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In this work, a comprehensive study of fluid forces and thermal analysis of two-dimensional, laminar, and incompressible
complex (power law, Bingham, and Herschel–Bulkley) fluid flow over a topological cross-sectional cylinder (square, hexagon, and
circle) in channel have been computationally done by using finite element technique. -e characteristics of nonlinear flow for
varying ranges of power law index (0.4≤ n≤ 1.6), Bingham number (0≤Bn≤ 50), Prandtl number (0.7≤Pr≤ 10), Reynolds
number (10≤Re≤ 50), and Grashof number (1≤Gr≤ 10) have been examined. Considerable evaluation for thermal flow field in
the form of dimensionless velocity profile, isotherms, drag and lift coefficients, and average Nusselt number (Nuavg) is done. Also,
for a range of Bn, the drag forces reduction is observed for circular and hexagonal obstacles in comparison with the square
cylinder. At Bn � 0 corresponding to Newtonian fluid, maximum reduction in drag force is reported.

1. Introduction

Since the last several decades, heat transfer from a single
cylinder (circular, square) has been widely considered, given
its significance in various fields of engineering mathematical
problems. -e key research factors for the design, mainte-
nance of electric cooling system, evaporators, heat ex-
changers, thermal plants and automobile radiators, etc., can
be reported. Moreover, thermal flow by natural, forced, and
mixed convection from solid body to fluid stream has been
simulated by many researchers in a variety of configurations.
Ditchfield et al. [1] experimentally examined the effects of
thermal flow on viscoplastic fluid by implementing a pro-
posed model. Shyam et al. [2] considered the influence of
nonisothermal and nonlinear viscous fluid flow over the pair
of circular heaters at large Grashof number. Computations
were reported by varying gap between cylinders to elucidate

its impact on thermal flow field. Laidoudi et al. [3, 4] an-
alyzed the characteristics of mixed convection thermal flow
of dual circular cylinders at low Reynolds number. -ey also
computed fluid forces and average Nusselt number and
observed high Nusselt number on second obstacle compared
to the first one due to thermal buoyancy. Kefayati et al. [5]
have numerically investigated the effects of double diffusion
and entropy generation of viscous fluid flow over a cold
cylinder in a duct by Lattice Boltzmann technique. In ad-
dition, an enhancement in heat transfer was noticed due to
increase in the length of diameter of the cylinder. -e
buoyancy effects on thermal flow characteristics of confined
circular cylinder submerged laminar Poiseuille fluid are
studied by Laidoudi et al. [6]. Masoumi et al. [7] have ex-
amined the influence of nonisothermal viscoplastic fluid
flow inside the circular duck and also imposed the Galerkins
Weighted Residual (GWR) scheme of FEM computation
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with hybrid mesh. -e influence of Richardson number on
flow and heat transfer topologies of an obstacle at high
Reynolds number are examined by Zafar and Alam [8].
Laidoudi et al. [9] considered the effects of the free con-
vection fluid flow between two cylinders at high Reynolds
number in a circular duct and also provided the correlation
impacts of the average Nusselt number.

In order to design structures for non-Newtonian fluid
exposed in polymer processing activities, reliable knowledge
about fluid forces is often necessary, and in this regard, the
flow and heat transfer in the free convection regime have
been considerably studied in extensive research resources in
recent years. Bharti et al. [10, 11] investigated the charac-
teristics of steady, incompressible, non-Newtonian fluid flow
over a confined cylinder at low Reynolds number Re≤ 40.
-ey solved the model by using QUICK algorithm and finite
volume scheme. Shyam et al. [12] numerically studied the
influence of thermal flow of free convection over a constant
heated block in a square duck and also reported the effects of
average Nusselt number on Grashof and Prandtl number
against power law index. Baranwal and Chhabra [13] con-
sidered an incompressible free convective thermal flow of
power law fluid over a confined cylinder in square cavity. In
addition, they examined the geometric effects of the cylinder
on thermal flow fields. A. Pantokratoras [14] numerically
reported the flow of power law fluid over a rotating cylinder
solved by using finite volume scheme through commercial
code FLUENT. Gangawane and Manikandan [15] have
explored the thermal flow features over a hexagonal block
with constant temperature, solved by using finite volume
technique with QUICK discretization and SIMPLE algo-
rithm. Asnaashari and Tohidi [16] investigated the effects of
flow and heat transfer of power law fluid in an unconfined
computational domain. Dhiman and Shyam [17] have ex-
amined the influence of Reynolds number on unsteady heat
transfer over an equilateral triangular block and created grid
by GAMBIT and solved it by using FLUENT.

Nirmalkar and Chhabra [18] studied the characteristics
of Bingham fluid flow over a heated submerged cylinder
using finite element computation. Patel and Chhabra [19]
have extensively examined heat transfer, fluid forces, and
yield stress results in steady flow regime. Mahmood et al.
[20] have simulated a plastic fluid flow of square cavity by
using the open-source software package FEATFLOW sub-
merged in Papanastasiou regularization. Liu et al. [21] in-
vestigated the characteristics of Bingham fluid flow in deeply
buried rock.-akur et al. [22] have been considered a forced
convective heat transport of a Bingham fluid over a rotating
circular cylinder at low Reynolds number. Rem et al. [23]
investigated the influence of unsteady Bingham fluid flow in
a fractured channel.

-e Herschel–Bulkley fluid model narrates the rheo-
logical influence of viscoplastic fluids which occurred in
innumerable applications in industry. -eses viscous fluids
are characterized by yield stress which requires a finite stress
for flow. -e relation between the shear stress and the shear
rate is nonlinear. Since thermal flow is important in in-
dustrial applications with viscoplastic fluid flow like paint,
cosmetic, and petroleum, many researchers have examined

the characteristics of thermal flow in such viscoplastic fluid
flow regimes [24–32].

Zdanski and Vaz [33] have implemented a second-
order finite difference scheme to simulate a flow problem of
incompressible 3D viscous fluid flow in a channel. Abbasi
et al. [34] have numerically analyzed the impacts of hy-
drodynamic forces over a cylinder-based Lattice Boltz-
mann Method (LBM) at low Reynolds number. Also, they
compared their results with numerical and experimental
data for single square cylinder case. Mahmood et al. [35]
studied the non-Newtonian flow in a channel driven cavity
by using P2 − P1 element pair for finite element compu-
tation. Abbasi et al. [36] examined the characteristics of
fluid forces over square cylinders at varying range of gap
spacing, solved by LBM computation. Khan et al. [37]
imposed least square FEM computation of viscous fluid
flow over a semicylinder block via COMSOL solver. Tomio
et al. [38] implemented a numerical methodology, second-
order finite difference scheme to solve a flow problem.
Characterization of fluid forces of nonlinear material in a
channel is based on FEM computation at low Reynolds
number [39–41].

-is manuscript is organized as follows. in Section 1 and
Section 2, the introduction of the problem and the flow
configuration and governing equations with constitutive
relations are explained. Numerical scheme and grid con-
vergence are described in Section 3. Also, the results are
compared with literature for code validation. In Section 4,
we explain in detail all the results and discussion of the
article. Finally, conclusion is mentioned in Section 5.

2. Flow Configuration and
Governing Equations

A cylinder (square, hexagon, and circle) of diameter LD �

0.1 in an incompressible viscous polymer solution in lam-
inar, steady, 2D flow regime is revealed in Figure 1. -e
surface of cylinders is maintained at a uniform temperature
Th and flow with average velocity U∞. -e total length of
given benchmark problem is Lup + Ldown,where Lup � 0.2 is
the upstream length and downstream length is Ldown � 2
from the center of the cylinder and height of the channel is
0.41, respectively. Moreover, the thermophysical properties
of fluids are considered to be free from temperature. Also, we
have neglected the effects of viscous dissipation from heat
equation.

-e geometrical configuration of the problem is shown
in Figure 1.

Continuity, momentum, and energy are the governing
equations of steady, nonisothermal, and viscous incom-
pressible fluid flow across an infinitely long channel in
presence of heated cylinder. -eir nondimensional forms of
these equations are written as follows:

∇.u � 0, (1)

u.∇u + ∇p �
1
Re
∇.τ +

Gr

Re2
θ, (2)
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u.∇θ �
1

RePr
∇2θ, (3)

where τrepresents the category of the chosen fluid. Here we
have used three models, namely, power law, Bingham, and
Herschel–Bulkley fluid defined as follows.

(i) Power law model:

τ � m( _c)
n
. (4)

(ii) Bingham model:

_c � 0, τ ≤ τy,

τ �
τy

_c
+ μp􏼠 􏼡 _c, τ > τy.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

(iii) Herschel–Bulkley model:

τ � τy + m _c
n
,

η �
τy

_c
+ m _c

n− 1
, τ > τy.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

-e nondimensionalized equations (1)–(3) suggest that
velocity, pressure, and temperature fields are dependent on
dimensionless parameters, Reynolds number (Re), Grashof
number (Gr), Prandtl number (Pr), and Bingham number
(Bn). -ese parameters are defined as

Reynolds number Re �
U∞LD

υ
,

Grashof numberGr �
gβ Th − T0( 􏼁L

3
D

υ2
,

Prandtl number Pr �
υ
α

,

Binghamnumber Bn �
τ0LD

μU∞
,

(7)

where symbols have been defined in nomenclature. To
compute the solution of equations (1)–(3), the system must
be subject to some boundary conditions. At the inlet of this
domain, fluid enters with parabolic profile in x-direction. At
the outlet, the Neumann conditions for all variables have
been imposed. On the surface of channel and obstacles there
is no-slip boundary condition. Furthermore, fins are insu-
lated and obstacles are heated uniformly while other walls of
channel remain cold.

Ultimately, computational results from the preceding
governing equations in the form of primitive variables
(u, p, and θ), together with the above boundary conditions
of the domain are postprocessed to evaluate the derived
quantities like drag coefficient, lift coefficient, and Nuavg,
respectively.

-e nondimensional net drag (Fd) and lift (Fl)forces act
on the submerged cylinder in the flow and normal direction,
while the drag and lift coefficient are

CD �
2Fd

ρU
2
∞LD

,

CL �
2Fl

ρU
2
∞LD

.

(8)

Here the reference velocity is U∞ � (2/3)Umax,where
Umax � 0.3 is the maximum velocity of given parabolic
profile at the inlet.-e local Nusselt (Nulocal) number on the
surface of duct and fins is estimated by Nulocal � − (zθ/zns).
Such values have been more averaged over both surfaces
(cylinder and fins) to obtain the average Nusselt (Nuavg)
number given as

Nuavg �
1
S

􏽚
s
NulocaldS, (9)

where “S” and “ns” are the surfaces of thermal region and
normal direction of the surface; it is reasonable to postulate
that the drag coefficient is function of Rewhereas the Nuavg
depends on the Pr. -is work endeavors to exhibit and
develop more efficient functional relationship for circular
cylinder in future.

3. Numerical Scheme and Grid Convergence

Due to nonlinearity of the governing equations as well as of
non-Newtonian fluids, having plastic viscosity applied to
channel flow, the energy and momentum equations cannot
be supported with analytical solutions, so we implemented
numerical scheme finite element method (FEM) for
computing the optimized solution with different shapes of
cylinder. -e underlying discrete nonlinear system of
equations has been solved by Newton method and the
linearized inner system is solved with a direct solver
PARDISO. -e PARDISO solver utilizes LU matrix fac-
torization and reduces the number of iterations required
for the desired level of convergence. -is reduces the
number of the iterations required. -e Lagrangian system
was used for the velocity discretization (second order) of
elements and pressures and temperatures (linear) as is
shown in Figure 2.

Grid independence study has been performed for the
CD, CL , and Nuavg for the different cylinders and corre-
sponding results are given in Table 1–Table 3 for all the three
shapes of cylinders at Re � 20, Pr � 6.2, Bn � 0, n � 1 , and
Gr � 10. -e benchmark results reveal the fact that results at
levels 7 and 8 are in close agreement so to save computa-
tional cost, and we performed the rest of the simulation at
level 7.

Finally, the current code has also been validated against
the Schaefer and Turek [42] in Table 4 by setting the tem-
perature on circular cylinder as zero.
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4. Results and Discussions

-is work endeavors in three different cross-sectional cyl-
inders with significant boundary conditions to elucidate the
impact of non-Newtonian fluid flow and heat transfer be-
havior. -e results shown in this study cover the range of
parameters as: 0.4≤ n≤ 1.8, 10≤Re≤ 50, 0≤Bn≤ 50, 0.7≤
Pr≤ 10 , and 1≤Gr≤ 10, respectively. Here is a comment on
the choice of these ranges. -e value of the power law index
is encountered in many products such as suspension and
polymer fluids found in industrial practices. Moreover, Bn
are considered adequate for determining their influence on
flow and heat transfer characteristics. -e lowest value of
(Bn � 0) is Newtonian and the fluid in the very wide
(Bn⟶∞) is plug-like and heat is transmitted only via
conduction which is slightly increased by piston-like fluid
motion. -e selection of the range of parameters for present

work is based on a combination of the actual material
characteristics and the anticipated fluid limiting conditions.
Extensive results are discussed in the ensuring sections on
lengths entrance, velocity profile and temperature, yield
surfaces, and Nuavg. It is, however, edifying first to determine
the accuracy of the existing numeric assumptions and this
objective is accomplished by presenting a number of
benchmarks for a number of limiting circumstances and
comparing the results available in literature.

4.1. Power LawModel. -e velocity distribution illuminated
in Figure 3 with varying cylinder shapes at Reynolds Re �

20 with Newtonian fluid n � 1 is restricted. Since the ve-
locity of the parabola is induced at inlet, and other
boundaries are kept in no-slip conditions, velocity variation
close to channel obstacles is observed. A conclusion is

OutflowInflow

Lup Ldown

LD = 0.1
LD = 0.1

(a) (b) (c)

LD = 0.1

Adiabatic

Figure 1: Schematic diagram of the problem: (a) square; (b) hexagon; (c) circle.

(a) (b) (c)

Figure 2: Complex computational grids at coarse level: (a) square; (b) hexagon; (c) circle.

Table 1: Grid convergence study for square cylinder.

#RL #EL DOF CD CL Nuavg
1 1,126 8,483 6.8482 0.0356 4.8973
2 1,790 13,396 6.9111 0.0619 4.9782
3 2,846 20,782 6.9246 0.0706 5.0401
4 5,160 36,943 6.9333 0.0720 5.1123
5 7,850 55,357 6.9347 0.0731 5.1496
6 13,648 94,160 6.9359 0.0728 5.1807
7 30,900 212,318 6.9389 0.0726 5.2426
8 72,496 493,199 6.9397 0.0721 5.2791
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reached that the parabolic nature of velocity profiles is
similar in the entry. Figure 4 is plotted to evaluate pressure
variation across the physical domain, particularly in vicinity
of circular obstacle and constant Re � 20. From the figure, it
is seen that pressure exhibits optimized nonlinear (power
law, Bingham, and Herschel–Bulkley) fluids behavior close
to the obstacle and gets linear downstream in channel flow as
expected. Here, the optimum pressure is observed to have
maximum value in front of the obstruction that interacts
with fluid. It also appears that its pressures become linear
when the fluid passes over the obstacle.

Figure 5 shows the effects of the shape of cylinder on
CD and CL against n from 0.4 to 1.6 covering a wide range
of Newtonian, shear-thinning (thixotropic), and shear-
thickening (rheopectic) fluids. -e reductions in the
values of CD and CL are observed from square to circle
cylinders. Moreover, reduction in power law index results
in lowering the apparent fluid’s viscosity beside the cyl-
inder, thereby reducing the frictional drag strength. -e
shape effects for Newtonian fluid (n � 1) against Re are
illustrated in Figure 6. Furthermore, the power law index
influences the total drag coefficient which is decreasing
gradually as the Re increases from 10 to 50. In Figure 7, the
effect of drag and lift coefficients on obstacle shapes was
shown; with increasing Prandtl numbers, CD and CL de-
crease. Both coefficients produce lower values for the case
of circular cylinder as compared with the other two
shapes.

-e changes in the flow field because of the parametric
values of n, Re, and Pr significantly impact the Nuavg over the
surface of cylinders. Towards this end, we presented in this
section the effects on the Nuavg for the different shapes of the
cylinder for Pr, n, and Re. Figure 8(a) shows that increasing
the Pr gives rise to an increment in the Nuavg. -e de-
pendence of Nuavg on n and Re for three different cylinders is
shown in Figures 8(b) and 8(c). Nuavg increases as the Re
increases because the thermal boundary layer is progres-
sively thinning. In addition, an increase in shear-thinning
(decreased value of n) also improves the rate of thermal flow,
due to the reduction of the apparent fluid viscosity because
of steep gradients close to the submerged cylinders.

4.2.BinghamModel. In this case, the flow field comprises the
yielded and unyielded zones, which vary with the choice of
Bingham fluid which is nondimensional analog of yield
stress. Figure 9 illustrates the areas where fluid moves like a
rigid body in unyielding (plug) zones.-e viscosity increases
as the yield stress in the Bingham fluid gradually increases.
In the vicinity of the submerged cylinder there is always a
yielded region. Bingham fluid acts in the center of the
channel like a solid. Figure 10 shows the isotherms around
the cylinders for the Newtonian case at fixed Re. -e iso-
thermal profile reflects the physical phenomena observed
through the analysis of patterns of streamlines. More
thermal contours are crowded near the curved surface than

Table 3: Grid convergence study for circular cylinder.

#RL #EL DOF CD CL Nuavg
1 962 7,378 5.5349 − 0.0075 4.8564
2 1,590 12,009 5.4785 − 0.0087 4.9292
3 2,426 17,918 5.5207 − 0.0036 4.9190
4 4,540 32,683 5.5510 − 0.0019 4.9243
5 6,716 47,611 5.5538 − 0.0018 4.9283
6 11,796 81,603 5.5605 − 0.0015 4.9297
7 27,194 197,374 5.5754 − 0.0008 4.9286
8 65,288 444,870 5.5786 − 0.0008 4.9292

Table 4: Validation of code for comparison of drag and lift coefficients.

Coefficients of fluid forces Schaefer and Turek [42] Present study
CD 5.5785 5.5785
CL 0.0106 0.0106

Table 2: Grid convergence study for hexagonal cylinder.

#RL #EL DOF CD CL Nuavg
1 1,098 8,279 6.1080 − 0.0019 4.6590
2 1,796 13,413 6.1088 0.0004 4.7139
3 2,742 20,061 6.1096 0.0005 4.7385
4 4,984 35,706 6.1116 0.0016 4.7873
5 7,666 54,068 6.1124 0.0017 4.7847
6 13,298 91,768 6.1128 0.0018 4.8005
7 30,388 208,777 6.1135 0.0019 4.8355
8 71,232 484,604 6.1135 0.0019 4.8517
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on the flat surface, which leads to a higher Nuavg on the
curved surface. -e crowds of temperature contours depend
on the Bn and Pr

-e trend of CD and CL based on the shape of cylinders
versus Bn can be seen in Figure 11. -ere is a linear growing
profile for drag coefficient for all shapes. However, for a

square cylinder the CD is higher as compared with the other
cases because the fluid forces dominate at the surface of
square cylinder. -e CL varies nonlinearly for all cylinders;
for the square cylinder, however, the CL decreases after a
certain Bn threshold with an increase in the Bn. However,
quantitative analysis of CD and CL for different Re is

(a)

(b)

(c)

Figure 4: Fluid effects on pressure profile for Re � 20. (a) Power law fluid (n � 0.4). (b) Bingham fluid (Bn � 20). (c) Herschel–Bulkley fluid
(Bn � 20, n � 0.4).

(a)

(b)

(c)

Figure 3: Shape effects on velocity profile for n � 1, Pr � 5, andRe � 20. (a) Square shape cylinder; (b) hexagon shape cylinder; (c) circular
shape cylinder.
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presented in Table 5. Table 6 shows that, in the case of three
shaped cylinders, maximum reduction is observed for all Bn
values. In addition, the maximum reduction can be seen at
Bn � 0 for all cylinder combinations. In the range
0≤Bn≤ 50, for all configurations that approach their cor-
responding minimum values, the values of a percent re-
duction decrease.

Figure 12 reveals the disparity of the Nuavg based on the
shapes of cylinder and with the Bn. -e Nuavg has been
shown to dominate in case of square cylinder.

4.3. Herschel–Bulkley Model. -e fluid model Her-
schel–Bulkley combines the characteristics of Power Law
and Bingham models. -e fluid flow of Herschel–Bulkley
thus shares the features of power law and of Bingham fluid.
-e effect on the flow components is similar from the power

index and Bingham number. For this reason, only those flow
characteristics over the cylinder that were not described
above will be discussed in this case. Such as the Bingham
fluid, a fluid region is formed around the cylinder when
there is a flow over the cylinder, while the medium is a rigid
substance on the periphery. -e fluid region is mainly based
on the number of Bingham: the larger the amount of
Bingham, the lesser the region of fluid.

-e size depends simultaneously on the power index: the
lower the n, the smaller the fluid region. It can thus be
concluded that a perturbation of the cylinders is reduced if the
rheology of the fluids is non-Newtonian, if the number of the
Bingham and/or the power index is lower. In strongly non-
Newtonian fluids, dependence on the drag and kinematic
features of the flow is less significant than inNewtonian fluids.
-e responsiveness of the flow properties to relative velocity
changes is weakened as the non-Newtonian fluid properties
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Figure 6: (a) Drag coefficient and (b) lift coefficient against Re with Pr � 5 and n � 1.
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Figure 5: (a) Drag coefficient and (b) lift coefficient against n with Pr � 5 andRe � 20.
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increase. Figure 13 reveals the characteristics of drag and lift
coefficient against Bingham number for different fluid
properties over the different cylinders. -e drag trend for Bn
is the same across the fluid, but the drag values for the
rheopectic fluid are higher as the boundaries are nonsmooth

compared to the thixotropic fluid. -e lift values demonstrate
an increasing trend for Bn from 0 to 10 and reveal a de-
creasing trend for a further increase in the Bingham number
for each fluid case. Figure 14 reveals the effects of cylinder
shapes on average Nusselt number against Bn for complex

(a)

(b)

(c)

Figure 9: Shape effects on viscosity field for Bn � 20 andRe � 20.(a) Square shape cylinder; (b) hexagon shape cylinder; (c) circular shape
cylinder.

(a)

(b)

(c)

Figure 10: Shape effects on isotherm contour for Bn � 20 andRe � 20. (a) Square shape cylinder; (b) hexagon shape cylinder; (c) circular
shape cylinder.
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fluids. Figure 15 shows the variation of the Nuavg with Bn on
both shape cylinders and theGr. -e Nuavg increases with Gr
as usual.

A line graph is shown in Figure 16 to depict the impact of
rheology of fluid on velocity profiles. -e velocity profile
changes as the yield stress increases, from a parabola to a flat
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Figure 11: (a) Drag coefficient CD and (b) lift coefficient CL against Bn with Pr � 5 andRe � 20.

Table 5: Impact on drag and lift coefficients against Bn for different Re values.

Bn
Re � 10 Re � 30 Re � 50

CD CL CD CL CD CL

0 8.428736 − 0.04927 4.571563 − 0.00557 3.694473 − 0.01109
10 58.36013 0.120413 9.431011 0.044435 5.201851 0.015601
20 107.898 0.001741 14.68912 0.044090 6.969524 0.025137
30 156.8559 − 0.13567 20.02938 0.030733 8.793285 0.028560
40 205.5070 − 0.29718 25.40788 0.015660 10.65577 0.026068
50 253.8652 − 0.44502 30.81171 0.003527 12.53580 0.020911

Table 6: Percentage reduction in drag coefficient: square versus hexagonal and circular case.

Bn Square Hexagon % reduction Circle % reduction
0 6.9397 6.1135 14.94 5.5786 19.61
5 13.9553 12.0237 14.41 11.2657 19.55
10 21.4478 18.4166 14.13 17.2796 19.43
15 28.9459 24.8896 14.01 23.3732 19.25
20 36.4354 31.4094 13.79 29.5111 19.00
25 43.8990 37.9431 13.57 35.6571 18.77
30 51.3235 44.4747 13.34 41.8024 18.55
35 58.7175 51.0029 13.14 47.9443 18.35
40 66.0861 57.5283 12.95 54.0775 18.17
45 73.4365 64.0466 12.79 60.1993 18.03
50 80.7721 70.5589 12.64 66.3107 17.90
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Figure 12: Average Nusselt number (Nuavg) against Bn with Re � 20 and Pr � 5.
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Figure 13: Continued.
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Figure 13: Drag and lift coefficients against Bn with Pr � 5 andRe � 20. (a) Square cylinder; (b) hexagonal cylinder; (c) circle cylinder.
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Figure 14: Average Nusselt number (Nuavg) for different fluids against Bnwith Pr � 5 and Re � 20. (a) -ixotropic (n � 0.4); (b) Bingham
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plateau in the channel central region, which represents the
unyielded material.

5. Conclusions

In this manuscript, extensive computations have been
carried out to elucidate the thermal flow features based on
the topology of the obstacles. -e results revealed herein
enhance over the following varying ranges of nondimen-
sional parameters: n from 0.4 to 1.6, Bn from 0 to 50, Re from
10 to 50, Pr from 0.7 to 10, and Gr from 1 to 10, respectively.
In nonlinear fluid, CD decreases from square to circle by
order to optimize cylinder. -e results for the development
and completion of the velocity profile and thermal flow and
Nuavg for three typical shapes of partially insulated cylinders
are detailed. -e main findings include the following:

(i) Drag and lift coefficients increase against n and Pr
while they decrease along Re over all the topologies
of cylinders

(ii) For the Newtonian case, reduction in CD is max-
imum while reduction is decreasing for increasing
the Bn

(iii) -e rate of thermal flow tends to increase as the Re
values increase due to a decline in the n

(iv) -e Nuavg increases with increasing both Bn and Gr
(v) -e velocity profile shifts from a parabolic to a

smooth plateau in the center along the channel
when the yield stress increases indicating a plug
zone in the center of the channel

Nomenclature

u: Dimensionless velocity
θ: Dimensionless temperature
p: Dimensionless pressure
m: Dimensional stress growth parameter
n: Flow behavior index
ρ: Density
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Figure 15: Impact of average Nusselt number (Nuavg) against Bn for different Gr values.
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Figure 16: Velocity profile for various fluid models at x � 2 with Re � 20.
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g: Gravitational acceleration
LD: Reference length

Greek

τy: Yield stress
μp: Plastic viscosity
τ: Stress tensor
_c: Shear rate
U∞: Reference velocity
Re: Reynolds number
Bn: Bingham number
Pr: Prandtl number
Gr: Grashof number
FD: Drag force
CD: Drag coefficient
FL: Lift force
CL: Lift coefficient
Nuavg: Average Nusselt number
Nulocal: Local Nusselt number
∇ : Gradient operator
α: -ermal diffusivity
υ: Kinematic viscosity

Abbreviations

#EL: Number of elements
#DOF: Number of degrees of freedom.
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