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In this article, we aim to employ two analytical methods including, the Lie symmetry method and the
Jacobi elliptical solutions finder method to acquire exact solitary wave solutions in various forms of (1+1)-
dimensional Kawahara-KdV type equation and modified Kawahara-KdV type equation. These models are
famous models that arise in the modeling of many complex physical phenomena. At the outset, we have
generated geometric vector fields and infinitesimal generators of Kawahara-KdV type equations. The (1+1)-
dimensional Kawahara-KdV type equations reduced into ordinary differential equations (ODEs) using Lie
symmetry reductions. Furthermore, numerous exact solitary wave solutions are obtained utilizing the Jacobi
elliptical solutions finder method with the help of symbolic computation with Maple. The obtained results are
new in the formulation, and more useful to explain complex physical phenomena. The results reveal that these
mathematical approaches are straightforward, effective, and powerful methods that can be adopted for solving

other nonlinear evolution equations.

Introduction

During the last decades, abundant powerful nonlinear models have
been utilized to describe various real-world problems in different areas
such as optical fiber, plasma physics, chemical physics, acoustics, solid-
state physics, and fluid dynamics. Due to this importance, determining
exact solutions to such equations has a high priority. For this reason,
seeking solutions to such type of equation is a laborious task. The
exact solutions to such equations can be calculated in very limited
cases. In recent years, many significant developments have been done
in finding explicit exact solutions of nonlinear partial differential equa-
tions (NLPDEs), and various techniques have been proposed [1-16].
Among these techniques, the Lie group of transformation method is
an effective, reliable, and very impressive method to obtain the exact
solutions of NLPDEs. Lie group of transformation method of symmetries
of differential equations is an encouraging source for numerous gener-
alizations attempting to find the methods for obtaining explicit exact
solutions. The Lie group method provides a benchmark method [17,18]
for obtaining the Lie symmetries of a nonlinear complex system. Most
of all, the Lie group of infinitesimal transformations method makes it
possible to reduce the dimension of the equation by one after applying

once. Thus, the Lie symmetry method is a standard, effective, and
highly powerful among group theoretical methods and has a wide range
of equations [19-24], which is solved with the help of this technique.
Solitons have been presented in the investigation of nonlinear complex
physical phenomena. A large number of researchers have extensively
studied the dynamical behaviors of the solitons for various nonlin-
ear evolution equations by using different techniques [25-27]. The
Kawahara-KdV equation [28],

A=y +uu, +u, — ki =0, (@D)]
and the modified Kawahara-KdV equation [29]
A=u, + atu, + buy,, — ki = 0. 2)

In this model, a,b and k are real parameters corresponding to the
theory of gravity-capillary waves on shallow-water waves with sur-
face tension and magneto-acoustic waves in plasma. These equations
are empirical models while studying plasma waves, capillarity-gravity
water waves on shallow water and other dispersive physical phe-
nomena when the cubic KdV-type equation is weak. The formulation
(1) was first considered by Kawahara in 1972, as a framework for
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describing the propagation of different waves of solitons in complex
media [28]. Some exact solutions of these two equations, which contain
two dispersed terms and a different degree of nonlinearity, were also
considered earlier. In particular, the simplest solitary and periodic
waves of the Kawakhara equation were found thirty years ago in the
work [30]. In recent literature, many researchers have applied various
analytical and numerical techniques to deal with the Kawahara-KdV
type equations [28,29,31-38]. Liu et al. [39] obtained some exact
solutions for the Kawahara-KdV type equations through similarity
reductions using the optimal system method. Demina et al. [40] studied
and discussed the traveling wave solutions of the Kawahara and the
modified Kawahara equations. They have also attained some fami-
lies of meromorphic solutions including traveling wave, rational, and
simply periodic solutions to the autonomous nonlinear ODEs. Fur-
ther, Kudryashov et al. [41] investigated new exact solutions for the
generalized Brethenton equation.

The main objective of the present work is to seek new explicit
exact solitary wave solutions of the Kawahara-KdV type equations
via the Lie symmetry method and Jacobi elliptical solutions finder
method. First of all, by utilizing the Lie symmetry method, the (1+1)-
dimensional Kawahara-KdV type equations are reduced into several
nonlinear ODEs. Thereafter, we apply the Jacobi elliptical solutions
finder method to the reduced nonlinear ODES with the help of symbolic
computation via symbolic packages. Thus, abundant exact analytic so-
lutions are obtained in various forms of solitons, namely the interaction
between single soliton, lump-soliton, lump-type soliton, trigonomet-
ric and hyperbolic solitons, and solitary waves. The obtained exact
solitary wave solutions involve many rational form solutions, thereby
exhibiting rich physical structures and including the existing solutions
in the previous results. Some of the obtained solutions are entirely new
and completely different from the earlier established findings. These
exact solitary solutions have many significant applications in plasma
physics, fiber optics, dynamics of solitons, mathematical physics, fluid
dynamics, and various areas of applied sciences. Further, we illustrate
the dynamical behavior of solitons graphically as well as physically
using 3D-graphics and contour plots. In recent years, extensive research
works on the solitons or solitary waves have been growing increasingly
that led to favorable results. Consequently, theoretically researches
on solitons or solitary waves are helpful to better predicting feasible
dynamics for nonlinear evolution equations.

This research consists of the following sections: Section “Intro-
duction” presents a brief sketch of the historical background of our
study. Section “Lie symmetry analysis” includes a brief introduction
of Lie symmetry analysis for the Kawahara-KdV type equations. In
Section “The Lie symmetry reductions and exact analytical solutions”,
infinitesimals and the Lie symmetry are studied under the Lie group
of transformation method. Section “A soliton wave solution finder
method” explained the Jacobi elliptical solutions finder method. The
methods have been implemented in Sections “The method implemen-
tation on solving Eq. (14)” and “The method implementation on solving
Eq. (40)” for solving two considered equations, respectively.

Lie symmetry analysis
Let us consider a system of one-parameter (¢) Lie group transforma-
tion as

% = x + eE5(x, 1,u) + O(€2),

T=1+ef(x,t,u)+ O,

u=u+en(x,tu)+ 0(e?),

where &, &',  are infinitesimals for the variable x, ¢ and u, respectively.

The vector field V associated with the one-parameter transformation
for the Kawahara-KdV equations can be written as

V = A 1) S ) o ®)
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To obtain a Lie point symmetry of the Kawahara—KdV type equa-
tions (1) and (2). The vector field (3) is used and V must satisfy the
invariant surface conditions

PrOV(4) = 0, whenever 4 =0

where Pr® represent the fifth prolongation of the vector field V, which
are expressed as

i d XXXXX 9

J
POV =V 4y — +7* + 7 +7n .
aut aux auxxx a“xxxxx

Applying Pr® to the Kawahara-KdV type equations (1) and (2), we
must have the following Lie invariant surface conditions

nt + unx + ity + r]xxx _ knxxxxx = 0’ (4)
and
nt + au211x + ar’2ux + brlxxx _ k”xxxxx =0, 5)

where 7, 7%, 7" and ™ can be defined, respectively [42,43]
n' = D —u, D, —u,D,&,

n* = Dy — uy D E¥ —u D&

rlxxx = Dxrlxx — Uxxx ngx — Uxxt Dxét’

'IIXXXX)c = Dxnxxxx - uxxxxxDxéx - uxxxxthgt’

in which D, and D, denote the total derivatives. In this illustration,
they can be defined such as

D, 2+u +u,— +u i+
ot o You, " ou, ’
d 0 0 0
D= —+u,— +tu,— +u,— + -

x = gx T xgn T ou, Hoex ou,,

Putting the above these values of r', n*, n*** and #***** into Egs. (4) and
(5) and equating to zero the coefficient of various monomials, a system
of over-determining equations are obtained as

(€, =0, (£),=0, (&), =0, (£9,=0, (&), =0, &9, =0, n=(&),
(6)

and

(€, =0, (£),=0, (&), =0, (£9,=0, (&), =0, (£%,=0,n=0, (7)

respectively.
Lie symmetry analysis for Kawahara-KdV equation

To simplify system (6), we obtain the following infinitesimals for
the Kawahara—-Korteweg—de Vries equation (1)
E =ayt+az, & =a;, n=a,. (€©))

where a;, a,, and a5 are arbitrary constants. The associated vector field
X of the Kawahara-KdV equation (1) can be written in the form of the
vectors X, X,, and Xj.

X=a X +a,X,+a3X; 9

where the vectors X, X, and X3 are defined as

-9
1o
J d
X, =t—+ —,
2 Jox  Odu
7}
X;=—.
37 ox

Then Lie algebra and commutative relation of these vectors are calcu-
lated via the Lie bracket’s [X;, X;1=X;X; - X;X; (see Table 1).
The Lie series to compute the adjoint relation is represented as

1
Ad(exp(e)X)X; = X; = elXp, X1+ 221X, [X,, X1 = -
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Table 1

Commutator table for Kawahara—-KdV equation.
[X;, X1 X, X, X3
X, 0 X, 0
X, -X; 0 0
X5 0 0 0

Table 2

Adjoint table for Kawahara-KdV equation.
Ad(exp(e)X;) X X, X, X3
X, X, X, —€X, X,
X, X, +eX, X, X,
X3 X, X, X3

The adjoint representation of X/s (1 < i < 3) is demonstrated in Table 2.

Thus, the adjoint Table 2 describe the calculation of the commu-
tative relation of these vector fields for the Kawahara-KdV system.
Taking the adjoint Table 2 into account, Eq. (1) has following types
of cases

a X +a3X;, X|, X;.
Lie symmetry analysis for the modified Kawahara—KdV equation

On simplify the system of Egs. (7), we obtain the following set of
infinitesimals for the modified Kawahara-KdV equation (2)
&=C, ¢'=CLn=0. 10
The vector field V of the modified Kawahara-KdV equation (2) can be
generated with the help of the vectors V; and V, corresponding to the
constants C; and C,, respectively,
V=V + GV, an
where the vectors V; and V, are defined as

Vi=<,

V, = =,

The Lie symmetry reductions and exact analytical solutions

In this section, we obtain several exact solitary wave solutions of the
Kawahara-KdV type equations (1) and (2). Now, we deal with the Lie
symmetry reductions and explicit exact solutions to the Kawahara-KdV
type equations.

Lie Symmetry reductions and exact solutions for the Kawahara—KdV equa-
tion

For Lie symmetry reductions, we consider the following three cases:
a; X, + a3 X3, X, and X,.

For vector field a; X| + a3 X3 = al% + a3%
The associated Lagrange equation is

dx _dt _du (12
a3 aq 0

Solving the first two factors of (12), we get the similarity variable of
the form X = x — A,1, where A, = 22, provided a; # 0.

Then, again solving the last two ]factors of (12), thus one obtains
u(x, 1) = UX), 13)

where % (X) is similarity function with similarity variable X = x — A,r.
Substituting (13) into (1), then we get the reduction equation

(UX) = AU (X) = kUD(X) + UD(X) = 0.
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On integration, we get

2
%(% — AUX) = kUDX)+UP(X) =0. a4
where A4, = Z—? is constant, provided a; # 0. Applying the balancing
principle to the terms %2 and #® in Eq. (14) which yield 28 = X + 4
implies X = 4.

Let the solution of (14) can be furnished by assuming sech function,
use the following

%(X) = sech*(AX + B), (15)

where A and B are arbitrary constants.
Now, equating coefficients of same powers of sech function to zero
yields following system of equations:

2(256A% — 1647 + A,) =0,
404% (524%k - 1) =0,
1-16804% = 0. (16)

Solving the system of Egs. (16), we get the following two solution sets

Al /B, 2,105
2V 105 35 169

and

Ao L[, 105
2V 105 35 169

Putting the above these values into (15), then one obtains

Cveent (B L2 et (o1 [
U(X) = sech (B+2 105X , U(X)=sech”| B 3 15X .

a7

By back substitution from (17) into (13), the exact solitary wave
solutions for the Kawahara-KdV equation are as followed

1 /13 12
=sech*| B+ =1/ — (x- == 1
u(x, 1) = sec ( +5 105 (x 351>>, (18)

—secht [ B- L/ 1B (x- 12
u(x,1) = sech (B 5V 103 (x 35t)>, (19)

Again, let the solution of (14) can be taken as
U(X) = Asech*(X) + Bsech*(X), (20)

where A and B are arbitrary constants.
Proceeding in the similar way, equating coefficients of same powers
of sech function to zero yields following system of equations:

2B (Ay + 16k —4) =0,

A(32 - 512k) — 2AA, + B(B + 240k — 12) =0,

2(A(B + 1040k — 20) — 120Bk) = 0,

A(A - 1680k) = 0. (21)

Solving system of Egs. (21), we obtain the following sets

364560 + 1148 (—651 - 631'\/5)
13(—651 —631’\/3_1)
Ay = L (420+ L (651+63iv31)).

5

A :% (-651 —63:’\/31), B=

= 105 13
—651 — 63i1/31 420 144 1
=T WS d 4a=220 pog o4, =1 oL
21840 an 13 27 T3 5

Putting the above these values into (20), thus, the corresponding solu-
tions of (14) are given by

U(X) = % (—651 - 631’\/5) sech*(X)
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651 — 63i 2
. (364560+ 1148( 651 631\/5))sech (X)’

13 (—651 - 631’\/3_1)
420

3 22 sech*(X). (22)

“UX) =

By back substitution from (22) into (13), the exact solitary wave
solutions for Kawahara—-KdV equation are follows as

u(x,1) = % (—651 - 63i\/31) sech*(x — A1)

(364560 +1148 (—651 - 631'\/5)) sech?(x — A1)

N : 23)
13 <—651 - 631’\/31)
420 4 (144
u(x,t) = — 13 ech ( B x), 24

respectively, where A, = % (420 + 11—3 (651 + 63[\/31)) (see Figs. 1-
4.

For vector field X| = %
The associated Lagrange equation is

dx _di _ du
0o 10’
which immediately yields

u(x,t) = %(X), (25)

where % (X) is a similarity function with similarity variable X = x. The

Lie symmetry reduction is easily obtained as
UX)U' (X)+UDX) -k UD(X) =0. (26)

To simplify (26), we assume that

AX) B, B B BN 40
= co
cot*(X) cot3(X) cot?(X) cot(X) #
+ N3 cot>(X) + N, cot?(X)
+ N cot(X) + Ny, (27)

be the solution for Eq. (26). On comparing the coefficients of like
powers of cot function to zero yields following system of equations:
4B7 - 6720B,k =0, 7B3B, —2520B3k =0,

—720B,k — 19200B,k + 3B3 + 4B, + 6B, B, + 120B, = 0,

120B, k + 6600B3k — 5B, B; — 5By By — 60B; — 7B B, =0,
1680B,k + 19264 B,k — 4B,N, — 2B} — 6B, B,

— 24B) —3B2 —4B By —248B, =0, —240B,k — 5808B;k
+3B3;Ny +3B4N, +3B,B, +5B,B; + 6B,

+ 5B,By + 114By =0, — 1232Byk — 7744Bk + 2B, Ny + 4B, N,
+2B3N, +2B,N, + B? + 4B3 B, + 2B}

+ 40B, + 152B, =0, - 136B,k — 1848B3k + BNy +3B; N,

+ B,N; +3ByN{ + B3N, + ByN; + 3B, B;

+ 8B, +60By =0, —272Byk —960Byk +2B, N, +2B;N,
+2B,N, + B} + 16B, + 24B, = 0,

16B,k + 120B;k — BNy + BN, — B,N, — ByN, + B, N,

— ByN; + B;N, —2B| — 6B; — 16kN| — 120k N,

NoN; +2N; +6N; =0, —2B;N3—2B,N, +272kN,

+960kN, — N> —=2NyN, — 16N, — 24N, = 0,

BN, + B,N; + 3B, N, + ByN, — 136kN, — 1848k N5 + NN,
+3N,;N| +8N| +3NyN; +60N; =0,

2B N3 +2B, N, — 1232kN, — 7744k Ny + N? + 4N3N| + 2N3
+2NyN, + 40N, + 4NyN, + 152N, = 0,

3B; N, — 240kN;| — 5808k N3 + 3N, N| + 5N4N; + 6N, + 3Ny N;
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+5N,N; + 114N; =0,

1680k N, + 19264k Ny — 2N2 — 6N, Ny — 24N, —3N3 — 4N N;

—4NyN, — 248N, = 0,

120k N, + 6600k N3 — 5N, N; — 5N, N5 — 60N; — 7TN3 N, = 0,

2520kN3 — TN3N, = 0,6720kN, — 4N2 =0,

720kN, + 19200kN, — 3N — 4N} — 6N, N, — 120N, = 0. (28)

Solving system of algebraic equations (28), we obtain the following sets
of solutions

Solution Set 1.

Ny = éﬁ( 2+9:\/31),N1:0, N, =0, N3 =0, Ny =0, B, =0,
B, <7+1\/ ) B; =0,

p = 51, 63iV31  31+3iV31

4= 13 13 > 1040

Using the above values into (27) and (25), one gets

u(x,t) = <% + 63i1\3/§> an*(x) + = <7+1\/_> tan?(x)

12 .
+e (—2+91\/31). (29)
Solution Set 2.
12 \/— 84 \/—
Ny = 65( 29 ),leo, N2:1—3<7—: 31),
/31
Ni=0. N4:@_63z\/3 ’
13 13
31— 3iy/31
B =0, B,=0, B,=0, B, =0, k= Y
1=0. By =0, B;=0. B, =0, 1040

Using the above values into (27) and (25) yields

63i1/31
u(x, 1) = <61531 ’1\3/_> ot (x )+ ( 7-iV31 ) cot?(x)
+12 (-2-0iv31). 30)

65

Solution Set 3.

3 .
No_m(-729+43,\/31) Ny =0. N, = T (3+,\/ )
651  63iV/31
N,=0, N, = ,
3 1=t TS
21 651 63131
B, =0, B :-(-3 '\/31> B, =0, B ,
! 2= 3 L R )
3143031
T 4160

Taking the above values along with (27) and (25), we have

u(x,t)=<%+%) an*(x )+—<3+1\/_)tan(x)

651  63iV/31 4
+ <5—2 + 5 >COt (x)
21 ) 2 3 .
+E( 3+l\/31)cot (x)+m< 729+43l\/31). 31)
Solution Set 4.
Ny = _2716, N,=-B|, N, = L (-13B, —840), N3 = —Bs,

13 3
1 1

N, =— (=13B, —420), k= ——.
4 13( 4 ) 52

—_

Taking the above values along with (27) and (25), we have

u(x, 1) = By cot*(x) + i (—1334 — 420) cot*(x) + B, cot*(x)

1 276
+ 33 (—13132 840) cot?(x) — ER (32)
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-100 -50 50 100

(b)

Fig. 2. Sketch of Eq. (19) (a) 3D shape of triply-soliton solution for B = 0 and —700 < x < 700, =500 < r < 500; (b) 3D shape of sharped triply-soliton solution for

B =0.4 and -700 < x <700, —500 < < 500.

For vector field X, = t% + %
The associated Lagrange equation is
dx _di _du
t 0 1’
which immediately yields

u(x,t) = % +%(T), (33)

where % (T) is similarity function with variable with T = ¢. The Lie
symmetry reduction is easily obtained from (1),

@ +2'(T) =0. (€20

Solving Eq. (34), we obtain
a
T)=—=
«£(T) T (35)

where «a is arbitrary constant. By back substitution from (35) into (33),
we obtain
(x+a)

u(x,t) = ;

(36)
The Lie symmetry reductions and exact solutions for a modified Kawahara—
KdV equation

For vector field C\V, + C,V, = Cl(% + Cz%
To obtain the exact solutions of the modified Kawahara-KdV equa-
tion (2). Using, Eq. (10) then, the corresponding Lagrange system is

From (10) and (37), we obtain

dx _di _du

G ¢ 0

The similarity solution is of the form

u(x, 1) = %(X), (38)

with the similarity variables X = x—Ct, where C = % Using the value
1
of u from (38) into Eq. (2), we obtain the reduction equation as

2'X) (a % X)-C) +b(UDX) -k D (X)) =0. (39)
Integrating (39) with respect to X, we get
—CUX) + §%3(X) + b UP(X) = kUD (X)) = 0. (40)

Applying the balancing principle to the terms %2 and %® in Eq. (40)
which yield 2X = X+ 4 implies X = 4. Now, seeking the solution by ran
function in Eq. (40), use the following

My My
tan(X) = tan?(X)
Now equating coefficients of same powers of tan function to zero yields
following system of equations:

U(X) = My + M, tan(X) + M, tan’(X) + 41)

1440k M, — 4aM; =0, 240kM; — 10aM3M; =0,

4aM; — 1440kM, =0, 10aM, M7 — 240kM, =0,

4aM; +8aMyM; +8aM; M, + 48bM, — 3360k M, = 0,

2aM3 + 10aM; My + 12aM My M; + 6aM, M7 + 12bM; — 480kM; = 0,
4aMyuM?2 +4aMI My +8aMIM, + 4aMy M7 + 8aMIM,
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Fig. 3. Sketch of Eq. (23), (a) 3D shape of interaction between single soliton and lump-soliton solution for the values A, = %, B, =1,B,=1,-10<x <10, -10 <7 < 10; (b)
interaction between multi soliton and kink wave profile for —10 < x <10, =5 <t <5; (c) 3D shape of single soliton solution for the values A, =20, B, =1, B, =1, -10 < x < 10,
—100 <t < 100; (d) 3D shape of multi-soliton solution for the values A, = %, B =1, B,=1, =75 <x <75, =3000 < 1 < 3000.

-100
x 5 -

Fig. 4. Sketch of Eq. (24) (a) 3D shape of multi-soliton solution for —100 < x <100, —1 < <2; (b) 3D shape of oscillating multi-soliton solution for —109 < x <102, -1 <t <4.
+8aM| MM, + 80bM, — 4c M, — 2464k M, = 0, +4bM, — 4bM5 — 2¢ My + 2¢ M5 — 32k M, + 32kM; =0,
2aM; +2aM, M3 + 2aM§ My + 12aMy M, M5 + 4aM, M, M, 4aMy M2 + 4aM? My + 8aM, My M + 4aM3 M, + 326M, — 4c M,
+6aM M +4aMyM; M, + 16bM; — 2c M, —544kM, =0,

—272kM;3 =0, 4aM M +4aM;M, +4aMy M} + 8aM, M3 M, 2aM; +2aMyM? +2aMZM, + 12aMyM,y M, + 4aMy M, M,
+32bM, — 4c M, — 544k M, = 0, +6aMZM; +4aMyM, My + 16bM| — 2cM,

2aM, M} = 2aM3 M} + 4aMy M3 M — 4aM My M, — 2aM, M? —272kM, =0, 4aM, M +4aM? M+ 8aMI M, +8aMM,
+2aMEM; + 4aM MyM, — 4aM, M3 M,

+8aM MyM; +4aM?M, + 80bM,
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—4cM,y — 2464kM) =0, 2aM? + 10aM; M, + 12aM M, M,
+6aMZM; + 12bM, — 480kM ;| =0,
4aM; +8aMyM; + 8aM | M, + 48bM, — 3360k M, = 0. (42)
Solving the system of Egs. (42), we have

Solution Set 1.

\/Wc_é\f5 'GZZ(SC2_48b2) (\/5 a2 (5C? — 481?) + 5a(C — 8b)>

M, = :
120ab
M, =0,
3.0 sc V5@ (52 —482)
M, = - EJT_ = , My=0, M,;=0,
. V54/a? (5C2 - 4852)
k=m 5C - a

Substituting above values into Eq. (41), we get the corresponding
solution of Eq. (40) read as

\/30aC —6V/5,/a? (5C? — 48b2)

L 120a2b

<\/§ @ (5C2 - 48p2)
+ 5a(C — 8b) — 60abtan2(X)> .

Hence, one gets

\/30aC —61/51/a? (5C% - 481?)
120a%b
x <\/§ @ (5C? - 48b2) — 60ab tan*(=x + C1) + 5a(C — 8b)> :

u(x,t) =

(43)
Solution Set 2.

\/30aC - 6V/5,/a? (5C% - 768)

480a2b

M, =

x (\/E a? (5C2 - 768b%) + 5a(C — 8b)>, M, =0,

27 4\ 2

5

| 3\J 5aC —\/5¢/a? (5C2 - 768%)

a2

M3:O, M4:—Z 5

5aC — \/5,/a? (5C% - 7681?)
k= 3840a

Substituting above values into Eq. (41), we get the corresponding
solution of Eq. (40) read as

5

| 3¢sc V5\/a? (5C - 7682)

a a?

\/ 30aC - 61/54/a? (5C2 — 76852

480a%b
+5a(16b + C) — 240ab csc*(2X).

)\/3\/a2 (5¢2 - 76802)

UX)=

Hence, one gets

\/ 30aC — 61/54/a? (5C2 - 768b2)
5¢/a? (5C2 — 768
480a2b Vaye( )

+ 5a(16b + C) — 240ab csc>(2(x — C1)). 44)

u(x,t) =
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For vector field V| = %
The associated Lagrange equation is

dx _dr _ du
0o 1 0’

which immediately yields
u(x, 1) = %(X), (45)

where % (X) is similarity function with variable with X = x. The Lie
symmetry reduction is easily obtained as

a UXPU X))+ b UDX) -k UD(X) = 0. (46)

To simplify Eq. (46), we assume that

N N,
ERR 47)

U(X) = Ny + Nj tan(X) + N, tan*(X) + ’
(X) = No + N tan(X) + N, tan”(X) tan(X)  tan?(X)

be the solution for Eq. (46). Equating coefficients of same powers of
tan function to zero yields following system of equations:

720kN, —2aN] =0, 120kN; —5aN;N; =0, 2aN; —720kN, =0,
5aN; N} — 120kN; =0,

2aN; +4aNyN; +4aN;N, + 24bN, — 1680kN, =0, 2aN;
+4aNyN? +4aN? N, + 24bN, — 1680kN, =0,

aN; +5aN; N3 + 6aNyN N3 +3aN| N; + 6bN; — 240kN; = 0,

aN; +5aN; N3 + 6aNyN,N3 + 3aN, N}

+ 6bN3 —240kN;3 =0, —2aN,N —2aN;N,—4aN;Ny—2aN,N;
—4aN}N, —4aN N3N, — 40bN,

+ 1232kN, =0, aN; +aN, N3 +aN§N; +6aNyN,N;
+2aN,NyN3 +3aN; N} + 2aNyN N, + 8bNj

— 136kN3 =0, —2aNyN}—2aNZN;—2aN,N} —4aN N3N,

— 16BN, +272kN, = 0,

aN| N} — aN3;N§ +2aN, N3Ny — 2aN; NyNy — aN N} + aN7 N3
+2aN N, Ny —2aN, N3N, + 2bN,

— 2bN3 — 16kN,| + 16kN; =0, 2aN,N{ +2aN} Ny +4aN;NyNj,
+2aN}Ny + 16bN, — 272kN, =0,

aN? +aN3N? + aNZ N +6aNyN, N +2aN, N, N, +3aNZ N,
+2aNyN, N5 + 86N, — 136kN; =0,

2aNyN{ +2aN7 Ny +4aN; Ny +4aN7 N, +4aN|NyN; + 2aN; N,
+40bN, — 1232kN, =0,

aN? +5aN2N| + 6aNyN,N| +3aNZN; + 6bN| —240kN, = 0. (48)

Solving system of Egs. (48), we obtain the following sets of constants:

Solution Set 1.

i (35714233 - 103/=523%4) Vb

Ny = ., N, =0,
15v/a
. 3/4
5423 b
Ny = VESVBVE
Va

[

44/15
Using above values into both (47) and (45), one obtains

/=523 /btan’(x)

u(x,t)

Va
(3574233 - 103/=5V23%4) Vb
- 15\/a '

49
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Solution Set 2.

\/71[—8—1—4[ Ny =0, Ny =

\/_33/4
4= s =

V2y/a 16\/3'

Using above values into both (47) and (45), one obtains

V=53 Vbtan'x) | V=534vbeot’) Vb 140

PV
Vaya

5 N3=0,

u(x,t) = -8 —
V2ya V2ya Va Vis
(50)
Solution Set 3.
4/ ea3/4
Ny=- \/Z gy 14 N, =0, N2=_M =0,

Vo s Vava
L <
) Vava 1615

Using above values into both (47) and (45), one obtains

i</?533/4\/3tan2(x) _ iV?S33/4ﬁcot2(x) _ ﬁ a 140

u(x,t) = — 8+ .
V2v/a V2v/a Va Vis
(51)
Solution Set 4.
= 35 (51\/4 +2i\/15N4>, N, =0, N,=N,,
o b 21aN2 aNZ
N3=0, b=— =—=.
} /15 360
Using above values into both (47) and (45), one obtains
u(x, 1) = Ny tan?(x) + N cot(x) + % (51\/4 + 2i\/15N4> . (52)

A soliton wave solution finder method

Very recently, a new efficient technique has been developed by
Ghanbari et al. to solve the resonance nonlinear Schrédinger equa-
tion [44]. Other successful applications of the technique in solving
different types of PDEs have also been reported in [45,46]. One of
the prominent features of this method is determining the solutions are
given in terms of Jacobi elliptic functions. The required steps in this
method can be summarized as follows.

1. Here, we are going to solve an equation with the following
structure:

PDES,0y,6;,64y,...) =0. (53)

9 O0x5 Ofy Oxxs

2. Taking 6 = 6(X) and X = v,;x—v,t into account in Eq. (53) yields

02%5,6',8",..)=0, (54)

where v; and v, are two unknown values.
3. The following structure is suggested to construct the solution
to Eq. (54) :
Jo + uOE AP (XK
o(X) = Tk’ (55)
Yo+ u8, Z i ¥ (X)

where 4,7, and A,y (1 < k < 2R) are chosen so that (55)

satisfies Eq. (54), and N is also obtained from balance principles.
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Table 3

Jacobi elliptic solutions of Eq. (58).
Item I, A I, w(X)
1 1 —(1+6%) 0? sn(X,0) or cd(X,0)
2 1-6? 2m? — 1 -6? cn(X,0)
3 0% -1 2-6° -1 dn(X,0)
4 0% —(m*+1) 1 ns(X,6) or de(X,0)
5 —6? 2m? — 1 1-6? ne(X,0)
6 -1 2-6° —(1-m?) nd(X,0)
7 1 2-62 1-6% se(X,0)
8 1 2602 — 1 —6(1 - 6%) sd(X,0)
9 1-6° 2-6° 1 cs(X,0)
10 —0%(1 — m?) 2m? -1 1 ds(X,6)
11 = Lo = ne(X.0) = se(X,0) or (X0
12 S e -1 fen(X,0) + dn(X,0)
1B = i T B

—62)2 n(X,

4 g 5 = R s

Table 4

Jacobi elliptic functions and their limits.
Function 0—-0 0—1
sn(X) = sn(X, 6) sin(X) tanh(X)
cn(X) =cn(X,0) cos(X) sech(X)
dn(X) =dn(X,0) 1 sech(X)
ns(X) = ns(X,0) csc(X) coth(X)
cs(X) =es(X,0) cot(X) csch(X)
ds(X) =ds(X,0) csc(X) csch(X)
sc(X) = sce(X,0) tan(X) sinh(X)
sd(X) =sd(X,0) sin(X) sinh(X)
ne(X) =ne(X,0) sec(X) cosh(X)
cd(X)=cd(X,0) cos(X) 1
nd(X)=nd(X,0) 1 cosh(X)

4. Principles of balance can be utilized in Eq. (55) to determine the
amount of . Moreover, ¥(X) is considered as a solution to the
following equation:

P(X)? =50+ 5,P(X)? + s, P(X)* + 56 (X)°,

P(X)" = s, (X) + 25,7 (X)? + 356 P(X) . (56)

5. The system introduced in relation (56) admits the following
solution
AX
wo = —28 7)
VpAX) +q
where pA(X)? + ¢ > 0, and A(X) satisfies the following equation
(A (X))? =l + LAX) + 1,AX)*, (58)

and /;(j = 0,2,4) are disposal parameters. We must also have:

p= s4(la—s7)
(= Sz)2+33[0’4 205 (ly~s7)’ (59)
sqlg
9= (Iy=s9)2+31o14=215(Iy—s5)
The necessary condition for the parameters are
$5(y = 59) 91y — (1 — )21y + 55)1+ 3563l Ly — (12 = 551> = 0. (60)

6. Substituting both (58) and (57) into Eq. (55) yields the wave
solutions of Eq. (53) (see Table 4).

The method implementation on solving Eq. (14)

Our primary assumption in the framework of Eq. (55) and from the
balance principles we get X = 2. So, the following general form of the
solution to the Eq. (14) is suggested as

Ao+ MPX) + HLPHX) + A P3(X) + L,PHX)

UX) = .
Yo + 1P (X) + 73 P3(X) + 7 P (X) + 7, P4H(X)

(61)
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Again A,y and 4;,7,(1 < k < 4) should be determined so that (61)
satisfies Eq. (14). Determination of these unknown coefficients are
obtained using symbolic computational software, such as Mathemat-
ica, and following the outlined steps in the method. As a result, the
following set of solutions is determined

38038603273222400k6sg + 1132881530653440k5s§ v

b +12945493144896k4s‘2‘ +471 1438323104k3s;
+462881064024k% 5% + 17754393360ks, + 247843850
2= 5318460k s, +146853k ’

1/2
270(;41—2#2 —25670> 272y054(248ks,—5) _
—g— 4 =0,

o = 5318460k2s5,+ 146853k A =04, =

Aq = 1632y0ks,>,

166884160k 5,3 4+6559368k2 5,2 —12840ks,—3775
571536k254(1340ks,+37) ’

11=07=0,y3=0,74=0,5) =
s =0,
Sy, 84, Yo = arbitrary.

where two notations y; and u, as

5076891201&3;

= -166734241935
—1473816ks,

38038603273222400k5 S + 1132881530653440k% 53
My =| +12945493144896k*s3 + 4711438323104K° s+
462881064024k 5% + 17754393360ks, + 247843850

are used throughout the article.
+ Using item 1 in Table 3 yields

67456 (sn (X, 0) (m* = m? = 5,2 + 1) (ks2 - %)
U(X) = dg +

—189 + (63m2 + 63s, + 63) (sn (X, 0))

1632k (sn (X, 0))* (m* —m? — 5, +1)°
+
2

(=3 + (m2 + 5, +1) (sn(X,0))?)
whenever we have
(20% -5, = 1) (8% +5,—2) (6% + 5, + 1) 5,2 = 0.
Consequently, we find that Eq. (14) admits the following solution
u(x,t) =4

67456 (sn (x = Az1,0))” (6% = 0% = 5,2 + 1) (s, = 25 )

+
—189 + (6302 + 635, + 63) (sn (x — A1,0))’

4 2
1632k — Ay, 0 0t — 02— 5,2+ 1
1692k (on (x = g0, 0)* (6 =0 =52 +1)" ©2

(—3 + (02 + sy +1) (sn(x — Ayt 0))2)2
Also,
272 (248ks, — 5) ((sn (£,0))* — 1) (—m* + m? + 5,2 — 1)
(63m2 + 635, + 63) (cn (£,0))* — 189 (dn (&, 0))
1632k ((sn (&, 002 = 1)° (=m* +m? + 5,2 = 1)
’ (12 45,4 1) (en (€. 0)> =3(dnE.0)?)°

Therefore, it can easily be seen that Eq. (14) admits the following
solution

UX) =4y +

u(x,t) =4

272 (248ks = 5) ((sn (x = 451,0))* = 1) (=6* + 6% + 5> = 1)
+

(63m? + 635, + 63) (cn (x — Ay1,0))” = 189 (dn (x — A,1,0))’

1632k ((sn (x = Ayt 0))2 = 1) (8% + m? + 5,2 = 1)
(( (x = 4,1,6)) >

((02+ 52 1) en (= 4200))7 =3 (dn (= 425,0))°)

(63)
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+ Using item 2 in Table 3 yields
272 (248ksy — 5) ((sn (&, 0)* = 1) (=m* + m? + 5,2 = 1)
(=126m2 + 635, + 63) (cn (£, 0))> + 189m2 — 189
| 632k ((n (&0 = 1) (=m* +m? + 5,2 = 1)°

U (X) = Ao+

B

((=2m2 + 5, + 1) (en (&,0)7 + 3m2 = 3)°
whenever we have
(20 =5, = 1) (8% + 5, =2) (0% + 5, + 1) 5,2 = 0.
Thus, Eq. (14) possesses the following solution
u(x,t)= 1A

272 (248ks, - 5) ((sn (x = Ay1,0))° - 1) (-0*+ 0% +5,° 1)

(—126m2 + 635, + 63) (cn (x — A4,1,0))” + 18962 — 189

2 2 2
1632k ((5n (x = 4p1,0))° = 1) (=m* + 6> + 5,2 = 1)
+ - (64
((=2m2 4 534 1) (en (x = 431,60)) +302 - 3)

Using item 6 in Table 3 yields

(67456ks, — 1360) (m* —m? — 5, + 1)
189 (dn (&,0))* + 63m? + 635, — 126

1632k (m* = m? — 5,2 +1)°

U (X)= Ao+

(3(dn (& 007 +m +5,-2)
whenever we have
(20 =5, = 1) (0% + 5, =2) (6% + 5, + 1) 5,2 = 0.

Consequently, it is found that Eq. (14) admits the following
solution

67456ks, — 1360) (6% — 02 — 5,2 + 1
u(x, 1) = dg + ( S2 )( 52 )

189 (dn (x — Ay1,0))” + 6362 + 635, — 126

1632k (6% — 02 — 5,2 + 1)’
+ . (65)

2
(3 (an (x = Ayri.0))* + 02 +5, - 2)

Using item 8 in Table 3 yields
U (X) =4y
67456 (—m* + m? + 5, — 1) (sn (&, 0))

(=126m2 + 635, + 63) (51 &, 0))” = 189 (@n & 0))* (ks = )

1632k (sn (&, 0))* (—m* +m? + 5,2 = 1)°

((=2m2 + s, + 1) (sn (&, 0))* = 3 (dn (&, 0))2)2’
whenever we have
(202 =5, = 1) (6> +5,=2) (6 + 5, + 1) 5, = 0.

Hence, it can easily be seen that Eq. (14) admits the following
solution

u(x,t) =4y

67456 (6% + 02 + 5,2 = 1) (sn (x — 4,1,6))’

(=12602 + 635, + 63) (s (x = Ay1,0))” = 189 (dn (x = A,1,0))* (ks = 25 )

1632k (sn (x — Ay1,0))" (=04 + 6% + 5,2 — 1)

(66)

2\2°

(=262 455+ 1) (sm (x = A,0,0)) =3 (dn (x = A4,1,0))° )
+ Using item 9 in Table 3, one gets
272 (248ks, — 5) ((sn(&,0)* = 1) (=m* + m? + 5,2 = 1)
(189m2 — 189) (sn (£,0))* + 63 (cn (£,0))* (m? + 5, —2)
1632k ((sn1(&,0)% = 1)° (=m* +m® + 5,% — 1)
((3m2 = 3) (sn (£.0)? + en (2. 0)? (m? +5, - 2))°

U(X)= 4o+
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whenever we have
(20 =5, = 1) (0* +5,—2) (07 + 5, +1) 5,2 = 0.

Thus, it can easily be verified that Eq. (14) admits the following
solution

u(x,t) =4y

272 (248ks, = 5) ((sm (x = 4,1,0))" = 1) (=0° + 6% + 5,7~ 1)

+
(189m2 — 189) (sn (x — Ay1,8))> +63 (cn (x = Ay1,0))” (6% + 5, — 2)

2 2 2
sn (x — A,t, - —0% + 0% + 5,7 —
1632k (51 (x = 4,1,0))7 = 1) (0% + 0> + 5,2 = 1)

+ 7
(362 =3) (sm (x = 431,0))" + (en (x = 4,1,6))" (62 +5, - 2))

(67)
Using item 10 in Table 3 yields
U (X) =2
272 (248ks, — 5) ((sn (£,0))* m?> — 1) (—m* + m® + 5,2 = 1)
(=189m* + 189m2) (sn (£,0))> + 63 (dn (£, 0))* (=2m? + 5, + 1)
1632k ((sn (&, 0)2 m2 = 1)° (=m* +m? + 5,2 — 1)

((dn €00 (=20 + 5+ 1) + (=3m* + 3m2) (sn (£.0))%)°
whenever we have
(207 =5, = 1) (0% + 5, —2) (0% + 5, + 1) 5,2 = 0.
Thus, the following solution is obtained for Eq. (14) giving by

u(x,0) =4

272 (248ks, = 5) ((sn (x = A4,1,0)) 02 = 1) (=0° + 6+ 5,7 1)

+
(~1896% + 18962) (sn (x — A4,1,0))” +63 (dn (x — Ay1,8))” (=202 + 5, + 1)

(68)

2 2 2
1632k ((sn (x = A4,1,0)) 02 = 1) (=0% +6> 5,2 = 1)

+ 5

((dn (x = A4,0,0))° (=20 + 55+ 1) + (=3m + 3602) (sn (x = A4,1,0))° )

Using item 13 in Table 3 yields

68 (248ks, — 5) (=16m* + 16m? + 16s,2 — 1) (sn (&, 0))
(252m2 + 2525, — 126) (sn (&, 0))* — 189 (1 + cn (&, 0))
1632 (=m* + m? = 1/16 + 5,2)7 (sn (&, 0)* k

((m2 =172+ 55) (sn (&, m)* = 3/4(1 + cn (&, 9))2)27

U(X) = hg —

whenever we have
547 (207 + 25, — 1) (32m* + 160%s, — 3267 — 165,> — 85, — 1) = 0.
As a consequence, it can easily be seen that Eq. (14) admits the
following solution
u(x,t) = Ay
68 (248ks, — 5) (~166* + 1662 + 165,2 — 1) (sn (x — 4,1,0))’
(25202 + 2525, — 126) (sn (x — 4,1,0))* — 189 (1 +en (x — A,1,0))’
1632 (=64 + 6% — 1/16 + 5,2)” (sn (x — 4,1,6)) " k

(02 =172+ 5) (sm (x = 4,1,0))* = 3/4 (1 + cn (x—Azt,é’))2>2.

(69)
Also,
68 (248ks, — 5) (—16m* + 16m? + 16s,% — 1) (sn (¢, 0))*
(252m2 + 2525, — 126) (sn (&,0))* — 189 (=1 + cn (&, 0))
1632 (—m* +m® = 1/16 + 5,2)° (sn (&, 0))* k
(2 = 1/2+ 53) (sn (& m)? = 3/4 (=1 +en(2.0)7)°

UX) =1y —

10
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As a consequence, it is found that Eq. (14) admits the following
solution

u(x,t) =4
68 (248ks2 - 5) (—1604 +166% + 16s,% — 1) (sn (x - Azr,ﬂ))2

(25202 + 2525, — 126) (sn (x — A1,0))° = 189 (=1 +cn (x — A,1,0))°
1632 (=0* + 02 — 1/16 +5,2)° (sn (x — 4,1,0)) " k

(02 =172+ 5) (sm (x = A4;1,0))* =374 (=1 +en (x - Azt,Q))z)z.
(70)
+ Using item 14 in Table 3 yields
U(X) = A
68 (248ksy — 5) (—m* — 14m? + 165,2 — 1) (cn (£, 9))*
(=126m? + 2525, — 126) (cn (£, 0))* — 189 (cn (£,0) + dn (&,0))
S1k (m* + 14m? = 165,% +1)° (cn (£,0))*

2 ((m? =25, + 1) (cn (€. 0)7 +3/2(cn (&.6) + dn (. 0)7)°
whenever we have
542 (0% =25, +1) (6% + 6m +4s, + 1) (6> — 60 + 45, + 1) = 0.
Therefore, it is found that Eq. (14) admits the following solution

u(x,1) = 4
68 (248ks, — 5) (=0* — 1402 + 165, — 1) (en (x — A,1,6))’
(~12662 + 2525, — 126) (cn (x — A,1,6)) = 189 (cn (x — Ayt, 8) +dn (x — Ayt,6))’

2

S1k (m + 1462 — 165,2 +1)° (cn (x = Ay1,0))*

+

2((67 =25, + 1) (en (x = A,0,0))" +3/2 (cn (x = Ay1,6) + dn (x—Azl,a))z)ZA
Also, it reads
U(X) = 2

68 (248ks, —5) (—m* — 14m? + 165,% — 1) (sn (£, 9))*
(=126m? + 2525, — 126) (sn (£,0))* — 189 (cn (&,0) — dn (£, 0))

S1k (m* + 14m2 — 16552 + 1) (sn (&, 0))°

2((m2 =255 +1) (sn(&, 0 +3/2(en (&, 0) — dn (€, 0)°)
Hence, Eq. (14) admits the following solution (see Figs. 5-8)

+

u(x,1) =4y
68 (248ks, — 5) (—0* — 1460% + 165, — 1) (sn (x — Azt,é))z

(—12662 + 2525, — 126) (sn (x — 4,1,6))" = 189 (cn (x — Ayt,8) —dn (x — 4,1,6))°
51k (m* + 1402 — 16,2 + 1) (sn (x — 4,1,0))"

: 2((2 =25, +1) (5n (x = Ay1,0)) +3/2 (en (x = Ay1,6) — dn (x - Azt,B))z)z '

The method implementation on solving Eq. (40)

Our main assumption in the framework of Eq. (55) is to consider
the following general form of the solution the equation to the Eq. (40)
as
Ao+ HP(X) + HLPHX) + A3 P3(X) + LPHX)

Yo+ 1P X))+ 1P3(X) + 1 P(X) + 1 PHX)
The following solutions are derived from the above methodology stated
in Section “A soliton wave solution finder method”. First, we obtain

UX) =

C= 800bk3 53 +10bks,+b I = vV 10byo(20ks,—1) 4 =0 4, = 0V10bksirg
- 100k2s5+5k 20T 10V ak [ e a ’
A3=0,4 =0,

_ _ _ _ _ _ 320043553 +240k% 5,2~ 1
Y0=7071=0,7,=0,73=0,7,=0,55 = T20K255(20ksy+1)

Sy =8y, hy = 54,56 =0.
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Fig. 5.

(a)
Fig. 6. Sketch of Eq. (64) for the values s, = 1.36,m = 0.8,k = 0.9 (a) 3D shape of solitary wave profile; (b) Corresponding contour plot.
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(b)

Fig. 7. Sketch of Eq. (65) for the values s, = 1.1,m = 0.95,k = 0.25 (a) 3D shape of multi-solitons profile; (b) Corresponding contour plot.
Consequently, we find a solution for that Eq. (40) as follows

» Using item 1 in Table 3 yields
7 ) = b (20ks, — 1) .\ 6/10bk (sn. (X, 0)) (6% — 6% — 5,7 + 1)’
Vioabk  Va(=3+ (0245, +1) (n(X,0)7) w2 Yo(0ks2 = 1) | 6VI0bk(n(X.O0F (6 ~6*— 52+ 1)
v/10ak Va(=3+ (62 +s,+1) (sn(X,6))?)
71)

whenever we have

(20 =5, = 1) (0% + 5, + 1) 54 (6* +5,-2) =0
11
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(a)
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()

Fig. 8. Sketch of Eq. (71) for the values s, = —1.8,m = 0.9,k =4 (a) 3D shape of elastic multi-solitons profile; (b) Corresponding contour plot.

Also,
Vb (20ks, ~ 1)
V10ak
6106k ((sn(X,0))* = 1) (6* = m? — 5,2 + 1)
- Va (62 + s, +1) (cn(X,0)* =3 (dn(X,0)))
Consequently, we obtain that Eq. (40) has the solution

Vb (20ks, — 1)

U(X)=

u(x,t) =
V10ak
6V/100k ((sn(X,0))* = 1) (6* —m? — 5,2 + 1)
- , (72)
Va (62 + sy +1) (cn(X,0)* - 3(dn(X,6)7)
where

b (800k>s,? + 10ks, + 1)
5k (20ks, + 1)

+ Using item 2 in Table 3 yields
Vi (20ks; — 1)
V10ak
6/10bk ((sn(X,0)> = 1) (6* —m? — 5,2 + 1)
Va(2(cn(X,8))* 62 — (cn(X,9))* s, — (cn (X, 8)* — 362 +3) ’

U(X) =

whenever we have
(207 =5, = 1) (0% + 5, +1) (87 +5, —2) 5,2 =0.
So, one finds that Eq. (40) admits the following solution
Vb (20ks; - 1)
V10ak
6106k ((sn(X,0)* — 1) (6* = m? — 5,2 + 1)
Va(2(cn(X,0))% 62 = (cn(X,0))?* s, — (cn (X, 6))* — 302 +3) '
(73)

u(x,t)=

+ Using item 3 in Table 3 yields
Vb (20ks, - 1)
V10ak
6106k (6% (sn (X, 0)* = 1) (6% = m® — 5,7 + 1)
Va (6% + s, —2) (dn(X,6))* — 362 +3)

whenever we have

U(X) =

(26 =5, = 1) (8* + 5, + 1) (6% +5, = 2) 5,2 = 0.

12

Therefore, we find a solution for that Eq. (40) as follows
Vb (2065, - 1)
V10ak
6/10bk (6% (sn (X,0) = 1) (6% = m? — 5,2 + 1)
C Va((02+s,-2) @n(X,0)? —302+3)

u(x,t)=

(74)

+ Using item 4 in Table 3 yields

70 Vb (20ks, - 1) 6106k (6* - 6% — 5,% + 1)
B Va (302 (sn(X, 002 — 02 — 5, — 1)

V 10ak

whenever we have

(20 — 5, — 1) (0> + 5, +1) (0% +5, —2) 5,2 = 0.

Hence, we obtain that Eq. (40) admits the following solution

Vb (20ksy — 1)

6V 10bk (04 — 6% — 5,% + 1)

u(x,t)= . (75)

V10ak - Va (302 (sn(X,0)? - 02 -5, — 1)
Also,
b (20ks, — 1
% (X) = Vb (20ks, - 1)

V10ak
2106k (62 (sn(X,0)* = 1) (6* = m? — 5,2 + 1)
Va ((en(X,00)2 6% = 1/3 (62 + 5, + 1) (dn(X,0)7)
Hence, we find a solution for that Eq. (40) as follows
Vb (20ks, - 1)
V10ak
2v/10bk (62 (sn(X,0)* = 1) (8* = m? — 5,2 + 1)
Va ((en(X,0))% 6% = 1/3 (62 + 5, + 1) (dn(X,0))%)
(76)

u(x,t)=

» Using item 5 in Table 3 yields
b (20ks, — 1
Vi (oks, 1) |
vV 10ak

whenever we have

(20 =5, = 1) (% + 5, +1) (6% + 5, —2) 5,2 = 0.

6106k (6% — 62 — 5,2 + 1)

% (X) = ,
) Va(3(cn(X,0)% 02 —202 + 5, +1)

So, one obtains that Eq. (40) has the solution

Vb (20ks, — 1) 6106k (6* - 6% — 5, + 1)

u(x,1 = + )
v 10ak Va (3(en(X,0)2 0 202 + 5, + 1)

77)
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Fig. 9. Sketch of Eq. (79) for the values s, = —1.81,m=0.9,k=0.5,a=2,b=1 (a) 3D shape of solitary wave profile; (b) Corresponding contour plot.
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Fig. 11. Sketch of Eq. (82) for the values s, = 0.905,m = 0.9,k =2,a =0.5,b=0.1 (a) 3D shape of elastic behavior of single soliton; (b) Corresponding contour plot.

+ Using item 6 in Table 3 yields Therefore, we find the following solution
2 -1 1 42 _ o241
70 = /b (20ks, — 1) L _6VI0BK (¢ -0 - 537 +1) Wt = Vb (20ks, ) 6VIobk (e 29 22+ g
V10ak Va(3dn(X,0) +062+s,-2) V10ak Va (3@n(X,0)" +062 +5, -2)

+ Using item 7 in Table 3 yields

700 Vb (20ks, — 1) 6V 106k (sn (X, 0))* (6% — 62 — 5,2 + 1)
= + .
(20> =5, = 1) (0* + 5, +1) (0% + 5, —2) 5,2 =0. V10ak Va (62 + 55 = 2) (sn(X,0))* =3 (cn(X,0)7)

whenever we have

13
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whenever we have
(267 -5, = 1) (8% + 5, + 1) (6% +5, = 2) 5,2 = 0.
Thus, it is found that Eq. (40) has the solution (see Fig. 9)

Vb (20ks, — 1) 6V 10bk (sn (X, 0))* (6* — 6% — 5,2 + 1)
u(x,t) = + .

V10ak Va ((62 + s, = 2) (sn(X,0))* =3 (cn(X,0))
79)

+ Using item 8 in Table 3 yields
Vb (20ks, - 1)
V10ak
31/10bk (sn (X, 0))? (6* — 02 — 5,2 + 1)
Va ((62 = 1/2s5 = 1/2) (sn (X, 0) +3/2(dn (X,60))*)

whenever we have

U(X)=

(202 =5, = 1) (0% + s, + 1) (67 + 5, —2) 5, = 0.

Therefore, one can easily check that Eq. (40) admits the following
solution

Vb (20ks, — 1)
V10ak
31/10bk (sn (X, 0))> (6% — 0% — 5,2 + 1)
Va (62 = 1/2s5 = 1/2) (sn(X,0))> +3/2(dn (X, 0))%)
(80)

u(x,t)=

+ Using item 10 in Table 3 yields
Vb (20ks, — 1)
V 10ak

2V/106k (2 (sn (X, 0))? = 1) (6* —m? — 5,2 + 1)
+ .
Va((2/362 = 1/3s, — 1/3) (dn(X,0)> + (64 — 62) (sn (X, 0))?)

whenever we have

U(X) =

(292_52—1)(92+s2+1)(92+52—2)s42=0.

Consequently, we obtain that Eq. (40) has the solution (see
Fig. 10)

Vb (20ks, — 1)
V10ak
2v/10bk (62 (sn(X,0)* = 1) (6* = m? — 5,2 + 1)
Va ((2/36% = 1/3s5 = 1/3) (dn(X,0)) + (6% = 62) (sn (X, 0)))
(81)

u(x,t)=

Using item 14 in Table 3 yields
Vb (20ks, — 1)
V10ak
3106k (6% + 146% — 165, + 1) (sn (X, 0))*
- 44/a ((6% =255+ 1) (sn (X, 0)* +3/2(cn (X, 0) + dn(X,0)?*)
whenever we have

547 (0% =25, + 1) (0 + 6m +4s, + 1) (6> — 60 + 45, + 1) =0.

U(X) =

So, one can easily check that Eq. (40) admits the following
solution (see Fig. 11)

Vb (20ksy — 1)

V10ak

3v/10bk (6* + 1462 — 16552 + 1) (sn (X, 6))*
44/a (02 =255+ 1) (sn.(X,0)* +3/2 (cn (X, 0) + dn(X,0)})
(82)

u(x,t) =

14
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In all the solutions retrieved in this section, we have assumed that
b (800k3s,3 + 10ks, + 1)
5k (20ks, + 1)

It should also be emphasized that by the aid of Table 2, and considering
the limit cases of 0 and 1 for 6, several new trigonometric-type solutions
to the equations are determined.

Conclusions

In this paper, novel applications of the Lie symmetry analysis along
with a Jacobi elliptic finder method were employed to integrate the
Kawahara-KdV type equations. Firstly, the Lie symmetry analysis is
successfully applied to obtain new exact analytical solutions of the
Kawahara-KdV equations. This method determines the solutions of
the model in terms of Jacobi elliptic functions. that for some of its
particular cases, they reduce to some known trigonometric functions.
In the structure of these solutions, there is an index that for some of
the specific limit cases produces some known trigonometric functions.
Besides, numerical simulations corresponding to some of the obtained
solutions are presented. The single soliton, lump-soliton, lump-type
soliton, trigonometric and hyperbolic solitons, and solitary waves re-
ported in this paper are entirely new and valid, which have not been
presented in previous articles for this equation. These exact solutions
reflect the dynamics of different wave structures of solitons which
can be used to test exactness, comparison and study of numerical
results in the field. This is one of the significant benefits of our results
in this article. Also, the two methods used in this contribution can
be adopted to solve other problems in the field of mathematics and
physics. Further research seems to be required about the design of
new efficient analytical methods to solve partial differential equations.
Taking advantage of the superior capabilities of such techniques, the
exact solutions are determined for more real-world problems in science
and engineering. And this could be one of the best motivations for
researchers to focus more on this outstanding research field.

CRediT authorship contribution statement

Behzad Ghanbari: Conceptualization, Software. Sachin Kumar:
Conceptualization, Methodology. Monika Niwas: Validation. Dumitru
Baleanu: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

All authors have read and agreed to the published version of the

manuscript.
References

[1] Srivastava HM, Baleanu D, Machado JAT, Osman MS, Rezazadeh H, Arshed S,
et al. Traveling wave solutions to nonlinear directional couplers by modified
Kudryashov method. Phys Scr 2020;95(7):075217.
Rezazadeh H, Mirhosseini-Alizamini SM, Eslami M, Rezazadeh M, Mirza-
zadeh M, Abbagari S. New optical solitons of nonlinear conformable fractional
Schrodinger-Hirota equation. Optik 2018;172:545-53.
Rezazadeh H, Inc M, Baleanu D. Solutions for Variants of (3+1)-Dimensional
Wazwaz-Benjamin-Bona-Mahony Equations. Front Phys 2020;8(332).
Rezazadeh H. New solitons solutions of the complex Ginzburg-Landau equation
with Kerr law nonlinearity. Optik 2018;167:218-27.
Ghanbari B. On the non-differentiable exact solutions to Schamel’s equation with
local fractional derivative on Cantor sets. Numer Methods Partial Differential
Equations 2020. http://dx.doi.org/10.1002/num.22740.

[2]

[3]

[4]

[5]


http://refhub.elsevier.com/S2211-3797(21)00174-1/sb1
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb1
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb1
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb1
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb1
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb2
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb2
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb2
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb2
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb2
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb3
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb3
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb3
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb4
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb4
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb4
http://dx.doi.org/10.1002/num.22740

B. Ghanbari et al.

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Ghanbari B. On novel nondifferentiable exact solutions to local fractional
Gardner’s equation using an effective technique. Math Methods Appl Sci 2020.
http://dx.doi.org/10.1002/mma.7060.

Ghanbari B. Abundant exact solutions to a generalized nonlinear Schrédinger
equation with local fractional derivative. Math Methods Appl Sci 2021. http:
//dx.doi.org/10.1002/mma.7302.

Munusamy K, Ravichandran C, Nisar KS, Ghanbari B. Existence of solutions
for some functional integrodifferential equations with nonlocal conditions. Math
Methods Appl Sci 2020;43(17):10319-31.

Ghanbari B, Nisar KS, Aldhaifallah M. Abundant solitary wave solutions to an
extended nonlinear Schrodinger’s equation with conformable derivative using an
efficient integration method. Adv Difference Equ 2020;(1):1-25.

Ghanbari B, Rada L, Inc M. Solitary wave solutions to the Tzitzeica type
equations obtained by a new efficient approach. J Appl Anal Comput
2019;9(2):568-89.

Esen AA. Numerical solution of the equal width wave equation by a lumped
Galerkin method. Appl Math Comput 2005;168(1):270-82.

Juan L, Xu T, Meng XH, Zhang YX, H.Q. Zhang. Lax pair, Backlund transfor-
mation and N-soliton-like solution for a variable-coefficient Gardner equation
from nonlinear lattice, plasma physics and ocean dynamics with symbolic
computation. J Math Anal Appl 2007;336(2):1443-55.

Hirota R. Exact solution of the Korteweg—de Vries equation for multiple collisions
of solitons. Phys Rev Lett 1971;27(18):1456-8.

Zheng Yi M, Hua GS, Zheng CL. Multisoliton excitations for the Kadomtsev-
Petviashvili equation. Z Natforsch A 2006;61(1-2):32-8.

Naher H, Abdullah FA, Akbar MA. Generalized and improved G’/G -expansion
method for (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation. PLoS
One 2013;8(5):e64618.

Yaro D, Seadawy AR, Lu D, Apeanti WO, Akuamoah SW. Dispersive wave
solutions of the nonlinear fractional Zakhorov-Kuznetsov-Benjamin-Bona-Mahony
equation and fractional symmetric regularized long wave equation. Results Phys
2019;12:1971-9.

Ibragimov NH, editor. CRC handbook of Lie group analysis of differential
equations. Boca Raton, Fla, USA: CRC Press; 1994, p. 1-3.

Jafari H, Kadkhoda N, Baleanu D. Fractional Lie group method of the
time-fractional Boussinesq equation. Nonlnear Dynam 2015;81(3):1569-74.
Kumar S, Kumar A, Kharbanda H. Lie symmetry analysis and generalized
invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations.
Phys Scr 2020.

Kumar S, Kumar D. Solitary wave solutions of (3+1)-dimensional extended
Zakharov-Kuznetsov equation by Lie symmetry approach. Comput Math Appl
2019;77:2096 2113.

Kumar S, Kumar A. Lie symmetry blackuctions and group invariant solutions
of (2+1)- dimensional modified Veronese web equation. Nonlinear Dynam
2019;98:1891-903.

Kumar D, Kumar S. Solitary wave solutions of pZK equation using Lie point
symmetries. Eur Phys J Plus 2020;135:162.

Kumar M, Tanwar DV, Kumar R. On closed form solutions of (2+1)-breaking
soliton system by similarity transformations method. Comput Math Appl
2018;75:218-34.

Kumar S, Singh K, Gupta RK. Painleve analysis, Lie symmetries and exact
solutions for (2+1)- dimensional variable coefficients Broer-Kaup equations.
Commun Nonlinear Sci Numer Simul 2012;17:1529-41.

15

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Results in Physics 23 (2021) 104006

Liu JG. Lump-type solutions and interaction solutions for the (2 + 1)-dimensional
generalized fifth-order KdV equation. Appl Math Lett 2018;86:36-41.

Zhao Z, Chen Y, Han B. Lump soliton, mixed lump stripe and periodic lump solu-
tions of a (2 + 1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation.
Modern Phys Lett B 2017;31(14):1750157.

Liu JG, Du JQ, Zeng ZF, Nie B. New three-wave solutions for the (3
+ 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Nonlinear Dynam
2017;88(1):655-61.

Kawahara T. Oscillatory solitary waves in dispersive media. J Phys Soc Japan
1972;33:260-4.

Hunter JK, Scheule J. Existence of perturbed solitary wave solutions to a model
equation for water waves. Physica D 1988;32:253-68.

Kudryashov NA. On types of nonlinear nonintegrable equations with exact
solutions. Phys Lett A 1991;155(4-5):269—275.

Boyd JP. Weakly non-local solitons for capillary-gravity waves: fifth degree KdV
equation. Physica D 1991;48:129-46.

Sirendaoreji SJ. New exact travelling wave solutions for the Kawahara and
modified Kawahara equations. Chaos Solitons Fractals 2004;19:147-50.
Wazwaz AM. New solitary wave solutions to the Kuramoto-Sivashinsky and the
Kawahara equations. Appl Math Comput 2006;182:1642-50.

Yusufoglu E, Bekir A. AlpM. Periodic and solitarywave solutions of Kawahara
and modified kawahara equations by using sine—cosine method. Chaos Solitons
Fractals 2008;37:1193-7.

Wang GW, Xu TZ. Group analysis and new explicit solutions of Simpli-
fied Modified Kawahara Equation with Variable Coefficients. Abstr Appl Anal
2013;139160:8.

Kaur L, Gupta RK. Kawahara equation and modified Kawahara equation with
time dependent coefficients: symmetry analysis and generalized G’/G-expansion
method. Math Methods Appl Sci 2013;36(5):584-600.

Dereli L, Idris D. Numerical solutions of the Kawahara Type Equations us-
ing Radial Basis Functions. Numer Methods Partial Differential Equations
2012;28(2):542-53.

Natali F. A note on the stability for Kawahara-KdV type equations. Appl Math
Lett 2010;23(5):591-6.

Liu H, Li J, Liu L. Lie symmetry analysis, optimal systems and exact solutions
to the fifth-order KdV types of equations. J Math Anal Appl 2010;368(2):551-8.
Demina MV, Kudryashov NA. From Laurent series to exact meromorphic
solutions: the Kawahara equation. Phys Lett A 2010;374(4023):39-4029.
Kudryashov NA, Sinelshchikov DI, Demina MV. Exact solutions of the generalized
Bretherton equation. Phys Lett A 2011;375(1074):7-1079.

Olver PJ. Applications of Lie groups to differential equations. New York:
Springer; 1993.

Bluman GW, Kumei S. Symmetries and differential equations. New York:
Springer; 1989.

Ghanbari B, Baleanu D. A novel technique to construct exact solutions for
nonlinear partial differential equations. Eur Phys J Plus 2019;1;134(10):506.
Ghanbari B, Baleanu D. New solutions of Gardner’s Equation using Two
Analytical Methods. Front Phys 2019;6(7):202.

Sajid N, Akram G. Novel solutions of Biswas-Arshed equation by newly ¢°-model
expansion method. Optik 2020;1(211):164564.


http://dx.doi.org/10.1002/mma.7060
http://dx.doi.org/10.1002/mma.7302
http://dx.doi.org/10.1002/mma.7302
http://dx.doi.org/10.1002/mma.7302
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb8
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb8
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb8
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb8
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb8
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb9
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb9
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb9
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb9
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb9
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb10
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb10
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb10
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb10
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb10
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb11
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb11
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb11
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb12
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb12
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb12
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb12
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb12
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb12
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb12
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb13
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb13
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb13
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb14
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb14
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb14
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb15
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb15
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb15
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb15
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb15
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb16
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb16
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb16
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb16
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb16
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb16
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb16
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb17
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb17
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb17
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb18
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb18
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb18
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb19
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb19
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb19
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb19
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb19
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb20
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb20
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb20
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb20
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb20
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb21
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb21
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb21
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb21
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb21
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb22
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb22
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb22
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb23
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb23
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb23
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb23
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb23
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb24
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb24
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb24
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb24
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb24
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb25
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb25
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb25
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb26
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb26
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb26
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb26
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb26
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb27
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb27
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb27
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb27
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb27
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb28
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb28
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb28
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb29
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb29
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb29
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb30
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb30
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb30
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb31
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb31
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb31
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb32
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb32
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb32
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb33
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb33
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb33
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb34
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb34
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb34
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb34
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb34
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb35
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb35
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb35
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb35
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb35
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb36
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb36
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb36
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb36
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb36
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb37
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb37
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb37
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb37
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb37
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb38
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb38
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb38
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb39
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb39
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb39
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb40
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb40
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb40
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb41
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb41
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb41
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb42
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb42
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb42
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb43
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb43
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb43
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb44
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb44
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb44
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb45
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb45
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb45
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb46
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb46
http://refhub.elsevier.com/S2211-3797(21)00174-1/sb46

	The Lie symmetry analysis and exact Jacobi elliptic solutions for the Kawahara–KdV type equations
	Introduction
	Lie symmetry analysis
	Lie symmetry analysis for Kawahara–KdV equation
	Lie symmetry analysis for the modified Kawahara–KdV equation

	The Lie symmetry reductions and exact analytical solutions
	Lie symmetry reductions and exact solutions for the Kawahara–KdV equation
	For vector field a1X1+a3X3=a1∂∂t+a3∂∂x
	For vector field X1=∂∂t
	For vector field X2=t∂∂x+∂∂u

	The Lie symmetry reductions and exact solutions for a modified Kawahara–KdV equation
	For vector field C1V1+C2V2=C1∂∂t+C2∂∂x
	For vector field V1=∂∂t


	A soliton wave solution finder method
	The method implementation on solving eq.14 
	The method implementation on solving eq.19
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


