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1. Introduction

The auxiliary ordinary differential equation method and the generalized Riccati method with the
properties of beta derivative are implemented to secure such solutions. The solutions are obtained
in the new forms by involving of some useful mathematical functions. The constraint conditions
among the traveling wave parameters are evaluated. Some of the obtained solutions are presented
graphically to illustrate the effectiveness of beta derivative parameter and mathematical techniques.
It is investigated that the amplitudes of soliton are increased with the increase of fractional beta
derivative parameter. The obtained results would be very useful to examine and understand the

physical issues in nonlinear optics, especially in twin-core couplers with optical metamaterials.
© 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria
University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

incoming bit streams onto a fiber and also to demultiplex a
single-bit stream. Basically, such couplers can be used by mak-
ing planar devices with the help of semiconductor material or

It is well confirmed that optical nonlinear couplers are widely
applicable devices that distribute light from a main fiber into
one or more branch fibers. It may be used to multiplex two

* Corresponding author.

E-mail address: z.hammouch(@fste.umi.ac.ma (Z. Hammouch).

* Peer review under responsibility of Faculty of Engineering,
Alexandria University.

https://doi.org/10.1016/j.a¢j.2020.10.030

as dual-core, single-mode fibers with solitons propagating in
each core. Besides, nonlinear directional couplers (NLDCs)
are attracted for a lot of successful applications in developing
optical gates and signal processing units in optical networks.
Indeed, the pragmatic design and fabrication of optical meta-
materials (OMMs), so called the photonic metamaterials are
produced from the synthetic materials. NLDCs along with

1110-0168 © 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2020.10.030&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:z.hammouch@fste.umi.ac.ma
https://doi.org/10.1016/j.aej.2020.10.030
http://www.sciencedirect.com/science/journal/11100168
https://doi.org/10.1016/j.aej.2020.10.030
http://creativecommons.org/licenses/by-nc-nd/4.0/

1056

M.F. Uddin et al.

the above metamaterials are generated a new dimension in
research because of their innovative and exhilarating prospects
for practical industrial applications, especially in nonlinear
optics. For instance, the exchange of energy is possible
between the pulses propagating in two orthogonal modes when
a soliton pulse is transmitted via a birefringent fiber. Two
orthogonally polarized solitons may be trapped each other
and propagate at a same group velocity. Such phenomenon
is so called the soliton trapping, which is very essential for
describing optical soliton switching. Such type of switching
in fiber depends on the intensity and power as well as phase
of the pulse. Due to above facts, the optical solitons are gener-
ated on the basic factors across the trans-continental and
trans-oceanic distances in fiber optic communication [1-12].
In most of the studies, the importance of traveling wave prop-
agation are already focused in describing various types pattern
formation in crystal fibers, optical switching, optical metama-
terials and metasurfaces, DWDM systems, magneto-optic
wave guides, cascaded systems, etc. To do so, several kinds
of theoretical and computational techniques have been
explored to secure optical solitons by considering only the con-
served as well as local physical models [14-19]. For instance,
Ekici et. al. [20] have been studied the dynamics of optical soli-
tons in birefringent fibers with Kerr law nonlinearity. Li et al.
[21] have been investigated the oscillating collisions between
the three solitons for a dual-mode fiber coupler system. Mirza-
zadeh et al. [22] and Banaza et al. [23] have been explained soli-
ton solutions in optical couplers by implementing the (G//G)-
expansion scheme and the ansatz approach, respectively.
Xiang et al. [24] have been explained controllable Raman soli-
ton self-frequency shift in nonlinear MMs. Additionally, in
Refs. [25-33] have been focused various kinds of bright, dark
and singular soliton solutions in describing the OMMSs. Very
recently, the study of optical solitons in NLDC with OMMs
have also been attracted much attention to many scholars
where the conserved as well as locality arise in the physical
model. Arnous et al. [34], Arsheda et al. [35] and Vega-
Guzman et al. [36] have been studied such physical phenomena
with the aid of trial function method, exp(—®(&)) expansion
[37] and the principle of undetermined co-efficient, respec-
tively. However, no work has been conveyed to understand
the behaviors of coherent structures when the non-local and
non-conservative physical issues arise in such models, because
the classical models are not convenient to divulge the effect of
physical issues due to a long time arise in the dynamical sys-
tems [38]. At these stages, the fractional derivatives (e.g. con-
formable derivative, Caputo derivative, Riemann—Liouville
derivative, Hadamard derivative etc.) are an arena to over-
come the difficulties arising in such models. But, most of these
derivatives are not satisfied some fundamental theorem of cal-
culus. To overcome this limitation of the aforementioned frac-
tional derivatives, the newly derivative, so called the “‘beta-
derivative (BD)” is very recently introduced in calculus by
Atangana et al. [39], which is satisfied the entire fundamental
properties of calculus. Such derivative can not only be
employed as fractional derivative but also as a natural exten-
sion of the classical derivative. Hence, there are still now
opportunities to further study on the nonlinear physical sce-
narios for NLDCs with OMMs by including the beta deriva-
tive evolution (BDE). Hence, this research work is first time
reported the exact analytical solutions of Twin-Core Couplers
(TCCs) having Kerr law nonlinearity with OMMs and BDE.

2. Twin-core couplers with beta derivative evolution

The twin-Core Couplers equations (TCCs) with spatial-tem-
poral BD evolution can be written in the following form:

o'DIQ + o o' DLO + F(lle)Q
=o' DL (101) 0 +mi (1o ) o* DL.0
+4,0° ' DO + kR (1

o' DR+ o* DI, R+ F(IRP) R
= b o* DL (IR )R +ms(|RI) o* DL, R
+ &R DI R + k0 ()

where 0 < f < 1. Here, O(x, f) and R(x, t) are represented the
complex valued functions describing the optical issues in two
core, respectively. OADf and OADLj are denoted the beta deriva-
tive with regards to time and space, respectively. The constant
coefficients of dispersion terms, that is, a,a,2, and g, are
obtained by normalizing via the physical parameters related
to TCCs. The constants /;,,,m; and m, are obtained due to
the trapping in the phase hole. The other constant k; and k»
are denoted the coupling coefficient of TCCs. It is noted that
the Egs. (1) and (2) can be reduced to integer order derivative
evolution by setting § = 1, which is good agreement with the
earlier studies. The useful definition of beta derivative has been
defined in Ref. [39] as

1-p
F<x+e(1+ﬁ) )—F(X)
ADPF(y) = lim
o L1

e—0 €

3)

Based on the definition, the derivative properties are obtained
as follows:

(i) DImEF() +nG(1)} = mi DI{F(2)} + m{DI{G(n)}  (4)
(i) DI{u} = 0 (5)

(iii).o" DI{F(1).G(2)} = F(1)g D){G(1)}
+ G DIHF()} (6)

G(2)o DIF(2)} — F(x)y DI{G(0)}
G*(x)

()0 DY{F(2)/G(2)} =

(7)

where, mn,ue R. G#0 and F are two functions f-
differentiable with pe(0,1]. By introducing

f-1
€= <x+ﬁ) h , when € — 0,h — 0 in Eq. (3), one can

derive another useful property as

([ —
o' DyF(z) = (X‘Fﬁ) dl;—gf) (®)

To convert Eq. (1) and (2) into nonlinear ODE, one can
assume the following useful traveling wave transform:

O(x,1) = G (n)e"™, ©)

R(x,1) = Gy(i)e™, (10)
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where,

n—é(wﬁ)nﬁi(wﬁ)ﬁ, (11)
and

u(x,z):;(x+r(]ﬁ))ﬁ+uﬁ)(t+r(lﬁ))ﬂ+eo, (12)

Here, G,(n),p = 1,2 represents the amplitude component of
the wave, ¢ represents its velocity and / is any constant, while
u(x, ) is the phase component,e x is the frequency,  is the
wave number and 0, is the phase constant, respectively. It is
noted that the phases of TCCs are identical, which is so called
as the phase-matching condition. For the integrability aspects
of TCCs, such phase matching condition is very useful to
divulge soliton solutions. Now, substituting Eq. (9) and (10)
into Eq. (1) and (2), the imaginary part is obtained as

(¢ = 20,10) G, + 21 (31, + m, — g,) GG, =0,p=1,2  (13)

Setting the coefficients of two linearly independent functions to
zero, yields

¢ = 2a,xl, (14)
(31, +m, —g,) = 0. (15)
Equating the two values of the soliton speed, one obtains

o =0 = . (16)

Eq. (14) can therefore be written as
¢ = 2axl. (17)

Besides, the real parts of the considered equations are obtained
as

(xplzG;: — (o + )G, + F(Gﬁ)G,, + (I, +m, + gp)KZGz - 6/,7/26‘[7(0/,7)2

P (3L, + m, +8,) GG, — k,G =0,

o (18)

where, o) = oy = o, p = 1,2 and p* = 3 — p. According to bal-
ancing principle gives

G, =G, (19)
Eq. (18) is therefore transformed to
AP Gy — (1% + 0+ k)G, + F(G2) Gy +2(g, — 1,)°G

~ 61,2G,(G1,)* - 2g,G>Gly = 0, (20)

For the twin-core couplers with Kerr law nonlinearity, that is
F(h) = sh, Eqgs. (1) and (2) can be reduced to

oAD{jQ + oy oADﬁxQ + 51 ‘Q‘ZQ
=4 o'DL(108) 0 +mi(I0F) §ph0
+8,0% "D 0" + kiR (21)
o'DPR+ 0, "D R+ 5,|RI’R
=1 o* DL (IRP) R+ i (IRI) o* DI, R
+& R ' DL R + ka0 (22)

Based on the above two equations, Eq. (20) is converted to

PG — (0 + 0 + k)G, + 5, +2(g, — ,,)*] G}
~ 61,2G,(G1,)* — 2g,G>Gly = 0, (23)

To introduce the following transformation for obtaining the
traveling wave solutions,

L, =g,=0, (24)
Eq. (23) can be rewritten as
oGl — (e + 0 + k,) G, + 5,G) = 0. (25)

3. Traveling wave solutions of TCCs with beta derivative
evolution via AODEM

First of all, the description of the AODEM is ignored for sim-
plicity. Because the detailed description of this method is given
in Ref. [40]. According to the AODEM, the analytical solu-
tions can be written in the following form:

G, (7/) = Zanfw(n)’ (26)
and
GZ(”’) = Z“:1F"(’7)7 (27)

n=0

where, a,,u,(n =0,1) are real constants with a; # 0, and
u; # 0 and F(n) satisfies the following auxiliary ODE:

Fi(n) = \/an(n) +bF () + cF(n). (28)

It is noted that Eq. (28) are provided several types of general
solutions by demanding on the real parametric values of a,b
and ¢, which are given in Ref. [34]. With the aid of Egs.
(26), (27) along with Eq. (28), one can form a polynomial in
F(n) from Eq. (25). Equating the coefficients of this polyno-
mial, one can obtain the systems of algebraic equations from
Eq. (25) as

Forp=1,
3alajc = 0,
2ablay + sa} =0,
3sapa? = 0,

—(or®> + o + ky)a) + aola, + 3sa, =0,
—(aK? + o+ ky)ag + sai = 0.

For p =2,
3alujc =0,
2ublu; + su} =0,
3sugut = 0,

— (oK 4+ o + ka)uy + aoluy + 3suduy =0,
—(ar® + o + ka)ug + suj = 0.

By simplifying the above algebraic equations, one obtains
Forp=1,

| 2abP
ay=0,a;, =4[ — CZS co=aul —ox* —ki,a=a,b=>b,c=0

(29)
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For p=2,

| 2ubP
uy = 0,u; =4/ — asbl,w=aod2—om2—k2,a:a,b=b,c=0

(30)

Based on the Egs. (9), (10), (26), (27) and the solutions of Eq.
(28), the following exact traveling wave solutions for under-
standing the nonlinear behavior of Q and R with BDE are
obtained:

When a > 0,

S (z+ﬁ)ﬁ+b’o]>

= 2 /; 2 2
¢ - P —k
0,(x,1) 2(4:1 X exp (1{ (Y + ﬁ)) ax a;}« .

X sech{\/ﬁ[/f’; (x +ﬁ)ﬂ +< (t + r(/f))/f} }

@31

B 2 y B
Ri(x,1) = /zl,flz X exp (1[ (x + 1"(/1)) o 77;271\1 (l + l'(l/I)) + 00})
/ LV A%
x sechq v/a B(x+r<ﬁ>> +E(t+]_(ﬁ)> ,

(32)

2 P —n?— B
0,(x,1) = y/— 2 x exp ( [ ( /f>) el 7 ky (t+ﬁ) + HOD
+

il .

2 /} 2 2
Ro(x,1) = y/— 2 x exp (f[—;(wr(ﬁ) +efomil (y 4o ,,)) +90D
L 1 b 1 b
x ¢cschq va TK(XJFW) +%(Z+W> ,

(34)

(H— ,,)) +HUD

2 . X B 2
O5(x,0) =2 —%xexp(z{—%<x+ﬁ) ol ek

x Y ! ,
[FEACT T
(33)

B e 8
Ri(x, 1) =2 1;7/ xexp({ %(yﬂLﬁ) | a /;Z kz(t+ﬁ) +()OD

1
x B B k
cosh 4 2y/a /—"(\q,ﬁ) +5 (Hﬁ) 7]

(36)

< /3 an. E*ﬁK") —K ﬁ
Q4(x, 1) =2¢/—L Xexp([ ’B<x+ﬁ) o+ ek 5 /‘(t+ﬁ> +60})

1

x B [ d
H 1
+sinh § 2/a 3('Y+ﬁ) +/f(/+r(/")) -1

(37)

asl 1 x 1\ anl — i — ks 1\
Ry(x,1) =24 g xexp (z[fﬁ(XJrW) +#<[+W> =+ Oy )

1
x Jisinh {2\/‘7[7@0*%) (t+ m)q}71s

(38)

B 22 B
Os(x, 1) = 4,/7M X exp (l[iﬁ(ijﬁ) 4 ao = —ky (1+ﬁ) +90]>
[ [ #
exp{2\/_ ,f(w,w) +/’(’+”I/")) }
B I3 2y
<cxp{2\/ﬂ[f(\+ (/n) *%(’*%m) ]}74/;)
(39)

3 B 22 B
Rs(x, 1) = 4y/— 22 x exp (i [7% (x + ﬁ) 4 alacky =7 —k (I + ﬁ) + 00] )
[ 3 1
exp {2\/D 7@(\4#{)) + (Hﬁ) }
[ ¥ -
(exp {zﬁ [ﬁ (,\+ﬁ) ﬁ(:fﬁ) ] }74/7)

(40)
When a < 0,
2 : K 4 anl —on — b
O¢(x,1) :Zﬁx exp <l[*ﬁ(X+ﬁ) o+ el e —ky i b (l+ﬁ) +90]>
X 1
B B ?
$cos{2\/7n|}/r<,\‘<r‘m) ﬁ(uﬁ) ] } 1
(41)
< /1 ao oK
Re(x,1) =2 _ﬂxexp< [ %(Y-&-ﬁ) +1T(1+ 5 ) +00]>
X 1
B B ’
J cos {Zﬁ |:7’f(r+#ﬂ)) ﬁ(wﬁﬁ)) :| }71
(42)
() =2 aul® Ak 1 B asl —o® —ky 1 p 0
0,(x,1) =24/ —“E xexp | i —ﬁ(erm) + e (’+W) + 6y
X 1
B B ?
e )8
(43)
2 : ¢ b aol — i —ky b
Ry(x,1) =21/ —“L x exp (1[—% (x-&-ﬁ) .t,.sz’ﬁ(H_ﬁ) +90]>
1
X ,
B B ?
(44)

where, ¢ = 2axl. Here, the above traveling wave solutions are
found by assuming ¢ = | from the solutions of Eq. (28) [see
Ref. [40]]. One can easily achieve another set of solutions by
considering ¢ = —1 in the solutions of Eq. (28), which are
ignored for convenience. Some of the above analytical solu-
tions are presented graphically (see Figs. 1-4) for illustrating
the potentiality of the AODEM and fractional beta derivative
parameter by considering the constant values of the remaining
parameters.

4. Traveling wave solutions of TCCs with beta derivative
evolution via GRM

This section start with the generalized Riccati method in a con-
cise manner. According to the GRM, the analytical solutions
can be written in the following form:

0 =at 3 (@r o+ o) (3)

and
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Fig. 1  Shape of |Q, R| with regards to (a) x and ¢ for # = 0.9 and (b) x and ¢ = 0.5 for different values of f, respectively according to the
analytical solutions as mentioned in Eqs. (18) and (18) of Eq. (1) and (2), respectively. The other parametric values are considered as
ki=k;=05s=1,k=1l,a=1,/=1and b= 1.

(a) (b)

Fig. 2 Shape of (a)|Q,R| with ky =k, =1,0=—-1,s=1,k=1,a=1,/=1 and b =1 according to the analytical solutions as
mentioned in Egs. (18) and (36), and (b) |Q, R| with ky =k, =1,s=1 k=1,0=1,/=1 and a=b =1 according to the analytical
solutions as mentioned in Egs. (18) and (38) of Eq. (1) and (2), respectively.

Gat) — o+ i (u P+ F"v(,,n)>, (46) (-F(n)=—V=btanh (x/fbn) (48)

where, dg, dy, by, ug, Uy, va(n =1,2,3...... ,N) are real con- (ii).F(n) = =V —bcoth (V —bﬂ)a (49)
stants with ay # 0, or by #0 and uy # 0, or vy # 0 to be

determined later and F(n) satisfies the following Riccati If 5> 0, then

equation: (i) F(n) = Vb tan (Vbn), (50)
Fi(n) = b+ F(n). (47)

It is noted that Eq. (47) are provided the following several (iv).F(n) = —Vbcot (\/I;n), (51)
types of general solutions by depending on the real parametric

values of b. If b =0, then

If b < 0, then
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(a) (b)

Fig.3 Shape of (¢)|Q, R| withk; =k, =1l,a=1,s= -1,k =1,a=—1,/=1, = 0.8 and b = 1 according to the analytical solutions as
mentioned in Egs. (18) and (42), and (b) |Q, R| with ky =k, = 1,s =1,k =1,a =—1,§=0.8,/=1,a = —1 and b = 1 according to the
analytical solutions as mentioned in Eqs. (18) and (18) of Eq. (1) and (2), respectively.

(a) (b)

Fig. 4 Shape of (a) |Q| and (b) | R| with regards to x and ¢, respectively according to the analytical solutions as mentioned in Egs. (18)
and (18) of Eq. (1) and (2), respectively. The other parametric values are considered as a=0.5b=0.9,k =08k, =
—1.9,=0.85,5=0.1,k =0.01,0 = 0.05 and / = 0.5.

1 F =1
(v)-F(n) = e (52) orr==
20l a; + sa} =0,
Aceording to the homogeneous balancing principle, one can

obtain the value of N from Eq. (25) as N = 1. Therefore, the 3sapa; = 0,
solutions of Eq. (15) in the following form: )

20bla; — (ax* + o + ky)ay + 3saka; + 3saib, = 0,
Gi(n) = ao + arF(n) + by F ' (n), (53)

—(oKk? + @ + ky)ag + sai + 6saga1 by = 0,

and

20bPby — (o + o + ki )by + 3salby + 3sarb; =0,
Ga(o) =t + 1 F(n) + v F ), (54) o o dnby v

2 _

With the assistance of Egs. (53), (54) along with Eq. (47), one 3saph; =0,
can get a polynomial in F(y) from Eq. (25). Equating each 2ub* Py + sb? = 0.

coefficients of this polynomial to zero, one can obtain the sys-
tems of algebraic equations as For p =2,
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20l uy + su} =0,
3sugu? = 0,
20blPuy — (a® + @ + ka)uy + 3suduy + 3sudv, =0,
—(aK? + @ + ka)ug + sud + 6sugu vy = 0,
206 v) — (K> 4+ @ + ka)vy + 3suvy + 3sup? = 0,
3sugvi = 0,
20b° Py + 513 = 0.

Simplifying the above algebraic equations, one obtains the fol-
lowing three cases:

Case-1:
Forp=1,
2 (1 2 0K WTK

ay=a =0,b ==+ - ;;s);kl) b= ; EFHI : (55)
For p =2,
Uy =t = 07 y =+ / (xﬂ;::;kv) b= é oK 4;;0+k7 . (56)

Case-2:

For p =1,
ay = 0,01 = £\ =2 by = 0,b =} =gk, (57)
For p =2,
o = 0,1 = /=20 =0, =L 250k, (58)

For above both cases, the analytical solutions of Egs. (1) and
(2) are archived as below:
When b < 0,

2 otk /f w ﬁ
Ql(x,t):;,/i““f\_*“xexp([ ﬁ(er%) +ﬁ(t+ﬁ) +00]>

X{coth( - *“*‘{(H )ﬁﬁ(wﬁ)ﬂ])}

(59)

(60)
Qﬂx,t):ﬂﬁ/@xexp([ /i(“*r(/f)/f*%(“rﬁ)hf()“])
x{tanh( 12 m”‘[ (x+ )/;-&-f;(t-«—ﬁ)q)},

(61)
Ry(x,1) = qﬂ\/”‘zfz"*k X exp (z [7% (erﬁ)/’ +9 (r+ﬁ)ﬁ + OOD
X{tanh( L [ (v+r%ﬁ)ﬁ+%(t+ﬁ)q>},

(62)

When b > 0,
17(2 -w+k K ﬁ [0} ﬁ
/— +\-+Al X exp <I|: /{(Y+ ) +E(I+ﬁ) +00:|>
1 b c 1 B
“W) *ﬁ(”m) .

=
Il
H

X
—
o
e}

&
I/~
o

s

8

g ¥
g

:

=
==
~~

(63)

(64)
QA(X’[):I\/—@XCXP(,[ %(x+%)/f+ﬁ(t+ﬁ)”+ﬂo])
o (T o) 50 )

(63)
x{tan( %”Zz;)# [7’;(*+1(17>/f+§(t+ﬁ)ﬁ])},

(66)

Case-3(i):

_ _ oac2+u)+k| —1 _ 1 et totk
ayg = 07 a, = +2al 2a(v7 b] = 721 T b = i

ar otk

_ — 1w’ +otk
u070,u17i2ocl 21?,\’17:’: a7 b =g

80(?7 8 o

For b < 0, the analytical solutions of Egs. (1) and (2) are
archived as below:

O — WXEP({ %< r(ﬁ)>/f+w( (ﬂ))/ueo
{ tanh | /K, ( 1‘(/})> +%(H—ﬁ>q>
1\
7coth< 1"7)
\/m
x{—tanh<\/lgﬁ<x+ﬁ> +%<[+%>ﬂ
,coth(\/g <“+L>ﬁ+

/N

=|~

/ .
JANERN()) B(
R ({ %(”ﬁ)ﬁ*w( r(ﬁ))ﬁ”")
x{tanh VK é<v+ﬁ>ﬁ+%<t+ﬁ ﬁD
+coth(\/z é<x+ﬁ>ﬁ+%<t+% ﬁ})} (69)

i)
I

! P 1)/
“"‘h(ﬁ i+ em) 3 m) ]
where K, = —(a> + o +k)/8a and K, = —(ar+
o + ky) /8al.

For b > 0, the analytical solutions of Eqgs. (1) and (2) are
archived as below:



1062

M.F. Uddin et al.

1 a2 + o+ ky | x
0;(x,1) =3\ xexp <z[—ﬁ(x
B
+

(712)

(73)
R3(X,t):%\/jczv++—+kzxexp(i %(x+ﬁ>ﬂ+%<t+%)ﬁ+eo )x
{—tan(\/l—(; é(jH,ﬁ)ﬁ"'%(H—ﬁ)ﬂ )
+cot <\/Ia|:é(x+%>ﬂ+%(t+ﬁ)ﬁ )}, (74)

where K3 = (ar® +w + k1) /8a* and Ky = (a® + o + ky) /8ol
Case-3(ii):

_ — —1 _ 1K2+w+k1 —1 _ _1 {XK2+(D+k1
ayg = 07 a, = 20/ Ts? b1 = :F—Zl _Zas’b =i 7

_ _ —1 _ poaltotky /-1 g 1 ek’ totk;
Uy = 0, u, = 20/ S V1 = F a7 S5 b= 1 o

(a)

Fig. 5

and (18) of  Eqg. (1 and 2),

respectively.

Hence, for b < 0, the analytical solutions of Egs. (1) and (2)
are archived as below:

(73)

—%<x+ﬁ>ﬂ+%(t+ﬁ>ﬂ+eobx

(76)

fo (2[5 (1) +5r) ]

—tanh <\/F2

(78)

where K, = (a® +w + ki) /4ol and K, = (a® + o + k) /4ol
Also, for b > 0, the analytical solutions of Eqgs. (1) and (2)
are archived as below:

(b)

Shape of (a) |Q| and (b) |R| with regards to x and ¢, respectively according to the analytical solutions as mentioned in Egs. (18)

The  other  parametric  values are  considered as

ki = —0.000001,k, = —5.5,=0.5,s =1,k = 1,0 = —1,0 = 10 and [ = I.



Traveling wave with beta derivative spatial-temporal evolution for describing the nonlinear directional couplers 1063

Q.

‘I '0 v -,'
00 e

l 'l
5

l

(a)

(b)

Fig. 6 Shape of (¢)|Q| and (b)|R| with regards to x and ¢, respectively according to the analytical solutions as mentioned in Egs. (18) and

(18) of Eq. (1) and (2), respectively. The other parametric values are considered as k; = —3,k, =

I=1.

/ '4' %
(A
l 4
" " l’h"h 'I ,
,I

-5,=085s=1,k=1,0=1 and

(b)

Fig.7  Shape of (a)|Q| and (b)|R| with regards to x and ¢, respectively according to the analytical solutions as mentioned in Egs. (18) and

(18) of Eq. (1) and (2), respectively. The other parametric values are considered as k; = —3,k, =

=04

(80)

—5,=08,s=0.5,k=1,0=0.5 and

-~ oc? +w+k1 x© 5 w 1 \*
Qi = “"p({ 3 (omm) 5 () ”"DX

{_tan<\/173é<"+r(ﬂ> <$>D

—cot (\ﬁ

(82)
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(a)

(b)

Fig.8 Shape of (¢)|Q] and (b)|R| with regards to x and ¢, respectively according to the analytical solutions as mentioned in Egs. (18) and

(18) of Eq. (1) and (2), respectively. The other

10,s =1,k=04,0=0.01,0 =0.01 and / = 0.4.

where, K3 = —(ak> + o +k)/4al* and Ky = —(ox® + o+
ky)/4al*. Tt is noted that some of the above analytical solutions
are presented graphically (see Figs. 4-8) for illustrating the
effectiveness of the GRM and fractional beta derivative
parameter by considering the constant values of the remaining
parameters.

5. Results and discussions

The dimensionless forms of the optical fields in the respective
cores of the optical fibers, that is Q and R are determined in
terms of various mathematical functions and BDE for under-
standing the physical issues in nonlinear optics, such as
intensity-dependent switches and devices for separating a com-
pressed soliton from its broad pedestal. It is noted that Egs. (1)
and (2) are not actually integrable due to the presence of the
arbitrary functional form and the coupling terms. Hence, the
traveling wave solutions are constructed by employing two
very useful mathematical techniques with some assumptions,
that is,0; = o = « and Eq. (24). Some of the obtained out-
comes are presented graphically in Figs. 1 to 8. It is seen form
these figures that serval types of traveling waves, like soliton,
periodic and kink shaped structures as well as rouge waves
are obtained from the obtained analytical solutions of the con-
sidered equations. It is also found that the beta fractional
parameter are significantly modified the wave dynamics when
p lies between 0 to 1. On the other hand, Eq. (25) can reduce
in the integral form by multiplying G/ as
(1/2)(G1)* + V(G) =0, where V(G) = —((ak® + o+
ky)/20")G* + (s/4a*)G* (s, = 5). By setting V/(G) = 0, one
obtains G =0 and G = +4/(ak” + ® +k,)/s. The existence
condition of traveling wave solutions based on the
considered equations is obtained as V'(G) =0, =
—((2k* + @ + k,) Jal”) < 0. Tt is provided that traveling waves
are strongly depended on the physical parameter related to
TCCs and existed whenever the condition (ak”> + w + k,) < 0
is satisfied. It is also predicted that one can be applied the

parametric

values are considered as k; = —0.15k, =—-0.1,1=

obtained results in this manuscript for better understanding
the physical phenomena of wave propagation at relatively high
field intensities in two cores by determining energy
(E= ff;(|Q|2 + |R|)dn), linear momentum, and the Hamilto-
nian etc.

6. Conclusion

In this paper, the twin-core NLDCs with OMMs with spatial—
temporal BDE and kerr law nonlinearity have considered. The
analytical solutions of this equations have constituted by
implementing the auxiliary ordinary differential equation
method and the generalized Riccati method. The obtained
solutions have represented in terms of several kinds of mathe-
matical functions with beta derivative and other related
parameters. It is noted that the solutions of the considered
equations are obtained in new forms because of BDE, which
is indicated that no comparison are needed with the previous
studies. This work is not only focused on BDE but also the
effectiveness of applicable methods to obtain the traveling
wave solutions of model equations. The outcomes of this study
would be beneficial to understand not only the behaviors of
wave propagation in nonlinear sciences, especially in nonlinear
optics but also further studies in laboratory, where the consid-
ered model equation is applicable. It is also noted that one can
employ the AODEM and GRM for finding the analytical solu-
tions of any other nonlinear evolution equation with BDE, but
beyond the scope of this study.
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