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The current article investigates the boundedness criteria for the commutator of rough p-adic fractional Hardy operator on
weighted p-adic Lebesgue and Herz-type spaces with the symbol function from weighted p-adic bounded mean oscillations and

weighted p-adic Lipschitz spaces.

1. Introduction

For a fixed prime p, it is always possible to write a nonzero
rational number x in the form x = p¥ (m/n), where p is not
divisible by m,n € Z and y is an integer. The p-adic norm is
defined as |x|, = {p"? U{0}: y € Z}. The p-adic norm |- |,
tulfills all the properties of a real norm along with a stronger
inequality:

I + yl, <max{lx|,, [yl,}. (1)

The completion of the field of rational number with
respectto ||, leads to the field of p-adic numbers Q,.In 1],
it can be seen that any x € Q,\{0} can be represented in the
formal power series form as

x=p' Zoﬁjpf, (2)
=

where B,y € Z,; € (Z/(pZ,)), B, #0. The convergence of
series (2) is followed from [p?Bp’l, = p~ /.

The n-dimensional vector space @, =Q,x---xQ,
consists of tuples X = (X1,%Xp .5 X,,), where
x; € Q,,i=1,2,...,n, with the following norm:

|X|p = nég}lxib' (3)

The ball B, (a) and the corresponding sphere S, (a) with
center at a € @ and radius p? in non-Archimedean ge-
ometry are given by

B, (a) ={x € Q) [x—al,<p'},
S, (a) ={x € @}: [x-al, = p'}.
When a = 0, we write B, (0) = B,.S, (0) = S,
Since the space Q) is locally compact commutative
group under addition, it cements the fact from the standard

analysis that there exists a translation invariant Haar
measure dx. Also, the measure is normalized by

JBodx =|By|;; = 1, (5)

(4)

where |E|y represents the Haar measure of a measurable
subset E of Q7. Furthermore, one can easily show that
1B, (@)l = p™, IS, (@)l = p™ (1 - p™"), for any a € @Z.
The last several decades have seen a growing interest in
the p-adic models appearing in various branches of science.
The p-adic analysis has cemented its role in the field of
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mathematical physics (see, for example, [2-4]). Many re-
searchers have also paid relentless attention to harmonic
analysis in the p-adic fields [5-11]. The present paper can be
considered as an extension of investigation of Hardy-type
operators started in [6, 7, 12-16].

The one-dimensional Hardy operator

Hf(x)=§J:f(y)dy, x>0, 6)

was introduced by Hardy in [17] for measurable functions
f: R* — R* which satisfies the inequality

IH flls @y <~ 1 flia e,

where the constant g/ (q — 1) is sharp. In [18], Faris proposed
an extension of an operator H on higher dimensional space
R" by

1<g<oo, (7)

Hf (x )—fj F(y)dy, ®)
|| [yKx|

where |x| = (Z?:l xiz)(I/Z) for x = (xy,...,x,). In addition,
Christ and Grafakos [23] obtained the exact value of the
norm of an operator H defined by (8). Over the years, Hardy
operator has gained a significant amount of attention due to
its boundedness properties [19-22]. For complete under-
standing of Hardy-type operators, we refer the interested
readers to study [12, 23-29] and the references therein.

In what follows, the n-dimensional p-adic fractional
Hardy operator

HE f(x) = iaj £ (ydy. )
x| Iylp<Ix,

was defined and studied for f € Lloc (@") and 0<a<n in
[15]. When « = 0, the operator HY transfers to the p-adic
Hardy operator (see [30] for more details). Fu et al. in [30]
acquired the optimal bounds of p-adic Hardy operator on
L1(Q7%). On the central Morrey spaces, the p-adic Hardy-
type operators and their commutators are discussed in [16].
In this link, see also [6, 7, 14, 27].

From now on, we turn our attention towards the rough
kernel version of an operator which recently received a
substantial ~attention in analysis (see for instance
[11, 31-37]). The roughness of Hardy operator was first time
studied by Fu et al. in [12]. Motivated from the results of
rough Hardy-type operators in Euclidean space, we define a
special kind of rough fractional Hardy operator and its
commutator in the p-adic field.

Let f: Q) — R, b: Q) — R and Q: Sy — R be
measurable functlons and let 0 < « < n. Then, for x € Q"~{0},
we define a rough p- adlc fractional Hardy operator H, , and
its commutator H g as

HY (%)= o j Iyl y) £ (1dy, (10)

Ixl, ™ J iyl =i,

BP0 = e [ 60 =b)O(lyl,¥)f (1),
|X|p [ylp=<

(11)

whenever
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J Iyl <Ixl,

lelp x|P'b(Y)Q Iylpy f(Y)'dy<oo (13)

O(Iyl,y) f (v)]dy < oo, (12)

Remark 1. Obviously
{Iyl,: y € @y} ={p": y e Z}u{o}, (14)

holds for every integer n>1 and prime p>2. Since the
inclusion

{O}U{py:yEZ}QQp, (15)

holds and Q) is a linear space over field @, the product |y| )y
is correctly defined. Moreover, if a nonzero ye Q” has a
formy = (y,,...,y,) and

=p" (/30,1' +Pip+ ﬁz,ipz e ')>

(see (2)), then there is i, € {1,.. .,

i=1,...,n, (16)

n} such that

Vi, =P oz p " =yl (17)

whenever y; #0. Using (3), we obtain |y|, = p~"o. Now from

(16) and (17), it follows that

— max Vi~ %0 = max Yio=™ Vi — Vi Yig =1.
YipYl, p p =p
1<i<n
y,#O yi#0

(18)

Thus, for every nonzero y € @7, the vector |y ,y belongs
to the sphere

8 (0) ={y € @}: Iyl, = 1}. (19)

From (12), it directly follows that Hf , € R for every
nonzero x € Q;, and using (12) and (13), we have

b (x)l

|HELf (0| < T

J o |2 ¥1y)f )y

bQ(Iyl,y) f (y)|dy < oo,

(20)

1
+ n-o
xI, ™ J iyl <ix,

for every x € Q) ~{0}. Consequently, the operators HE 0. and
Hgl; are correctly defined.

The aim of the present paper is to study the weighted
central mean oscillations (CMO) and weighted p-adic
Lipschitz estimates of Hf{)a on weighted p-adic function
spaces like weighted p-adic Lebesgue spaces, weighted
p-adic Herz spaces and p-adic Herz-Morrey spaces.
Throughout this article, the letter C represents a constant
whose value may differ at all of its occurrence. Before turning
to our key results, let us define and denote the relevant
p-adic function spaces.



Journal of Mathematics

2. Notations and Definitions

Suppose w(x) is a weight function on Q, which is non-
negative and locally integrable function on Q). The weighted
measure of E is denoted and defined as w(E) = J W (x)dx.
Let L1 (w, Q”) (0<g<oo) be the space of all complex-
valued functlons J on Q) such that

(1/q)
”f"m(w,@;) :<JQn|f(x)|qw(x)dx> < 00. (21)

Definition 1. Suppose 1<gq < oo and w is a weight function.
The p-adic space CMO1 (w, Q;) is defined as follows:

(1/9)
- 1 _r 2 1-q
”f||CM04(w,@;) = ?/1615 (w(By) JBV'f(X) fo| w(x) dx) ,
(22)
where
1
=] [ (3)

Definition 2 (see [5]). Suppose a € R, 0< p,q< 00 and w,
and w, are weight functions. Then, the weighted p-adic Herz
space Ko (w;,w,) is defined by

[ &
—Aln,
"f“MKgﬁq (wyw,) = SUP wl(Bko)

koez k=—00

Remark 3. It is evident that MK”‘0 (wy,w,) = Ky P (wy,w,).
Now, we define the welghtecf p-adic Lipschitz space.

1
g ) = 500

Bc@: w(B) (v/m)

where
fs= Bl J £ (x)dx. (29)

Muckenhoupt introduced the theory of A, weights on
R" in [38]. Let us define the A, weights in the p-adic field.

Definition 5. A weight function w € A, (1<q < 00), if there
exists a constant C free from choice of B C QZ such that

<ij w(x)dx)( jw(x)(ll(ql))dx>(l/q)<c (30)
1Bl 1Bl =t

For the case g = 1,w € A,, we have

Kg’p (wl’ w2) {f € Lloc(wz’ QZ\{O}) "f”K;P (wl»wz) < OO}’
(24)
where

1A s (wy0) = < D

=—00

(1/p)
((ap)in) p
w; (By) ||f)(k||m(w2 Qn) >
4
(25)
and y, is the characteristic function of the sphere
Sk =Bk\Bk—1'

Remark 2. Obviously Kg’q (wy, wy) = L (w,, @)).

Definition 3 (see [5]). Let a € R, 0< p,q < 00, w, and w, be
weight functions and A be a non-negative real number. Then,
the weighted p-adic Herz-Morrey space MK (W wy) s
defined as follows:

MG (w100) = {f € (0 QMO 1 ) <0
(26)

where

(1/p)
w, (B,) P ||ka||;(w2’@n) ) : (27)

Definition 4. Suppose 1 <g<00,0<y<1 and w is a weight
function. The p-adic space Lip,, (w, @;) is defined as

(1/q)
(w(B)J |f () - fl'wx)'™ qu) ’ .
! dx < Cessinf
ﬁJ’Bw(x) x < essiI;Bw(X)a (31)

for every B c Q.

Remark 4. A weight function w € A,
stipulation of A, (1<q<00) weights.

if it undergoes the

3. Weighted CMO Estimates of H f)’i on
Weighted p-Adic Herz-Type Spaces

The present section discusses the boundedness of Hg’fx on
weighted p-adic Lebesgue spaces as well as on the weighted
p-adic Herz-type spaces. We begin the section with some
useful lemmas to prove our main results.



Lemma 1 (see [39]). Suppose w € A,; then, there exists
constants C,,C, and 0<u <1 such that

Al w(A) lAN
CIIHSw(B)SCZ(lBl> , (32)

for measurable subset A of a ball B.

Remark 5. If w € A;, then it follows from Lemma 1 that
there exists a constant C and pu(0<u<1) such that
(w(By)/w(B;)) <Cpk=in as i<k and
(w(B)/w(B,)) <Cp*k=— a5 i > k.

Lemma 2. Suppose w € A, and b e CMOT(w,Q}); then,
there is a constant C such that fori, k € Z,

|bs, ~ by | <C Ui —k)||b||CMoq(W)%. (33)
=

Proof. Firstly, we consider

b2y by | < 'Bl| jB [bx) ~ by |
Y Y

1
'B |J 'b(") | x (34)

C
< m"b”mm(w,@;)w(wy)

We assume without loss of generality that i > k; then,
using Lemma 1, we are down to

'bBi - ka' < |bB, - bBH| o +|ka+1 - ka'

j |b(x) by|dx + - 5 kIJB |b(x) - by, |dx

_IBI 1
<Clll w(B) | w(B)
CMOq(w,@;) |B,.1] |B|
B
W) o]
@) |B,
(35)
Lemma 3. Suppose w € A;; then for 1<q< oo,
J w(x)" " dx<CIBITw(B) 7, (36)
B

where (1/q) + (1/q') = 1.
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Proof. Since A; C A;(g>1), w satisfies the A, conditions

g-1
(%J w(x)dx)(“lﬂj (w (x))" ))dx> dx<C,
B

(37)
for every B c Q.
From here, we easily get
| weorax<cipwe' . (38)
B

Theorem 1. Let 1<p,q<oco, we A, (a/n)+1= (1/s");
then

|16 s

Lq(wl—q,@;)gcn ”CMOP““"‘{“ ( )"f” ( )
(39)

holds for all be CMOP™ 44} (w,@"), (e L5(S,(0)),
1<s<ooand f € Ly, (Q@)).

Now we state the results about the boundedness of
commutator of rough p-adic fractional Hardy operator on
weighted p-adic Herz-type spaces.

Theorem 2. Let 0< p,<p, <00, 1<p,q< oo and let w € A,
(a/n) +1=1/s".

If f< (nul/q'), then the inequality
b
|5

s = OBl g} ()8
(40)

holds for all be CMOP™44'} (1), Q). Qe L*(S)(0)),
l<s<ooand f € L, (Q@7).

Remark 6. If =0, p, = p, = g, then Theorem 1 becomes a
special case of Theorem 2.

Theorem 3. Let 0<p,<p,<o00, 1<p,gq<oo and let
we A, (a/n)+1=(1/s")and A>0. If < (nu/q') + A, then

p.b
| = Wolssormeted) () M st oy
(41)

holds for all be CMOP™ 44} (w,@"), (e L5(S,(0)),
1<s<ooand f € Ly, (Q@)).

BA -
Ky q (wiw'™)

Proof. of Theorem 2. By definition, we firstly have
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(e

L4 w’qQ)

- Lk|x|;ﬂ(”"“) jlyp<lxpsz(|y|py)f<y> (b(x) - b(y)dy

. Cp—kqm—mj (j
Sk |y|P§pk

q
w(x)' " 1dx

q
Q(Iyl,y) f () (&) - b(y»]dy) w(®)' 9dx

: . (42)
Scpfkq(n—a)js < J 'f(y)Q py)(b(x) by, |dy> w(x) " dx
%\ j=—00
k q
+Cp‘kq<”‘“)js < J |f(y)Q p'y)(b(y) - by, |dy> w(x)1dx
%\ j=—00
=I+1I.
For j,k € Z with j<k, we get Also, since w € A; C A, by the application of Hélder’s

. ) B inequality (((1/q) + (1/q")) = 1) together with Lemma 3, we
IS |Q(P]Y)| dy = L | 1IQ(Z)IUDJ”dzst " (43)  have
j 2=

(/a) , (119"
J fydy< (J lf ()|w (y)dy) (J w(y) (-4 /q)dy)
5 5 S,

(44)
(=1/q)
o)l (B;)
To estimate I, we make use of Holder’s inequality, Re-
mark 5, and (a/n) + 1 = (1/s") along with (43) and (44) to
have
ISCP‘W“”J Ib(x) — by |
By
k ) 1/s' o s )4
<1y (L If (I° dy) (L l2(p'y)| dy) w(x)' %dx
j=—00 j J
f q
<C kq (n—a) b q B kn/sj d
PG ) { X P 1 iy
(45)

—kqn( (1— 06)/ (n—l)/s) ”b"q

= CP CMOq(w,@;)

i
ollGE) }

M(wﬂ:))q'

Bk>{ 3

CMO1

<CoL { 2 70l

fXj

CMO?| w,Q))

SC”b"q P(k—j)n/q,
(we )(



Now, we turn our attention towards estimating I1I.

k q
HSCP*W"*“)I <Z L fmo(p’ y)(b(y)—b3j>dy> w(x)' 1dx
Jj=—00

+Cp k- “)I < i L_ (PjY)<ka—ij> >qw(X)lqu
009 S;

=11, + 11,

In order to evaluate II,, we need the following prepa-
ration. Apply Holder’s inequality at the outset to deduce

[ [ron(bw) -y )|ay

(1/9) y ’
S(J ‘|f(Y)|qw(Y)dY> (L_|b(y)—b3j| w(Y)(q/q)dy>

( 1/q)||f

(1q")

51

14 w@”) CMoq'(w,@;)'

We imply Holder’s inequality, inequality (47), Lemma 3,
and Remark 5 to estimate IT,.

k

’ 1/s'
11, Scp—kq(n—a)L { Z (JS.'f(y)b(y) - ij| dy)

j==00

s (1/s) ) 4
dy) } w(x) " 9dx

( |2(p'y)

k q
<Cpft e jsw<x)‘qu< j |f (bly) - jldy>
k ]_,

k
<Cp k(=09 g 14y, (B, )| (w@")< 2 ||ij
tp j=—o00

CMOq

X w Bj 1-(1/g) 1
< C"b"(quOq, (w,Q;) (FZOO <w((313> 'IfXj”Lq(uJ,Q;)>

Koo !
<Clpl! (w,@;)<,._zwp(] . 17 Lq(w,@;)> '

CM Oq
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(46)

(47)

(48)

q
1/q
oy @)
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In a similar fashion, we can estimate I1,. Using Holder’s
inequality, Lemmas 2 and 3, Remark 5, and inequality (44),
we get

11, <Cp Fatma

g5,

j=—00 " 7j

w(B;)

CMOP(w,@;) ‘ B.

FMO(p'y) (i - klibl |
J

q
dy> w(x)"1dx

SCp—kqn((1—1X)/(n—1)/5)”b”q |Bk|qw(Bk)17q

CMOl’(w)Q;)
k w(B-) , 1/s' . s\ 4
k= j)—— *d y)| d
X<j_zoo( i) 5] (Jsjlf(y)l y) (JS)Q(IDY)' Y) >
q 1-
<O o ) B0
(49)
k w(B») )q
x (k= j)——=| 1f (widy
(el l,
q
= C”bHCMoF(w,@;)
« w(B-) 1-(1/9) q
k- =2 .
(L oen(E5) Vb
q
= C”b"CMOP(w,Q;)

k . !
x ( Z (k- j)p(]—k)nﬂ/q “fX]
j=—co

o))

From (45), (48), and (49) together with Jensen in-
equality, we have
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pb
|6

- 1/p,
f K'g-Pz o _ <k_z w(Bk) ((Bp2)m) '(Hgfxf))(k Z(wlqﬂz)>

1/p,
L‘i(wl 1 Dp) >

o k i\ VP
< C|b ||CMOq( . )< Z w(By )((ﬁpl)/n)< Z pU j-komiq ||fXJ||Lq w@ > >

KHPb f)Xk

s( i w(By) (Fr))

k=-00

& (50)
o k iy VP
+C”b”cMoq'(w,@;) <k_z w(B )((ﬁﬂ)/ﬂ)( Z P Kny)lq "fXJ . w@ )> >
o P Py Vp
+ C”b”CMOP(wQZ)< Z ( )((ﬂpl)/ﬂ)< Z (k ])p((J kymu)/q' ”fX] L w@ )> >
. k=—00 —00
=S
Consequently,
1 P
sP sCllblchOPmax(q‘q')(w)@;)

k
% Z w(B (ﬂPl)/"< Z (k - ])P] kynulq’ ”ij

k=—0c0

P
L4 w@ )>

(51)
<CIIbII‘Dl

wior™ (4 ()
P
L1 w@ )) ’

0 k
x Y ( Y (k= jyploma ’3||fx]
k=—0c0 \ j=— 00
Case 1. When 0< p,<1, noticing that f< (nu/q'), we pro-
ceed as follows.

From here on in the proof we consider couple of cases,
0<p;<l and p, > 1. O

SP1 < C”b"Pl
C

mormfad'} (w,@’;,)

00 k
x Z _Z: (k_j)le(Bj)(ﬁpl)/”P(j*k)((W/q')*ﬂ)Pl'

k=—00 j=—00

P _ p
Lq(w’@;) = C"b"CII\dopmax{q‘q’}(w)Q;)

fXj

(52)

Bp1)in
Z ( )((P)/)

fx

Z (k- j)"p G-k ((melq')-B) p

La w@)

_ P
=M, )V
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Case 2. When p, >1, applying Hoélder’s inequality with
B< (nulq'), we get

o ” ((Bp1)in) (G-k) ((ruig )= B)py )12
S <C||b|| OpmaX{M ( ) Z Z ( ) fX] La Ow@" p
k , C\Pe
x< Z (k — jyP pti=R ((wla )ﬁ)p1/2>
j=—00 (53)
p ((Bp1)m) " -0 (i )-B)pi 2
= Clib] AT @;)k;oo w(B;) il et ];p
= C b P '
I, o} ) Vs
Therefore, the proof of theorem is completed. Proof of Theorem 3. From Theorem 2, we have
pb P (j—k) (rulq")
KHB) 26l 7)< O o) )JZOO = p D ] ey (54)
By definition of weighted p-adic Herz—Morrey space and
Jensen inequality together with < (nu/q') +A, A>0 and
1 < p; <00, it follows that
. k, (17p,)
HE . = supw(B, ) " w(By) (Br)m) | b b2
” rof p’z’q(w,wpq) kUGIZ) ( k(,) k;m ( k) K Q,otf)Xk Lq(wl—q)@;)
ko 1p,
—Aln 1)/ b 13
() (3 w0 I )
kyeZ k=— 0o
Aln
<Ot ) 220 )
K k ((p1)m)
> n . j— k)nulq' w(Bk)
% Z w(Bk)((lpl)/) Z (k_])P((J k) M/q)<>
( —_ oo w(B;)
-Mn J Bpi/n vet " (55)
xuw(B)) liz w(B)™ | fx L‘i(wQ")
Aln

<CIbl ,, pmsfod'} () 2 w(By )

i\ VP
><< 5w, )‘““”’”( Y (k= ip DD fY s, )> )
k=—00 j=—o00

Ky 1/p,
AMn n
SC"b”CMOpmax{w'}( o ) sup w(Bk ) ><< Z w(By) ((Ap)/ )> "f"MKf,'f‘q(w,w)

koeZ =00

< Ol gt} () 1 Do,
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4. Weighted Lipschitz Estimates for the
Commutator of Rough p-Adic Fractional
Hardy Operator on Herz—Morrey Spaces

In this section, we obtain the weighted p-adic Lipschitz
estimates for the commutator of rough p-adic fractional
Hardy operator on p-adic Lebesgue spaces and p-adic Herz-
type spaces. We begin the section with a useful lemma which
can be proved in the similar lines as Lemma 2.

Lemma 5. Suppose w € A, and b € Lip, (w, Q}); then, there
is a constant C such thatfor i, keZ,

[bs b5 [ <C M (0w (B)
Theorem 4. Let 1<p,q<oo,
we A, (a/n)+1=(1/5"); then,

S C b b
f 11(we2;) | ”Lipy(w,Q;)"f”Lq(w,@Z) (57)

holds for all b € Lip, (w, Q”) Qe L°(5,(0)), 1<s< oo, and
J € Ly (Q@)).

(I/qy) = (1/q,) = (y/n),

e

Now we state the results about the boundedness of
commutator of rough p-adic fractional Hardy operator on
weighted p-adic Herz-type spaces.

92

"(H fifxf )Xk L2 (wl_qz ’@n)

k 5]
<cp o “’J < > L_|f(y)|9(pfy)(b(x)—bEk)|dy> w(x)"©dx

j==00

+C —quna)J <

=J+JJ.

] (09)

To estimate ], we make use of Holder’s inequality, Re-
mark 5, (a/n) + (1) = (1/s'), (y/n) = (1/q;) - (1/g,), and
weA CAy along with (43) and (44) to have

J< Cp—qun((l—a)/((n—l)/s)) "b"qz

ip,

L0 (w,@;

k
—knq, b
<CpBE L_Zoo |72

92
Lat (w,Q;) ) ’

<C|b||* n)<p(k—j)n/q,1||ij

Lip, | w,Q}

) VB )““”2’/”){ 2
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Theorem 5. Let 0< p;<p,<oco, 1<q;,q,<00, (1/q,)-
(1/qy) = (y/n) and let we A, (a/n)+1=(1/s). If
B< (nu/qy), then the inequality

i (urany <ML, (o) (59

holds for all b € Lip, (w,

@g), Qe L*(S,(0)), 1<s< oo, and
f € Lloc (@;)

Remark 7. If f=0,p,=q, =p and p, =g, =g, then
Theorem 4 can easily be obtained from Theorem 5.

Theorem 6. Let 0<p,<p,<oo, 1<q;,q,<00, (1/q,)-
(1/q,) = (y/n) and letw € A, (a/n) + 1 = (1/s'), and 1 > 0.
If B< (nu/qy) + A, then
p.b
||HQo¢ R (i) <Clbll (w@;)||f||j\,ﬂ,¢f;lkxq1 (ww)
(59)

holds for all b € Lip, (w, @") Qe L°(5,(0)), 1 <s< oo, and
f € Lloc (Qn)

Proof of Theorem 5. Following the same pattern of Theorem
2, we have

(60)

L5
J 1 @ra(ey)(eo) - ka)ldY> w0 dx

L w@"

]

(i) ”
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For the estimation of JJ, we need to decompose it as

9
dy> w(x)'"2dx

Fa(p'y) (b - b))

Y|

]]SCP*kQZ(”*“)JS <

j=—00 " "j
— kg, (n— ) . i o 1- (62)
+Cp ™™ L D L f(y)Q(p’y)<ka —bBJ) dy | w(x' ®dx
K\ j=—o0 7 S
= ]]1 + ]]2
We need the following preparation to estimate JJ,.
Apply Holder’s inequality to get
[ [ron(em -, )[ay
1/q, . , (1/qy)
1/ -
< <L |f(y)|qlw<y)dy) (L [b(y) ~ by |" w(y) ‘Ml)dy) (63)
j i
(- 1/q))+yin)
<w(B;) Xl (w)@;)llbllupy(wﬂ;)'
We imply Holder’s inequality, inequality (63), Lemma 3,
and Remark 5 to estimate J],.
]] <Cp—kq2n((1—a)/(n—1)/s)J w(x)l—qzdx i ||fX w(B-)(l/q;W/")"b" 9
1= S P J Lm(w,@;) ] Lipy(w,@;)
. (1/gy+ym) "
—kg,n((1-a)/ (n—1)/s) 5 1-q, > qity/n
<cp et BB ( 2 7060 () )
Y\ =p )\ j=—00
(64)

X ij 1-1/g, Eel
. <,-=Zoo <w<(33> I7x,. (w,@;)>

k 1
q (j—k)nulq)
< C"b”inpy(w,@;) <]=ZOO p ? fX] 1 (w,@;)) ’
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Now we turn towards JJ,. Using once again Holder’s
inequality, Lemmas 5 and 3, Remark 5, and inequality (44),

we get
]]2SCp—qun((l—tx)/(n—l)/S)“b"z; (w@n)|Bk|q2w(Bk)1_q2
Y >=p
k 9@
. y/nw(Bj) -1/,
X( Z (k = j)w(By) 'B | 'Bj|w(Bj) "fXj qu(w)@n)
j==00 i ’
= Cllpll™
Lipy(w,D;)
k u)(B ) 1-1/q, 9@ (65)
x (k= | —=4 fx; .
(A <w<Bk> 8 P
<Clpl*™
Lipy(w,@;)
k 9@
i (j-k)nulq,
X Z ( Np "fo La1 (wQ") :
j=eo o
Rest of the proof is similar to the proof of Theorem 2.  Proof of Theorem 6. Let < nu/q; + A. By the definition of
Thus, we come to an end of proof. weighted p-adic Herz—-Morrey spaces along with inequalities
(61), (64), and (65), we are down to
00 k P2 Vb
HP>b ) <Cllb B ~Ain B (ﬁPz)/” (j—k)n/qﬁ .
e L P G 2 v j;oop 00 o)
00 k P2\ VP
vClol o supw(B) Y w(B) (R plm ey )
L’Py(w’@p) koeZ ’ k=00 j=—00 b (W’QP)
00 k P2\ VP
~Afn (Bpy)/n N o (= k)nld)
+ Cl|o| . .\ sup w(B w(B (k-1 : )
Llpy(w,QP) kyeZ ( ko) k;oo ( k) j:Zoo p ||fX1 L0 (w,@p)
=L, +L,+Ls
(66)
Next by applying the similar arguments as in Theorem 3,
we get
L, <Clp If1 Beliel
SOl oW it B
hy
L,< C”b”Lipy(w,Q;)"fllMKﬁ?q (ww) p< g +A, (67)
hy
B Ol () M oy A<+
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Therefore, we conclude the proof.
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