝐷(𝐻𝑋𝑌 + 𝑌𝐻𝑋𝑌 𝑌 ) = 0. (53)

We again apply the Lie symmetry method to get infinitesimals of
Eq. (53) shown below:

𝜉 = 𝑋 𝛽 + 𝛽 , 𝜁 = 2𝑌 𝛽 , 𝜏 = 𝛽 𝑇 + 𝛽 , 𝜂 = −
𝛽1 (𝐻 + 1), (54)
𝑋 3 1 3 𝑌 3 1 𝑇 1 2 𝐻 3
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Table 2
Reduced equations and invariant solutions of the EZK equation for case 4.
Subcase Similarity variables Reduced equations Invariant solutions

𝛽2 = 𝛽3 = 𝛽4 = 0 𝑝 = 𝑋𝑇 − 1
3 , 𝑟 = 𝑍𝑇 − 1

3 , 3𝐶𝑆𝑝𝑝𝑝 + 3𝐷𝑆𝑝𝑟𝑟 One particular solutions
𝐻 = 𝑇 − 1

3 𝑆(𝑝, 𝑟) − 1, −(3𝑆𝑆𝑝 + 1)𝑆 can be obtained as
−(𝑟𝑆𝑟 + 𝑝𝑆𝑝) = 0 𝑢42 =

1
𝑧
− 1

𝛽1 = 𝛽3 = 𝛽4 = 0 𝑝 = 𝑋, 𝑟 = 𝑍, −𝑆𝑝 + 𝐴𝑆𝑆𝑝 + 𝐵𝑆2𝑆𝑝 Same solution in (43)
𝐻 = 𝑆(𝑝, 𝑟) +𝐶𝑆𝑝𝑝𝑝 +𝐷𝑆𝑝𝑟𝑟 = 0 .

𝛽1 = 𝛽2 = 𝛽4 = 0 𝑝 = 𝑋, 𝑟 = 𝑇 , 𝑆𝑟 − 𝑆𝑝 − 2𝑆𝑆𝑝 𝑄 + (𝑤 + 3𝑄2)𝑄′ − 3𝐶𝑄′′′ = 0
𝐻 = 𝑆(𝑝, 𝑟) −𝑆2𝑆𝑝 + 𝐶𝑆𝑝𝑝𝑝 = 0 .

𝛽1 = 𝛽2 = 𝛽3 = 0 𝑝 = 𝑍, 𝑟 = 𝑇 , 𝑆𝑟 = 0 𝑢44 = 𝑓 (𝑧)
𝐻 = 𝑆(𝑝, 𝑟)
S
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where 𝛽1, 𝛽2 and 𝛽3 are arbitrary constants. By determining the suitable
values of 𝛽𝑖, 1 ≤ 𝑖 ≤ 3 in Eq. (54), we get reduced equations and many
invariant solutions as follow

Subcase 3.1. 𝛽2 = 𝛽3 = 0.
For this subcase, the group invariant is given as

𝐻 = 𝑇
−1
3 𝑆(𝑝, 𝑟) − 1 where 𝑝 = 𝑋𝑇

−1
3 and 𝑟 = 𝑌 𝑇

−2
3 , (55)

substituting Eq. (55) into Eq. (53), we get the following reduction
equation

3𝐶𝑆𝑝𝑝𝑝 + 12𝐷𝑆𝑝𝑟 − 2𝑟(𝑆𝑟 − 6𝐷𝑆𝑝𝑟𝑟) − 𝑆(3𝑆𝑆𝑝 + 1) − 𝑝𝑆𝑝 = 0. (56)

ne particular solution can be obtained as

31 =
1

√

𝑦2 + 𝑧2
− 1. (57)

Subcase 3.2. 𝛽1 = 𝛽3 = 0.
The group invariant is given as 𝐻 = 𝑆(𝑝, 𝑟) with the similarity

variables 𝑝 = 𝑋 and 𝑟 = 𝑌 , substituting the group invariant solution
into Eq. (53), we get

𝑆𝑝 + 2𝑆𝑆𝑝 + 𝑆2𝑆𝑝 − 𝐶𝑆𝑝𝑝𝑝 − 4𝐷(𝑆𝑝𝑟 + 𝑟𝑆𝑝𝑟𝑟) = 0. (58)

Subcase 3.3. 𝛽1 = 𝛽2 = 0.
The following form of 𝐻 can be written as 𝐻 = 𝑆(𝑝, 𝑟) where 𝑝 = 𝑌

and 𝑟 = 𝑇 , substituting the group invariant solution into Eq. (53),
we get the reduced equation as 𝑆𝑟 = 0. The general solution of EZK
equation (2) can be expressed as

𝑢33 = 𝑓 (𝑦2 + 𝑧2). (59)

Case 4.
The associated Lagrange system for 𝜈4 =

𝜕
𝜕𝑦 is given by

𝑑𝑥
0

=
𝑑𝑦
1

= 𝑑𝑧
0

= 𝑑𝑡
0

= 𝑑𝑢
0
. (60)

The group invariant form is

𝑢 = 𝐻(𝑋,𝑍, 𝑇 ) where 𝑋 = 𝑥, 𝑍 = 𝑧, 𝑇 = 𝑡. (61)

nserting the value of 𝑢 from Eq. (61) into (2), we obtain the following
quation

𝑇 −𝐻𝑋 − 2𝐻𝐻𝑋 −𝐻2𝐻𝑋 + 𝐶𝐻𝑋𝑋𝑋 +𝐷𝐻𝑋𝑍𝑍 = 0. (62)

olving equation (62) by using tanh-method, we get the following
imilarity solution

41 =
−2 + 4

√

6(𝑐22𝐷 + 𝐶𝑐21 ) coth(2(𝑐1𝑥 + 𝑐2𝑦 + 𝑐3𝑧 + 𝑐4))

2
. (63)

new set of infinitesimal generators can be obtained for Eq. (62) as
he following:

𝑋 = 𝑋
3
𝛽1 + 𝛽4, 𝛾𝑧 =

𝑍
3
𝛽1 + 𝛽3, 𝜏𝑇 = 𝛽1𝑇 + 𝛽2, 𝜂𝐻 = −

𝛽1
3
(𝐻 +1), (64)

where 𝛽1, 𝛽2, 𝛽3 and 𝛽4 are arbitrary constants. By setting the suitable
values of 𝛽𝑖, 1 ≤ 𝑖 ≤ 4 in Eq. (54), we get reduced equations and many
invariant solutions as shown in Table 2.
5

Case 5.
The associated Lagrange system for 𝜈6 =

𝜕
𝜕𝑥 is given as

𝑑𝑥
1

=
𝑑𝑦
0

= 𝑑𝑧
0

= 𝑑𝑡
0

= 𝑑𝑢
0
. (65)

After solving equation (65), we get similarity form as

𝑢 = 𝐻(𝑌 ,𝑍, 𝑇 ), where 𝑌 = 𝑦, 𝑍 = 𝑧, 𝑇 = 𝑡. (66)

ubstituting the value of 𝑢 from Eq. (66) into Eq. (2), we get the reduced
quation as 𝐻𝑇 = 0. The general solution of reduced equation is given
s 𝐻 = 𝑓 (𝑌 ,𝑍). therefore, general solution of EZK equation is given
s

51(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓 (𝑦, 𝑧). (67)

Case 6.
For the infinitesimal generator 𝜈6 = 𝜈2 + 𝜈4 = 𝜕

𝜕𝑦 + 𝜕
𝜕𝑡 . Solving the

invariant surface condition
𝑑𝑥
0

=
𝑑𝑦
1

= 𝑑𝑧
0

= 𝑑𝑡
1

= 𝑑𝑢
0
, (68)

yields

𝑢 = 𝐻(𝑋, 𝑌 ,𝑍), with the similarity variables

𝑋 = 𝑥, 𝑌 = 𝑦 − 𝑡, 𝑍 = 𝑧. (69)

Substituting the value of 𝑢 from Eq. (69) into Eq. (2), we get the
following reduced (2+1) non-linear PDE equation as

−𝐻𝑌 −𝐻𝑋 −2𝐻𝐻𝑋 −𝐵𝐻2𝐻𝑋 +𝐶𝐻𝑋𝑋𝑋 +𝐷(𝐻𝑋𝑌 𝑌 +𝐻𝑋𝑍𝑍 ) = 0. (70)

After apply again the similarity transformation method on (70), we
obtain the reduced (1+1)-dimensional PDE as

𝑆𝑟 + 𝑆𝑝 + 2𝑆𝑆𝑝 + 𝑆2𝑆𝑝 − 𝐶𝑆𝑝𝑝𝑝 −𝐷(𝑆𝑝𝑝𝑝 + 𝑆𝑝𝑟𝑟) = 0, (71)

ith similarity form as

= 𝑆(𝑝, 𝑟) where 𝑝 = 𝑋 −𝑍, 𝑟 = 𝑌 . (72)

nserting the value of 𝑆 from Eq. (73) in Eq. (71), we get

2 +𝑄)𝑄𝑄′ − (𝐶 + 2𝐷)𝑄′′′ = 0. (73)

onservation laws of Eq. (2)

In this section, we will construct conservation laws for (2) using
he new conservation theorem [55]. The formal Lagrangian for the EZK
quation

≡ 𝑢𝑡 − 𝑢𝑥 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢2𝑢𝑥 + 𝐶𝑢𝑥𝑥𝑥 +𝐷
(

𝑢𝑥𝑦𝑦 + 𝑢𝑥𝑧𝑧
)

= 0, (74)

s defined by

= 𝜗
[

𝑢𝑡 − 𝑢𝑥 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢2𝑢𝑥 + 𝐶𝑢𝑥𝑥𝑥 +𝐷
(

𝑢𝑥𝑦𝑦 + 𝑢𝑥𝑧𝑧
)]

, (75)

which can be reduced to the second-order Lagrangian:
[ 2 ] [ ( )]

(76)
𝐿 = 𝜗 𝑢𝑡 − 𝑢𝑥 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢 𝑢𝑥 − 𝜗𝑥 𝐶𝑢𝑥𝑥 +𝐷 𝑢𝑦𝑦 + 𝑢𝑧𝑧 ,
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Fig. 1. Solitary wave profile of Eq. (22) for 𝜇 = 2. (a) Single soliton. (b) The wave propagation pattern of the wave along the 𝑦-axis with 𝑧 = −.5 (black), 𝑧 = −.9 (red) and
𝑧 = −1.1 (blue). (c) Contour plot.

Fig. 2. Solitary wave profile of Eq. (37) for 𝑐1 = 1, 𝑑1 = 2 and 𝑑3 = 4. (a) Single soliton. (b) The wave propagation pattern of the wave along the 𝑦-axis with 𝑧 = −.5 (black),
𝑧 = −1.1 (red) and 𝑧 = −1.5 (blue). (c) Contour plot.

Fig. 3. Solution 𝑢33 (59) at (a)𝑓 (𝑦, 𝑧) = sin
(

𝑦2 + 𝑧2
)

, (b) 𝑓 (𝑦, 𝑧) = cos
(

𝑦2 + 𝑧2
)

, (c) 𝑓 (𝑦, 𝑧) = arccosh
(

𝑦2 + 𝑧2
)

.

Fig. 4. Solitary wave profile of Eq. (67). (a) Multi-soliton soliton. (b) The wave propagation pattern of the wave along the 𝑦-axis with 𝑧 = −.5 (black), 𝑧 = −.9 (red) and 𝑧 = −1.1
(blue). (c) Contour plot.
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here 𝜗 is a new dependent variable. Consequently the adjoint equation
to (76) has the form

𝐹 ∗ ≡ 𝛿𝐿
𝛿𝑢

= 0, (77)

he variational derivatives of the Lagrangian defined by

𝛿𝐿
𝛿𝑢

= 𝐿𝑢 −𝐷𝑡
(

𝐿𝑢𝑡

)

−𝐷𝑥
(

𝐿𝑢𝑥

)

−𝐷3
𝑥
(

𝐿𝑢𝑥𝑥𝑥

)

−𝐷𝑥𝐷
2
𝑦
(

𝐿𝑢𝑥𝑦𝑦

)

− 𝐷𝑥𝐷
2
𝑧
(

𝐿𝑢𝑥𝑧𝑧

)

+⋯ , (78)

then, we obtain the adjoint equation of (74)

𝐹 ∗ ≡ 𝜗𝑡 − 𝜗𝑥 + 𝐴𝑢𝜗𝑥 + 𝐵𝑢2𝜗𝑥 + 𝐶𝜗𝑥𝑥𝑥 +𝐷
(

𝜗𝑥𝑦𝑦 + 𝜗𝑥𝑧𝑧
)

= 0, (79)

from Eq. (7), we can obtain the following six cases:
Case 1. Firstly, we consider the Lie point symmetry 𝜈1 =

𝑥
3

𝜕
𝜕𝑥+

𝑦
3

𝜕
𝜕𝑦+

𝑧
3

𝜕
𝜕𝑧 + 𝑡 𝜕𝜕𝑡 −

2
3
𝐵𝑢2+𝐴𝑢−1
𝐴+2𝐵𝑢

𝜕
𝜕𝑢 of (2). Corresponding to this symmetry, the Lie

characteristic functions are 𝑊 1 = − 2
(

𝐴𝑢+𝐵𝑢2−1
)

3(2𝐵𝑢+𝐴) −𝑡𝑢𝑡−
𝑥
3 𝑢𝑥−

𝑦
3 𝑢𝑦−

𝑧
3 𝑢𝑧 and

2 = − 2
(

𝐴𝑢+𝐵𝑢2−1
)

3(2𝐵𝑢+𝐴) − 𝑡𝜗𝑡 −
𝑥
3 𝜗𝑥 −

𝑦
3𝜗𝑦 −

𝑧
3𝜗𝑧. Thus, using the Ibragimov

heorem [47]

𝐶 𝑡
2 = 𝑡𝜗

[

𝑢𝑡 − 𝑢𝑥 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢2𝑢𝑥
]

− 𝑡𝜗𝑥
[

𝐶𝑢𝑥𝑥 +𝐷
(

𝑢𝑦𝑦 + 𝑢𝑧𝑧
)]

− 𝜗
[

𝑡𝑢𝑡 +
𝑥
3
𝑢𝑥 +

𝑦
3
𝑢𝑦 +

𝑧
3
𝑢𝑧 +

2
(

𝐴𝑢 + 𝐵𝑢2 − 1
)

3(2𝐵𝑢 + 𝐴)

]

,

𝐶𝑥
2 = 𝑥

3
𝜗
[

𝑢𝑡 − 𝑢𝑥 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢2𝑢𝑥
]

− 𝑥
3
𝜗𝑥

[

𝐶𝑢𝑥𝑥 +𝐷
(

𝑢𝑦𝑦 + 𝑢𝑧𝑧
)]

−
[

𝜗(𝐴𝑢 + 𝐵𝑢2 − 1) + 𝐶𝜗𝑥𝑥
]

[

𝑡𝑢𝑡 +
𝑥
3
𝑢𝑥 +

𝑦
3
𝑢𝑦 +

𝑧
3
𝑢𝑧

+
2
(

𝐴𝑢 + 𝐵𝑢2 − 1
)

3(2𝐵𝑢 + 𝐴)

]

+
𝐶𝜗𝑥

3(2𝐵𝑢 + 𝐴)2

[

𝑢𝑥
(

8𝐵𝑢(𝐵𝑢 + 𝐴) + 3𝐴2 + 4𝐵
)

+
(

3𝑡𝑢𝑥𝑡 + 𝑧𝑢𝑥𝑧 + 𝑦𝑢𝑥𝑦 + 𝑥𝑢𝑥𝑥
)

(2𝐵𝑢 + 𝐴)2
]

+
[

𝐶𝑢𝑥𝑥 +𝐷𝑢𝑦𝑦 +𝐷𝑢𝑧𝑧
]

[

𝑡𝜗𝑡 +
𝑥
3
𝜗𝑥 +

𝑦
3
𝜗𝑦 +

𝑧
3
𝜗𝑧

+
2
(

𝐴𝑢 + 𝐵𝑢2 − 1
)

3(2𝐵𝑢 + 𝐴)

]

,

𝐶𝑦
2 =

𝑦
3
𝜗
[

𝑢𝑡 − 𝑢𝑥 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢2𝑢𝑥
]

−
𝑦
3
𝜗𝑥

[

𝐶𝑢𝑥𝑥 +𝐷
(

𝑢𝑦𝑦 + 𝑢𝑧𝑧
)]

−𝐷𝜗𝑥𝑦

[

𝑡𝑢𝑡 +
𝑥
3
𝑢𝑥 +

𝑦
3
𝑢𝑦 +

𝑧
3
𝑢𝑧 +

2
(

𝐴𝑢 + 𝐵𝑢2 − 1
)

3(2𝐵𝑢 + 𝐴)

]

+
𝐷𝜗𝑥

3(2𝐵𝑢 + 𝐴)2

[

𝑢𝑦
(

8𝐵𝑢(𝐵𝑢 + 𝐴) + 3𝐴2 + 4𝐵
)

+
(

3𝑡𝑢𝑦𝑡 + 𝑧𝑢𝑦𝑧 + 𝑦𝑢𝑦𝑦 + 𝑥𝑢𝑥𝑦
)

(2𝐵𝑢 + 𝐴)2
]

,

𝐶𝑧
2 = 𝑧

3
𝜗
[

𝑢𝑡 − 𝑢𝑥 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢2𝑢𝑥
]

− 𝑧
3
𝜗𝑥

[

𝐶𝑢𝑥𝑥 +𝐷
(

𝑢𝑦𝑦 + 𝑢𝑧𝑧
)]

−𝐷𝜗𝑥𝑧

[

𝑡𝑢𝑡 +
𝑥
3
𝑢𝑥 +

𝑦
3
𝑢𝑦 +

𝑧
3
𝑢𝑧 +

2
(

𝐴𝑢 + 𝐵𝑢2 − 1
)

3(2𝐵𝑢 + 𝐴)

]

+
𝐷𝜗𝑥

3(2𝐵𝑢 + 𝐴)2

[

𝑢𝑧
(

8𝐵𝑢(𝐵𝑢 + 𝐴) + 3𝐴2 + 4𝐵
)

+
(

3𝑡𝑢𝑧𝑡 + 𝑧𝑢𝑧𝑧 + 𝑦𝑢𝑦𝑧 + 𝑥𝑢𝑥𝑧
)

(2𝐵𝑢 + 𝐴)2
]

.

Case 2. The Lie point symmetry 𝜈2 = 𝜕𝑡 has the Lie characteristic
functions 𝑊 1 = −𝑢𝑡 and 𝑊 2 = −𝜗𝑡. We obtain the conserved vector,
whose components are:

𝐶 𝑡
2 = 𝜗

[

−𝑢𝑥 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢2𝑢𝑥
]

− 𝜗𝑥
[

𝐶𝑢𝑥𝑥 +𝐷𝑢𝑦𝑦 +𝐷𝑢𝑧𝑧
]

,

𝐶𝑥
2 = −𝑢𝑡

[

𝜗(𝐴𝑢 + 𝐵𝑢2 − 1) + 𝐶𝜗𝑥𝑥
]

+ 𝐶𝜗𝑥𝑢𝑥𝑡 + 𝜗𝑡
[

𝐶𝑢𝑥𝑥 +𝐷𝑢𝑦𝑦 +𝐷𝑢𝑧𝑧
]

,

𝐶𝑦
2 = −𝐷𝜗𝑥𝑦𝑢𝑡 +𝐷𝑢𝑦𝑡𝜗𝑥,

𝐶𝑧 = −𝐷𝜗 𝑢 +𝐷𝑢 𝜗 .
7

2 𝑥𝑧 𝑡 𝑧𝑡 𝑥
Case 3. The Lie point symmetry 𝜈3 = 𝑧𝜕𝑦 − 𝑦𝜕𝑧 has the Lie
haracteristic functions 𝑊 1 = −𝑧𝑢𝑦 + 𝑦𝑢𝑧 and 𝑊 2 = −𝑧𝜗𝑦 + 𝑦𝜗𝑧, the

components of the conserved vector are:

𝐶 𝑡
3 = 𝜗

[

−𝑧𝑢𝑦 + 𝑦𝑢𝑧
]

,

𝐶𝑥
3 = (−𝑧𝑢𝑦 + 𝑦𝑢𝑧)

[

𝜗(𝐴𝑢 + 𝐵𝑢2 − 1) + 𝐶𝜗𝑥𝑥
]

+ (𝑧𝜗𝑦 − 𝑦𝜗𝑧)
[

𝐶𝑢𝑥𝑥 +𝐷𝑢𝑦𝑦 +𝐷𝑢𝑧𝑧
]

− 𝐶𝜗𝑥
[

−𝑧𝑢𝑥𝑦 + 𝑦𝑢𝑥𝑧
]

,

𝐶𝑦
3 = 𝑧𝜗

[

−𝑢𝑥 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢2𝑢𝑥
]

− 𝑧𝜗𝑥
[

𝐶𝑢𝑥𝑥 +𝐷𝑢𝑦𝑦 +𝐷𝑢𝑧𝑧
]

+𝐷𝜗𝑥𝑦[−𝑧𝑢𝑦 + 𝑦𝑢𝑧] − 𝜗𝑥
[

−𝑧𝑢𝑦𝑦 + 𝑦𝑢𝑦𝑧 + 𝑢𝑧
]

,

𝐶𝑧
3 = −𝑦𝜗

[

−𝑢𝑥 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢2𝑢𝑥
]

+ 𝑦𝜗𝑥
[

𝐶𝑢𝑥𝑥 +𝐷𝑢𝑦𝑦 +𝐷𝑢𝑧𝑧
]

+𝐷𝜗𝑥𝑧[−𝑧𝑢𝑦 + 𝑦𝑢𝑧] − 𝜗𝑥
[

−𝑧𝑢𝑦𝑧 + 𝑦𝑢𝑧𝑧 − 𝑢𝑦
]

.

Case 4. The Lie point symmetry 𝜈4 = 𝜕𝑦 has the Lie characteristic
functions 𝑊 1 = −𝑢𝑦 and 𝑊 2 = −𝜗𝑦, the components of the conserved
vector are:

𝐶 𝑡
4 = −𝜗𝑢𝑦,

𝐶𝑥
4 = −𝑢𝑦

[

𝜗(𝐴𝑢 + 𝐵𝑢2 − 1) + 𝐶𝜗𝑥𝑥
]

+ 𝐶𝜗𝑥𝑢𝑥𝑦 + 𝜗𝑦
[

𝐶𝑢𝑥𝑥 +𝐷𝑢𝑦𝑦 +𝐷𝑢𝑧𝑧
]

,

𝐶𝑦
4 = 𝜗

[

−𝑢𝑥 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢2𝑢𝑥
]

− 𝜗𝑥
[

𝐶𝑢𝑥𝑥 +𝐷𝑢𝑦𝑦 +𝐷𝑢𝑧𝑧
]

− 𝐷𝑢𝑦𝜗𝑥𝑦 +𝐷𝜗𝑥𝑢𝑦𝑦,

𝐶𝑧
4 = −𝐷𝜗𝑥𝑧𝑢𝑦 +𝐷𝑢𝑦𝑧𝜗𝑥.

Case 5. The Lie point symmetry 𝜈5 = 𝜕𝑧 has the Lie characteristic
functions 𝑊 1 = −𝑢𝑧 and 𝑊 2 = −𝜗𝑧, the components of the conserved
vector are:

𝐶 𝑡
5 = −𝜗𝑢𝑧,

𝐶𝑥
5 = −𝑢𝑦

[

𝜗(𝐴𝑢 + 𝐵𝑢2 − 1) + 𝐶𝜗𝑥𝑥
]

+ 𝐶𝜗𝑥𝑢𝑥𝑧 + 𝜗𝑧
[

𝐶𝑢𝑥𝑥 +𝐷𝑢𝑦𝑦 +𝐷𝑢𝑧𝑧
]

,

𝐶𝑦
5 = −𝐷𝜗𝑥𝑦𝑢𝑦 +𝐷𝑢𝑧𝑧𝜗𝑥,

𝐶𝑧
5 = 𝜗

[

−𝑢𝑥 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢2𝑢𝑥
]

− 𝜗𝑥
[

𝐶𝑢𝑥𝑥 +𝐷𝑢𝑦𝑦 +𝐷𝑢𝑧𝑧
]

− 𝐷𝑢𝑧𝜗𝑥𝑦 +𝐷𝜗𝑥𝑢𝑦𝑧.

Case 6. Finally, the Lie point symmetry 𝜈6 = 𝜕𝑥 has the Lie
characteristic functions 𝑊 1 = −𝑢𝑥 and 𝑊 2 = −𝜗𝑥, the components of
the conserved vector are:

𝐶 𝑡
6 = −𝜗𝑢𝑥,

𝐶𝑥
6 = 𝜗𝑢𝑡 + 𝐶𝜗𝑥𝑢𝑥𝑥 − 𝐶𝑢𝑥𝜗𝑥𝑥,

𝐶𝑦
6 = −𝐷𝜗𝑥𝑦𝑢𝑥 +𝐷𝑢𝑥𝑦𝜗𝑥,

𝐶𝑧
6 = −𝐷𝜗𝑥𝑦𝑢𝑥 +𝐷𝑢𝑥𝑦𝜗𝑥.

Conclusion

In this paper, we have considered the EZK equation (2). Conser-
vation laws for the EZK equation are constructed for the first time
using the new conservation theorem of Ibragimov. Moreover, The Lie
point symmetry generators of the underlying equation (2) are derived
and used it to get similarity solution for EZK equation (2). We used
similarity variables to reduced the EZK equation (2) into a new partial
differential equation with less number of independent variables, and
again using Lie group symmetry method, the new partial differential
equation is reduced into an ODE. In addition to that, solitary wave
solutions of the EZK equation are obtained from the reduction equation.
A number of exact solutions for the EZK equation (2) have been
obtained. The geometric representation of the solutions was analyzed as
follows, Figs. 1 and 2 shows solitary wave profile, propagating waves
for various values of 𝑦 and contour plot for Eqs. (22) and (37) with
certain values of parameters as well as Fig. 4 demonstrates multisoliton
and solitary wave solutions profile of Eq. (67) for free choice of function
𝑓 (𝑦, 𝑧) = sin(𝑦 + 𝑧). To our knowledge, the solutions obtained in this
paper have not been applied in previous literature so, these solutions

are new solutions for (2) (see Fig. 3).
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