
ORIGINAL ARTICLE

Dynamical system parameter identification using deep recurrent cell
networks

Which gated recurrent unit and when?

Erdem Akagündüz1 • Oguzhan Cifdaloz2

Received: 3 November 2020 / Accepted: 26 June 2021 / Published online: 10 July 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
In this paper, we investigate the parameter identification problem in dynamical systems through a deep learning approach.

Focusing mainly on second-order, linear time-invariant dynamical systems, the topic of damping factor identification is

studied. By utilizing a six-layer deep neural network with different recurrent cells, namely GRUs, LSTMs or BiLSTMs;

and by feeding input/output sequence pairs captured from a dynamical system simulator, we search for an effective deep

recurrent architecture in order to resolve the damping factor identification problem. Our study’s results show that, although

previously not utilized for this task in the literature, bidirectional gated recurrent cells (BiLSTMs) provide better parameter

identification results when compared to unidirectional gated recurrent memory cells such as GRUs and LSTM. Thus,

indicating that an input/output sequence pair of finite length, collected from a dynamical system and when observed

anachronistically, may carry information in both time directions to predict a dynamical systems parameter.

Keywords Dynamical systems parameter identification � Recurrent cells � LSTM � GRU � BiLSTM

1 Introduction

System identification describes a set of methods, which

uses experimental input/output data from a system, in order

to identify its dynamical properties. Depending on the class

of systems under inspection, there are a number of

approaches that may be applied to system identification

[3, 26, 42]. While nonparametric methods [26, 27, 40, 52]

try to estimate a generic model from step responses,

impulse responses, frequency responses, etc., parametric

methods [4, 16, 18, 26, 33, 41] aim at estimating param-

eters within a user-specified model.

The steps taken to identify a system may be generalized

as follows: obtaining experimental data; determining a

structure for the model; devising a criterion for model fit-

ting; estimating the parameters; and finally, model valida-

tion. System identification methods utilize different

mathematical models in order to achieve their objectives.

Models can be continuous-time (differential) equations,

discrete-time (difference) equations, or a hybrid combina-

tion. Models can also be described in a variety of ways.

The use of state-space models based on transfer functions

is common. Generating the experimental data involves

several approaches. However, input signals that excite all

the relevant frequencies of a system is an important factor.

Identification can be achieved either on-the-fly or offline.

The identification of parameters and the use of identified

parameters on-the-fly in order to update controller param-

eters are highly related to adaptive control schemes.

In this paper, we tackle the problem using a machine

learning approach. By utilizing different deep recurrent

neural network (DRNN) architectures and defining the

issue as a sequence regression problem, we aim at finding

& Erdem Akagündüz

akaerdem@metu.edu.tr

Oguzhan Cifdaloz

oguzhanc@cankaya.edu.tr

1 Graduate School of Informatics, Middle East Technical

University (METU), Ankara, Turkey

2 Department of Electrical and Electronics Engineering,

Çankaya University, Ankara, Turkey

123

Neural Computing and Applications (2021) 33:16745–16757
https://doi.org/10.1007/s00521-021-06271-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-0792-7306
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06271-5&domain=pdf
https://doi.org/10.1007/s00521-021-06271-5

the most practically effective architecture. We compare

different gated recurrent cells and then analyze at what

exact instant and with what kind of input the system should

be excited in order to obtain the best parameter identifi-

cation results.

The remainder of this paper is organized as follows: the

following subsections introduce the problem statement and

the related literature. Section 2 describes the dynamical

systems model for which the parameters are to be identi-

fied. Section 3 presents details of the deep recurrent neural

network model used to solve the problem. Section 4 details

the experimental setup, including the simulation environ-

ment, the extent of the dataset created, and the prepro-

cessing techniques used for training the model’s input.

Section 5 presents a discussion of the experimental results.

Finally, Sect. 6 concludes the paper and outlines potential

future research.

1.1 Problem statement

This paper is focused on parameter identification of sec-

ond-order, linear time-invariant dynamical systems. These

systems can be described as second-order transfer func-

tions. A general second-order system has two poles, which

can be both real and complex conjugate. Complex conju-

gate poles are associated with two parameters: natural

frequency and damping factor. In this paper, it is assumed

that the poles are complex conjugates, and the study aims

at identifying the damping factor.

Damping factor is largely an uncertain parameter,

especially for electromechanical systems with small iner-

tia/spring and inertia/friction ratios [20, 29]. In such sys-

tems, although inertia is a relatively known factor,

considerable uncertainty is associated with the spring and

friction constants. In this paper, the objective is to identify

the damping factor through the use of machine learning

algorithms. One important aspect of the method in question

is that the algorithms are unaware of the model structure.

The only information fed to the algorithms is that a certain

input/output pair is associated with a fixed damping factor.

1.2 Related literature

There has been growing interest in the combination of

machine learning techniques, specifically recurrent neural

networks and dynamic system modeling/identification,

since the first introduction of recurrent neural networks

[9, 38, 43]. For a detailed overview on the subject, see

[7, 44]. The earlier approaches used standard RNNs to

attack the problem, which yielded some promising but

limited results [10, 23, 30, 32, 39, 45]. The limiting factor

with the RNNs, not only in dynamical systems modeling

but also in general, was their difficulty in training to learn

short- or long-term dependencies within the input

sequence. Some other hybrid RNN architectures such as

artificial deep belief networks were also utilized [6] for the

problem, but they also suffered similar limitations. The

main reason for this limitation was that backpropagation

deep through time (i.e., sequence dimension) gave rise to

the so-called vanishing gradients problem, which was first

mentioned in 1991 by [21]. In order to overcome this, the

same author proposed a specific RNN architecture with

gated units in 1997, named long-short-term memory

(LSTM) [22].

The idea of the LSTM was to create a memory cell

within the RNN architecture by ensuring a constant error

overflow, so that long- (or short-) term dependencies were

not lost during backpropagation through time. LSTM

attracted significant praise and was applied to numerous

sequence modeling problems, including dynamical system

modeling and identification [51]. Different versions of

recurrent cell networks were also proposed such as convex-

based LSTM [51], the gated recurrent unit (GRU) [8] and

also bidirectional (bi-)LSTM [15].

Alternatively, deep convolutional neural networks

(CNN) have also been utilized in the literature [1, 11] for

the same problem. Since CNN architectures lack the ability

to create time dependencies (i.e., memory), these approa-

ches are uncommon when compared to RNN-based tech-

niques. However, we believe that unexplored feature

extraction capabilities of CNNs from dynamical system

sequence data are still likely to attract more attention.

Training deep recurrent neural networks that can be

successfully utilized for any type of intelligent decision,

including system identification, is an active field of

research [19, 35]. The last few years have shown an

increasing trend in studies that focus on applying deep

learning techniques to the systems identification problem

[2, 5, 24, 25, 28, 37, 46, 50]. Some of the recent methods

even utilize LSTMs for the problem [14]. However, the

literature contains no approved or generally accepted off-

the-shelf deep learning architecture for dynamical systems

parameter identification. Although there have been com-

parative studies published, such as [34], which utilized a

multilayered artificial neural network (ML-ANN), an RNN,

a single LSTM cell, and a single GRU cell to assess per-

formance in nonlinear systems identification, there remain

unanswered questions such as ‘‘How deep a network is

needed?,’’ ‘‘Which types of layers are needed?’’ and ‘‘What

kind of a recurrent cell performs better?’’ for the dynamical

systems identification problem.

16746 Neural Computing and Applications (2021) 33:16745–16757

123

2 Dynamic model description

The dynamic model considered in this paper is described

by a second-order, linear differential equation. Second-

order linear differential equations arise in a variety of

systems, such as in rotational dynamics, which are

described in their general form as

J€hþ b _hþ kh ¼ u ð1Þ

where J[0 denotes the moment of inertia, b[0 denotes

the viscous damping (friction) coefficient, k[0 denotes

the spring constant, u denotes the externally applied torque,

and h denotes the angle of rotation. In this paper, linearized

rotational dynamics of a gimbal are considered. A simple

depiction and the model block diagram representing the

system is illustrated in Fig. 1.

The differential equation that describes this system from

the torque input u, to the angle output h is given in state-

space form by

_q
_h

� �
¼

�b=J � k=J

1 0

� �
q

h

� �
þ

1=J

0

� �
u;

h ¼ 0 1½ �
q

h

� � ð2Þ

where q, _h represents the angular rate. The transfer func-

tion from the input u, to the output h is given by

Tuh ¼
1=J

s2 þ b=Jsþ k=J
ð3Þ

This transfer function can be represented as a standard

second order system multiplied by a constant gain, a, and
given by:

ax2
n

s2 þ 2fxnsþ x2
n

ð4Þ

where x2
n,k=J, 2fxn,b=J, and a,1=k. In a standard

second-order system, xn denotes the natural frequency and

f is called the damping factor.

Second-order systems may have complex conjugate

poles, and hence their impulse responses may be oscilla-

tory. The poles of a standard second-order system given in

Eq. 4 are at

s1;2 ¼ �fxn � jxn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
ð5Þ

In terms of the system parameters, the natural frequency

and the damping factor are given by

xn ¼
ffiffiffi
k

J

r
and f ¼ bffiffiffiffiffiffiffi

4kJ
p : ð6Þ

Since all the parameters (J, b, k) of the system are positive,

from Eq. 6, it can be seen that f cannot take negative

values or zero. f ¼ 0 implies b ¼ 0, i.e., a system with zero

friction. However, small friction always exists in a

mechanical system such as described in this paper. f ¼ 0

may also imply k ! 1 or J ! 1. Both of these two

conditions physically correspond to a rigid system, with no

freedom of rotation.

Hence, for the system in consideration, we may safely

assume that f[0. With this assumption, two cases are of

importance:

1. For f� 1 (i.e., b2 � 4 kJ), the transfer function given in

Eq. 4 can be described as two first-order systems

connected in series. Both poles are stable real poles.

This case is excluded from the study because, in such a

series combination, the damping factor loses its

oscillatory effect on the system, and there will be no

overshoot.

2. For 0\f\1 (i.e., b2\4 kJ), the poles of the transfer

function given in Eq. 4 are stable complex conjugate

poles. This study aims to identify the damping factor

that results in (undesired) oscillations. This case is

addressed in this paper. Naturally, when 0:5\f\1,

oscillations die out relatively quickly. However, one of

the reasons why 0\f\1 is targeted in this study is

that there may be a large and varying uncertainty

associated with f that the control system designers

1/J
∫

b

k
∫

u q̇ q

θ

−

Fig. 1 An illustration of a

gimbal (left) and its linear

model block diagram (right)

Neural Computing and Applications (2021) 33:16745–16757 16747

123

would like to know in order to increase the perfor-

mance of their designs and not have to design a

conservative controller.

The unit step response of the second-order system given in

Eq. 4 is given by

yðtÞ ¼ a 1� e�fxntffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p sin xdt þ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
f

 !" #

ð7Þ

where xd,xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
.

It is noted that the damping factor, f, impacts all aspects

of the step response, namely the time constant, frequency,

phase, and overshoot. Specifically, because of its impact on

oscillations in the system response, estimating f as accu-

rately as possible is critical. However, in a real physical

system, estimating f can prove to be difficult, due to

uncertainties in the parameters and variations of parameter

values in time. Temperature variations are notorious for

their effect on parameter values. One other important rea-

son for parameter uncertainty is the mass manufacturing

process. In practice, parameters are often identified for a

handful of prototypes, and a control design is based on

those identified parameters and implemented on all man-

ufactured devices. This process results in undesired varia-

tions in closed-loop performance characteristics among

products. The procedure described in this paper proposes a

method to identify system parameters for an automated

custom control design for each device.

3 Deep learning model

The model proposed in this study that predicts a parameter

of a given dynamical system is a deep recurrent neural

network (DRNN). DRNNs are extensions of RNNS with

additional layers such as nonlinearity layers (e.g., ReLU

layers), decision layers (e.g., dense, fully connected lay-

ers), and regularization layers (e.g., drop-out layers) The

model we propose in this paper is a 6-layered DRNN (see

Table 1) that predicts a dynamical system parameter

(damping coefficient f in our case) of the model, when a D

second (D being 3 s in our experiments) input/output (I/O)

sequence pair is fed into it.

As shown in Table 1, the first layer of the proposed

DRNN architecture is an input layer that accepts an input/

output sequence pair of D-seconds. The size of the input/

output sequence pair that is fed into the model is 2�
(D � fs), with fs being the sampling frequency of the system

and D � fs being the sequence length. However, as shown in

Table 1, the input fed into the recurrent cell of the DRNN

model is sizes 168 � 11, with 11 being the sequence length

and 168 (42� 4) being the feature vector size. As

explained in detail in the next subsection, at the initial layer

of the proposed DRNN architecture, a frequency domain

transform is applied to the D-seconds input/output

sequence pairs, in order to obtain a 168 � 11 sequence.

This frequency-domain sequence is the actual input fed

into the recurrent cells of the succeeding layer.

The ability to automatically construct a set of feature

extractors, in a data-driven and task-dependent manner, is

the trademark of deep neural networks (DNNs). Accord-

ingly, one may argue that instead of utilizing an initial

handcrafted transform layer, as in the proposed architec-

ture, a set of convolutional layers can provide the necessary

transforms (i.e., features) needed for the system. However,

we chose to use a frequency transform as the first layer,

mainly due to two reasons. First, the parameter that we aim

at predicting is a coefficient of the Laplacian transform of a

dynamic system, which we assume to be linear. Thus,

transforming the input into a frequency domain, heuristi-

cally leads to creating a supposedly linearly separable

feature space. Second, by using a frequency transform, we

shorten the sequence length, which in turn reduces the

effective depth of the architecture. The depth of a deep

neural model is one of the main factors that helps in its

training for the desired task [13, 17, 49]. Although it is the

depth of a DNN that helps it create abstract features from

the data, depth is also responsible for certain problematic

training issues such as vanishing gradients [21]. While we

refer to the proposed architecture as ‘‘6-layered,’’ the depth

of an RNN can be considered ambiguous. During training,

the RNN layer is propagated through ‘‘time,’’ hence the

depth is effectively related to the sequence length (or the

Table 1 The proposed deep

recurrent neural network model
Layer No. Type Layer properties

1 Input transform Frequency domain transform (42�4) � 11 tensors

2 RNN cell RNN cell (GRU, LSTM, or BiLSTM) with 256 hidden units

3 Fully connected Fully connected layer 256 nodes

4 ReLU ReLU nonlinearity layer

5 Dropout Dropout layer 50% drop

6 Fully connected Fully connected layer single output node

– Regression Mean-squared-error loss

16748 Neural Computing and Applications (2021) 33:16745–16757

123

‘‘truncation length’’ if the backpropagation in time is

truncated [36, 48, 53]). If we use a shorter frequency

domain sequence (such as size 11), instead of a D � fs time

sequence (which is practically 3000 in our case), the actual

depth of the backpropagation is significantly reduced and

training the DRNN becomes a much easier task. Regarding

the details of the input layer frequency transform, please

refer to the next subsection.

The input layer is followed by the recurrent layer of the

network. The recurrent layer can be any type of a recurrent

cell that accepts sequence inputs, such as a GRU [8], an

LSTM [22], or a BiLSTM [15] cell. In our experiments,

these three types of recurrent cells were bench-marked in

order to discover which recurrent cell was more successful

in predicting dynamical system parameters. Details on

these recurrent cells are provided in Sect. 3.2.

Any recurrent cell can be designed to output a single

value. Hence, the first two layers are technically sufficient

to create a parameter prediction (i.e., regression) network.

However, in our DRNN model, the recurrent layer is suc-

ceeded by a fully connected layer. The hidden units (to-

taling 256 nodes) of the recurrent cell are fully connected

to this dense layer so that more complex features can be

obtained using the hidden units (also referred to as the

‘‘states’’) of the recurrent cell. Additionally, this fully

connected layer is succeeded by a rectified linear unit

(ReLU) [31], with the purpose of creating non linearity

within the decision space. Moreover, the ReLU layer is

followed by a drop-out layer [47] for the purposes of

regularization, and for avoiding the issue of feature over-

fitting. Finally, another fully connected layer, this time

having a single output value that provides the parameter

value to be predicted, was appended to the network. During

training, an L2 norm regression layer was used to feed the

backpropagated derivatives to the stochastic gradient des-

cent optimizer.

In summary, the proposed DRNN architecture is a

dynamical system parameter prediction network, with the

fundamental properties being transforming a time signal to

the frequency domain, utilizing recurrent operation within

a sequence, convolving advanced features, providing non-

linearity in the feature space and avoiding overfitting. The

training details of the proposed DRNN are provided in

Sect. 4.

3.1 Input sequence

The recorded input/output pair sequences are time signals.

However, the sequence that we fed into the proposed

DRNN model was a frequency domain representation of

this time signal, which was obtained by utilizing the short-

time Fourier transform (STFT). STFT is a sequence of

Fourier transforms of a windowed signal. Instead of

providing the frequency information averaged over the

entire signal time interval (like the standard Fourier

transform), STFT provides the time-localized frequency

information for situations, in which frequency components

of a signal vary over time. STFT is widely used as features

for time signals in many intelligent signal processing

applications such as audio signal processing [12].

XSTFT½m; n� ¼
XL�1

k¼0

x½k�

� g½k � m� � e�j2pnk

ð8Þ

In Eq. (8), x[k] denotes a signal and g[k] denotes an L-point

window function, hence STFT of x[k] can be interpreted as

the Fourier transform of the product, x½k� � g½k ��m�.
Consequently, the calculated STFT½m; n� is a 2-dimensional

complex matrix, where the first dimension represents time,

and the second dimension represents sample frequencies.

The finite size of the window function g[k] and how much

overlap each neighboring frame has designate the sequence

size of the calculated XSTFT½m; n�.
In our model, x[k] is a D � fs long sequence with 2

dimensions, that belong to the input/output sequence pair,

for both of which STFT are calculated separately. The size

of the window function is selected as L ¼ k � D � fs, with p

inter-frame overlap, therefore creating a 1�k
kð1�pÞ þ 1 long

sequence in the STFT time dimension. In the frequency

dimension, the range is limited to a certain interval with an

exponential sampling of N distinct frequency values; ergo,

creating two complex sequences of size N � ð 1�k
kð1�pÞ þ 1Þ

(also called spectrograms) to be fed to the recurrent cell of

the network. In Sect. 4, the actual STFT parameters uti-

lized in our experiments, plus visualizations of the imple-

mented frequency domain transform (see Fig. 2) are

provided.

3.2 Recurrent cells

A standard (or so-called vanilla) RNN is basically a feed-

forward neural network unrolled in time. It is fundamen-

tally a set of weighted connections between a number of

hidden states of the network and the same hidden states

from the last time point, providing some sort of ‘‘memory.’’

The challenge is that this memory is fundamentally limited

in the same way that training very deep networks is diffi-

cult, due to factors such as vanishing gradients, hence

limiting the memory of vanilla RNNs.

One solution to this elemental problem of RNNs, is

creating so-called cell states within the recurrent archi-

tecture that consist of a common thread through time,

affected solely by linear operations at each time step. These

recurrent cells can remember short-term memories for

Neural Computing and Applications (2021) 33:16745–16757 16749

123

relatively longer sequences, mainly because the cell state

connection to previous cell states is interrupted only by

linear elementary operations such as multiplication and

addition.

Two well-known examples of these recurrent architec-

tures are gated recurrent units (GRU) [8] and long-short

term memory (LSTM) [22] cells. Although GRU is slightly

simpler in its architecture, both cells are characterized by a

persistent linear cell state surrounded by nonlinear layers

feeding input and parsing output from it. Technically, the

cell state functions jointly with so-called gating layers that

have the ability to ‘‘forget,’’ ‘‘update’’ or ‘‘reset’’ the state

of the cell, hence providing long or short-term memory

capabilities. We benchmarked these two fundamental

recurrent cells in our experiments.

GRU and LSTM, as a result of their architectural design,

can only preserve information of the past (i.e., data from

earlier in the input sequence), simply because they can only

see input from the past. However, the context in a sequence

usually preserves information from both past and future.

Although the linear dynamical system we use in this study

is a causal system, an input/output pair of D seconds, when

observed anachronistically, may carry information in both

directions. For example, we may observe and rationalize an

output behavior only after we observe the continuity of the

event in the output, which is an inconsequential correlation.

For this reason, we also utilize the BiLSTM cell [15],

which provides, as the name implies, bidirectional input

processing. Simply put, the input in a BiLSTM is fed twice,

once from beginning to end and then in reverse from the

end to the beginning, so the short- or long-term memory

can be related both to and from the past.

All three of the aforementioned recurrent cells are

benchmarked in our experiments in order to achieve a solid

comparison of their capabilities in predicting dynamical

system parameters.

4 Experimental setup

In this section, we provide details of the experimental

setup, starting with the dynamical system simulation

module, which we used to create a dynamical input/output

pairs dataset for different dynamical model parameters.

Next, we provide the implementation details of how we

constructed the frequency transform to be fed into the

recurrent cells of the DRNN model.

4.1 Dynamical system simulation module

In an actual physical scenario, torque inputs cannot be

applied directly to a mechanical system such as the one

described in the paper. Torque is applied via an actuator

such as a motor. Accompanying the motor is also a motor

driver card. There are transfer functions associated with

both the motor and the driver. However, the motors are

selected, and the drivers are designed such that the band-

widths of the actuator and its driver are much higher than

the mechanical system to be controlled. In addition, both of

the transfer functions are usually a combination of first-

order filters with known (designed) parameters.

Also, in an actual scenario, the angle h is measured via

sensors, such as encoders. Encoders can be digital or

analog, but in either case, they are much faster (or selected

to be faster) than the dynamical system on which they are

mounted. Their transfer functions are usually provided by

the manufacturer, and for the encoder case, their band-

widths are much higher than the mechanical system.

Fig. 2 The figures each depict a visual representation of the feature vector fed into the recurrent cells

16750 Neural Computing and Applications (2021) 33:16745–16757

123

Parameter identification of an actuator-mechanics-sen-

sor system is usually performed by obtaining the frequency

response. Sinusoidal inputs of various frequencies with

known magnitudes are applied to the system, and steady-

state responses are logged. Based on the magnitude

amplification and phase lag, transfer functions are identi-

fied. If designed carefully, this process provides the fre-

quency response of the mechanical system and contains the

data associated with the mechanical system. Actuator and

sensor transfer functions are not captured in this process,

largely because applying inputs at frequencies that excite

this high-frequency actuator, and sensor dynamics is not

possible or necessary. Hence, the experiments in the paper

are constructed such that the low frequency, mechanical

system dynamics are captured. Naturally, sensor noise

impacts the data collected, and we have also included noise

in the construction of the experiments.

A discrete (Tustin) standard second-order system was

used to generate the input-output data. The state-space

description of the system is given as

xkþ1 ¼ Axk þ Buk ð9Þ

hk ¼ Cxk þ Duk ð10Þ

where

A ¼
0 1

1� 2
a2 þ x2

n

M
2
a2 � x2

n

M

2
4

3
5;B ¼

0

1

� �
;

C ¼ 4ax2
n

M2
fxn ðaþ fxnÞ½ �;D ¼ x2

n

M
;

ð11Þ

a ¼ 2=Ts, and M ¼ a2 þ 2afxn þ x2
n.

Sampling time, Ts ¼ 0:001 s, and natural frequency,

xn ¼ 1 rad=sec were kept fixed.

In order to construct the I/O sequence pair dataset to be

used in our experiments, the system was initially excited

with five different types of inputs, with eight different

damping factor (f) values applied for each input. Mea-

surements were corrupted with normally distributed

(Gaussian) noise.

The input signals (sampled at 1 kHz) were: a unit step

input, a ramp input with a unit slope, and three sinusoids,

which each had a magnitude of 10, and frequencies of 0.5,

1, and 2 Hz. Values for the damping factor, f, ranged from

{0:1; 0:2; . . .; 0:8}. Ten seconds of data samples (i.e., 10s�
1Khz = 10,001) were generated for each input/damping

pair.

In total, using five different input types, eight distinct f
values, and 7001 overlapping 3-s sequences, we created a

total of 280,040 (5� 8 �7001) input/output sequence pairs

and corresponding f values in our dataset.

4.2 Frequency domain transform of I/O pairs

As mentioned in the previous subsections, we fed complex

spectrograms of the collected I/O time sequence pairs into

our DRNN. In this subsection, we provide details of the

implementation of these spectrogram-based features. The I/

O pairs we utilized were of D � fs = 3000 size, as D was

selected as 3 seconds and fs as 1 kHz in our experiments.

The size of the window function of the STFT was selected

as L ¼ k � D � fs = 2 s length (i.e., k = 2/3). The overlap ratio

p was selected as 0.95, therefore creating 11 long spec-

trograms in the time dimension.

The frequency range of the spectrograms is limited to

between 0 and 10 Hz, and the selection of the frequency

range is down to the frequency content of the system and

the input signals. The natural frequency of the system

considered is approximately 0.159 Hz, and the highest

frequency used in the input is 2 Hz. The range of [0, 10] Hz

is selected in order to include the frequency content of the

system in consideration. It should be noted here that the

frequency range of the spectrograms would be different if

another system or another input sequence was used. The

intermediate frequencies in this range were sampled

exponentially, so that the frequency dimension of the

spectrograms become a log-frequency axis. The sampling

is carried out using the formula:

f ½h� ¼
XN�2

h¼0

10
h
20�1 ð12Þ

Using the 41 frequencies calculated using Eq. 12 and

appending 0 Hz, we obtained a N = 42 long frequency

dimension in the spectrograms1. Using the two complex

42� 11 spectrograms, we then created a feature vector.

Since the RNN model we propose can only have real

weights and activations, we extracted a real valued feature

vector from the spectrograms using the formula:

v ¼ ½realðinputSTFT�; realðoutputSTFTÞ:::

phaseðinputSTFTÞ; phaseðoutputSTFTÞ�
ð13Þ

In Eq. 13, realð�) denotes an operator that extracts the real

part of a complex number and phaseð�) denotes an operator

that extracts the phase angle of a complex number in

radians. Consequently, the feature vector v becomes

(42� 4)�11 tensor, as shown in Table 1.

Figure 2 depicts a visual representation of the proposed

feature vector. The complex spectrograms obtained from 3-

s-long input/output sequences are of 42� 11 size. The real

parts of the input and output spectrograms are shown in (a)

and (b); whereas (c) and (d) depict the phase angles of the

1 Such that the selected frequencies are [0 Hz, 0.1 Hz, 0.1122 Hz,

0.1259 Hz, ... 7.9433 Hz, 8.9125 Hz, 10 Hz]

Neural Computing and Applications (2021) 33:16745–16757 16751

123

input and output spectrograms, respectively, using false

color. The specific example shown in Fig. 2 is 3–6 s of a

ramp input fed into our system with a damping coefficient

(f) of 0.1.

4.3 Experiments

Two sets of cross-validation experiments were conducted.

The first set of experiments was twofold cross-validation

experiments, in which the entire 280,040 I/O sequence

pairs were divided into two sets according to their f values.
For each fold, one half was used for testing, while the other

half as used for training and validation. For the first fold,

the f values in the training ? validation sets were

f ¼ f0:1; 0:3; 0:5; 0:7g, whereas the test set included

sequences with f values f0:2; 0:4; 0:6; 0:8g. For the second
fold, as expected, the f values were interchanged between

the test and training sets. In practice, the significance of this

experiment was assessing the ability of the system to pre-

dict the f value, which was not used during training. In

other words, we aimed at testing the ability of the model to

predict an unseen f value. This set of experiments are

referred to as ‘‘1
2
- sep. f,’’ denoting the twofold experiment

with ‘‘separate’’ f values in the test and training sets.

The second set of experiments was also twofold cross-

validation experiments, in which the entire 280,040 I/O

sequence pairs were divided into two random non-inter-

secting sets. Again, for each fold, one half was used for

testing and the other half for training and validation. In this

set of experiments, the dataset was divided randomly;

hence each set consisted of an equal distribution of f val-

ues, and the models were trained and could be tested with

any input type and f values in the dataset. However, as

expected, the testing and training sets did not include

identical sequences (although they included partially

overlapping sequences). Our intention in these experiments

was to assess the ability of the system to predict a previ-

ously seen f value from a previously (partially) unseen I/O

sequence pair. This set of experiments is referred to as ‘‘1
2
-

mix. f,’’ denoting the twofold experiment with ‘‘mixed’’ f
values in the testing and training sets.

Both sets of experiments were then rerun using a dif-

ferent recurrent cell each time. Having three fundamental

recurrent cells (i.e., GRU, LSTM, and BiLSTM) as our

benchmark, we initially conducted a total of six experi-

ments, namely Exp. 1, Exp. 2 and Exp. 3 belonging to the

first set of experiments; whereas Exp. 4, Exp. 5 and Exp. 6

belonging to the second set of experiments. An additional

variant of Exp. 6, namely Exp. 6b (which also utilizes

BiLSTMs) was also conducted for further analysis. The

same hyperparameters were used in all experiments.

Stochastic gradient descent with momentum (0.9) was used

as the optimizer for all. The initial learning rate was set to

5�10�4. All the aforementioned experiments were trained

for 45 epochs. At each 15 epoch interval, the learning rate

was dropped by a factor of 0.1.

5 Results

We commence with the results of the ‘‘1
2
- sep. f’’ experi-

ments, which are presented as Exp. 1, Exp. 2, and Exp. 3 in

Table 2. In all experiments, the mean absolute deviation

(MAD) of the f errors obtained from the separate folds are

averaged. For the ‘‘1
2
- sep. f’’ experiments, the model with

BiLSTM recurrent cell performed the best, with a MAD-f
error of 0.0645 for the test set, whereas the results for the

models with GRU and LSTM cells exhibited a relatively

poorer level of performance compared to models with

BiLSTM. A MAD-f error of 0.0645 is, in practical terms,

acceptable considering the tested f values do not exist in

the training set, and their range is between 0.1 and 0.8.

Table 2 also presents the MAD f error for the training set

to aid evaluation of the overfitting extent that occurred

during training.

The 1
2
- mix. f’’ experiments, which are presented as

Exp. 4, Exp. 5, and Exp. 6a in Table 2 exhibited better

performance, when compared to Exp. 1, Exp. 2, and Exp. 3.

Among these experiments, the model with BiLSTM

recurrent cell, trained in Exp. 6a performed the best, with a

MAD-f error of 0.021 for the test set, whereas the results

for the models with GRU and LSTM cells performed rel-

atively poorer. From this result, we can draw two main

conclusions. First, if we train the system with all types of f,
the model is capable of predicting the dynamical system

parameter with a very high degree of accuracy. Second,

BiLSTM always performs better when compared to both

GRU and LSTM, denoting that context within a dynamical

system sequence model should be classified in a bidirec-

tional manner in time. We consider this to be a significant

outcome of the experiments, considering that, to the best of

our knowledge, there is no empirically stated emphasis on

the benefits of utilizing BiLSTMs for dynamical systems

identification problem in the literature.

The experiments in Table 2 were focused on the effect

of using different f values during the training. In order to

answer questions such as ‘‘What type of input should be

fed into the system to better predict a dynamic parameter?’’

or ‘‘Which time interval of the I/O sequence is more

effective in predicting the dynamic system parameter?,’’

we conducted some additional experiments. In order to

understand the performance provided by the experiments,

we first analyzed sample cases presented in Fig. 3. For

16752 Neural Computing and Applications (2021) 33:16745–16757

123

example, in Fig. 3a, a 2 Hz sinusoidal input to a system

with f = 0.8 and an output response for 0–3 s can be seen.

After feeding the depicted I/O sequence pair into the model

obtained from Exp. 6 (which performed the best among

Exp. 1–6), a f value of 0.4282 was predicted. When

compared to the actual value of f = 0.8, this represented a

very poor level of performance.

However, when we observe Fig. 3b (or similarly

Fig. 3c), the performance seen was significantly better. For

a step input to a system with f = 0.1 and using the output

response of 3–6 s, the predicted f value (again using the

model trained in Exp. 6) was 0.1087 (i.e., with an absolute

error of 0.087). This achieved a considerably better result.

The varying performance of the sample cases demon-

strates that the prediction performance relies upon the type

of input used, or the time interval of the response of the

system that is fed into the deep learning model. In order to

analyze this variance, Fig. 4 shows 2D histograms of how

much ‘‘absolute f prediction error’’ was obtained for

different input types and different damping levels, using

the model obtained in Exp. 6. The X-axis in these his-

tograms presents the different input types, while the y-axis

presents the different f values used in the testing. For

Table 2 Mean absolute

deviation (mad) of f prediction

errors for all experiments

Experiment Set RNN Cell Train. mad. Test. mad.

Exp. 1 1
2
- sep. f GRU 0.0200 0.0755

Exp. 2 1
2
- sep. f LSTM 0.0240 0.0790

Exp. 3 1
2
- sep. f BiLSTM 0.0145 0.0645

Exp. 4 1
2
- mix. f GRU 0.0310 0.0325

Exp. 5 1
2
- mix. f LSTM 0.0310 0.0325

Exp. 6a 1
2
- mix. f BiLSTM 0.0200 0.0210

Exp. 6b 1
2
- mix. f (Step Input @ 3–6 s) BiLSTM – 0.0097

Exp. 7 1
2
- mix. f (150 ep. - Extended Dataset) BiLSTM 0.014 0.015

Fig. 3 Figures show sample I/O sequences, with f prediction errors provided in captions for each figure

Fig. 4 The figures show 2D histograms of how much ‘‘absolute f prediction error’’ was obtained for different input types and different damping

levels, using the Exp. 6 model

Neural Computing and Applications (2021) 33:16745–16757 16753

123

example, Fig. 4a depicts the 2D histograms of absolute f
error when 0–3 s of I/O sequence pairs were fed into the

DRNN model; whereas, Fig. 4b, c depicts the corre-

sponding 2D histograms when 3–6 s and 7–10 s of the I/O

sequence pairs were fed in, respectively. For example, it

can be seen from Fig. 4a that using a 2 Hz input, and trying

to predict the parameter of a dynamic system with f = 0.8

(i.e., highly dampened) in the 0–3 s interval was prone to a

high degree of errors. We actually observed this in Fig. 3a,

hence Fig. 4b shows that the best results (i.e., the lowest

MAD-f errors) were obtained when 3–6 s of I/O sequence

pairs were fed into the system. For this interval only, and

for the step-input only, we calculated the MAD-f error of

the entire test set for all f values using the Exp. 6 model

and presented this result in another row of Table 2 as Exp.

6b. The MAD-f error for this interval was 0.0097, which

was the best-case scenario in our ‘‘45-epoch’’ experiments.

It should also be noted here that the effect of a small f
(lightly damped) was expected to be more easily distin-

guishable, since it would exhibit a larger magnitude in the

oscillation. As the f was increased, the time responses

should tend to be more similar to each other, and, hence,

would make it harder for the deep learning algorithm to

converge to the true value of f. This expectation was most

notable, as shown in Fig. 3a, specifically when the input

signal was a sinusoid at 2 Hz. Since the system is a second-

order, low-pass filter, a sinusoid at 2 Hz will be attenuated

more than a sinusoid at a lower frequency, i.e., the mag-

nitude of the output signal would be smaller, and hence the

signal-to-noise ratio would be smaller. A smaller signal-to-

noise ratio was expected to cause problems for the deep

learning algorithm.

5.1 Additional experiments using step inputs
with varying magnitudes

After analyzing the results of the first two sets of experi-

ments, and witnessing the relatively superior performance

of BiLSTM-based models, we have carried out another

experiment, with an extended dataset. The new dataset

included additional step input signals of varying magni-

tudes, again sampled at 1 kHz. In addition to our original

input set (i.e., a unit step input, a ramp input with a unit

slope, and three sinusoids, which each had a magnitude of

10, and frequencies of 0.5, 1, and 2 Hz), we have added

three step input sequences with magnitudes �1, ? 10 and

�10. For each input, we again have damping factor, f,
values ranging from {0:1; 0:2; . . .; 0:8}. Similarly, ten

seconds of data samples (i.e., 10s� 1Khz = 10,001) were

generated for each input/damping pair. Hence, in total,

using eight different input types, eight distinct f values, and
7001 overlapping 3-s sequences, the extended dataset

included a total of 448,064 (8� 8 � 7001) input/output

sequence pairs and corresponding f values.

Similarly, to Exp. 4–6, the extended dataset was divided

into two random non-intersecting sets for twofold cross-

validation. The same hyperparameters were applied except

for the fact that this new network was trained for 150

epochs, unlike the previous experiments that were all

trained for 45 epochs. After the 45th epoch, the learning

rate drop factor was manipulated manually for best per-

formance. This experiment is referred to as Exp. 7 and can

be seen in the final row of Table 2.

In Fig. 5, we present absolute f prediction error his-

tograms for Exp. 7 model, similarly to Fig. 4, which was

prepared using Exp. 6 model. When compared to Fig. 4,

the error rates in Fig. 5 are dramatically better for all input

types, including the additional input signals introduced in

the extended dataset. The prediction errors are almost

always under 0.1, except for the case, where sinusoidal

inputs and their initial response (i.e., between 0 and 3 s.)

are applied to a high friction model. As explained above,

this is an acceptable result considering that high friction

systems will inevitably lag the response of a high-fre-

quency input.

Furthermore, we analyzed the prediction capabilities of

the model trained in Exp. 7, against step inputs of varying

magnitudes, including values that were not introduced

during training. In Fig. 6, absolute f prediction error his-

tograms for step inputs of varying magnitudes can be seen.

In this figure, in addition to step inputs with unit, negative

unit, - 10 and ? 10 magnitudes that were used in training

Exp. 7 model; - 2,? 2,- 5,? 5 magnitude step inputs are

also tested. It is clearly seen in Fig. 6 that, although the

second group of step inputs were not introduced during

training, the model trained in Exp. 7 can successfully

generalize different magnitude step input sequences and

predict the related dynamical systems parameter with very

high accuracy.

6 Conclusions and future work

The main goal of this paper was to find an effective deep

recurrent neural architecture for the dynamical systems

parameter identification task. For this purpose, three gated

recurrent cells, namely GRU, LSTM, and BiLSTM, were

comparatively experimented with. The results showed that

at late transient, by feeding a step input into the system and

by utilizing BiLSTM recurrent cells in the proposed

6-layered neural architecture, we achieved the lowest error

rates in predicting the damping coefficient of a second-

order linear dynamic system. The average test MAD for

our best experiment (Exp. 7), which was trained longer

with an extended dataset, was significantly better when

16754 Neural Computing and Applications (2021) 33:16745–16757

123

compared to previous experiments; showing us that the

models are open to further improvement in performance

and, more importantly as we add new types of inputs, the

machine learning model has the capacity to generalize

them without any loss of accuracy.

We principally observe two significant outcomes in our

experiments. First, BiLSTM cells with bidirectional gra-

dient flow performed better than single-direction gated

recurrent cells (GRU and LSTM in our case); thus showing

that context within a dynamical system sequence model

correlated in a bidirectional manner, when it comes to the

systems identification problem. Second, through experi-

mentation, we investigated at which exact instant and with

what kind of input the system should be excited in order to

obtain the best parameter identification results.

Future research directions point to a strong collaboration

between the fields of automatic control systems engineer-

ing and deep learning. We believe that the more these fields

work in partnership, the greater the potential impact that

they will have in transforming each other’s research

directions. A good next step, therefore, would be to embed

a deep learning-based parameter identification system, such

as the one proposed in the current study, into the actual

closed-loop of the dynamic system, thus providing

parameter-aware automated control.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Andersson C, Ribeiro AH, Tiels K, Wahlström N, Schön TB

(2019) Deep convolutional networks in system identification. In:

2019 IEEE 58th conference on decision and control (CDC),

pp. 3670–3676. https://doi.org/10.1109/CDC40024.2019.

9030219

2. Ayyad A, Chehadeh M, Awad MI, Zweiri Y (2020) Real-time

system identification using deep learning for linear processes with

application to unmanned aerial vehicles. IEEE Access

8:122539–122553. https://doi.org/10.1109/ACCESS.2020.

3006277

3. Bekey GA (1970) System identification: an introduction and a

survey. SIMULATION 15(4):151–166. https://doi.org/10.1177/

003754977001500403

4. Box GEP, Jenkins GM (1970) Time series analysis: forecasting

and control. Holden-Day

Fig. 5 The figures show 2D histograms of how much ‘‘absolute f prediction error’’ was obtained for different input types and different damping

levels, using the Exp. 7 model

Fig. 6 The figures show 2D histograms of how much ‘‘absolute f prediction error’’ was obtained for different step input types and different

damping levels, using the Exp. 7 model

Neural Computing and Applications (2021) 33:16745–16757 16755

123

https://doi.org/10.1109/CDC40024.2019.9030219
https://doi.org/10.1109/CDC40024.2019.9030219
https://doi.org/10.1109/ACCESS.2020.3006277
https://doi.org/10.1109/ACCESS.2020.3006277
https://doi.org/10.1177/003754977001500403
https://doi.org/10.1177/003754977001500403

5. Brusaferri A, Matteucci M, Portolani P, Spinelli, S (2019) Non-

linear system identification using a recurrent network in a baye-

sian framework. In: 2019 IEEE 17th international conference on

industrial informatics (INDIN), 1: 319–324. https://doi.org/10.

1109/INDIN41052.2019.8972113

6. Cheon K, Kim J, Hamadache M, Lee D (2015) On replacing PID

controller with deep learning controller for DC motor system.

J Autom Control Eng 3(6):452–456

7. Chiuso A, Pillonetto G (2019) System identification: a machine

learning perspective. Ann Rev Control Robot Auton Syst

2(1):281–304. https://doi.org/10.1146/annurev-control-053018-

023744

8. Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares

F, Schwenk H, Bengio Y (2014) Learning phrase representations

using RNN encoder-decoder for statistical machine translation.

In: Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP). https://doi.org/10.3115/

v1/d14-1179

9. Cleeremans A, Servan-Schreiber D, McClelland JL (1989) Finite

state automata and simple recurrent networks. Neural Comput

1(3):372–381. https://doi.org/10.1162/neco.1989.1.3.372

10. Dinh H, Bhasin S, Dixon WE (2010) Dynamic neural network-

based robust identification and control of a class of nonlinear

systems. In: IEEE Conference on Decision and Control (CDC),

pp. 5536–5541

11. Genc S (2017) Parametric system identification using deep con-

volutional neural networks. In: International joint conference on

neural networks (IJCNN), pp. 2112–2119

12. Ghoraani B, Krishnan S (2011) Time-frequency matrix feature

extraction and classification of environmental audio signals.

IEEE Trans Audio Speech Lang Process 19(7):2197–2209

13. Glorot X, Bengio Y (2010) Understanding the difficulty of

training deep feedforward neural networks. In: AISTATS

14. Gonzalez J, Yu, W (2019) Non-linear system modeling using

lstm neural networks. IFAC-PapersOnLine. In: 2nd IFAC Con-

ference on modelling, identification and control of nonlinear

systems MICNON 2018. 51(13): 485 – 489 . https://doi.org/10.

1016/j.ifacol.2018.07.326. http://www.sciencedirect.com/sci

ence/article/pii/S2405896318310814

15. Graves A, Schmidhuber J (2005) Framewise phoneme classifi-

cation with bidirectional LSTM and other neural network archi-

tectures. Neural Netw 18(5):602–610. https://doi.org/10.1016/j.

neunet.2005.06.042

16. Gu G, Khargonekar P (1992) A class of algorithms for identifi-

cation in H1. Automatica 28:299–312

17. He K, Zhang X, Ren S, Sun, J (2015) Delving deep into rectifiers:

surpassing human-level performance on ImageNet classification.

In: 2015 IEEE international conference on computer vision

(ICCV). https://doi.org/10.1109/iccv.2015.123

18. Helmicki AJ, Jacobson CA, Nett CN (1991) Control oriented

system identification: a worst-case/deterministic approach inH1.

IEEE Trans Autom Control 36(10):1163–1176

19. Hermans M, Schrauwen B (2013) Training and analysing deep

recurrent neural networks. In: Burges CJC, Bottou L, Welling M,

Ghahramani Z, Weinberger KQ (eds) Advances in neural infor-

mation processing systems, vol 26. Curran Associates Inc, New

York, pp 190–198

20. Hilkert JM, Pautler B (2011) A reduced-order disturbance

observer applied to inertially stabilized line-of-sight control. In:

W.E. Thompson, P.F. McManamon (eds.) Acquisition, tracking,

pointing, and laser systems technologies XXV, vol. 8052, pp. 114

– 125. International Society for Optics and Photonics, SPIE.

https://doi.org/10.1117/12.884123

21. Hochreiter S (1991) Iuntersuchungen zu dynamischen neuronalen

netzen. Master’s thesis, Technische Universität München,

Germany

22. Hochreiter S, Schmidhuber J, Hochreiter S, Schmidhuber J

(1997) Long short-term memory. Neural Comput 9:1735–1780

23. Wang Jeen-Shing, Chen Yen-Ping (2006) A fully automated

recurrent neural network for unknown dynamic system identifi-

cation and control. IEEE Trans Circuits Syst I Regul Pap

53(6):1363–1372

24. Kumar R, Srivastava S (2020) A novel dynamic recurrent func-

tional link neural network-based identification of nonlinear sys-

tems using lyapunov stability analysis. Neural Comput Appl.

https://doi.org/10.1007/s00521-020-05526-x

25. Lin CM, Tai CF, Chung CC (2014) Intelligent control system

design for uav using a recurrent wavelet neural network. Neural

Comput Appl 24(2):487–496. https://doi.org/10.1007/s00521-

012-1242-5

26. Ljung L (1999) System identification: theory for the user. Pren-

tice Hall, Hoboken

27. Marple SL (1987) Digital spectral analysis with applications.

Prentice-Hall, Upper Saddle River

28. Mastorocostas PA, Theocharis JB (2002) A recurrent fuzzy-

neural model for dynamic system identification. IEEE Trans Syst

Man Cybern Part B 32(2):176–190. https://doi.org/10.1109/3477.

990874

29. Miller R, Mooty G, Hilkert JM (2013) Gimbal system configu-

rations and line-of-sight control techniques for small UAV

applications. In: D.J. Henry, D.A. Lange, D.L. von Berg, S.D.

Rajan, T.J. Walls, D.L. Young (eds.) Airborne intelligence,

surveillance, reconnaissance (ISR) systems and applications X,

vol. 8713, pp. 39–53. International Society for Optics and Pho-

tonics, SPIE. https://doi.org/10.1117/12.2015777

30. Mohajerin N (2012) Identification and predictive control using

recurrent neural networks. Master’s thesis, Öreburo University,

Department of Technology, Sweden

31. Nair V, Hinton GE (2010) Rectified linear units improve

restricted Boltzmann machines. ICML’10, pp. 807–814. Omni-

press, Madison, WI, USA

32. Narendra KS, Parthasarathy K (1990) Identification and control

of dynamical systems using neural networks. IEEE Trans Neural

Netw 1(1):4–27

33. Natke HG (1982) Computational methods and experimental

measurements, chap: survey on parameter estimation within

system identification using a priori knowledge of system analysis.

Springer, Berlin, pp 17–27

34. Ogunmolu O, Gu X, Jiang, S, Gans N (2016) Nonlinear systems

identification using deep dynamic neural networks

35. Pascanu R, Gulcehre C, Cho K, Bengio Y (2014) How to con-

struct deep recurrent neural networks. In: Proceedings of the

second international conference on learning representations

(ICLR 2014)

36. Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of

training recurrent neural networks. ICML’13, pp. III–1310–II–

1318

37. Passalis N, Tefas A (2020) Continuous drone control using deep

reinforcement learning for frontal view person shooting. Neural

Comput Appl 32(9):4227–4238. https://doi.org/10.1007/s00521-

019-04330-6

38. Pearlmutter (1989) Learning state space trajectories in recurrent

neural networks. In: International 1989 joint conference on neural

networks. 2: 365–372

39. Pham DT, Liu X (1995) Neural networks for identification, pre-

diction and control, chap. Dynamic system identification using

recurrent neural networks, pp. 47–61. Springer, London

40. Rake H (1980) Step response and frequency response methods.

Automatica 16:519–526

41. Åström KJ, Bohlin T (1965) Numerical identification of linear

dynamic systems from normal operating records. In: IFAC

symposium on self-adaptive systems

16756 Neural Computing and Applications (2021) 33:16745–16757

123

https://doi.org/10.1109/INDIN41052.2019.8972113
https://doi.org/10.1109/INDIN41052.2019.8972113
https://doi.org/10.1146/annurev-control-053018-023744
https://doi.org/10.1146/annurev-control-053018-023744
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.1162/neco.1989.1.3.372
https://doi.org/10.1016/j.ifacol.2018.07.326
https://doi.org/10.1016/j.ifacol.2018.07.326
http://www.sciencedirect.com/science/article/pii/S2405896318310814
http://www.sciencedirect.com/science/article/pii/S2405896318310814
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1109/iccv.2015.123
https://doi.org/10.1117/12.884123
https://doi.org/10.1007/s00521-020-05526-x
https://doi.org/10.1007/s00521-012-1242-5
https://doi.org/10.1007/s00521-012-1242-5
https://doi.org/10.1109/3477.990874
https://doi.org/10.1109/3477.990874
https://doi.org/10.1117/12.2015777
https://doi.org/10.1007/s00521-019-04330-6
https://doi.org/10.1007/s00521-019-04330-6

42. Åström KJ, Eykhoff P (1971) System identification-a survey.

Automatica 7(2):123–162. https://doi.org/10.1016/0005-

1098(71)90059-8

43. Richard A, Mahé A, Pradalier C, Rozenstein O, Geist M (2019) A

Comprehensive benchmark of neural networks for system iden-

tification. https://hal.archives-ouvertes.fr/hal-02278102. Working

paper or preprint

44. Richard A, Mahé A, Pradalier C, Rozenstein O, Geist M (2019) A

comprehensive benchmark of neural networks for system iden-

tification. Tech. Rep. hal-02278102f, HAL archives-ouvertes

45. Rubio JJ, Yu W (2007) Nonlinear system identification with

recurrent neural networks and dead-zone Kalman filter algorithm.

Neurocomputing. 70(13): 2460–2466. https://doi.org/10.1016/j.

neucom.2006.09.004. http://www.sciencedirect.com/science/arti

cle/pii/S0925231206003134. Selected papers from the 3rd Inter-

national Conference on Development and Learning (ICDL 2004)

Time series prediction competition: the CATS benchmark

46. Schüssler M, Münker T, Nelles O (2019) Deep recurrent neural

networks for nonlinear system identification. In: 2019 IEEE

symposium series on computational intelligence (SSCI),

pp. 448–454 . https://doi.org/10.1109/SSCI44817.2019.9003133

47. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdi-

nov R (2014) Dropout: a simple way to prevent neural networks

from overfitting. J Mach Learn Res 15(56):1929–1958

48. Sutskever I (2013) Training recurrent neural networks. Ph.D.

thesis, CAN

49. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D,

Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with

convolutions. 2015 IEEE conference on computer vision and

pattern recognition (CVPR) pp. 1–9

50. Tavoosi J, Badamchizadeh MA (2013) A class of type-2 fuzzy

neural networks for nonlinear dynamical system identification.

Neural Comput Appl 23(3):707–717. https://doi.org/10.1007/

s00521-012-0981-7

51. Wang Y (2017) A new concept using LSTM neural networks for

dynamic system identification. In: American control conference

(ACC), pp. 5324–5329 (2017)

52. Wellstead WE (1981) Non-parametric methods of system iden-

tification. Automatica 17:55–69

53. Werbos PJ (1990) Backpropagation through time: what it does

and how to do it. Proc IEEE 78(10):1550–1560

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:16745–16757 16757

123

https://doi.org/10.1016/0005-1098(71)90059-8
https://doi.org/10.1016/0005-1098(71)90059-8
https://hal.archives-ouvertes.fr/hal-02278102
https://doi.org/10.1016/j.neucom.2006.09.004
https://doi.org/10.1016/j.neucom.2006.09.004
http://www.sciencedirect.com/science/article/pii/S0925231206003134
http://www.sciencedirect.com/science/article/pii/S0925231206003134
https://doi.org/10.1109/SSCI44817.2019.9003133
https://doi.org/10.1007/s00521-012-0981-7
https://doi.org/10.1007/s00521-012-0981-7

	Dynamical system parameter identification using deep recurrent cell networks
	Which gated recurrent unit and when?
	Abstract
	Introduction
	Problem statement
	Related literature

	Dynamic model description
	Deep learning model
	Input sequence
	Recurrent cells

	Experimental setup
	Dynamical system simulation module
	Frequency domain transform of I/O pairs
	Experiments

	Results
	Additional experiments using step inputs with varying magnitudes

	Conclusions and future work
	References

