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ABSTRACT

This paper aims to construct new mixed-type periodic and lump-type solutions via dependent variable transformation and Hirota’s bilinear
form (general bilinear techniques). This study considers the (3 + 1)-dimensional generalized B-type Kadomtsev-Petviashvili equation, which
describes the weakly dispersive waves in a homogeneous medium in fluid dynamics. The obtained solutions contain abundant physical struc-
tures. Consequently, the dynamical behaviors of these solutions are graphically discussed for different choices of the free parameters through

3D plots.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0019219

I. INTRODUCTION

Nonlinear phenomena are investigated in many disciplines
of science, such as marine engineering, fluid dynamics, plasma
physics, chemistry, applied mathematics, and so on.'”* With
the development of nonlinear dynamics, the research of non-
linear partial differential equations (NPDEs) becomes more and
more important. To further understand these phenomena, solv-
ing NPDEs plays a significant role in nonlinear sciences.”’*" In
the past few decades, many efficient and powerful techniques
have been introduced to obtain the analytical solutions of these

equations.”*' More recently, soliton wave solutions have attracted
a growing amount of attention, and many theoretical and exper-
imental studies of these waves are investigated."*® The impor-
tance of solitons is due to their presence in a variety of nonlin-
ear differential equations portraying many complex nonlinear phe-
nomena, including acoustics, nonlinear optics, telecommunication
industry, plasma physics, condensed matter, and solid-state physics.
There are different structures or types of solitons such as lump
waves (usually called rogue waves in the presence of certain condi-
tions), which are algebraically localized waves that decay in all space
directions and exist in all time, breather waves, and mixed waves,

AIP Advances 10, 105325 (2020); doi: 10.1063/5.0019219
© Author(s) 2020

10, 105325-1


https://scitation.org/journal/adv
https://doi.org/10.1063/5.0019219
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0019219
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0019219&domain=pdf&date_stamp=2020-October-21
https://doi.org/10.1063/5.0019219
http://orcid.org/0000-0002-6058-5472
http://orcid.org/0000-0002-5783-0940
http://orcid.org/0000-0002-0286-7244
mailto:395625298@qq.com
mailto:mofatzi@sci.cu.edu.eg
mailto:dumitru@cankaya.edu.tr
mailto:415422402@qq.com
mailto:305125278@qq.com
https://doi.org/10.1063/5.0019219

AIP Advances ARTICLE

which describe the interaction between two different types of soliton
waves.

In this paper, a (3 + 1)-dimensional generalized B-type
Kadomtsev-Petviashvili (BKP) equation is considered as follows:**

Uyt + 3 Uz — 3ty Uny — 3 Uy Uy — Unxy = 0. (1)

Equation (1) is an exceedingly useful model for assaying the dynam-
ics of nonlinear waves and solitons in various fields of science espe-
cially in plasma physics, weakly dispersive environment, and fluid
dynamics. Multiple-soliton solutions are generated and discussed
by Ma.”> Ma and Zhu’’ derived multiple wave solutions by using
the multiple exp-function algorithm. Tang’* obtained new analytical
solutions that contain different wave structures such as periodic soli-
ton, kinky periodic solitary, and periodic soliton solutions by using
the extended homoclinic test approach. By employing the improved
(G'/G)-expansion method with the aid of symbolic computations,
Chen and Ma °° obtain new soliton solutions of Eq. (1).

This paper is organized as follows: Sec. II gives the new mixed-
type periodic solutions for the (3 + 1)-dimensional generalized
BKP equation based on the dependent variable transformation and
Hirota’s bilinear form. Section III presents the lump-type solutions
and illustrates the dynamical behaviors of the obtained solutions
through 3D plots. Section I'V makes the conclusions.

Il. NEW MIXED-TYPE PERIODIC SOLUTIONS

Substituting the transformation u =2[Iné(x,y,z,t)]x into
Eq. (1), we have the following Hirota’s bilinear form:**-°!

 t0mps =3mys)

XM

scitation.org/journal/adv

(D:D, - DiD, +3D;D,)f - f = 0. )
Equivalently, we have
_ftfy + Exxxfy - 388 - 3£xyfxx + 3£x£xxy
+f(fyt + 3£xz - fxxxy) =0. (3)

In order to obtain the new mixed-type periodic solutions, a direct
test function is written as

E=ki e +e Y +k tan(3) + ks tanh(s), (4)

where (; = nx+uy+yz+vit,i=12,3 and o M Vi and v; are
unknown constants. Substituting Eq. (4) into Eq. (3), we have the
following:

Case (1)

_ s - 3mys )

ky = = = =v3=0,v
2=H1=Y1 =13 3 1 s

where N> V3o tas ki, and k3 are arbitrary constants. Then,

t(rips = 3mys) t(mips = 3mys)
i —y - —————————=
E=e Hs ki+e H3
+ ks tanh(yus + zy3). (6)

Substituting Eq. (6) into u = 2[In &],, the first mixed-type periodic
solution reads as

t(nius - 3mys)

© Author(s) 2020

2 U3 _ U3
u = [33 k1’71 33 ’71] (7)

t(rmips = 3mys) (e = 3mys)

xm+ —————— - -
e s ki+e s + k3 tanh(yps + zy3)
The physical structure of Eq. (7) is exhibited in Fig. 1.
FIG. 1. Solution (7) at ks = ks = =05, 7, = —1, sy = 1y, = 1,2 = —2, (a) x = =10, (b) x = 0, (¢) x = 10.
AIP Advances 10, 105325 (2020); doi: 10.1063/5.0019219 10, 105325-2
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Case (2)

ks=p1i=p1=m2=v2=0,v; =

where 71, ,, 4, k1, and k; are free real constants. Then,

XM

X t(nipa - 3my2)

scitation.org/journal/adv

2 ;23'11)'2) )

(i = 3my2)

—XM

E=e H2 ki+e H2
+k tan(ypz + zy2). 9
Substituting Eq. (9) into u = 2[In £], the second mixed-type periodic solution is given by
o Mk = 3my2) o i = 3my)
2|e H2 kim —e #2 m
uy = (10)
o i =3mp) (i = 3my)
e H2 ki+e H2 + ko tan(yps + 22)
\
Case (3) (g = 3mys)
e
H =k tan(ypz +zy2) + € )
k1:#1:y1:7]2:'V2:7]3:V3:0, Vl:w’ f 2 (y[’lz YZ)
2 z
32 (1) + k3 tanh(y‘u3 + M) (12)
Y3 = T; 122}
2

where N> Va» Hys Has ks, and k3 are free real constants. Then,

Substituting Eq. (12) into u = 2[In €]y, the third mixed-type periodic
solution has the form

t(nipa - 3my»)

—xn —

—2e

H2 M

Uz =

—x —

ko tan(yps +zy2) + e

The physical structure of Eq. (13) is revealed in Figs. 2 and 3.
Case (4)

3
-3
v = MELZ P

HZ}I #3}1
- Y3 - T

w’ th

where 1, 4, V1> thy» Ph3> k2 and k3 are free real constants. Then,

§=k tan(}’/dz + Zyl‘uz) + k3 tanh(ym + %)
1231

t(riu2 = 3my»)

(13)

H2 + k3 tanh(yyg + ZYZM)
U2

Substituting Eq. (15) into u = 2[In ]y, the fourth mixed-type peri-
odic solution takes the following type:

ey, i =3y
Uy =|-2e H m |/| k tan(y,uz + M)
m

__ tnm =3my)
Xty - —
+e t + k3 tanh(yyg + ZL‘%) . (16)

p

The physical structure for the solution in Eq. (16) is similar to that
one given by Eq. (13).

H Case (5)
3 3
t -3 4 -3
ey, i =3y ) ko= ks = 0,y = =30 (17)
+e th . (15) #
AIP Advances 10, 105325 (2020); doi: 10.1063/5.0019219 10, 105325-3
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(a) (b) (c)

-10

FIG. 2. Solution (13) atks = ko = =05, 17y =y = p13 = 1,3, = =1,x =0, (8) y = =20, (b) y = 0, (c) y = 20.

(a) (b) (c)

where N1 V1o by and k; are free real constants. Substituting these results into (4), we have

t(anim - 3my1) t(anim - 3my)
xmAyptzpnt —————— — XMy T
f: e i k1 +e 18 . (18)

Substituting Eq. (18) into u = 2[In €]y, the fifth mixed-type periodic solution reads as

t(4mim - 3mn) t(4mim - 3mn)
xmtym+ent ——————— —xXm-ywm—-zyr—- —
us =2|e # kg —e 2 n

t(4mim - 3mn) t(4mim - 3my)
xmtymtent ———————— —Xm-ywm-zy—- —

/le 2! ki+e # . (19)

The physical structure of Eq. (19) is demonstrated in Fig. 4.

Case (6)
3
-3
ki=ky == =0, v = DELZIMN
3 " (20)
gy = MYz
231
AIP Advances 10, 105325 (2020); doi: 10.1063/5.0019219 o
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(a) (b) (c)

FIG. 4. Solution (19) aty, = —1, 7, = p, = 1,k = —2,2 =20, (@) t = =2, (b) t = 0, (¢) t = 2.

where 7, y,, ¥, ;> and k; are free real constants. Then t(;ﬁ Y- 3;11)/1)
Btmys | TMOMT S T T
E=k; tanh|zys — ———= | +e # . (24)

JZa1

t(nip = 3myr)
3t,11 Y2 XM Y2y i . . _ . .
E=kytan|zy, - —= | +e 31 . @D Substituting Eq. (24) into u = 2[In &],, the seventh mixed-type peri-

M odic solution is obtained by
Substituting Eq. (21) into u = 2[In £], the sixth mixed-type periodic o t(nipn = 3mn)
solution is given by 2e T th "
Uy = — 3 .
NV ooy i = 3my1)
ey U= 3071 ks tanh(zy3 _ W) o i
2e # m 12}
Us =~ (s —3my1) (25)
3tmy2 oy —zy1— A = >myn) The physical structure of Eq. (25) is listed in Fig. 6.
ky tan| zy, - —— | +e #
2! 22) 11l. LUMP-TYPE SOLUTIONS
The physical structure of Eq. (22) is shown in Fig. 5. To derive the lump-type solutions of Eq. (1), we have
Case (7) 2 2
f = (th4 + xh +}/h2 + zhs + hs) + (th9 + xhg +}/h7 + zhg + h]o)
3 +hp 4K etE4+Es+Elx+Ezy+E3z +x e—tE4—E —E1x—8yy—Ezz (26)
-3 3 1+ K1 2 )
ki=ky=n3=us3=0, V1=M> V3=—M, (23)
# f where hi(i=1,...,11), xi(i=12), and Ei(i=1,...,5) are
unknown constants. Substituting Eq. (26) into Eq. (3), the values of
where #,, y,, ¥5, 41> and ks are free real constants. Then, the unknown parameters in Eq. (26) are obtained as follows:

-200 -200 =200

200 20 200 20 200 20

FIG. 5. Solution (22) atn, =y, =1, 9, = 1,9, = ka =2,y = 2, (a) x = =20, (b) x = 0, (c) x = 20.

AIP Advances 10, 105325 (2020); doi: 10.1063/5.0019219 10, 105325-5
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20 20
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-20

20 20

FIG. 6. Solution (25) at 7, =, = 1,, =1, y, = ks = 2,x = 20, (a) y = =20, (b) y = 0, (¢) y = 20.

(1) : hy = hahs sk o E,8] + 28,8, with Ay # 0, Bz #0, E; # 0, and x; # 0.
- 17 hl > 8 hl > =3 351 >
2 hihy by
o (R + he) o B 381k _3hhs gp () :hy=—-=2= hy=—3= B1=8:1=0,
= - By = - , =- ) 28
Klu‘f 2 ha ha ho = _3h3h5 o Erhs3 b = _3h1h3 (28)
hg__3h3h6 :2=_‘:1h2 9 = hz > =3 = Flz > 4 = hz >
h b — h b
? ' ~with s %0, g #0.
(1) : s = 3hihahs + 3hehshs + ha(H5 + h3) . Eien/ B + 13 o 3hsh + hahuhy + he(3hshe + hahy)
’ 3h2h6 — 3h1h7 ’ /Fl% + Flé ’ h1h7 - h2h6 ’
= _ 525% + 25254 i = 3K1K2525? + 3(”1% + Flé)(h]hz + h6h7)
= 351 ’ n= 3h1h3 + h2h4 ’
381 (Biha (B3 + 17) + Ea(hu(hF - 13) — 2ahishy)) . (29)
L EB(B+m)-2EE(mhathehr) +BY(RR2) T T
g iy >
3 818, (hahs — hahiy)* i
B2(12 + 12) — 2828, (Fuhy + hehy) + B2 (2 + 12)
. E1 (13 + 17) = 28281 (b2 + hshy) + E3 (1} + )
4 s >
W2ith h22 +0,8; £0, 3h1h3 + h2h4 +0, e = =1, hzhs - h1h7 + 0, and g, = E? _ 351h3 By = _3h1h3 (31)
h1+h6¢0. hz ’ hz ’
(IV):h7:—h;lh2, hg = h2:4, with A, # 0 and Fig # 0.
6 3hs
=30 2, 52
h4 _ 35152h2(h1 + hs) _ 3h1h3’ (VI) . h7 _ _hlhz) hS _ h2h4 53 -0, hg _ _3h3h6’
E%h% + E%hé Ay he 3hg hy
3 o 5 - -3 351h3 3h3h6(h1 + hs)
o _ S28] +2E5E, bo = 3hshe _ 2K1%EY B4 =58] - h hy = —W:
3= 3g 9E T 11—h2 2 2 2(he — 1
) 2 1+ kg ~ 2, hohis
o _ _2:3 + 35411;'12(51,’12 + Ezhl) _ 3E1h3 _ €E1hy == E%hz(fl] — hﬁ) — h3h6,
ST T e e T ke EYTTIEaOY
hshe(hy + R
2, 32 (30) 63\/2\/ hi + g : 6( : 26)
with iy % 0, hig % 0, i + B2 0, and €5 = +1. o N (h - o) o)
2 = s
2
(V) R = _hlhz B = h2h4 8, -8.-0 ho = _3h3h6 h2h3h6(h% + hé)
thy = 7’/_[6,8—73;_16, Ey=H3=0, 9 = hy —hl_hﬁ
AIP Advances 10, 105325 (2020); doi: 10.1063/5.0019219 10, 105325-6
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with fi; # 0, his # 0, iy # Fig, and €3 = +1. Substituting Eqs. (27)-(32)
into the variable substitution u = 2[In €]y, six lump-type solutions
can be derived.

+ Ei(thl + th)

3th; yhy + zh3 )
— —x+
ha

- ES]

As an example, substituting Eq. (26) and Eq. (27) into the vari-
able substitution u = 2[In £],, the lump-type solution of Eq. (1) can
be written as follows:

u=lal- Ay 2h; 1B ex :(_%+x_yh2+zh3)_Ei’(th1+zh2)+:
B K B3 AP E T, iy 2 =
+ 2k [h1 (x - 3t7h3) +yh2 + Zh3 + hs] + 2”15[”110 + hs(—% +Xx+ }LZ - Zh3 )] /[hll + K1 eXP[Eq(—% + X - }LZ * Zh3 )
hy h, m ha 1
23 (thy + zh 2 3th hy + zh 8} (thy + zh
_ Ei(th +2o) 21h1 2) +E5]+[(hf+hé) exp[El(h;—x+y zhl 3)+ i 21h1 2) —Esjljl/(xliil)
2 2
+[h1(x—3t7h3)+yh2 +Zh3+h5] +|:h5(—3t7hs+x+M)+h10:| 5 (33)
hz hz hl

with the constraint Ai; £ 0, Ai; #0, 21 # 0, and x; # 0.

To analyze the dynamical behaviors for solution (33), the values hio=h1=85=0, E;=-2, x1=1. (34)

of parameters are selected as follows:

hi=hs=2, ha=hs=-1, h3=3,

(a)

Substituting Eq. (34) into Eq. (33), the dynamical behaviors for
solution (33) are shown in Figs. 7 and 8.

(c)

FIG. 8. Dynamical behaviors for solution (33) with y = 0, (a) x = =10, (b) x = 0, (¢) x = 10.

AIP Advances 10, 105325 (2020); doi: 10.1063/5.0019219
© Author(s) 2020
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In Fig. 7, the interaction behavior between two solitary waves
and a lump wave can be found with ¢ = -2, 0, and 2 on the x — z
plane. The interaction solutions reveal the characteristic of “elastic
collision,” that is, two solitary waves and lump wave keep their
shape and velocity invariant in the process of transmission. Figure 8
demonstrates the interaction behavior between two solitary waves
and a lump wave with x = —10, 0, and 10 on the ¢ — z plane.

IV. CONCLUSION

Based on the dependent variable transformation and Hirota’s
bilinear form, new mixed-type and lump-type solutions of the (3
+ 1)-dimensional generalized BKP equation are presented. More-
over, Figs. 1-6 show the dynamical behaviors for the mixed-type
periodic solution. Figure 7 demonstrates the interaction behavior
between two solitary waves and a lump wave on the x — z plane,
which describes the characteristic of “elastic collision.” Figure 8
reveals the interaction behavior between two solitary waves and a
lump wave on the ¢ — z plane. As can be seen from the above solu-
tion process, the direct test function is very effective for solving the
mixed-type periodic solutions of NPDEs. Our results show that the
structures of the obtained wave solutions are multifarious in the
nonlinear dynamic system. Furthermore, they not only show the effi-
ciency of the dependent variable transformation and Hirota’s bilin-
ear method but also establish that the solutions are enriched with
new mixed-type and lump-type features. We hope our research will
be of great help in exploring the complex natural world. In the near
future, we will modify the scheme presented here to deal with dif-
ferent NPDEs when their coefficients are variables for expressing
nonautonomous multi-soliton, breather, and rogue wave solutions.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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