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ABSTRACT 
 

COMPUTATIONAL ANALYSIS OF EFFECTS OF OPTICAL SOURCE 

HAVING RANDOM PHASE ON THE DATA TRANSFER IN FREE SPACE 

OPTICS SYSTEMS 

 

Güvenç, Ali Bilge 

M. Sc., Department of Computer Engineering 

Supervisor: Prof. Dr. Turhan Alper 

January 2006, 73 pages 

 

This study describes the effects of spatial random source phase and atmospheric 

turbulence on the laser intensity profile of a Free Space Optics system. The 

work is done in two steps. First, effects of the received intensity variations is 

studied for the speckle (in the absence of atmosphere), then atmospheric 

turbulence is introduced to simulation to examine the intensity profiles in the 

atmospheric optical link. At the end, the performance of an FSO system is 

examined depending on these effects. 

 

Keywords: Free Space Optics, Spatial Random Phase, Atmospheric Turbulence 
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ÖZ 
 

RASGELE FAZLI OPTİK KAYNAKLARIN SERBEST UZAY OPTİK 

SİSTEMLERDE VERİ İLETİMİ ÜZERİNDEKİ ETKİSİNİN BİLGİSAYAR 

ANALİZİ 

 

Güvenç, Ali Bilge 

Yüksek Lisans, Bilgisayar Mühendisliği 

Tez Yöneticisi: Prof. Dr. Turhan Alper 

Ocak 2006, 73 sayfa 

 

Bu çalışma, uzaysal rasgele kaynak fazının ve atmosferik türbülansın Serbest 

Uzay Optik bir sistemin lazer yoğunluk profili üzerindeki etkilerini 

incelemektedir. Bu iş iki adımda gerçekleştirilmektedir. İlk olarak, alıcıdaki ışık 

şiddeti değişimlerinin etkisi speckle için (atmosfer olmadığı durumda) 

incelenmiş, daha sonra atmosferik optik link’deki ışık şiddeti profillerini 

incelemek için atmosferik türbülans simülasyona dahil edilmiştir. Sonuç olarak, 

bu etkilere bağlı olarak Serbest Uzay Optik bir sistemin perfonmansı 

incelenmektedir. 

 

Anahtar Kelimeler: Serbest Uzay Optik, Uzaysal Faz, Atmosferik Türbülans 
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CHAPTER 1 
 

 
INTRODUCTION 

 
 
 

1.1 Free Space Optics 
 
Free Space Optics (FSO), also called Free Space Photonics (FSP) or Optical 

Wireless, refers to the transmission of modulated visible or infrared (IR) beams 

through the atmosphere to obtain broadband communications [1]. FSO systems are 

used to transmit voice, data and video up to 5km distances. Communication with 

FSO systems is possible as long as there is a clear line of sight between the source 

and the destination. Some of the applications of Free Space Optics systems are; 

 

Providing broadband communication wherever line-of-sight exists and cable-ness 

access solutions are not available or are too expensive. Therefore with the 

advantages of high-speed and rapid deployment wireless links, FSO overcomes 

limitations of traditional radio wireless networks, ADSL, VDSL and cable modem 

solutions 

 

Used in first- or last-mile carrier applications, and in GSM, GPRS and 3G wireless 

networks. 

 

Used in Metropolitan Area Networks (MAN) where clients can extend existing 

infrastructure or entirely bypass local-loop connections. Mesh, Ring and Star 

network topologies are used to provide high availability solutions. 
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1.2 Atmospheric Effects on FSO Systems 
 

The atmosphere of the earth affects the transmission of all types of electro-

magnetic radiation used to provide communications through the atmosphere. 

Radio, microwave and FSO systems are affected to different degrees by weather 

due primarily to the differences in wavelength. An FSO signal propagating 

through the earth's atmosphere is subject to attenuation and distortion due to 

absorption and scattering by aerosols such as fog, and to due to absorption and 

scattering by molecules, and due to atmospheric turbulence. All three conditions 

can degrade the received light energy [2]. 

 

Molecular Absorption is caused mainly by the water vapor, carbon dioxide and 

ozone content of the air along the transmission path. As long as the correct 

wavelength is chosen molecular absorption is not an issue with FSO systems. 

There are good transmission windows, greater than ninety percent transmittance, at 

both the 810nm and 1550nm wavelengths that are commonly used in FSO systems 

[3]. 

 

Scattering has a much greater effect than absorption. The atmospheric scattering of 

light is a function of its wavelength and the number and size of scattering particles 

in the air. The optical visibility along the path is directly related to the number and 

size of these particles [2]. Visibility distance is defined as the distance that the 

human eye can just distinguish a one meter square black target against a white 

background. 

Scattering is caused when the wavelength collides with the particles such as fog 

and smoke. The physical size of the particle determines the type of scattering. 

When the particle is smaller than the wavelength, this is known as Rayleigh 
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scattering. When the particle is of comparable size to the wavelength, this is 

known as Mie scattering. When the particle is much larger than the wavelength, 

this is known as non-selective scattering. In scattering, there is no loss of energy, 

only a directional redistribution of energy that may have significant reduction in 

beam intensity for longer distances. 

 

Atmospheric Turbulence is the subject of which its effect is simulated in chapter 

4. The visual distortion of images seen looking down a hot asphalt road is known 

as shimmer, or atmospheric turbulence. Turbulence is a function of time of 

daytime heating terrain, cloud cover, wind, and height of the beam path above the 

source of turbulence. Beam scintillation is the most common form of atmospheric 

turbulence [4]. 

 

The index of refraction of air is dependent upon the temperature. Because the 

refraction index along the path changes, at receiver beam having random 

amplitude and phase is received.  

 

Beam scintillation is a small-scale destructive interference within the beam's cross 

section which causes variations in the power density at the receiver. Beam 

scintillation creates a random fading in the carrier beam intensity which causes the 

signal amplitude decrease below the threshold values and error or complete lost of 

communication for short terms.  

 

 

Atmospheric turbulence introduces quite complex variations. However, it can 

usually be dealt with by proper system design, mounting precautions and sight 

selection. 
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1.3 Laser Wavelength Selection for FSO 
 

Laser communications systems should be designed to be eye-safe, which means 

that they cause no danger to people who might encounter the communications 

beam. Laser eye safety is classified by the International Electro-technical 

Commission (IEC). A laser transmitter that is completely safe when viewed by the 

unaided eye is designated IEC Class 1M. 

 

The eye-safe limits vary with wavelength. Commercially available optical wireless 

hardware can be classified into two categories. First, systems that operate at a 

wavelength near 800 nm and second, systems that operate near 1550 nm. Laser 

beams at 800 nm are near-infrared and therefore invisible so like visible 

wavelengths, the light passes through the cornea and lens and is focused onto a 

tiny spot on the retina which applies for visible and near-infrared wavelengths in 

the range of 400 to 1400 nm [5]. The light beam entering the eye in this retinal-

hazard wavelength region is concentrated by a factor of 100,000 times when it 

strikes the retina. Thus, at 800 nm the retina could be permanently damaged by 

some commercially available optical-wireless products before the victim is aware. 

However, laser beams at wavelengths greater than 1400 nm are absorbed by the 

cornea and lens, and do not focus onto the retina. Because of this, wavelengths 

greater than 1400 nm are allowed approximately 50 times greater intensities than 

wavelengths near 800 nm. This fact can be used by specifying a wavelength in the 

1550 nm range because using fifty times larger laser power allows the laser to 

propagate over longer distances and higher data rates [2]. 

In order to fulfill the requirements discussed above in commercially available 

devices 1550 nm is used as the wavelength of laser so in the simulation of 

thesis the wave length is selected as 1550 nm. 
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CHAPTER 2 
 
 

ELECTROMAGNETIC WAVE PROPAGATION 
 
 
 

2.1 Introduction  
 

In this chapter, electromagnetic propagation is studied. The basic concepts of 

theory and basic formulas are given for electromagnetic wave propagation.  The 

theory is investigated for wave equation and wave propagation.  

2.2 Wave Equation  
  

Small transverse displacements, s, obey the one-dimensional wave equation, as the 

propagation of a transverse disturbance or a transverse wave is assumed to lie 

always in a plane [6]. 

 

01
2

2

22

2

=
∂
∂

−
∂
∂

t
s

cx
s                                                                                                 (2.1) 

 

Here c represents the speed of the waves. This equation has quite general 

applicability.  

 

The displacement of the string from equilibrium  is plotted [7] as a function 

of x for a particular values the time t in figure 2-1. 

),( txs
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Figure 2-1 : Transverse displacement of a string. The segment between x  and is acted 
upon by the tensions T along the tangent to the string at both ends. 

xx Δ+

 

To derive equation (2.1) for the string, we begin by applying Newton’s second law 

of motion to a small section of the string of length lΔ  located between x 

and , as shown in figure 2-1. At any given point the tension always acts 

along the tangent to the string. The angle 

xx Δ+

θ  between tangent and the axis can be 

obtained from 

 

x
s
∂
∂

=θtan                                                                                                            (2.2) 

 

Making the necessary assumption that the angle θ  measured in radians is small 

compared with unity; 

 

1<<θ                                                                                                                  (2.3) 

 

This allows us to make these approximations: 

 

 6



θθθ ≈≈ tansin                                                                                                   (2.4) 

 

and 

 

1cos ≈θ                                                                                                               (2.5) 

 

The horizontal and vertical magnitudes are given below as θ  being the angle 

between tangent and the axis at a given point. 

 

TTThor ≈= θcos , a constant                                                                              (2.6) 

 

and 

 

x
sTTTTvert ∂
∂

=≈= θθ tansin                                                                             (2.7) 

 

The last equation follows from equation (2.2). 

 

The clear horizontal force on the given part of string is then zero which means that 

there is no acceleration in the x direction but there is a clear vertical force which is 

given by 

 

( ) ( tx )
x
sTtxx

x
sTFvert ,,

∂
∂

−Δ+
∂
∂

=                                                                        (2.8) 

 

If we simplify above equation (2.8) to ( ) cc xaxa Δ≈Δ μθμ cos/  which is also 

known as the motion equation, where μ  is the mass per unit length of the string 
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and  is the vertical or transverse component of acceleration of the center of the 

segment. Then it becomes approximately; 

ca

 

⎟
⎠
⎞

⎜
⎝
⎛ Δ

+
∂
∂

= txx
x

sac ,
22

2

                                                                                           (2.9) 

 

Combining equations (2.8) and (2.9) into the equation of motion gives 

 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ Δ+

∂
∂

Δ=⎥⎦
⎤

⎢⎣
⎡

∂
∂

−Δ+
∂
∂ txx

x
sxtx

x
stxx

x
sT ,

2
1,, 2

2

μ                                           (2.10) 

 

If we divide equation (2.10) by xΔ  and take the limit of this as  goes to zero, 

which allows us to apply the definition of derivative and obtain 

xΔ

 

2

2

2

2

t
s

x
sT

∂
∂

=
∂
∂ μ                                                                                                    (2.11) 

 

Equation (2.11) is of the form of (2.1) provided that 

 

μ
Tc =2                                                                                                               (2.12) 
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2.3 The Three-Dimensional Wave Equation  
 
In three dimensions the wave equation (2.1) 

 

01
2

2

22

2

=
∂
∂

−
∂
∂

t
s

cx
s                                                                                               (2.13) 

 

can be generalized to 

 

0101
2

2

2
2

2

2

22

2

2

2

2

2

=
∂
∂

−∇=
∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

tc
or

tczyx
ρρρρρρ                                 (2.14) 

 

Here  is known as the vector differential operator “dell”. The coefficients in 

Cartesian coordinate system are given by 

∇

( )zyx ∂∂∂∂∂∂ /,/,/ , and  is an 

abbreviation for the inner product or dot product of ∇  with itself: 

2∇

( )2222222 /// zyx ∂∂+∂∂+∂∂=∇=∇⋅∇ . The function ( tzy ),,x,ρ  could 

represent one of several physical quantities that can obey equation (2.14) [7]. 

 

Light consists of electromagnetic waves. In free space each spatial component of 

electric field E and the magnetic flux density B obeys an equation of the form of a 

three-dimensional wave equation given in equation (2.14). In addition to satisfy 

the wave equation, E and B must satisfy the electromagnetic theory known as 

Maxwell’s equations which will be discussed in section 2.4. These extra equations 

means that for the individual elementary sinusoidal components of the waves, 

vectors E and B must be mutually perpendicular and also perpendicular to the 

direction of propagation. This transverse nature of light waves gives rise to the 

various phenomena associated with the term polarization [7]. In the theory, the 
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vector nature of optical disturbance is the vector nature of E and B and it is treated 

as a scalar. 

2.4 Optical Waves in Free Space 
 

If we apply Maxwell’s equations which are known as the equations of 

electromagnetic theory to a charge and current free region, as a result we get three-

dimensional wave equation.  

 

In free space, the four Maxwell’s equations are given as; 

                                                                                                          (2.15) 

                                                                                                     (2.16) 

                                                                                                  (2.17) 

                                

0
0
1

1
c t

c t

∇ ⋅ =
∇ ⋅ =

∂
∇× =

∂
∂

∇× = −
∂

E
B

EB

BE                                                                                                (2.18) 

 

We use c.g.s. Gaussian units. The symbol c=3 x 10 8 m/sec. is the velocity of light 

in vacuum. The electric field E is in statvolts/cm or dynes/stat-coulomb. The 

magnetic induction B is in gauss [7]. 

 

If we take the curl of both sides of the curl E equation we get the derivation of the 

wave equation given below; 

 

( ) ( ) EEEE 22 −∇=∇−⋅∇∇=×∇×∇                                                                (2.19) 

 

The equation (2.19) holds because 0=⋅∇ E . Then 
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)(12 BE ×∇
∂
∂

−=∇−
tc

                                                                                      (2.20) 

 

Then use the curl B equation from (2.15-to-18). 

 

2

2

2
2 1

tc ∂
∂

−=∇−
EE                                                                                             (2.21) 

 

or 

 

01
2

2

2
2 =

∂
∂

−∇
tc
EE                                                                                             (2.22) 

In a similar way, if we take the curl of the curl B equation we get; 

 

( ) ( ) BBBB 22 −∇=∇−⋅∇∇=×∇×∇                                                               (2.23) 

 

and then make use of the curl E equation to obtain 

 

01
2

2

2
2 =

∂
∂

−∇
tc
BB                                                                                             (2.24) 

 

Therefore each component of B and E obeys the usual three-dimensional wave 

equation  

 

01
2

2

2
2 =

∂
∂

−∇ xx tc
EE                                                                                       (2.25) 
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These equations given above and their solutions are all dependent to each other 

because of Maxwell’s equations given in equation (2.15-to-18). 

 

2.5 Plane Waves 
 

If we assume that ρ  is a function of x and t, a simple situation comes through. 

That means, we reduce equation (2.14) to equation (2.1) and have the same general 

solution; 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ −=

c
xtg

c
xtftx,ρ                                                                            (2.26) 

 

In this situation the propagating wave is constant over each yz plane and consists 

of two parts. First part is propagating along +x axis with the velocity magnitude c 

which is the f term and the second one is propagating along the –x axis with 

velocity magnitude c which is the g term. 

 

Consider a special case of equation (2.26) which is a sinusoidal traveling plane 

wave and g is assumed to be zero; 

 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −= φπρ

c
xtvA

c
xtftx 2cos,                                                       (2.27) 

 

Here A is called the amplitude of the wave, v the frequency (in cycles per second), 

and φ  the constant phase angle. The frequency is generally shown in angular form 

that; 
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vw π2=                                                                                                              (2.28) 

 

and measured in radians per second. Equation (2.27) can also be written as 

 

( φφ
λ
πρ +−=⎟

⎠
⎞

⎜
⎝
⎛ +−= kxwtAxwtAtx cos2cos),( )                                           (2.29) 

 

Where  λ  is  the wavelength and given by 

 

v
c

=λ                                                                                                                  (2.30) 

 

and represents the crest-to-crest or trough-to-trough spatial distance between 

waves at a given time [7]. The parameter λπ /2=k  is called the wave number. 

The total argument of the cosine function is shown below 

 

( φφ
λ
πφπ +−=⎟

⎠
⎞

⎜
⎝
⎛ +−−⎥

⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ − kxwtxwt

c
xtv 22 )                                           (2.31) 

 

which represents the total phase at x and t. For the case of a wave propagating in 

the +x direction, the total phase increases with time at a given point. Also it 

decreases linearly with x at a given time. 

 

Expressions like equation (2.2) can be written in order to describe uniform 

disturbances over the xz plane propagating along the +y or –y axis or uniform 

disturbances over the xy plane propagating along the +z or –z axis. 
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If the normal to the plane of the propagating wave is not along a coordinate axis, 

but along a direction of unit vector ( )zyx nnn ,,=n , a general plane wave 

propagating in the +n direction can be written in the form  

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++
−=⎟

⎠
⎞

⎜
⎝
⎛ ⋅
−=

c
znynxn

tf
c

tftr zyxnr,ρ                                                 (2.32) 

 

The above equation (2.32) is a solution of equation (2.14). In order to obtain the 

same structure first, 

 

'f
c
n

x
f x−=
∂
∂                                                                                                       (2.33) 

 

and then 

 

''2

2

2

2

f
c
n

x
f x−=

∂
∂                                                                                                 (2.34) 

 

it becomes in the form 

 

2

2

222

222

2

2

2

2

2

2 1''1''
t

f
c

f
c

f
c

nnn
z

f
y

f
x

f zyx

∂
∂

==
++

=
∂
∂

+
∂
∂

+
∂
∂                              (2.35) 

 

According to the definition of equation (2.32), this gives a constant value for the 

disturbance ρ  at a given value of time for all values of the position vector r 

obeying . Such an equation defines a plane perpendicular to n. As the 

value of  increases algebraically, the plane moves in the +n [7]. 

const=⋅nr

nr ⋅
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The general expressions for a disturbance moving in the –n direction is 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ⋅
+=

c
tgtr nr,ρ                                                                                           (2.36) 

 

2.6 Spherical Waves 
 
If we assume that the function ( )t,rρ  has a spherical symmetry about the origin, 

another simple solution of three-dimensional wave equation comes through.  

 

( ) ( trt ,, )ρρ =r                                                                                                   (2.37) 

 

Only, where 

 

222 zyxr ++=                                                                                              (2.38) 

 

To calculate in case we begin with ρ2∇

 

( )
r
x

rx
r

r
tr

x
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
∂
∂

∂
∂

=
∂
∂ ρρρ ,                                                                                (2.39) 

 

and differentiate once more to obtain 
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                                                      (2.40) 

                                                      (2.41) 

                                                      (2.42) 

 

 

2
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2 2
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1 1

1 1

1 1 1

x x
x x r r r r x r r
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r r x r r x

x
r r r r r r r

ρ ρ ρ

ρ ρ

ρ ρ ρ

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛= = +⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝
∂ ∂ ∂ ∂⎛ ⎞= + ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
= + − +⎜ ⎟∂ ∂ ∂⎝ ⎠

ρ ⎞
⎟
⎠

2

2

2

2

3

2

2

2 1
rr

x
rr

x
rrx ∂

∂
+

∂
∂

−
∂
∂

=
∂
∂ ρρρρ                                                                         (2.43) 

 

In the same way we obtain the other derivatives: 

 

2

2

2

2

3

2

2

2 1
rr

y
rr

y
rry ∂

∂
+

∂
∂

−
∂
∂

=
∂
∂ ρρρρ                                                                        (2.44) 

2

2

2

2

3

2

2

2 1
rr

z
rr

z
rrz ∂

∂
+

∂
∂

−
∂
∂

=
∂
∂ ρρρρ                                                                         (2.45) 

 

If we calculate the summation of three equations  

                                  (2.46) 

 

                                                                                             (2.47) 

( ) ( )

( )

2 2 2 2 2 2 2
2

3 2

2 2

2 2

3

2 1

x y z x y z
r r r r r r

r
r r r r r

2

ρ ρ ρρ

ρ ρ ρ

+ + + +∂ ∂
∇ = − +

∂ ∂
∂ ∂ ∂

∂
∂

=
∂ ∂ ∂

= +
 

 

The wave equation then becomes 

 

( )[ ] ( ) 0,1,1
2

2

22

2

=
∂
∂

−
∂
∂ tr

tc
trr

rr
ρρ                                                                     (2.48) 
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or 

 

( )[ ] ( )[ ] 0,1, 2

2

22

2

=
∂
∂

−
∂
∂ trr

tc
trr

r
ρρ                                                                     (2.49) 

 

Because the mathematical interpretation of the differential equation for the 

function ( )[ trr , ]ρ  is same as the one-dimensional wave equation, general solution 

for this expression can be written in the form of equation (2.1) as 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ −=

c
rtg

c
rtftrr ,ρ                                                                            (2.50) 

 

The actual disturbance ρ  then takes the form 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ −=

c
rtg

rc
rtf

r
tr 11,ρ                                                                       (2.51) 

 

The first term in equation (2.51) can be interpreted as spherically symmetric 

disturbance that originates at the origin and propagates outward with the velocity 

c. The amplitude of the disturbance falls off as 1/r [7]. 

 

 

 

 

 

 17



CHAPTER 3 
 
 

HUYGENS – FRESNEL AND FIELD INTEGRAL 
 
 

3.1 Introduction 
 
In this chapter the theoretical and mathematical background that is used in the 

simulation is given. The mainly used mathematical term in the simulation is 

Huygens-Fresnel principle. Extended form of the Huygens-Fresnel definition of 

field integral is used to find the field of the propagating light. By using this field,  

the intensity of the light beam can be derived. The light beam has a spatial random 

source phase which is described in this chapter. Parameters of atmospheric 

turbulence affecting the propagating light are also given. 

 

3.2 The Huygens - Fresnel Principle 
 
The Huygens-Fresnel principle states that every point on the primary wavefront 

can be thought as a continuous emitter of secondary wavelets (sources) and these 

secondary wavelets combine to produce a new wavefront in the direction 

propagation. 

 

The basic idea of the Huygens-Fresnel principle is that the light disturbance at a 

point arises from the superposition of secondary waves that proceed from a surface 

situated between this point and the light source. This principle expresses the 

solution of the homogeneous wave equation, at an arbitrary point in the field, in 
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terms of the solution and its first derivatives at all points on an arbitrary closed 

surface surrounding the point [6]. 

 

The laser shows the property of a monochromatic wave having a well-defined 

frequency . We can calculate the irradiance at a given point by taking the square 

of component of field at this frequency. The Fourier integral of the field on a fixed 

point r is 

v

 

( ) ( ) dvevEtE ivtπ2,, rr ∫
∞

∞−

∧

=                                                                                      (3.1) 

 

The Fourier coefficient  still depends on the position. Because the original 

field  is real, 

( vE ,r
∧

)

)( tE ,r
∧

E  must obey the condition 

 

( ) ( vEvE −=
∧∧

,, * rr )                                                                                                (3.2) 

 

If we write 

 

( ) ( ) ( )vievEvE ,,, rrr φ
∧∧

=                                                                                          (3.3) 

 

we can evaluate the solution 
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                                                           (3.4) 

                                                           (3.5) 

 

( ) ( ) ( )

( )

0

2

0

, 2 , cos 2 ,

Re 2 , ivt

E t E v vt v dv

E v e dvπ

π φ
∞ ∧

∞ ∧

= +⎡ ⎤⎣ ⎦

=

∫

∫

r r r

r

 

Equation (3.4) expresses the field at r as the real part of a superposition of 

complex exponentials with positive frequency  and with spatially dependent 

complex coefficient  [7]. 

v

( vE ,2 r
∧

)

)
 

If we write  in terms of a complex spatially dependent, time-independent 

wave function , it becomes 

( tE ,r

( )r
~
E

 

( ) ( ) ( ) ivtivt eEevEtE ππ 2
~

2 Re,2Re, rrr ≡=
∧

                                                             (3.6) 

 

If equation (3.5) is substituted into the time-independent three-dimensional wave 

equation, given by, 

 

01
2

2

2

~
2 =

∂
∂

−∇
t
E

c
E                                                                                               (3.7) 

 

time-independent wave equation which is also known as Helmholtz equation is 

derived as 

 

0
~

2
~

2 =+∇ EkE                                                                                                    (3.8) 
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where λππ /2/2 == cvk . 

 

If we consider a plane wave propagating in the +x direction: 

 

                                                                       (3.9) 

 

         (3.10) 

( )

( ) 2

, cos 2

Re i ikx ivt

xE t A v t
c

Ae e eφ π

π φ

−

⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤= ⎣ ⎦

r + =

It can be found that equation (3.8) obeys equation (3.7) by identifying the factors 

in parenthesis . ( )rE

 

ikxi eAeE −= φ
~

                                                                                                     (3.11) 

 

where  is a complex constant. And similarly an exponential of the form φiAe

 

rk⋅−= ii eAeE φ
~

                                                                                                    (3.12) 

 

is a solution of equation (3.12) that represents the spatial part of a plane wave 

propagating in the direction of the vector k, where 

 

λ
π2

== kk                                                                                                       (3.13) 

 

The time-dependent counter part is 

 

( ) ( )φπ +⋅−= rkr vtAtE 2cos,                                                                           (3.14) 
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A time-independent spherical wave propagating outward from a point source can 

be written 

 

( ) [ φρπ
ρ

+−= kvtAtE 2cos,r ]                                                                            (3.15) 

 

where rs is the center of the wave and srr −=ρ  is its radius. This can be written 

as the real part of 

 

( ) ivt
ik

i eeAetE π
ρ

φ

ρ
2, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−

r                                                                                  (3.16) 

 

The effects of interference by superposition of spherical waves required the 

superposition of a limited number of these elementary plane and spherical waves. 

Adding two spherical waves 

 

( ) 21 rr

2

rr

1 rrrr
r −−−−

−
+

−
= kk eAeAE 21

~
                                                               (3.17) 

 

 

Figure 3-1: Diffraction by two pinholes in a screen. 
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In figure 3-1, the pinholes are so small that each radiates a single Huygens’ 

wavelet. From P1 the wave P is of the form 1rr

1rr
−−

−
ikeA1 . The complex 

coefficient A1 determines the strength and phase of the wavelet. According to 

Huygens’ Principle, this wavelet is reradiated by incident wave P1 impinging on 

the screen from the left. Thus, it can be expected A1 to be proportional to the 

incident field , also A( )1

~
rincE 1 to be proportional to 1σΔ , the element area of the 

pinhole, provided that it is so small that  and ( )'
~

rincE 'rr −k  can be treated as 

constant for r’ anywhere in the pin hole [7]. So 

 

( ) 11

~

1 σΔ= rincECA                                                                                             (3.18) 

 

The factor C in equation (3.18) is defined as 

 

λπ
iikC ==

2
                                                                                                      (3.19) 

 

Thus, equation (3.18) can be written as 

 

( ) 11

~

1 σ
λ

Δ≈ rincEiA                                                                                             (3.20) 

 

Similarly from the other pinhole 

 

( ) 22

~

1 σ
λ

Δ≈ rincEiA                                                                                            (3.21) 
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Therefore the spatial part of the field at point P is given by 

 

( ) ( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
Δ

−
+Δ

−
= −−−−

2
2

~

1
1

~
~

σσ
λ

21 rr

2

rr

1 rr
r

rr
rr ikincikinc eEeEiE                                     (3.22) 

 

For N pinholes at rj, j = 1,2,…,N with areas jσΔ  equation (3.22) can be 

generalized to 

 

( ) ( )
∑
=

−− Δ
−

=
N

j
j

ikjinc
je

EiE
1

~
~

σ
λ

rr

jrr

r
r                                                                       (3.23) 

 

Equation (3.23) is a good approximation to the total field at P. In the limit as all 

the σΔ ’s tend to zero, it is obtained the surface integral 

 

( ) ( ) σ
λ

deEiE
ik

inc
'

'
'~~

0
rr

rr
rr

−
=

−−

Σ
∫∫                                                                           (3.24) 

 

Where σd  represents an infinitesimal element of surface area at the point r’ 

which is a general point in the opening 0Σ . 

 

Extended Huygens-Fresnel 

 

The aperture is in the plane through the origin O normal to the z axis. Here 
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Figure 3-2: Spherical wave propagation. 

 

P’ with position vector ),','(' Oyx=r  is a typical point in the aperture. The point 

source of monochromatic light is at Ps with position vector rs. The observation 

point is at P(r). In equation (3.24), Rs =−rr'  and '' R=− rr  then it can be 

written as 

( ) σ
λ

d
RR

eAiE
RRik

∫∫
Σ

+−

=
0

'

)'(~
r                                                                                   (3.25) 

 

where A is the amplitude of the incident wave at unit distance from Ps. 

 

Figure 3-3: Derivation of Huygens-Fresnel diffraction integrals. 
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Figure 3-3 defines the geometry. The starting equation is (3.25).  

 

For Fraunhofer diffraction we expanded R about R0 and R’ about R’0 and obtained 

for R 

 

"+⎥
⎦

⎤
⎢
⎣

⎡ +++
+++=

0

222

0
)''(''

2
1''

R
yxyxyxRR βαβα                                                     (3.26) 

 

In order to keep last term small, Fraunhofer approximation is 

made λλ 00 ',' RyRx <<<< , but α and β is not assumed to be small. 

 

The quadratic term in the above expansion about R0 is lengthy because of the 

presence of x’y’ cross term obtained by multiplying out 

 

0

2

2
)''(

R
yx βα +                                                                                                         (3.27) 

 

This can be eliminated only by assuming that α and β are small. When this is done, 

it should be also expanded R0 about D. This is equivalent to treating xs, xs, x’ and 

y’ on an equal footing and expanding R about D. Thus, 

 
2/1

2

2

2

2
222 )'()'(

1)'()'( ⎥
⎦

⎤
⎢
⎣

⎡ −
+

−
+=−+−+=

D
yy

D
xx

DyyxxDR ss
ss             (3.28) 

 

and expand to obtain 
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It is intended to drop the last term in equation (3.21). It must be much less than λ, 

and almost always is in the cases of interest. 

 

Similarly we obtain the result 
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In the denominator of equation (3.20) it is replaced R, R’ by D, D’ since the 

denominators are slowly varying. The exponential varies much more rapidly, and 

more care is required. In the exponent we shall put 
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The integral equation (3.25) can be reduced to standard form by completing the 

squares in equation (3.31). 
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The coefficient (-x’) is 
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We define two new variables 

 

'
11

'
'1,

'
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and 

 

'
'

DD
xDDx

x s
m +

+
=                                                                                                 (3.35) 

 

Then the coefficient of (-x’) is ρ/mx . The coefficient of x’2 is 
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1

'
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2
1
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Similarly, if we define 
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Algebraic manipulations lead to 

 

[ ] ( ) ( )
( )'22

'
2

)'(
'2
)'( 2222

DD
yyyy

D
yy

D
yy sms

y +
−

+
−

=⎥
⎦

⎤
⎢
⎣

⎡ −
+

−
=

ρ
"                                  (3.41) 

 

Equations (3.37, 41), when inserted into equation (3.25), give 
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The first bracketed term in equation (3.42) is a good approximation to the distance 

from Ps to P:  

 

( ) ( ) ( )222' sss yyxxDDPP −+−++=                                                         (3.43) 
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Then equation (3.42) can be written 
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and equation (3.20) becomes [7] 
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One further change is made with the use of equation (3.24) 
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Then the factor in front of the integral becomes 
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where 
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PP

AeE
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PPik

na
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is the field that would be observed P(r) if there were no aperture at all. The 

Huygens-Fresnel field integral under this approximation and with the inclusion of 

the complex amplitude term due to atmospheric turbulence becomes 

 

( ) ( ) ( ) ( )
0

2 2exp ' ' ' 'na m m t
i iE E x x y yπ ψ
λρ λρΣ

⎧ ⎫⎡ ⎤= − − + − +⎨ ⎬⎣ ⎦⎩ ⎭
∫∫r r� � dx dy              (3.51) 

 

where λ  is the wavelength, tψ  represents the random part of the complex phase 

of a spherical wave propagating from the source point to the receiver point. This 

form of the propagation integral given by equation (3.51) is known as the extended 

Huygens-Fresnel principle.  

 

3.3 Laser Intensity 
 
Intensity is found by multiplying the field with its complex conjugate. In free 

space, it is formulated by the extended Huygens-Fresnel formula in equation 

(3.51) when tψ  is taken as 0.  

 

In equation (3.51), it is assumed that the amplitude of the field integral 

=A=1. This gives us a square aperture laser source. Also in same equation ( )rnaE~

ρ  denotes the length and direction of propagation. The direction of propagation is 
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z so it can be defined as z= ρ . The source of the laser is square so the integration 

is taken over the source aperture (surface) S. The parameters can be changed as 
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 Transformations 

 

By using these changes field integral becomes 
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The intensity of a given coordinate (x,y,z) is evaluated by the multiplication of 

field integral with its complex conjugate [8]. 

 

( ) ( )*( , , ) , , , ,I x y z u x y z u x y z=                                                                   (3.53) 

 

where  is the complex conjugate of field integral. The detailed form of 

intensity in free space (in the absence of turbulence) is 

( zyxu ,,* )
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3.4 Spatial Random Source Phase 
 
The parameter ( 00 , yx )ψ  denoting the spatial random complex phase of a 

spherical wave propagating in free space from point Ps to P is, the field integral in 

equation (3.52) becomes 
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The phase ψ  is taken as random which is uniformly distributed.[9,10] The 

probability density function f(x) is shown in figure 3-4. In the simulation, the given 

distribution is expanded with expansion coefficients from 0-to-2π by multiplying 

f(x) with the coefficients. The distribution is taken over [ ]5.0,5.0−  because the 

maximum expansion coefficient is 2π. This expansion causes an increase in the 

magnitude of the spatial random source phase. Greater the expansion coefficient, 

greater the magnitude of the phase. The effects of this increase in the magnitude of 

the phase on the profile of the intensity of the laser from 0-to-2π are investigated 

both in speckle and atmospheric turbulence cases. 
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Figure 3-4: Probability Density Function of spatial random source phase. 

 
In order to make sure the coordinate dependency of the phaseψ , each element on 

phase matrix is multiplied with the sum of coordinates .  00 , yx

 

 

Figure 3-5: Propagation of field on  plane and integration point on field. 00 , yx

 34



Coordinate dependent elements of spatial random source phase is included in 

calculation in every integration point on the field integral dependent to . As 

it can be seen from the figure 3-5 on each integration point of the field integral 

taken on  plane at receiver site in order to evaluate the intensity value of a 

given point , both a value from spatial random source phase and 

atmospheric turbulence (which will be mentioned in detail in section 3.5) planes 

are included into the integration. This means, during integration of the field 

 on each value of , the spatial random source phase 

00 , yx

00 , yx

( ) ( )( mymx , )

) )( zyxu ,, 00 , yx ( 00 , yxψ  takes 

different complex random values having uniform distribution [11]. 

 

By using the intensity formula (3.53), the intensity value in free space for  

and the propagation distance z =  can be found in detail as 

),( mm yx

mz

 

( ) ( ) ( ){ }

( ) ( ) ( ){ } 0000
*22

0000
22

2

,exp
2

exp
2

exp

,exp
2

exp
2

exp
2

),,(

dydxyxyy
z
kixx

z
ki

dydxyxyy
z
kixx

z
ki

z
AkzyxI

o
S

o

o
S

o

ψ

ψ
π

⎭
⎬
⎫

⎩
⎨
⎧

−
⎭
⎬
⎫

⎩
⎨
⎧

−⋅

⎭
⎬
⎫

⎩
⎨
⎧

−−
⎭
⎬
⎫

⎩
⎨
⎧

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∫∫

∫∫

                                                                                                                           (3.56) 

 

where ( 00
* , yx )ψ  is the complex conjugate of spatial random source phase. 

 

3.5 Parameters of Atmospheric Turbulence  
 
The parameters ( ) ( )[ zyxiSzyx ,,,, 0000 ]+χ  denoting the atmospheric turbulence of 

a turbulent medium through which the wave is propagating, the field integral in 

equation (3.55) becomes 
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Here  is the random phase introduced due to atmospheric turbulence. 

The real part of the atmospheric turbulence complex amplitude,

( 0 0, ,S x y z)

( )zyx ,, 00χ , i.e., 

log-amplitude fluctuations, is a Gaussian distributed random value having zero 

mean. The variance of the log-amplitude fluctuations ( ) is given in [12,13] 2
χσ

6/76/1122 123.0 kzCn=χσ                                                                                     (3.58) 

 

where  is the structure constant of refractive index fluctuations of the 

turbulence, z is the propagation path length and k is the wave number and equals to 

2π/λ, λ being the wavelength. 

2
nC

 

If the source size is small we could make the assumption that . Because 

 it can be assumed as  and the maximum variance of 

parameter ( ) can be derived from  

25.02 <<χσ

25.02 <<χσ 025.02 <χσ

2
χσ

 
6/76/112

max
2 )123.0025.0( kzCn⋅=χσ                                                                   (3.59) 

 

The imaginary part of the atmospheric turbulence, i.e.,  is also 

Gaussian distributed over the interval

( zyxS ,, 00 )

[ ]ππ ,− , the mean being zero. 
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Atmospheric turbulence is included in the field integral, same as with the spatial 

random source phase, on every integration point of field integral , as seen in 

figure 3-5, coordinate dependent values 

00 , yx

( ) ( )zyxSzyx ,,,,, 0000χ  take different 

values according to their disturbance properties on each  value. The intensity 

value on  can be derived in detail as 

00 , yx

),( mm yx
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CHAPTER 4 
 
 

SIMULATION 
 

 

 

4.1 Introduction 
 

This chapter involves the numerical methods for simulating the field integral 

discussed in chapter 3. In order to evaluate the field integral, first the Gaussian-

numerical integration method will be introduced. The field integral will be 

evaluated for three cases, first with no source phase in vacuum, second with source 

phase in vacuum and third with source phase and in atmospheric turbulence. At the 

end, the results of the simulations and comparative graphics are given. 

 

4.2 Numerical Integration of Field Integral 
 

In order to numerically evaluate the field integral of the propagating light through 

spatial medium, Gaussian quadratures is used as the numerical integration method. 

 

In classical methods, the integral of a function is evaluated by the sum of its 

functional values at a set of equally spaced points, multiplied by the chosen 

weighting coefficients or step sizes. The main difference of Gaussian quadratures 

is to give the evaluation process the freedom choosing not only the weighting 

coefficients, but also the location of the functional values at which the function is 
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to be evaluated. So the functional values are not equally spaced. Another 

additional feature of Gaussian quadrature formulas is that the choice of weights 

and functional values can be arranged in order to make the integral exact for a 

class of integrands “polynomials times some known function W(x)”. The function 

W(x) can be chosen to remove singularities. Given W(x) and given integer N, a set 

of weights wj and functional values xj can be found such that [14] 
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The integration formula in (4.1) can also be written with the weight function W(x) 
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A set of polynomials can be found that it includes exactly one polynomial of order 

j, called , for each j = 0,1,2,…, and all of which are orthogonal over the 

specified weight function W(x). A set of constructive procedure for finding such a 

set is the recurrence relation 
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The functional values of the N-point Gaussian quadrature formulas (4.1) and (4.2) 

with weight function W(x) in the interval (a,b) are the roots of the orthogonal 

polynomial  for the same interval and weighting function. This is the 

fundamental theorem of the Gaussian quadratures, and allows finding the 

functional values for any particular case. 

)(xpN

 

Once the functional values  are known, wNxx …,1 j  for j = 1,…,N can be found by 

[15] 
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The field integral can be defined for Gaussian quadratures as 
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If spatial random source phase and atmospheric turbulence are introduced, 

numerical field integration can be done by 
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4.3  Simulation Results 
 

Intensity profile analysis of Free Space Optics systems using 1550 nm laser is 

evaluated for three different approaches. In the first approach, random source 

phase and atmospheric turbulence are not included in the simulation. For this 

condition, intensity profile of laser is evaluated for propagation distances of 2km 

and 5km. In the second approach, random source phase is included to simulation 

with the given PDF in figure 3-4 and the expansion coefficients discussed in 

section 3-4 is increased from 0-to-2π and this process is repeated for various 

propagation distances up to 5 km. In the third case, both the random source phase 

and atmospheric turbulence are included in the simulation and for various 

propagation distances; the behavior of the source phase is same as in the second 

approach. The Matlab code for these approaches is given in the appendix A to E. 

 

In figures 4-1 and 4-2 both the effects of spatial random source phase and 

atmospheric turbulence are neglected and their parameters are not included in the 

field integral. The field integral is evaluated for propagation distances of 2000m 

and 5000m. In figure 4-3, beam spread at the receiver plane is plotted. As seen 

from the figures 4-1, 4-2 and 4-3, the beam spread increases as the propagation 

distance increases. Figure 4-3 shows that the increase in propagation distance has 

an increasing effect on the beam spread, but the shape of the intensity profile is not 

affected from the propagation distance so that the beam keeps its shape. 
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Figure 4-1 : Laser intensity profile of FSO system using 1550nm wavelength laser for a 2000m 
propagation distance. Random source phase and atmospheric turbulence are not included. 

 
Figure 4-2 : Laser Intensity profile of FSO system using 1550nm wavelength laser for a 5000m 
propagation distance. Random source phase and atmospheric turbulence are not included. 
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Figure 4-3 : Laser beam spread of FSO system using 1550nm wavelength laser due to propagation 
distance. Random source phase and atmospheric turbulence are not included. 

 
In figures 4-4 to 4-9 spatial random phase is included in the field integral by 

increasing the expansion coefficient for each evaluation of the integral. This 

process is repeated for each propagation distance used in the previous case. In this 

case it can be seen from the figures that the beam spread has an increasing 

behavior. Besides, during evaluation process for each propagation distance the 

expansion coefficient (discussed in section 3.4) of the spatial random source phase 

is increased from 0-to-2π. This has an effect both on the beam spread and the 

intensity profile. The bigger the expansion coefficient of the spatial random source 

phase, the larger is the beam spread for that propagation distance, which is seen in 

figure 4-10. As seen in the figures 4-4 to 4-9 the intensity profile loses its shape. 

The reason for the rugby-ball shape is the coordinate dependence of the phase ψ ,  

i.e., multiplying the sum of coordinates by the phase values.  At larger expansion 

coefficient values or magnitudes of the source phase, detection process may be 

adversely affected at the receiver site and this will degrade the performance of the 

FSO system. 
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Figure 4-4 : Laser Intensity profile of FSO system using 1550nm wavelength laser for a 2000m 
propagation distance. Random source phase included and expansion coefficient is π.  

 
Figure 4-5 : Laser Intensity profile of FSO system using 1550nm wavelength laser for a 2000m 
propagation distance. Random source phase included and expansion coefficient is 2π. 
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Figure 4-6 : Laser Intensity profile of FSO system using 1550nm wavelength laser for a 3000m 
propagation distance. Random source phase included and expansion coefficient is π.  

 
Figure 4-7 : Laser Intensity profile of FSO system using 1550nm wavelength laser for a 3000m 
propagation distance. Random source phase included and expansion coefficient is 2π.  
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Figure 4-8 : Laser Intensity profile of FSO system using 1550nm wavelength laser for a 5000m 
propagation distance. Random source phase included and expansion coefficient is π.  

 
Figure 4-9 : Laser Intensity profile of FSO system using 1550nm wavelength laser for a 5000m 
propagation distance. Random source phase included and expansion coefficient is 2π.  
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Figure 4-10 : Comparison of laser beam spread of FSO system using 1550nm wavelength laser for 
a  2000m-5000m propagation distance due to the expansion coefficient of the random source phase.  

 
In figures 4-11 to 4-16, both spatial random source phase and atmospheric 

turbulence are included in the field integral. The evaluation process is repeated for 

same propagation distances. In each evaluation, the expansion coefficients of the 

spatial random source phase is changed from 0-to-2π, and the values for the 

parameters of atmospheric turbulence are selected as discussed in section 3.5. In 

this case also, the increase in the expansion coefficient or the magnitude of the 

phase values of the spatial random phase has an increasing effect on the beam 

spread as seen in figure 4-17, but this case has a greater increase in beam spread 

than the case in which the atmospheric turbulence is not included. In figure 4-17, 

the graphs of the propagation distances 2000m, 2500m and 3000m are intersecting 

each other because of the insufficient number of samples used in the simulation 

because of long run-time problem. The shape of the intensity profile also 

fluctuates but with a higher fluctuation. 
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Figure 4-11 : Laser Intensity profile of FSO system using 1550nm wavelength laser for a 2000m 
propagation distance. Random source phase included and expansion coefficient is π. Atmospheric 
turbulence is included. 

 
Figure 4-12 : Laser Intensity profile of FSO system using 1550nm wavelength laser for a 2000m 
propagation distance. Random source phase included and expansion coefficient is 2π. Atmospheric 
turbulence is included. 
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Figure 4-13 : Laser Intensity profile of FSO system using 1550nm wavelength laser for a 3000m 
propagation distance. Random source phase included and expansion coefficient is π. Atmospheric 
turbulence is included. 

 
Figure 4-14 : Laser Intensity profile of FSO system using 1550nm wavelength laser for a 3000m 
propagation distance. Random source phase included and expansion coefficient is 2π. Atmospheric 
turbulence is included. 
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Figure 4-15: Laser Intensity profile of FSO system using 1550nm wavelength laser for a 5000m 
propagation distance. Random source phase included and expansion coefficient is π. Atmospheric 
turbulence is included. 

 
Figure 4-16: Laser Intensity profile of FSO system using 1550nm wavelength laser for a 5000m 
propagation distance. Random source phase included and expansion coefficient is 2π. Atmospheric 
turbulence is included. 
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Figure 4-17 : Comparison of laser beam spread of FSO system using 1550nm wavelength laser for 
a  2000m-5000m propagation distance due to the expansion coefficient of the random source phase.  

 
Figures 4-18, 4-19 and 4-20 illustrate the beam spread of the laser due to the 

expansion coefficient of the spatial random source phase for each propagation 

distance discussed above in a comparative manner. As it can be seen in each figure 

that, higher the expansion coefficient or the magnitude of the spatial random 

source phase, larger the beam spread and also longer the propagation distance, 

larger the beam spread. Additionally, the effect of atmospheric turbulence on beam 

spread can be easily seen from the figures that it further increases the beam spread, 

so on each point, atmospheric turbulence introduced cases have larger beam spread 

values than speckle (absence of atmosphere) cases. In case like figure 4-18, as the 

expansion coefficient of the spatial random phase increases the difference between 

the beam spread values of atmospheric turbulence and speckle case shall increase. 

But figures 4-19 and 4-20 do not match in this manner. The reason for this may be 

the reductive affect of the spatial random phase and the complex part of the 

atmospheric turbulence on each other. Also another reason may be the insufficient 

number of samples used in the simulation because of the long run-time problem. 
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Figure 4-18 : Comparison of laser beam spread of FSO system for random source phase with 
atmospheric turbulence and random source phase without atmospheric turbulence for a 2000m 
propagation distance due to the expansion coefficient of the random source phase.  

 
Figure 4-19 : Comparison of laser beam spread of FSO system for random source phase with 
atmospheric turbulence and random source phase without atmospheric turbulence for a 3000m 
propagation distance due to the expansion coefficient of the random source phase.  

 52



 
Figure 4-20 : Comparison of laser beam spread of FSO system for random source phase with 
atmospheric turbulence and random source phase without atmospheric turbulence for a  5000m 
propagation distance due to the expansion coefficient of the random source phase.  
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CHAPTER 5 
 
 

CONCLUSION 
 

 

The measure of performance of a digital communication system is the BER (Bit 

Error Rate) during data transfer. Since FSO systems are digital communication 

systems, in order to examine the performance of the system, the parameters 

affecting BER should be determined. 

 

Figure 5-1 : Comparison of laser intensity on receiver site due to expansion coefficient of the 
spatial random source phase for propagation distances from 2000m up to 5000m.  
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In wireless systems, one of the important factors affecting BER of the system is 

the signal level at the receiver site. In FSO systems, because the carrier signal is an 

infrared laser, and the measure of the level of the laser signal is its received 

intensity [2], in this study, effects of spatial random source phase and atmospheric 

turbulence on intensity profile on receiver site are examined. 

 

Figure 5-1 illustrates the received laser intensity of a system that both spatial 

random source phase and atmospheric turbulence are introduced, according to both 

the expansion coefficient / magnitude of the spatial random source phase and the 

propagation distance. The intensity levels in figure 5-1 are evaluated at times 

the maximum intensity values. As it can be seen from the figure that the signal 

intensity at the receiver site has a decreasing trend as the expansion coefficient of 

the spatial random source phase increases. This is because the increase in the 

expansion coefficient or magnitude causes increase in the beam spread which 

reduces the intensity of the beam and also the loss of the shape of the beam 

intensity profile has a negative affect on the level of received intensity. The above 

discussions show us that the performance of a FSO system is negatively affected 

from the increase in expansion coefficient or magnitude of the spatial random 

source phase. Also it can easily be seen that increase in the propagation distance 

causes decrease in the received laser intensity. Therefore it also has a negative 

effect on the performance of the FSO system. 

2/12−

 

The main parameters of the field integral that are directly proportional to the laser 

intensity profile and that can be controlled by the users are the size of the laser 

source, the amplitude of the field and the propagation distance. This is because, 

larger the size of the laser source, smaller the beam spread, also higher the 

amplitude of the transmitted laser, higher the level of received intensity. But these 
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parameters are limited by the laser safety restrictions and mainly by the cost of the 

link. If the system is deployed for shorter propagation distances, the system 

performance can be increased. This can be done by using repeaters having 

amplifying property. But adding repeaters will cause a decrease in the data rate of 

transmission because in each repeater the signal is transformed from light to 

electricity and electricity to light. This process is very slow as compared with the 

full optic transmission links. 

 

Future work related to this study can be the examination of the intensity 

fluctuations by using a similar simulation, however this time applied to the fourth 

order moments. 
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APPENDIX A : Intensity Profile 
 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------- 

% 

%Clear Workspace, Clear Scr & Close Windows 

% 

clear all; 

clc; 

close all; 

% 

% 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------- 

% 

%Declaration of the global variables of the integrand of FIELD Uxyz 

% 

global A;%The amplitude of the square aparture 

global k;%Wave Number 

global x;%Coordinate on source plane 

global y;%Coordinate on source plane 

global z;%Propagation Distance 

global j;%Complex "i"<-->"sqrt(-1)" 

global alpha_s;%source size 

% 
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%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------- 

% 

%Assignment of variables 

% 

lambda=1.55*1e-6;%The wave length of light 

k=(2*pi)/lambda;%Wave number 

j=sqrt(-1);%Complex number 

A=1;%The amplitude of the light beam at source 

N=32;%Number of integration points 

alpha_s=0.05;%The size of the source 

% 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------- 

% 

%Gaussian Integration Weights 

% 

lowerLimit=-alpha_s; 

upperLimit=alpha_s; 

[Xo,Wx] = gaussquad(N, lowerLimit, upperLimit); 

[Yo,Wy] = gaussquad(N, lowerLimit, upperLimit); 

M=10;%number of instants 

C=20;%number of (x,y) coordinates 

axis_limit=2; 

X=(axis_limit*lowerLimit):(2*axis_limit*upperLimit/C):(axis_limit*upperLimit); 
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Y=(axis_limit*lowerLimit):(2*axis_limit*upperLimit/C):(axis_limit*upperLimit); 

save('X','X'); 

save('Y','Y'); 

save('C','C'); 

save('M','M'); 

% 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------- 

% 

%The loop for propagation distance 

for z=2000:500:5000 

% 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------- 

% 

%The loop of variance of random phase 

for sigma_2=0:pi/5:2*pi % The variance of the phase 

% 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------- 

% 

%The loop of the coordinates (x,y) 

I=zeros(C+1,C+1); 

for y_index=1:C+1    
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    y=Y(y_index); 

    for x_index=1:C+1 

        y_index 

        x_index 

        x=X(x_index); 

% 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------- 

% 

%The loop of the instants 

for instant=1:M 

% 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------- 

% 

%Random phase have a(uniform distribution) 

phase=sqrt(sigma_2)*(rand(N,N)-0.5); 

% 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------- 

% 

%Integration 

Uxyz=0;%The initial value of the field before integration 

for y0=1:N 
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    for x0=1:N 

        Uxyz=Uxyz+integrand(Xo(x0),Yo(y0),phase(x0,y0))*Wx(x0)*Wy(y0); 

    end 

end 

I(y_index,x_index)=I(y_index,x_index)+Uxyz*conj(Uxyz); 

% 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------- 

% 

%END OF THE INSTANT LOOP 

end 

% 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%----------------------------------------------------- 

% 

%END OF THE COORDINATE LOOPS 

end 

end 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%----------------------------------------------------- 

%SAVE WORKSAPACE FOR POWER FAILURE 

%Saving Intensity values 

% 

fileName=['speckle' num2str(sigma_2) '_' num2str(z)]; 
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save(fileName,'I'); 

% 

save workspace; 

% 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%----------------------------------------------------- 

% 

figure(1) 

colormap gray 

contourf(Y,X,I/M,150); 

xlabel('y'); 

ylabel('x'); 

hold on; 

contour(Y,X,I/M,150); 

hold off; 

% 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------- 

% 

FILE_NAME=['speckle' num2str(sigma_2) '_' num2str(z)]; 

saveas(gcf, FILE_NAME,'jpg') 

% 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------- 
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% 

%END OF THE VARIANCE LOOP 

end 

%----------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------- 

% 

%END OF THE PROPAGATIN LOOP 

end 
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APPENDIX B : Field Integrand 
 

 

function ret=integrand(Xo,Yo,Q) 

%--------------------------------------- 

% 

%Defined variables of integrand of Uxyz 

global A; 

global k; 

global x; 

global y; 

global z; 

global limit; 

global j; 

% 

%-------------------------------------- 

% 

%Definition of Integrand 

ret=(k/(2*pi*j*z))*... 

    A*... 

    exp(((j*k)/(2*z))*(y-Yo)^2)*... 

    exp(((j*k)/(2*z))*(x-Xo)^2)*... 

    exp(j*Q*(Xo+Yo)); 

% 

%------------------------------------ 

% 
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APPENDIX C : Gauss Quad 
 

function [xx, ww] = gaussquad(n, a, b) 

   % Check number of input arguments. 

   error(nargchk(1, 3, nargin)); 

 

   % Assign default values to missing arguments. 

   switch nargin 

      case 1                    % GAUSSQUAD(N) 

         b = 1; 

         a = -1; 

      case 2                    % GAUSSQUAD(N, C) 

         b = a; 

         a = 0; 

   end 

 

   u = 1 : n-1; 

   u = u ./ sqrt(4*u.^2 - 1); 

 

   % Same as A = diag(u, -1) + diag(u, 1), but faster (no addition). 

   A = zeros(n, n); 

   A( 2 : n+1 : n*(n-1) ) = u; 

   A( n+1 : n+1 : n^2-1 ) = u; 

 

   % Find the base points X and weight factors W for the interval [-1,1]. 

   [v, x] = eig(A); 

   [x, k] = sort(diag(x)); 
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   w = 2 * v(1,k)'.^2; 

 

   % Linearly transform from [-1,1] to [a,b]. 

   x = (b - a) / 2 * x + (a + b) / 2;   % transform base points X 

   w = (b - a) / 2 * w;                 % adjust weigths 

 

   % If output arguments are given, return output and exit. 

   if nargout 

      xx = x; 

      ww = w; 

      return 

   end 
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APPENDIX D : Intensity Level 
 

 

%Amount of Spread Due to Phase Variance 

%-------------------------------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%-------------------------------------------------------------------------- 

clc; 

clear all; 

close all; 

% 

%-------------------------------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%-------------------------------------------------------------------------- 

% 

load('X','X'); 

load('Y','Y'); 

load('C','C'); 

load('M','M'); 

% 

%-------------------------------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%-------------------------------------------------------------------------- 

% 

for z=2000:500:5000 

sigma_index=0; 

for sigma_2=0:pi/5:2*pi 
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    sigma_index=sigma_index+1; 

fileName=['speckle' num2str(sigma_2) num2str(z)]; 

load(fileName,'I'); 

% 

%-------------------------------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%-------------------------------------------------------------------------- 

% 

MAX=max(max(I/M)); 

pow=MAX/exp(2); 

error=7; 

for i=1:C+1 

    for j=1:C+1 

        if pow-error*pow/100<I(i,j)/M & I(i,j)/M<pow+error*pow/100 

            spread(sigma_index)=(sqrt((X(i))^2+(Y(j))^2)); 

        end 

    end 

end 

% 

%-------------------------------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%-------------------------------------------------------------------------- 

% 

end 

fileName=['SPECKLE_SPREAD' num2str(z)]; 

save(fileName,'spread'); 

% 
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%-------------------------------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%-------------------------------------------------------------------------- 

% 

 

figure(1) 

PI=0:2*pi/10:2*pi; 

plot(PI(2:11),spread(2:11)) 

set(gca,'XTick',PI(2:11)) 

set(gca,'XTickLabel',{'2pi/10','4pi/10','6pi/10','8pi/10','10pi/10','12pi/10','14pi/10','

16pi/10','18pi/10','20pi/10'}) 

ylabel('Beam Spread(m.)') 

xlabel('\sigma^2 (Variance of Source Phase') 

FILE_NAME=['speckle_spread' num2str(z)]; 

saveas(gcf, FILE_NAME,'jpg') 

% 

%-------------------------------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%-------------------------------------------------------------------------- 

end 
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APPENDIX E : Comparison 
 

 

%Comperative Spread Due To Distance 

% 

%-------------------------------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%-------------------------------------------------------------------------- 

% 

clc; 

clear all; 

close all; 

 

% 

%-------------------------------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%-------------------------------------------------------------------------- 

% 

i=0; 

for distance=2000:500:5000 

    i=i+1; 

fileName=['speckle_spread' num2str(distance)]; 

load(fileName,'spread'); 

% 

%-------------------------------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%-------------------------------------------------------------------------- 
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% 

X_AXIS=0:pi/5:2*pi; 

ARROW=['\leftarrow' num2str(distance) 'm']; 

figure(1) 

xlabel('\sigma^2 (Variance of Source Phase)') 

ylabel('Beam  Spread (m)') 

plot(X_AXIS(2:11),spread(2:11),'k') 

grid on 

title('Comparison of Spread Due to Distance') 

text(X_AXIS(10),spread(10),ARROW,... 

     'HorizontalAlignment','left','FontSize',18) 

 

set(gca,'XTick',PI(2:11)) 

set(gca,'XTickLabel',{'2pi/10','4pi/10','6pi/10','8pi/10','10pi/10'... 

 ,'12pi/10','14pi/10','16pi/10','18pi/10','20pi/10'}) 

hold on 

end 

FILE_NAME=['comparison']; 

saveas(gcf, FILE_NAME,'jpg') 

% 

%-------------------------------------------------------------------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%-------------------------------------------------------------------------- 
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