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1. Introduction

In the last few decades, the researchers have shown significant interest in fractional calculus in
different areas, such as edge detection, electromagnetic, engineering, viscoelasticity, electrochemistry,
cosmology, turbulence, diffusion, signal processing material science, physics and acoustics. It has been
proved by many researchers that the integer-order models are generalized by fractional-order portray
the complex phenomena in a very effective approach [1–3]. Various dynamical systems in physics
and engineering are also modeled by using fractional-order differential equations. Many researchers
have contributed a lot to provide an outstanding history of the derivative of fractional-order, such as
Caputo [4], Yin et al. [5], Rashid et al., Arife et al. [6] and Oldham and Spanier [7, 8].

The majority of science problems are nonlinear and it isn’t easy to find its analytical solutions. The
physical problems are mostly designed by using higher nonlinear partial differential equations
(PDEs). It is challenging to find the exact or analytical solutions for such problems. However, in the
last several centuries, many scientists have made significant progress and adopted various techniques
to solve nonlinear PDEs. Recently in [9–12], Arqub et al. have implemented the Hilbert space
reproduction kernel technique along with the iterative computational method to extended the
semi-analytical approaches to other time fractional-order PDEs. In [13], the author examined
approximate methods for certain groups of Robin time-fractional PDEs by fitting the kernel
reproduction algorithm [14]. Sadly, many nonlinear problems can not be solved by analytical
techniques. Moreover, the traditional numerical methods have to provide linearization,
transformation, discretization and perturbation to solve the nonlinear models [15–20].

In 1980, Adomian developed an effective technique is known as Adomian Decomposition Method
(ADM) to solve differential equations describing physical phenomena [21]. Further, ADM is modified
by using Laplace transformation. As a result, a new method is developed, known as Laplace-ADM
(LADM). LADM possesses the basic properties of both Laplace transformation and ADM. S.A
Khuri [22] introduced LADM. This technique works effectively for PDEs of both initial and boundary
value problems. LADM is also used in several research article to achieve an analytical solution, such
as Whitham-Broer-Kaup equations [23], third-order dispersive fractional PDEs [24], fractional-order
telegraph equations [25], fisher’s equation [26], time-fractional model of Navier-Stokes equation [27]
and Keller-Segel equation [28].

In the current article, the analytical solution of the following Swift-Hohenberg (SH) equation.

∂βu
∂tβ

= γu −
(
1 +

∂2

∂x2

)
u − u3, γ ∈ R, 0 < β ≤ 1, (1.1)

where a and b are parameters. This is among the most fundamental equations suggested by Jack Swift
and Pierre Hohenberg in 1977, which is related to the temperature and thermal convection of fluid
dynamics [29]. A nonlinear parabolic equation is the SH equation, which also explains the formation
process in liquid surfaces bounded along a horizontally well-conducting boundary. The broad field
of SH equation is used in engineering and science problems from hydrodynamics of fluids to complex
patterns [30,31]. Density gradient-driven liquid convection occurs in streams of geophysical fluid in the
atmosphere, oceans and mantle of the earth. The mathematical model for the convection of Rayleigh-
Benard includes the equations of Navier-Stokes combined with the temperature formula for transport.
The S-H equation plays a vital role in the various branches of science, including fluid mechanics, such
as laser studies [32] and Taylor-Couette flow [30] nonlinear optics.
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The SH equation’s solution was analyzed by some researchers using various methods, such as Vishal
et al., that used the Homotopy Perturbation Transform Method (HPTM) [33]. The Homotopy Analysis
Method (HAM) [34], Merdan, who used the method of variational iteration utilizing the Riemann-
Liouville derivative [35], Khan et al., who used the differential transform method [36], Prakasha et al.,
applied is residual power series method and others [37–40].

In this research work, the analytical solution of SH equation is investigated by using Laplace
Adomian decomposition method. In the prior literature, the solution of SH equation was handled by
using Variational iteration method and Homotopy analysis method. It is observed that the proposed
method is simple and straightforward as compared to other existing techniques. Moreover, the
suggested method has greater accuracy and requires fewer calculations than other methods. The
method is applied easily to achieve the solutions of fractional problems. The representation has
confirmed the closed relation between the exact and obtained results. The fractional-order solutions
are convergent to the solution of the integer-order problem.

2. Definitions and preliminaries concepts

2.1. Definition

The Caputo definition of the fractional derivative of order β is described as [1–3, 7]

∂βg(t)
∂tβ

=
1

Γ(m − β)

∫ x

0
(x − t)m−β−1g(m)(t)dt, f or m − 1 < β ≤ m, m ∈ N.

Hence, we have the following properties [1–3, 7]

JβJαg(t) = Jβ+α, α, γ ≥ 0.

Jβtγ =
Γ(γ + 1)

Γ(β + γ + 1)
tβ+γ, γ > −1, t > 0.

JβDβg(t) = g(t) −
m−1∑
k=0

gk(0+)
tk

k!
, t > 0, m − 1 < β ≤ m.

2.2. Definition

The Laplace transform of G(s) of g(t) is defined by [22]

G(s) = L[g(t)] =

∫ ∞

0
e−stg(t)dt.

2.3. Definition

The Laplace transform of fractional derivative is [22]

L
(
Dβ

t g(t)
)

= sβG(s) −
m−1∑
k=0

sβ−1−kg(k)(0), m − 1 < β < m.
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3. LADM idea for FPDEs

In this section, LADM is implemented to solve FPDEs [22].
For this first consider the following FPDE, that is

∂βu
∂tβ

+ Lu(x, t) + Nu(x, t) = q(x, t), x, t ≥ 0, 0 < β ≤ 1, (3.1)

with initial condition

u(x, 0) = k(x). (3.2)

The fractional derivative in equation (3.1) is expressed in Caputo sense. The linear and nonlinear
terms are denoted by L and N respectively. The q is the sources term.
Taking both sides Laplace transformation of Eq (3.1),

sβL [u(x, t)] − sβ−1u(x, 0) = L
[
q(x, t)

]
− L [Lu(x, t) + Nu(x, t)] ,

L [u(x, t)] =
k(x)

s
+

1
sβ
L

[
q(x, t)

]
−

1
sβ
L [Lu(x, t) + Nu(x, t)] . (3.3)

The LADM solution is [22]

u(x, t) =

∞∑
j=0

u j(x, t), (3.4)

The nonlinear term in the problem is expressed as

Nu(x, t) =

∞∑
j=0

A j, (3.5)

where

A j =
1
j!

 d j

dλ j

N ∞∑
j=0

(λ ju j)



λ=0

, j = 0, 1, 2, · · · , (3.6)

is called Adomian polynomials.
substitution (3.4) and (3.5) in Eq (3.3), we get

L

 ∞∑
j=0

u(x, t)

 =
k(x)

s
+

1
sβ
L

[
q(x, t)

]
−

1
sβ
L

L ∞∑
j=0

u j(x, t) +

∞∑
j=0

A j

 . (3.7)

Applying the decomposition method, we get

L [u(x, t))] =
k(x)

s
+

1
sβ
L

[
q(x, t)

]
,

L [u1(x, t)] = −
1
sβ
L [Lu0(x, t) + A0] .
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In general, it can be written as

L
[
u j+1(x, t)

]
= −

1
sβ
L

[
Lu j(x, t) + A j

]
, j ≥ 1. (3.8)

Using inverse Laplace transform to Eq (3.8)

u0(x, t) = k(x, t)

u j+1(x, t) = −L−1
[

1
sβ
L

[
Lu j(x, t) + A j

]]
. (3.9)

4. Numerical examples

4.1. Example

Consider the fractional equation SH with the form dispersion [33, 34, 39]

∂βu(x, t)
∂tβ

+
∂4u(x, t)
∂x4 + 2

∂2u(x, t)
∂x2 + (1 − a)u(x, t) + u3(x, t) = 0, 0 < β ≤ 1, (4.1)

with initial condition

u(x, 0) =
1
10

sin
(
πx
l

)
(4.2)

Taking Laplace transform of Eq (4.1),

L

[
∂βu(x, t)
∂tβ

]
= −L

[
∂4u(x, t)
∂x4 + 2

∂2u(x, t)
∂x2 + (1 − a)u(x, t) + u3(x, t)

]
,

sβL [u(x, t)] − sβ−1 [u(x, 0)] = −L

[
∂4u(x, t)
∂x4 + 2

∂2u(x, t)
∂x2 + (1 − a)u(x, t) + u3(x, t)

]
.

Using inverse transformation

u(x, t) = L−1
[
u(x, 0)

s
−

1
sβ
L

{
∂4u(x, t)
∂x4 + 2

∂2u(x, t)
∂x2 + (1 − a)u(x, t) + u3(x, t)

}]
,

u(x, t) =
1
10

sin
(
πx
l

)
− L−1

[
1
sβ
L

{
∂4u(x, t)
∂x4 + 2

∂2u(x, t)
∂x2 + (1 − a)u(x, t) + u3(x, t)

}]
,

Using ADM procedure, we get

∞∑
j=0

u j(x, t) =
1

10
sin

(
πx
l

)
− L−1

 1
sβ
L

 ∞∑
j=0

∂4u j(x, t)
∂x4 + 2

∞∑
j=0

∂2u j(x, t)
∂x2

+(1 − a)
∞∑
j=0

u j(x, t) +

∞∑
j=0

A j


 ,

u0(x, t) =
1

10
sin

(
πx
l

)
, (4.3)
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∞∑
j=1

u j(x, t) = − L−1

 1
sβ
L

 ∞∑
j=1

∂4u j−1(x, t)
∂x4 + 2

∞∑
j=1

∂2u j−1(x, t)
∂x2

+(1 − a)
∞∑
j=1

u j−1(x, t) +

∞∑
j=1

A j−1


 ,

(4.4)

where the nonlinear terms in the above equations are represented by Adomian polynomials A j [41].
Whose components are defined as

A j =
1
j!

 d j

dλ j

N

 ∞∑
j=0

(λ ju j)




λ=0

, j = 0, 1, 2, · · · ,

Here the nonlinear term is
N(u) = u3 (4.5)

For j = 0

A0 = N(λ0u0),
A0 = N(u0).

Using Eq (4.15)
A0 = u3

0,

j = 1

A1 =
1
1!

[
d
dλ

{
N(λ0u0 + λ1u1)

}]
λ=0

,

A1 =

[
d
dλ
{N(u0 + λu1)}

]
λ=0

,

A1 =

[
d
dλ

{
(u0 + λu1)3

}]
λ=0

,

A1 =
[
3(u0 + λu1)2u1

]
λ=0

,

A1 = 3u2
0u1,

Similarly

A2 = 3u2
0u2 + 3u0u2

1.

For j = 1

u1(x, t) = −L−1
[

1
sβ
L

{
∂4u0(x, t)
∂x4 + 2

∂2u0(x, t)
∂x2 + (1 − a)u0(x, t) + u3

0(x, t)
}]
,

u1(x, t) =

sin
(
πx
l

)
1000l4

{
100π4 − 200π2l2 + 101l4 − 100l4a − l4 cos2

(
πx
l

)} tβ

Γ(β + 1)
.
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For j = 2

u2(x, t) = −L−1
[

1
sβ
L

{
∂4u1(x, t)
∂x4 + 2

∂2u1(x, t)
∂x2 + (1 − a)u1(x, t) + 3u2

0(x, t)u1(x, t)
}]
,

u2(x, t) =
1

100000l8

[
sin

(
πx
l

) {
−8400 cos2

(
πx
l

)
π4l4 + 2400 cos2

(
πx
l

)
π2l6 − 20400l8a

+ 10403l8 − 406l8 cos2
(
πx
l

)
+ 10000l8a2 + 3l8 cos4

(
πx
l

)
+ 10000π8 − 40000π6l2

+62400π4l4 − 41200π2l6 − 20000π4l4a + 40000π2l6a + 400l8a cos2
(
πx
l

)}] t2β

Γ(2β + 1)
,

The LADM solution for example 1 is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ...,

u(x, t) =
1
10

sin
(
πx
l

)
+

sin
(
πx
l

)
1000l4

{
100π4 − 200π2l2 + 101l4 − 100l4a − l4 cos2

(
πx
l

)}×
tβ

Γ(β + 1)
+

1
100000l8

[
sin

(
πx
l

) {
−8400 cos2

(
πx
l

)
π4l4 + 2400 cos2

(
πx
l

)
π2l6

− 20400l8a + 10403l8 − 406l8 cos2
(
πx
l

)
+ 10000l8a2 + 3l8 cos4

(
πx
l

)
+ 10000π8

−40000π6l2 + 62400π4l4 − 41200π2l6 − 20000π4l4a + 40000π2l6a + 400l8a cos2
(
πx
l

)}]
t2β

Γ(2β + 1)
+ ...,

In Table 1, the VIM and LADM solutions of example 9.1 are compared at different fractional orders
β = 0.5 and 1. The corresponding results are seems to be very similar and confirmed the validity of the
present technique.

Table 1. Comparison of LADM and VIM [35] of different fractional-order of β, l = 3 and
t = 1.

x VIM(β = 0.5) LADM(β = 0.5) VIM(β = 1) LADM(β = 1)

0.00 0.00000000 0.00000000 0.0000000 0.0000000

0.25 0.03085341 0.03085341 0.0347097 0.0347097

0.50 0.06652018 0.06652018 0.0704722 0.0704722

0.75 0.10743665 0.10743665 0.1062671 0.1062671

1.00 0.14795188 0.14795188 0.1382405 0.1382405

1.25 0.17838674 0.17838674 0.1607941 0.1607941

1.50 0.18974562 0.18974562 0.1689702 0.1689702

1.75 0.17838674 0.17838674 0.1607941 0.1607941

2.00 0.14795188 0.14795188 0.1382405 0.1382405
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In Figure 1, the LADM solutions at fractional orders β = 0.75 and 1 are plotted. The graph (a)
represent the solution of example 1 at β = 1 while graph (b) is the plot of LADM solution at β = 0.75.
In Figure 2, the LADM solutions at fractional orders β = 0.75 and 1 are plotted at t = 1, 2, 3 and 4
in the domain −10 < x < 10. The graphs (c) and (d) of Figure 2 represent the LADM solutions at
fractional orders β = 1 and 0.75 respectively.

Figure 1. LADM solution for example 1 of a = 1, l = 10 at (a) β = 1 and (b) β = 0.75.

Figure 2. LADM solution for example 1 of a = 1, l = 10, −10 < x ≤ 10 and t = 1 at (a)
β = 1 and (b) β = 0.75.

4.2. Example

Consider the fractional SH equation with dispersion of the form [33, 34, 39]

∂βu(x, t)
∂tβ

+
∂4u(x, t)
∂x4 + 2

∂2u(x, t)
∂x2 − a

∂3u(x, t)
∂x3 − bu(x, t) − 2u2(x, t) + u3(x, t) = 0, 0 < β ≤ 1, (4.6)
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with initial condition

u(x, 0) =
1

10
sin

(
πx
l

)
. (4.7)

Taking Laplace transform of Eq (4.6),

L

[
∂βu(x, t)
∂tβ

]
= −L

[
∂4u(x, t)
∂x4 + 2

∂2u(x, t)
∂x2 − a

∂3u(x, t)
∂x3 − bu(x, t) − 2u2(x, t) + u3(x, t)

]
,

sβL [u(x, t)] − sβ−1 [u(x, 0)] = − L

[
∂4u(x, t)
∂x4 + 2

∂2u(x, t)
∂x2 − a

∂3u(x, t)
∂x3 − bu(x, t) − 2u2(x, t)

+u3(x, t)
]
.

Using inverse transformation

u(x, t) =L−1
[
u(x, 0)

s
−

1
sβ
L

{
∂4u(x, t)
∂x4 + 2

∂2u(x, t)
∂x2 − a

∂3u(x, t)
∂x3 − bu(x, t) − 2u2(x, t)

+u3(x, t)
}]
,

u(x, t) =
1

10
sin

(
πx
l

)
− L−1

[
1
sβ
L

{
∂4u(x, t)
∂x4 + 2

∂2u(x, t)
∂x2 − a

∂3u(x, t)
∂x3 − bu(x, t) − 2u2(x, t)

+u3(x, t)
}]
,

Using ADM procedure, we get

∞∑
j=0

u j(x, t) =
1

10
sin

(
πx
l

)
− L−1

 1
sβ
L

 ∞∑
j=0

∂4u j(x, t)
∂x4 + 2

∞∑
j=0

∂2u j(x, t)
∂x2 − a

∞∑
j=0

∂3u j(x, t)
∂x3

−b
∞∑
j=0

u j(x, t) − 2
∞∑
j=0

A j +

∞∑
j=0

B j


 ,

u0(x, t) =
1

10
sin

(
πx
l

)
, (4.8)

∞∑
j=1

u j(x, t) = − L−1

 1
sβ
L

 ∞∑
j=1

∂4u j−1(x, t)
∂x4 + 2

∞∑
j=1

∂2u j−1(x, t)
∂x2 − a

∞∑
j=1

∂3u j−1(x, t)
∂x3

−b
∞∑
j=1

u j−1(x, t) − 2
∞∑
j=1

A j−1 +

∞∑
j=1

B j−1


 ,

(4.9)

where the nonlinear terms in the above equations are represented by Adomian polynomials A j and
B j [41]. Whose components are defined as

A j =
1
j!

 d j

dλ j

N

 ∞∑
j=0

(λ ju j)




λ=0

, B j =
1
j!

 d j

dλ j

N

 ∞∑
j=0

(λ ju j)




λ=0

, j = 0, 1, 2, · · · ,
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Here the nonlinear term is
N1(u) = u2, N2(u) = u3. (4.10)

For j = 0

A0 = N(λ0u0), B0 = N(λ0u0),
A0 = N(u0), B0 = N(u0),

A0 = u2
0, B0 = u3

0,

j = 1

A1 =
1
1!

[
d
dλ

{
N(λ0u0 + λ1u1)

}]
λ=0

, B1 =
1
1!

[
d
dλ

{
N1(λ0u0 + λ1u1)

}]
λ=0

,

A1 =

[
d
dλ
{N(u0 + λu1)}

]
λ=0

, B1 =

[
d
dλ
{N1(u0 + λu1)}

]
λ=0

,

A1 =

[
d
dλ

{
(u0 + λu1)2

}]
λ=0

, B1 =

[
d
dλ

{
(u0 + λu1)3

}]
λ=0

,

A1 =
[
2(u0 + λu1)2u1

]
λ=0

, B1 =
[
3(u0 + λu1)2u1

]
λ=0

,

A1 = 2u0u1, B1 = 3u2
0u1.

Similarly

A2 = 2u0u2 + 2u0u1, B2 = 3u2
0u2 + 3u0u2

1.

For j = 1

u1(x, t) = − L−1
[

1
sβ
L

{
∂4u0(x, t)
∂x4 + 2

∂2u0(x, t)
∂x2

−a
∂3u0(x, t)
∂x3 − bu0(x, t) − 2u2

0(x, t) + u3
0(x, t)

}]
,

u1(x, t) =

−sin
(
πx
l

)
π4

10l4 +
sin

(
πx
l

)
π2

10l2 −
a cos

(
πx
l

)
π3

10l3 +
b sin

(
πx
l

)
10l

+
sin2

(
πx
l

)
50l

−
sin3

(
πx
l

)
10000


tβ

Γ(β + 1)
.

For j = 2

u2(x, t) = − L−1
[

1
sβ
L

{
∂4u1(x, t)
∂x4 + 2

∂2u1(x, t)
∂x2 − a

∂3u1(x, t)
∂x3 − bu1(x, t) − 4u0(x, t)u1(x, t)

+3u2
0(x, t)u1(x, t)

}]
,
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u2(x, t) =
1

100000l8

[
−600π2l6 sin

(
πx
l

)
− 10000a2π6l2 sin

(
πx
l

)
− 3000aπ3l5 cos3

(
πx
l

)
− 8400π4l4 cos2

(
πx
l

)
sin

(
πx
l

)
− 20000bπ4l4 sin

(
πx
l

)
+ 20000bπ2l6 sin

(
πx
l

)
+ 20000aπ7l cos

(
πx
l

)
− 20000π5l3 cos

(
πx
l

)
+ 1200π2l6 sin

(
πx
l

)
cos2

(
πx
l

)
− 20000aπ3l5b cos

(
πx
l

)
− 20000aπ3l5 cos

(
πx
l

)
sin

(
πx
l

)
+ 10000π8 sin

(
πx
l

)
− 100l8 − 20000π6l2 sin

(
πx
l

)
+ 36000π4l4 cos2

(
πx
l

)
+ 12400π4l4 sin

(
πx
l

)
− 12000π2l6 cos2

(
πx
l

)
+ 10000b2l8 sin

(
πx
l

)
+ 2400aπ3l5 cos

(
πx
l

)
+ 803l8 sin

(
πx
l

)
− 20000π4l4 + 6000bl8 − 400bl8 sin

(
πx
l

)
+ 8000π2l6 + 200l8 cos2

(
πx
l

)
− 100l8 cos4

(
πx
l

)
− 6000bl8 cos2

(
πx
l

)
− 806l8 sin

(
πx
l

)
cos2

(
πx
l

)
+ 3l8 sin

(
πx
l

)
cos4

(
πx
l

)
+ 400bl8 sin

(
πx
l

)
cos2

(
πx
l

)] t2β

Γ(2β + 1)
.

The LADM solution for example 2 is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ...,

u(x, t) =
1

10
sin

(
πx
l

)
+

−sin
(
πx
l

)
π4

10l4 +
sin

(
πx
l

)
π2

10l2 −
a cos

(
πx
l

)
π3

10l3

+
b sin

(
πx
l

)
10l

+
sin2

(
πx
l

)
50l

−
sin3

(
πx
l

)
10000

 tβ

Γ(β + 1)

+
1

100000l8

[
−600π2l6 sin

(
πx
l

)
− 10000a2π6l2 sin

(
πx
l

)
− 3000aπ3l5 cos3

(
πx
l

)
− 8400π4l4 cos2

(
πx
l

)
sin

(
πx
l

)
− 20000bπ4l4 sin

(
πx
l

)
+ 20000bπ2l6 sin

(
πx
l

)
+ 20000aπ7l cos

(
πx
l

)
− 20000π5l3 cos

(
πx
l

)
+ 1200π2l6 sin

(
πx
l

)
cos2

(
πx
l

)
− 20000aπ3l5b cos

(
πx
l

)
− 20000aπ3l5 cos

(
πx
l

)
sin

(
πx
l

)
+ 10000π8 sin

(
πx
l

)
− 100l8 − 20000π6l2 sin

(
πx
l

)
+ 36000π4l4 cos2

(
πx
l

)
+ 12400π4l4 sin

(
πx
l

)
− 12000π2l6 cos2

(
πx
l

)
+ 10000b2l8 sin

(
πx
l

)
+ 2400aπ3l5 cos

(
πx
l

)
+ 803l8 sin

(
πx
l

)
− 20000π4l4 + 6000bl8 − 400bl8 sin

(
πx
l

)
+ 8000π2l6 + 200l8 cos2

(
πx
l

)
− 100l8 cos4

(
πx
l

)
− 6000bl8 cos2

(
πx
l

)
− 806l8 sin

(
πx
l

)
cos2

(
πx
l

)
+ 3l8 sin

(
πx
l

)
cos4

(
πx
l

)
+ 400bl8 sin

(
πx
l

)
cos2

(
πx
l

)] t2β

Γ(2β + 1)
...,

In Table 2, the solutions comparison of LADM and HPM is given at fractional orders β = 0.5 and
1. It has been observed that LADM has the higher degree of accuracy as compare to HPM.
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Table 2. Comparison of LADM and HPM of different fractional-order of β, l = 10 and t = 1.

x HPM(β = 0.5) LADM(β = 0.5) HPM(β = 1) LADM(β = 1)

0.25 0.00327554 0.00327554 0.0023907 0.0023907

0.50 0.01120703 0.01120703 0.0063240 0.0063240

0.75 0.01963618 0.01963618 0.0104008 0.0104008

1.00 0.02849853 0.02849853 0.0145955 0.0145955

1.25 0.03771459 0.03771459 0.0188774 0.0188774

1.50 0.04719094 0.04719094 0.0232104 0.0232104

1.75 0.05682173 0.05682173 0.0275542 0.0275542

2.00 0.06649076 0.06649076 0.0318643 0.0318643

In Figure 3, the LADM solutions at fractional orders β = 0.75 and 1 are plotted. The graph (a)
represent the solution of example 2 at β = 1 while graph (b) is the plot of LADM solution at β = 0.75.
In Figure 4, the LADM solutions at fractional orders β = 0.75 and 1 are plotted at t = 1, 2, 3 and 4
in the domain −10 < x < 10. The graphs (c) and (d) of Figure 4 represent the LADM solutions at
fractional orders β = 1 and 0.75 respectively.

Figure 3. LADM solution for example 2 of a = 1, b = 0.5 at (a) β = 1 and (b) β = 0.75.
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Figure 4. LADM solution for example 2 of a = 1, b = 0.5 and τ = 1 at (c) β = 1 and (d)
β = 0.5.

4.3. Example

Consider the following non-linear S-H equation with dispersion

∂βu(x, t)
∂tβ

+ (1 − r)u(x, t) + 2
∂2u(x, t)
∂x2 +

∂4u(x, t)
∂x4 − u2(x, t) +

(
∂u(x, t)
∂x

)2

= 0, 0 < β ≤ 1 (4.11)

with initial condition
u(x, 0) = ex. (4.12)

Taking Laplace transform of Eq (4.11),

L

[
∂βu(x, t)
∂tβ

]
= −L

(1 − r)u(x, t) + 2
∂2u(x, t)
∂x2 +

∂4u(x, t)
∂x4 − u2(x, t) +

(
∂u(x, t)
∂x

)2 ,
sβL [u(x, t)] − sβ−1 [u(x, 0)] = − L

[
(1 − r)u(x, t) + 2

∂2u(x, t)
∂x2 +

∂4u(x, t)
∂x4

−u2(x, t) +

(
∂u(x, t)
∂x

)2 .
Using inverse transformation

u(x, t) =L−1
[
u(x, 0)

s
−

1
sβ
L

{
(1 − r)u(x, t) + 2

∂2u(x, t)
∂x2 +

∂4u(x, t)
∂x4

−u2(x, t) +

(
∂u(x, t)
∂x

)2

 ,
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u(x, t) =ex − L−1
[

1
sβ
L

{
(1 − r)u(x, t) + 2

∂2u(x, t)
∂x2 +

∂4u(x, t)
∂x4

−u2(x, t) +

(
∂u(x, t)
∂x

)2

 ,

Using ADM procedure, we get

∞∑
j=0

u j(x, t) =ex − L−1

 1
sβ
L

(1 − r)
∞∑
j=0

u j(x, t) + 2
∞∑
j=0

∂2u j(x, t)
∂x2 +

∞∑
j=0

∂4u j(x, t)
∂x4

−

∞∑
j=0

A j +

∞∑
j=0

B j


 ,

u0(x, t) = ex, (4.13)
∞∑
j=1

u j(x, t) = − L−1

 1
sβ
L

(1 − r)
∞∑
j=0

u j(x, t) + 2
∞∑
j=0

∂2u j(x, t)
∂x2 +

∞∑
j=0

∂4u j(x, t)
∂x4

−

∞∑
j=0

A j +

∞∑
j=0

B j


 ,

(4.14)

where the nonlinear terms in the above equations are represented by Adomian polynomials A j and
B j [41]. Whose components are defined as

A j =
1
j!

 d j

dλ j

N

 ∞∑
j=0

(λ ju j)




λ=0

, B j =
1
j!

 d j

dλ j

N1

 ∞∑
j=0

(λ ju j)




λ=0

, j = 0, 1, 2, · · · ,

Here the nonlinear term is
N(u) = u2, N1(u) = (ux)2. (4.15)

For j = 0

A0 = N(λ0u0), B0 = N1(λ0u0),
A0 = N(u0), B0 = N1(u0).

Using Eq (4.15)
A0 = u2

0, B0 = (u0x)2,

j = 1

A1 =
1
1!

[
d
dλ

{
N(λ0u0 + λ1u1)

}]
λ=0

, B1 =
1
1!

[
d
dλ

{
N1(λ0u0 + λ1u1)

}]
λ=0

,

A1 =

[
d
dλ
{N(u0 + λu1)}

]
λ=0

, B1 =

[
d
dλ
{N1(u0 + λu1)}

]
λ=0

,

A1 =

[
d
dλ

{
(u0 + λu1)2

}]
λ=0

, B1 =

[
d
dλ

{
(u0x + λu1x)2

}]
λ=0

,

A1 = 2 [(u0 + λu1)u1]λ=0 , B1 = 2 [(u0x + λu1x)u1x]λ=0 ,
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A1 = 2u0u1, B1 = 2 (u0xu1x) .

Similarly

A2 = u0u1 + u0u1, B2 = (u0u2)x + (u0u1)x.

For j = 1

u1(x, t) = − L−1
[

1
sβ
L

{
(1 − r)u0(x, t) + 2

∂2u0(x, t)
∂x2 +

∂4u0(x, t)
∂x4 − A0 + B0

}]
,

u1(x, t) =(r − 4)ex tβ

Γ(β + 1)
.

For j = 2

u2(x, t) = − L−1
[

1
sβ
L

{
(1 − r)u1(x, t) + 2

∂2u1(x, t)
∂x2 +

∂4u1(x, t)
∂x4 − A1 + B1

}]
,

u2(x, t) =(r − 4)ex t2β

Γ(2β + 1)
.

...

The LADM solution for example 3 is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + · · · + un(x, t).

u(x, t) = ex + (r − 4)ex tβ

Γ(β + 1)
+ (r − 4)ex t2β

Γ(2β + 1)
+ · · · + (r − 4)ex

∞∑
n=3

tnβ

Γ(nβ + 1)
. (4.16)

In Figure 5, the LADM solutions of 3D graph at different fractional-orders β = 1, 0.8, 0.6 and 0.4
are plotted. In Figure 6, the LADM solutions graph of 2D at different fractional-orders β = 1, 0.8, 0.6
and 0.4 are plotted at t = 1 in the domain −1 < x < 1.

Figure 5. The LADM solution graph of different fractional-order of example 1.
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Figure 6. The LADM solution graph of 2D plot of different fractional-order of example 1.

5. Conclusions

In this research paper, the Laplace-Adomian decomposition method is found to be a simple and
effective technique to solve the Swift-Hohenberg equations of fractional-order. The implementation
of the proposed method has been done for some numerical examples of Swift-Hohenberg equations.
The solution of these examples are in good contact with other analytical techniques such as the
variational iteration method and the homotopy perturbation method. The present method has simple,
accurate and straightforward implementation to solve fractional-order Swift-Hohenberg equations. It
is also investigated that the proposed method has simple procedure and required a small volume of
calculations as compared to other analytical methods. In conclusion, the suggested approach is
considered to be a sophisticated tool for the solution of other fractional-order differential equations.
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