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ABSTRACT 

 

                  APPLICATION   OF   THE   PHYSICAL   OPTICS   METHOD    

                  TO   IMPEDANCE   WEDGE   DIFFRACTION   PROBLEM  

                                                

                                             KÜÇÜKKARA,   Nebahat  Yağmur     

                M.S.c.,  Department  Of  Electronic  And  Communication  Engineering 

                                       Supervisor:  Prof. Dr. Yusuf  Ziya  UMUL 

In  this  thesis,  the  scattered  electric  field  by  impedance  half-plane  and  a  

perfect  electric  conducting  (PEC)  wedge  will  be  investigated  by  using  the  

method  of  physical  optics  (PO).  The  physical  optics  method  is  enlarged  for  

the  wedge  diffraction  problem.  The  integral  of  physical  optics,  which  consists  

of  the  incident  and  reflected  scattered  waves,  is  considered  in  the  diffraction  

problem  of  plane  waves  by  a  PEC  half-plane. The  expression  of  scattered  

electric  fields  based  on  the  physical  optics  method  are  derived  for  a  PEC  

wedge.  In  addition,  the  solutions  of  physical  optics  integral  are  examined  for  

the  regions  of  a  PEC  wedge  and  surface  wave  fields.  The  integrals  are  

evaluated  by  using  the  stationary  phase  and  edge  point  methods. The  uniform  

diffracted  waves  are  obtained  by  the  asymptotic  evaluation  of  the  physical  

optics  integral.  The  behaviours  of  the  scattered  electric  field,  the  incident  and  

reflected  physical  optics integrals,  total,  total  geometric  optics, diffracted,  and  

uniform  diffracted  field  were  plotted  and  analyzed  numerically.  The  results  

were  also  compared  with  the  literature.                                                         

 Keywords:  Physical  Optics,  Wedge  Diffraction,  Impedance  Surfaces.  
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                                                               ÖZ 

             

            EMPEDANS  KAMA  KIRINIM  PROBLEMLERİNDE  FİZİKSEL   

                                    OPTİK  METODUN  UYGULANMASI 

                                                

                                          KÜÇÜKKARA,   Nebahat  Yağmur     

             Yüksek  Lisans, Elektronik ve  Haberleşme  Mühendisliği Anabilim Dalı 

                                      Tez  Yöneticisi: Prof. Dr. Yusuf  Ziya  UMUL 

 

Bu tezde, empedans yarı düzlemi ile saçılan elektrik alanı ve mükemmel bir elektrik 

iletken (PEC) kama,  fiziksel optik (PO) yöntemi kullanılarak incelenecektir. Kama 

kırınım problemi  için  fiziksel optik  yöntemi  genişletilmiştir.  Gelen ve yansıyan 

saçılan  dalgalardan  oluşan  fiziksel  optiğin  integrali, bir  mükemmel  iletken  yarı  

düzlemi  tarafından  düzlem  dalgalarının  kırınım  probleminde  ele alınır. Fiziksel 

optik  yöntemine  dayalı  saçılan  elektrik  alanlarının  ifadesi, bir  mükemmel  

iletken  kama  için türetilmiştir.  Ek  olarak,  bir  mükemmel  kamanın  bölgeleri ve 

yüzey dalga  alanları  için fiziksel optik  integralinin  çözümleri incelenmiştir. 

İntegraller, stasyonel  faz  ve  köşe  nokta  metodu  kullanılarak hesaplanmıştır. 

Düzgün kırınımlı dalgalar, fiziksel optik  integralinin  asimptotik  

değerlendirilmesiyle  elde edilir.  Saçılan  elektrik ,  gelen ve yansıyan fiziksel optik 

integraller, toplam, toplam geometrik optik, kırınımlı ve tekdüze kırınımlı alanların  

grafikleri  çizdirilmiş ve sayısal olarak analiz edilmiştir.  Sonuçlar  ayrıca  literatür  

ile  karşılaştırılmıştır.  

Anahtar  Kelimeler:  Fiziksel  Optik,  Kama  Kırınımı, Empedans  Yüzeyler. 
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                                                           CHAPTER  1          

                                         INTRODUCTION 

 

1.1.  Background 

The  Physical  Optics  (PO)  is  a  high  frequency  technique,  which  is   based  on  

the  determination  of  the  equivalent  current  densities  induced  on  the  surface  of  

an  illuminated  perfect  electric  conductor  (PEC)  plane  [3,6].   In  1913,  The  PO  

Method  was  put  forward  by  Mcdonald  [5].  Because  the  conditions  of  both  

incident  and  reflection  have  a  property  in  high  frequenciens,  the  related  

approach  is  valid  for  the  wedge  diffraction  problem.  Many  areas  of  the  

electromagnetic  theory  use  this  method.  For  example,  The  PO  Method  is  

benefited  from  evaluating  approximate  uniform  diffraction  coefficients  for  

impedance  surfaces.  The  PO  is  used  to  determine  the  surface  current  density  

that  causes  electromagnetic  scattering.  So,  it  is  one  of  the  most  widely used  

methods  in  the  literature.  On  the  other  hand,  due  to  the  its  deficiencies,  the  

usage  of  this  method  is  limited  [1].  One  of  these  disadvantages  is  explained  

that  the  edge  point  contributions  of  the  PO  integrals  give  rise  to  the  

erroneous  edge  diffracted  waves  and  the  erroneous  evaluation  of  the  edge  

diffracted  fields.  There  have  been  approachs  by  some  authors  in  the  literature  

to  do  away  with  this  disadvantage.  Umul  did  away  with  this  deficiency  of  PO  

in  its  mathematical  structure  through  three  axioms  bottomed  on  the  diffraction  

theory.  He  expressed  that  the  exact  diffracted  waves  are  maintained  by  the 

asymptotic  evaluation  of  the  modified  theory  of  physical  optics  (MTPO). At  

the  same  time,  this  method  for  wedges  and  impedances  surfaces  is  improved  

by  Umul  [10,12].  A  canonical  attempt  for  the  coated  conducting  geometries  is  

represented  by  impedance  surfaces [12]. Maliuzhinets  was  found  the  first  

solution  of  an  impedance  wedge  problem  and  the  total  scattered  field  with  a  

spectrum  integral  of  plane  waves,  which  involves  an  unknown  weight  function 
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[14].  The  weight  function  is  obtained  with  respect  to  the  situations  of  

boundary, radiation, and  edge.  The  zero  current  density  in  the  shadow  region  

of  the  scatterer  is  defined  by  another  disadvantage  of  PO  [1].  Hence,  the  

merely  one  illuminated  face  of  a  wedge  diffraction  problem  is  symbolized  by  

PO  as  a  half-plane  problem.  This  problem  based  on  the  construction  of  

MTPO  integrals  is  researched  by  Umul  for  a  conducting  half-plane.  He  

indicated  that  according  to  PO  integrals,  it  is  likely  to  explain  the  shadow  

currents  for  a  conducting  half-plane.   

The  aim  of  this  thesis  is  to  show  both  illuminated  and  shadow  regions  of  

PEC  half-plane  and  the  wedge  diffraction  with  the  high  frequency  (HF)  

methods.  It  is  also  aimed  to  obtain  the  scattered electric field expression in the 

infinite plane problem as a PO integral through a wedge. The  scattered  electric  

field  expression  is  obtained  in  the  infinite  plane  problem  [2],  but  it  is  not  

included  in  the  literature.  In  chapter  3.4,  the  scattered  electric  field  in  the  

half-plane  is  converted  to  the  wedge  form  with  the  help  of  the  geometry  of  

wedge  and  region  division  for  GO  and  diffracted  fields, i.e., Fig. 4.  Two  cases  

of  soft  and  hard  surfaces  will  be  considered  for  PO  integrals.  

Geometrical  Optics  is  an  approximate  high  frequency  method  because  of  

determining  wave  propagation  for  incident,  reflected,  and   refracted  fields.  

Because  geometrical  optics  (GO)   uses  the  electromagnetic  waves  which  

circulate  in  ray  concepts  at  high  frequencies,  it  is  generally  referred  to  ray  

optics.  According  to  the  PO  technique,  incident  and  reflected  fields  on  the  

object  is  determined  by  the  geometrical  optics.  Stutzman  expressed  that  

because  the  equations  obtained  from  PO  for  the  scattered  field  from  a  

conducting  body  degrade  to  the  equations  of  GO  in  the  high  frequency  (HF)  

limit, frequently, the  concepts  of  PO  can  be  accepted  a  little  more  general  than  

geometrical  optics. Practically,  it  is  supposed  that  PO  field  at  the  surface  of  

the  scattering  surface  is  the  GO  surface  field. This  condition  means  that  the  

scattering  takes  place  at  each  point  on  the  illuminated  side  of  the  scatterer  as  

though  there  were  an  infinite  tangent  plane  at  that  point  as  the  field  at  the  

scattering  surface  is  zero  over  the  shadow  zone  of  the  scatterer [8].  
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In  addition,  Matlab  codes  are  benefited  from  Ref. [13]. Since  the  PO  

expressions  (i.e., 'x , R   and  ),  which  are  used  in  the  Matlab  code,  are  the  

same, the  same  parameters  are  defined  in  the  Matlab code  in  this  thesis.  The  

mathematical  structure  of  the  PO  integrals  is  also  significant  point  [1].  The  

conversion  of  the  integrand  of  the  scattered  electric  field  equation   in  an  

impedance  to  the  wedge  diffraction  form  will  give  more  comprehension  concerning  

the  structure  of  the  PO  method.  The  integrand  is  also  consisted  of  the  incident  and  

reflected  waves  to  reproduce  the  wedge  diffracted  waves.  Furthermore,  the  obtained  

integrals  will  be  calculated  asymptotically  and  compared  numerically. All  obtained  

fields  during  this  thesis  will  be  analyzed  numerically  in  the  chapter  4,  which  is  

called  the  numerical  parts, by  using  MATLAB.   

The  time  factor  of   exp j t is  compressed  and  supposed  throughout  this  thesis  

where     is  the  angular  frequency.   

 

1.2.   Objectives  Of  The  Study   

The  primary  goal  of  this  study  is  to  switch  from  the  dark  situations  in  wedge  

surfaces  using  the  PO  method  and  its  application.  The  illuminated  situations  

can  be  applied  using  the  PO  method  in  the  wedge  surfaces,  whereas  the  PO  

method  cannot  be  applied  in  the  dark  situations. Hence,  the  obtained  integral  

expression  of  the  scattered  electric  field  is  generalized  for  the  PEC  surfaces. 

This  expression  is  used  for  obtaining  the  incident  PO  and  reflected  PO  

equations, the investigation  of  the  wedge  diffraction  problem.  In  addition,  the  

contribution  of  the  diffracted  field  to  the  scattered  electric  field  for  diverse  

geometries  such  as  half-plane  with  the  impedance  boundary  conditions  and  

wedge  is  also  examined.  In  some  applications,  asymptotic  and  uniform  

scattered  electric  field  expressions  are  compared.  All  these  fields  statements  

are  examined  numerically. 
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1.3.   Organization  Of  The  Thesis   

Five  chapters  are  involved  in  this  thesis.  All  the  essential  information  about  

the  integral  of  scattered  electric  field  to  the  forms  of  PO, GO, and  the  wedge,  

methods  used  for  the  incident  and  reflected  fields,  and  numerical  analysis  of  

these  fields  are  explained  in  the  diverse  geometries.  To  explain  these  chapters  

briefly; 

Chapter  1  involves  an  introduction  to   the  literature  review  about  this  thesis,  

organization  and  objectives  of  this  thesis. 

Chapter  2  is  an  introduction  of  the  HF  methods,  which  will  be  used  in  this  

thesis.  These  methods  involves  the  methods  of  physical  optics  and  geometrical  

optics. 

Chapter  3  includes  line  integral  representation  of  the  scattered  electric  field  

and  generalization  process, the  incident  PO  and  reflected  PO  equations  for  an  

impedance  half-plane, the  conversion  of  the  scattered  electric  field  to  GO  form  

in  an  impedance  half-plane,  the  conversion  of   scattered   field   equation   in  an  

impedance  to  the  wedge  form,  and  comparison  of  the  asymptotic  and  uniform  

scattered  electric  field.   

In  Chapter  4,  The  obtained  graphs  using  MATLAB  will  be  plotted  by  comparing  

them  with  each  other,  numerically.  

In  Chapter 5,  the  conclusion  part  is  involved.   
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                                             CHAPTER  2 

                                       HIGH   FREQUENCY  METHODS  

 

2.1.  Physical  Optics  (PO) 

The  geometry  in  Fig. 1  is  taken  into  account  [7].  Scattered  fields  from  
1S    

surface  are  defined  as  the  perfectly  conducting  surface  (PEC  surface)  and  the  

aperture  part,  respectively.  A  surface  current  on  
1S    is  caused  by  the  incident  

waves.  The  reflected  diffracted  fields  in  PO  theory  are  given  by  the  

integration  of  this  current. However,  this  condition  will  not   contain  

information  about  incident  diffracted  fields.  According  to  the  surface  

equivalence  theorem,  the  fields  on  an  imaginary  closed  surface  are  obtained  

by  accommodating  the  electric  and  magnetic  current  densities  over  the  closed  

surface   that satisfy the  boundary  conditions [3].  Equivalent  currents  can  be  

explained  on  the  aperture  according  to  this  theorem.  Radiated  fields,  which  

are  called  the  incident  and  reflected  diffracted  waves,  can  be  obtained  by  

integrating  the  equivalent  currents  on 
1S  [7].  

      

S1

σ�  

    PEC  Surface

Reflected  Ray

                  Incident Ray

                 Source

iE iH

esJ

rE rH

 

                    Fig. 1.  The  geometry  of  scattered  fields  from  PEC  surface 
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According  to  Fig. 1,  
esJ  is  defined  as  the  induced  current  by  the  incident  ray.  

This  surface  current  can  be  defined  as 

                                                     
PO T SJ n H |                                                       (2.1) 

and, 

                                                       
POJ 0                                                               (2.2) 

for  both  the  enlightened  region  and  shadow  region  in  a  perfectly  conducting  

surface ,  respectively,  where  
TH  is  the  total  magnetic  field  on  the  PEC  

surface,  and  n   is  the  unit  normal  vector  on  the  illuminated  part  of  the  region  

as  shown  in  Fig. 2.  According  to  the  boundary  conditions  of  any  scatterer’s  

surface,  this  current is  formed  mathematically.  Scattered  fields  consist  of  

geometrical  optics  fields  which  are  defined  as   the  fields  of  incident   iE   and  

reflected   rE ,  and  diffracted  fields   dE .   

                  

PEC  Surface

Shadow  Boundary

n

Shadow  

Region

iH

POJ

 

Fig. 2. The  geometry  of  enlightened  and  shadow  regions  of  PO  on  the  PEC  

surface 

Because  of  the  image  theory,  when  the  PEC  surface  is  altered  by  equivalent  

currents  in  free  space,  the  tangential  component  of  H  at  a  perfect  conductor  

are  twice  those  from  the  same  source  [8].  Hence,  Eq.  (2.1)  can  be  rewritten  

as 

                                                           
PO iJ 2n H   .                                              (2.3) 
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Suppose  that  the  incident  field  phase  is  to  be  zero  at  the  reference  plane.  The  

total  scattering  PO  field  in  the  far  field  assumptions  can  be  obtained  as 

                                                        
PO

SE j A                                                     (2.4) 

or 

                                       
jkR

PO
'0

S i S

S

j e
E 2n H | dS

4 R


  

                                    (2.5) 

where  A  is  defined  as  the  magnetic  vector  potential.  In  order  to  find  the  

magnetic  vector  potential,  using  the  surface  current,  POs  scattering  integral  

can  be  written  as 

                                           '

'0
i S

S

A 2n H | GdS
4


 

 
                                           (2.6) 

where  the  integral  is  expressed  as  the  surface.  The  term  G,  which  is  called  

the  free  space  Green’s  function,  is  equal  to  
jkRe

R

 
 
 

  where  minus  sign  in  the  

exponential  term  corresponding  the  waves  is  propagating  in  the  outward  

direction,  and  R   is  called  the  distance  between  the  source  and  observation  

point. The  Green’s  function  consists  of  the  information  of  phase  and  

magnitude  alterations  apart  from  the  source.   

When  there  are  no  obstacles  in  space,  the  geometry  in  Fig. 3  is  considered  

[2]. 

                                    

Object

P

iE (Incident  field)

 

                                          Fig. 3.  No  obstacles  in  space   
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According  to  Fig. 3,  
TE  ,  which  is  the  measured  field  at  point  P  (observation  

point), is  formed  as  a  result  of  the  interaction  of  the  incident  field  with  the  

object.  
TE   is  written  as 

                                                       
T Sİ

E E E                                                       (2.7) 

where  
İ

E   is  defined  as  the  incident  field  and  
SE   is  defined  as  the  scattered  

field.  Using  the  equation  of  
SE ,  

TE  can  be  rewritten  as 

                                     
'

jkR
'0

T Sİ İ

S

j e
E E 2n H | dS

4 R


  

  .                                 (2.8) 

In  this  manner,  it  is  understood  that  any  field  within  the  PO  field  does  not  

exist  in  space.  Keep  in  mind  the  equation  of  the  scattered  field  depends  on  

the  frequency  in  contrast  to  the  expression  of  geometrical  optics   does  not  

depend  on  the  frequency. Therefore,  it  may  be  assumed  that  a  more  exact  

approximation  for  the  scattered  field  is  provided  by  physical  optics.   
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2.2.  Geometrical  Optics  (GO) 

Geometrical  optics,  or  ray  optics  was  originally  developed  to  analyze  the  

propagation  of  light  where  the  frequency  is  sufficiently  high  that  the  wave  

nature  of  light  is  not  to  be  considered  [8].  Geometrical  optics  can  be  

improved  by  the  transport  of  energy  from  one  point  to  another  without  any  

reference  in  order  to  control  the  transfer  environment  is   particle  or  wave  in  

nature.   

Using  the  canonical  geometry  of  Fig. 4,  the  solutions  of  PO  fields  can  be  

separated  from  geometrical  optics  (i.e., incident  and  reflected),  diffracted  (i.e., 

incident  and  reflected)  for  the  PEC  wedge  and  surface  wave  fields  [3].  

Surface  waves  have  to  be  contained  since  the  wedge  has  impedance  surfaces.  

 

            WA= (2-n)π 

ϕ 

 x

     Φ=nπ 

                   Region  I

                 Direct

                    Reflected

                     Diffracted

Region  II

Direct

Diffracted

Region  III

Diffracted

y

Observation  point, 

P

O

Source

RQ
DQ

 

Fig. 4. The  geometry  of  wedge  and  region  division  for  GO  and  diffracted  

fields  

According  to  Fig. 4,  the  geometry  is  outside  the  wedge  (i.e.,  0 n    ),  

which  has  been  subdivided  into  three  different  field  regions  (i.e., Region  I, 

Region  II, Region  III)  [3].  WA,  which  is  called  the  two  dimensional  electric  

conducting  wedge  of  included  angle,  is  equal  to   2 n     radians  where  n, 

FN, is  the  wedge  angle  factor,  and   n ,  ,  is  the  outer  angle  of  the  wedge.  
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Using  the  geometrical  coordinates  of  Fig. 4,  the  geometrical  optics  fields  can  

be  contributed  that  Region  I,  which  is  called  Direct  Reflected  Diffracted,  is  

expressed  as   00     ,  Region  II,  which  is  called  Direct  Diffracted,  is  

expressed  as   0 0       ,  and  Region  III,  which  is  called  Diffracted,  

is  expressed  as   0 n     .  With  these  fields,  it  is  clear  that  

discontinuous  in  the  field  will  be  modeled  along  the  RSB  (i.e.,  0   ) 

separating  regions  I  and  II,  and  along  the  ISB  (i.e.,  0   ) separating  

regions  II  and  III,  and  there  are  no  field  in  region  III  (i.e., Shadow  Region).  
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                                           CHAPTER  3 

                                                          THEORY  

 

3.1.  THE  BASIS  OF  THE  INFINITE  PLANE  PROBLEM  

An  infinite  conducting  half  plane,  which  is  located  at y 0 , x (0, )  , and 

z ( , )    is considered [2]. An incident plane wave  iE  of  

 z 0 0 0e E exp jk xcos ysin       is  illuminating  the   infinite   conducting  half  

plane,  and  an  incident  magnetic   plane   wave   iH   defines  as   the   equation   of   

   0
0 x 0 y 0 0

0

E
sin e cos e exp jk(x cos ysin )

Z
       . ze  expresses  the  propagation  

direction  of  incident  plane  wave,  0E   defines  as  the  complex  amplitude  of  the  

electric  or  magnetic  field,  0Z   is  the  a   physical  constant   relating  the   

magnitudes   of   the   electric and   magnetic   fields   of   electromagnetic   radiation   

travelling  through  free  space  [4],  0   is  the  angle  of  incidence,  and  k   is   the   

wave  number  [1].  Boundary condition  between  total  electric  field  and  total  

magnetic  field  on  the  infinite  conductor  half  plane  can  be  written  as 

                                                      T s T sn n E | Zn H | .                                            (3.1) 

Eq. (3.1)  can  be  rearranged  as 

                                                           Z y 0 X y 0E | ZH | .                                         (3.2)  

Eq. (3.2)  is  the   boundary   condition  to  be  used   here.  The  Helmholtz  Equation  

is  used  to  be  solve  this  boundary  condition [2].  The  Helmholtz  Equation  can  

be  written  as   

                                                           
2 2

Z ZE k E 0.                                            (3.3) 
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The  expression  of  ZE   in  Eq. (3.3)   depends  on  the  parameters   of  x   and  y, 

and  it  can  be  showed  that    

                                                       
2 2

2Z Z
Z2 2

d E d E
k E 0.

dx dy
                                   (3.4) 

Since  The  Helmholtz  Equation  is  equal  to zero,  that  is,  it  is  homogeneous, this  

equation  is  solved  by  The  Method  Of  Separation  Of  Variables. This  method  

can  be  written  as 

                                                           ZE x, y X x Y y .                                      (3.5) 

Eq. (3.5)  can  be  rearranged  as 

                                                        '' '' 2X Y XY k XY 0.                                     (3.6)   

Eq. (3.6)  can  be  divided  by   ΧΥ,  and  so,  the  following  equation  can  be  

obtained  as     

                                                             
''

2X Y ''
k 0.

X Y
                                          (3.7)    

The  wave   number  in  the  opposite  direction  x   2

xk  and   the  wave  number  

in  the  opposite  direction  y   2

yk   can  be  obtained  in  Eq. (3.7).  The  wave  

number  in  the  opposite  direction  x  is  equal  to  
''X

X
,  and  the  wave  number  in  

the  opposite  direction  y   is  equal  to  
''Y

Y
.  The  reason  why   2

xk   and   2

yk   

are   negative; this  is  because  they  are  not  hyperbolic.  Hyperbolic  expressions  

appear  in  electrostatics  and  they  are  phase  and  amplitude.  Therefore,  the  

constants  of    2

xk   and   2

yk   must  be  negative.  

The  wave  number, k,  can  be  shown  as 

                                                              2 2

x yk k k   .                                        (3.8)   

By  taking  the  combination  of  the  axes,  Eq. (3.5)  can  be  written  as   
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                                 y yx x
jk y jk yjk x jk x

ZE (x, y) Ae Be . Ce De
        

.             (3.9)      

When  Eq. (3.9)  is  edited,  the  general solution  can  be  obtained  as   

                          x y x y x y x yj(k x k y) j(k x k y) j(k x k y) j(k x k y)

ZE Ae Be Ce De
     

     .         (3.10)    

The  equation  providing  the  expressions   which  A, B  and C  coefficients  are  

existed  in  Eq. (3.10)  is   shown  as   x 0E | 0  .   The  coefficient  D  is  0E .  The  

representations  of  parameters  of   xk   and   
yk   in  terms  of  k  are  defined  as  

 0kcos   and   0ksin ,  respectively. The  expression  of  D  coefficient  is  the  

incident  plane  wave,  and  it  is  written  as 

                                                      0 0j(kcos x ksin y)

i 0E E e
  

 .                                    (3.11) 

Eq. (3.10)  can  be  written  as 

    0 0 0 0 0 0 0 0jk(xcos ysin ) jk(xcos ysin ) jk(xcos ysin ) jk(xcos ysin )

Z 0E E e Ae Be Ce
             

    .        (3.12) 

Eq. (3.12)  is  taken to  derivative  according  to  the  parameter  of  y.  It  is  shown  

as         

     0 0 0 0 0 0 0 0jk(x cos ysin ) jk(xcos ysin ) jk(xcos ysin ) jk(xcos ysin )Z
0 0

dE
jk sin E e Ae Be Ce

dy

                  
 

.      (3.13)    

Eq. (3.2)  can  be  rewritten  as 

                                                    Z
Z y 0 y 0

0

dEZ
E | |

j dy
 


.                                     (3.14)   

We  will  substitute  Eq. (3.12)  and  Eq. (3.13)  instead  of  Eq. (3.14).  So,  the  

obtained  equation  can  be  written  as 

          0 0 0 0jkx cos jkx cos jkx cos jk cos0
0 0

0

Zk sin
E C e A B e E C e A B e

             
 

.          (3.15)     

Eq. (3.15)  can  be  rearranged  as 
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                                                    0
0 0

0

kZsin
E C E C


  


                                       (3.16)    

where  Ζ  is  equal  to  0Z

sin

 
 

 
.   Eq. (3.16)  can  be  rewritten  as 

                                          0 0 0 0sin E sin C sin E sin C       .                         (3.17)     

Eq. (3.17)  can  be  rearranged  as 

                                                           0
0

0

sin sin
C E

sin sin

  


  
                                   (3.18)         

where  R, which  is  called  as  reflection  coefficient  of  impedance  surface,  is  

equal  to  0

0

sin sin

sin sin

   
 

   
,  and  C  is  defined  as  reflection  coefficient  separated  

from  the  surface. Consequently,  the  reflected  electric  and  magnetic  fields  on  

the  surface  are  obtained  as 

                                                          0 0jk(xcos ysin )

r Z 0E e E Re
  

                            (3.19) 

 and, 

                                   0 0jk(x cos ysin )0
r z 0 x 0 y

E R
H e sin e cos e e

Z

  
                      (3.20) 

,respectively, and  the  incident  electric  and  magnetic  fields  on  the  surface  are  

obtained  as 

                                                       0 0jk(xcos ysin )

i Z 0E e E e
  

                         (3.21) 

and, 

                                            0 0jk xcos ysin0
i 0 x 0 y

0

E
H sin e cos e e

Z

  
                  (3.22) 

,respectively, where 0Z , which  is  called  as  free  space  impedance,  is  equal  to  

0

0




 or  Zsin . After finding the incident and reflected electric and magnetic fields, 

the electric and magnetic field densities coming to the impedance surface must be 
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found.  The  electric  field  density,  esJ ,  is  equal  to  T Sn H |  or  y T y 0e H |  .  Eq. 

(3.20)  is  inserted  into  the  formula  of   esJ .  It  is  obtained  as   

                                                  es i S

0

sin
J 2 n H |

sin sin


 

  
                                (3.23) 

where  the  equation  of   i2n H   defines  as   physical  optics,  and  the  

expression  of  sin  is  defined  as  perfect  electric  surfaces.  Otherwise,  the  

magnetic  field  density,  msJ ,  is  equal  to   Sn |  ,  where    is  equal  to  

 i rE E .  The  sum  of  Eqs. (3.19)  and  (3.21)  are  inserted  into  the  formula  of   

msJ .  It  is  obtained  as   

                                                  0
ms i S

0

sin
J 2 n |

sin sin


  

  
.                            (3.24) 

If we know the fields that come to the impedance surface, we can write the current 

densities.  In  this  manner,  both  electric  and  magnetic  current  densities  are  

obtained  as 

                                       
jkR

'0
i S

sin e
A n H | dS

2 sin sin R

 
 

                            (3.25) 

and, 

                                   
jkR

'0
i S

sin e
F n | dS

2 sin sin R

 
  

                              (3.26) 

,respectively. 0  changes  in cylindrical and spherical waves, so in  the  equations  of  

current  densities, we  need  to  substitute     instead  of  0 .  

After obtaining the electric field and magnetic field intensities,  the  expression  of  

scattered  field  can  be  written  as 

                                                     S

0

1
J F    


.                                      (3.27) 
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Eqs. (3.25)  and  (3.26)  are  inserted  into  Eq. (3.27),  and  so,  Eq. (3.27)  can  be  

rewritten  as 

                    

jkR jkR
' '0

S i S i S

j sin e 1 sin e
n H | dS n E | dS

2 sin sin R 2 sin sin R

 



   
        

        
           (3.28) 

where     defines  as  the  rotational,  and  the  equation  of  

jkR

i S

e
n E |

R





 
   

 
  is  equal  to  

'
0

jkR '
jkx cos

0 y z

e z z y
e ( jk) e e

R R R


  

   
 

.   

After  obtaining  the  scattered expression, we  need  to  calculate  at  the  P  

observation  point of all the rays  coming  to  the  'x  point  as  shown  in  Fig. 5. 

                

  α 0

P 

x 'x
 

                                         Fig. 5.  Rays  coming  to  the  observation  point P 

Eq. (3.28)  can  be  rewritten  as 

'
0

'

0 0
S 0 z z y

0

jkR
jkx cos ' '

sin sinJ y sin z z sin
e k e k e

2 sin sin R sin sin R sin sin

e
e dx dz

R




        
       

             




    (3.29) 

where  k,  the  wave  number  is  equal  to  0

0




. 'z  part  of  the  integrand  of  Eq. 

(3.29)  will  be  calculated.  It  is  written  as  

                                                   
1

2 2 2' ' 2 'g z R x x y z z      
  

.                (3.30)  
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Eq. (3.30)  is  rearranged  as 

                                                               
'

'

d z z

dz R

 
  .                                         (3.31)  

When  Eq. (3.31)  is  equal  to  zero,  the  stationary  phase  function,  which  is  

showed  as  sz z ,  is  obtained.  Since  the  amplitude  term  of  the  stationary  

phase  function  changes  slowly,  we  only  need  to  take  the  first  term.  The  first  

term  can  be  written  as 

                                           

0

' S
s z

y
sin sin sin

R
f (x , z ) e

sin sin

   


  

                            (3.32) 

where  'x   is  defined  as  the  amplitude  function.  In  this  manner,  the  first  two  

terms  of  Eq. (3.29)  is  combined  and  because  of  'z z ,  its  third  term  

disappears.  Eq. (3.30)  can  be  rewritten  as 

                                                              
2

' '

s S

S

1
g z R z z

2R
   .                                         (3.33) 

Eq. (3.29)  can  be  rewritten  as 

                  

 

S
'

0

'

2
'

S

0 jkR
jkx cos0 S

S z

Sx 0

1
jk z z

2R '

y
sin sin sin

jk R e
e e

2 sin sin R

e dz

 




  



   


 
   







.                   (3.34) 

The  error  function  can  be   applied   in  the  expression  of  
 

2
'

S

1
jk z z

2R 'e dz

  



    in  

Eq. (3.34).  The  error  function  is  defined  as 

                                                   

2y

2e dy 2





  .                                                  (3.35) 
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Eq. (3.35)  is  inserted  into  Eq. (3.34).  As  a  result,  the  scattered  electric  field  

[2]  is  obtained   as 

                        
S

'
0

'

j 0 jkR4
jkx cos '0 S

S z

Sx 0

y
sin sin sin

ke R e
E e e dx

sin sin2 kR


 





  



 

        (3.36)                   

where  SR   is  equal  to  
' 2 2(x x ) y    .     
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3.2.  THE  INCIDENT   AND   REFLECTED   PO  EQUATIONS 

 

From the  obtaining  scattered  electric  field  equation  in  Eq.(3.36),  both  the  

incident  and  reflected  PO  equations  in  the  half  plane  are  obtained. Since  the  

integrand  of  Eq. (3.36)  goes  infinity, we  cannot  apply  the  method  of  far  field  

approximation  to  Eq. (3.36).  Therefore, The Stationary phase method was applied 

to this above integral. With this method, the discontinuous point was taken out and 

the continuous points were calculated. Because this method gives points that are 

continuous on the surface.  If  this  method is applied, this  area  should be limited  to  

U(x).   

At  the 'x  point,  the  radiation  goes  at  an  angle.  It  is  shown  in  the  Fig. 6.   

           

P 
y

x

y

x
α 

SR

'x

 

                     Fig. 6.  Angular  propagation  of  the  radiation at  the  'x  point 

The  integrand  of   SE   is  both  multiplied  and  divided  by  0(cos cos )   .  Eq. 

(3.36)  can  be  rewritten  as   
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
.     (3.37) 

The  trigonometric  relations  of    
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                     (3.38) 

can  be  obtained  for  soft  surfaces [1]. Eq. (3.37) is rearranged as                                                               
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Eq. (3.38)  is  inserted  into  Eq. (3.39).  It  is  written  as   
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Eq.(3.40)  is  rearranged  as 
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In  this  manner,  based  on  the  Eq. (3.41),  the  PO  integrals  may  be  explained  as   
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and   



21 
 

 
 

2
'

S
'

0

j 04
0 0 S 0

PO z

0x 0

jkR
jkx cos '

S

y
sin sin sin

ke R cos cos
e cot g

2 sin sin sin2 2

e
e dx

kR









 
            

                 
  




       (3.43) 

where  SR   is  equal  to  
' 2 2(x x ) y      for  both  soft  and  hard  surfaces,  

respectively [1].  The  soft  surface  is  emphasized  on  this  thesis.  Thus,  we  will  

use  Eq. (3.42).  According  Ref [1],  The  cotangent  functions  in  the  integrand  of  

Eqs. (3.42)  and  (3.43)  can  be  written  as  

                                             0 0( )
cot g tan

2 2

    
 .                                  (3.44) 

Because  the  soft  surface  is  emphasized  on  this  thesis,  the  cotangent  function  

in  the  integrand  of  Eq. (3.42),  which  is  equal  to  0 0( )
cot g tan

2 2

  
 ,  

will  be  used.   

The  geometry  of  wedge  diffraction [1],  which  is  shown  in  Fig. 7,  will  be  

considered.   
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                                 Fig. 7.  Diffraction  geometry  of  the  wedge 

According  to  Fig. 7,  the  outer  angle  of  the  wedge,  which  is  shown  as   ,  is  

equal  to  n ,  where  n   is  the  parameter.  Since  the  outer  angle  of  half-plane  is  
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equal  to  2 ,  n  is  equal  to  2  for   half-plane.  Based  on  this  information, Eq. 

(3.44)  can  be  written  as 

                 
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         (3.45) 

for  wedge  diffraction [1].  Because  the  soft  surface  is  emphasized  on  this  

thesis,  the  cotangent  function  in  the  integrand  of  Eq. (3.45),  which  is  equal  to  
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         

,  will  be  used.  So,  the  

cotangent  function  in  the  integrand  of  Eq. (3.45)  for  soft  surface  is  inserted  

into  Eq. (3.42).  In  this  manner,  the  PO  integrals  for  soft  surface  can  be  

expressed  as 
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and                                            
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  (3.47) 

for  the  parts  of   reflected  and  incident,  respectively.  Because  Eqs. (3.46)  and  

(3.47)  are  obtained,  the  total  PO  integral  for  soft  surface,  
 SoftPO ,  which  is  

equal  to   
1 2PO PO   , can  be  written.   
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The  coefficient  of  the  cotangent  function  for  soft  surface  in  the  integrands  of  

Eqs. (3.46)  and  (3.47)  will  be  multiplied  by  the  expression  of  

   
1

cos sin
n n

 
 
  
 

, respectively.  The  goal  is  to  eliminate  this  coefficient  and  

it  must  be  the  value  of  1  in  the  stational  phase  method.  In  this  manner,  Eqs.  

(3.46)  and  (3.47)  can  be  rewritten  as 
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 and                                         
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    (3.49) 

where  SR   is  equal  to  
' 2 2(x x ) y     , respectively.  Eqs. (3.48)  and  (3.49)  

can  be  expressed  as  the  parts  of  both  reflected  and  incident  for  half-plane  to  

wedge.   

In  order  to  obtain  the  PO  integrals  in  half-plane,  we  need  to  apply  the  

stational  phase  method  in  the  parts  of  both  reflected  and  incident  the  integral.  

Therefore, the  coefficient  of  
0

S

y
sin sin sin

R

sin sin

 
    

 
   

  

 is  neglected  to  obtain  the  

PO  integrals  in  half-plane.  In  addition,  the  stational  phase  method  tells  us  

what  its  contribution  is  to  the  radiation  at  continuous  points.  Thus,  the  

equation  of  SR   must  be  differentiated  with  respect  to  'x .  When  the  stational  

phase  method  is  applied,  the  expression  can  be  obtained  as 
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                                                         ' '

0 Sp x x cos R   .                                   (3.50) 

When  Eq. (3.50)  is  differentiated  with  respect  to  'x ,  Eq. (3.50)  can  be  

rewritten  as 
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d x x
cos

dx R

  
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 
.                                (3.51)  

Eq.(3.51)  is  needed  to  use  the  phase  function.  According  to  Fig. 2,  Eq. (3.51)  

can  be  rewritten  as                

                                                           0'

d
cos cos

dx


    .                                  (3.52) 

To  be  able  to  apply  the  stational  phase  method,  Eq.(3.52)  is  equal  to  zero. In  

this  manner,  two  phase  points  are  obtained  as  
1S 0     and  

2S 0   .  These  

phase  points  are  shown  in  Fig. 8  and  Fig. 9,  respectively.   

                       
x

00

 

                                         Fig. 8.  First  stational  phase  point, 
1S 0         

                          

0

0
x

 

                               Fig. 9.  Second  stational  phase  point, 
2S 0    

 

Eq. (3.52)  is  differentiated  with  respect  to  'x .  Eq. (3.52)  can  be  rewritten  as 
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                                                                        2
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d d
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                                               (3.53)        

where sin  is  equal  to   
S

y

R

 
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 

.  Because  the  stational  phase  point  is  calculated  

according  to    in  Fig. 8 and  Fig. 9,  the  expression  with  term     is  derived  

with  respect  to  'x   in  Eq. (3.53).  Thus,  the  stational  phase  value  of  SR , which  

is  defined  as  
1SR ,  is  equal  to    2 2

Sx x y  ,  where  Sx   is  equal  to  0   

shown  in  Fig. 10. 

                           

x
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x
Sx

 

                                         Fig. 10.  The  stational  phase  point, 
S 0x    

Now,  we  take  into  account  the  reflected  part  in  order  to  calculate  the  first  

stational  phase  point,  which  is  defined  as  
1S 0   .  In  the  first  stational  phase  

point,  'x   is  defined  as  sx ,  SR   is  defined  as  
1SR ,  and     is  defined  as  0 .  

Thus,  Eq. (3.48)  can  be  rearranged  as 
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Eq. (3.54)  can  be  rearranged  as 
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According  to  the  parameter  of   ,  The  L’Hopital’s  Rule  can  be  applied  in  Eq. 

(3.55).  Thus,  Eq. (3.55)  can  be  rewritten  as 
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If  The  L’Hopital’s  Rule  is  applied  in  Eq. (3.56),  Eq. (3.56)  can  be  rewritten  as   
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.    (3.57)   

After  applying  The  L’Hopital’s  Rule  in  Eq. (3.57),  Eq. (3.57)  can  be  expressed  

as   
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     (3.58) 

The  conversion  in  Ref. [2]  can  be  written  as 

                                             
1

2 2
2

'0
s

S

sin y
jk x x

2R 2


    .                                    (3.59) 
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Because  y  is  equal  to  
0

x

sin

 
 

 
 according  to  Fig. 6,  Eq. (3.59)  can  be  

rearranged  as   

                                                       1
j S' 4

R
x x e y

k




  .                                        (3.60) 

When  Eq. (3.60)  is  derived  with  respect  to  'x ,  Eq. (3.60)  can  be  rewritten  as 
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.                                 (3.61) 

Eqs. (3.59)  and  (3.61)  is  inserted  into  Eq. (3.58).  So,  Eq. (3.58)  can  be  

rewritten   as 
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.     (3.62)           

When  simplifying  the  Eq. (3.62),  Eq. (3.62)  can  be  rearranged  as 
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  .  (3.63)         

Eq. (3.35),  which  is  defined  as  the  error  function,  is  inserted  into  Eq. (3.63). 

Eq. (3.63)  can  be  rewritten  as 
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If  we  remember,  it  is  clear  that  n  is  equal  to  2  for  a  half-plane  from   

because  the  outer  angle  of  a  half-plane  is  2  [1].  Thus,  Eq. (3.64)  can  be  

rewritten  as   
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.     (3.65)  

When  Eq. (3.65)  is  rearranged,  it  is  rewritten  as 

                                            S 0 S1

1

jk x cos R

PO z 0E P e E e U
 

                                    (3.66)  

where  
1SR  is  equal  to   s 0 0x x cos ysin        according  to  Fig. 11.   
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 s 0x cos

1SR
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                                 Fig. 11.  The  geometry  of   the  reflection  part 

According  to  Fig. 11,  the  equation  of  
1SR  is  attached  in  Eq. (3.66).  Hence,  Eq. 

(3.66)  can  be  rewritten  as   

                                             0 0

1

jk xcos ysin

PO z 0e e U
  

     .                             (3.67)   

The  term  of     can  be  represented  as 

                                                   e sk g x g x                                           (3.68) 

which  is  the  detour  parameter,  where   eg x  is  equal  to  dl ,  and   sg x  is  

equal  to  GOl   [2].  It  is  shown  in Fig. 12.   
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Fig. 12. The  geometry  of   obtaining  the  detour  parameter,    , for  reflected  part 

 

Let   eg x  is  dl ,  and   Sg x  is  GOl ,  according  to  Fig. 8,  dl  is  equal  to   1l

,  GOl   is  equal  to   1l x ,  and  x  is  equal  to   cos  ,  where    is  equal  to  

 0      according  to  Fig. 12.   

Eq. (3.68)  can  be  rearranged  as 

                                                       d GOk l l                                               (3.69) 

where  d GOl l  is  equal  to  
2 02 cos

2

   
   

  
. Hence,  Eq. (3.69)  can  be  

rewritten  as 

                                             02 k cos
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 
.                                         (3.70) 

Eq.(3.70)  is  inserted  into  Eq.(3.67).  As  a  result,  the  equation  of  the  reflected  

part  of  PO  equations  can  be  obtained  as   

                                        0 0
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.            (3.71) 

Similarly,  we  take  into  account  the  incident  part  in  order  to  calculate  the  

second   stational  phase  point,  which  is  defined  as   
2S 0   .  In  the  second  
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stational  phase  point,  'x   is  defined  as  sx ,  SR   is  defined  as  
1SR ,  and     is  

defined  as  0 .  Thus,  Eq. (3.49)  can  be  rearranged  as    
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Eq. (3.72)  can  be  rearranged  as 
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According  to  the  parameter  of   ,  The  L’Hopital’s  Rule  can  be  applied  in  Eq. 

(3.73).  Thus,  Eq. (3.73)  can  be  rewritten  as 
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If  The  L’Hopital’s  Rule  is  applied  in  Eq. (3.74),  Eq. (3.74)  can  be  rewritten  as   

    

         

   

 
 

'
0 S1

2

1

2 2
'0

s
S1

0

j
4

jk x cos R00
PO z

S

sin
jk x x

2R

s

0

ke 1
e sin cos sin e

n n n2 2 kR

sin
lim e dx U

1 sin
n n



 

  




               
      

 
 

   
      
   



.    (3.75) 

After  applying  The  L’Hopital’s  Rule  in  Eq. (3.75),  Eq. (3.75)  can  be  expressed  

as   
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Eqs. (3.59),  (3.60),  and  (3.61)  are  inserted  into  Eq. (3.76)  [2].  Hereby,  Eq. 

(3.76)   can  be  rewritten  as 
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When  simplifying  the  Eq. (3.77),  Eq. (3.77)  can  be  rearranged  as  
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Eq. (3.35),  which  is  defined  as  the  error  function,  is  inserted  into  Eq. (3.78). 

When  simplifying  the  Eq. (3.78),   Eq. (3.78)  can  be  rewritten  as 
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If  we  remember,  it  is  clear  that  n  is  equal  to  2  for  a  half-plane  because  the  

outer  angle  of  a  half-plane  is  2   [1].   Thus,  Eq. (3.79)  can  be  rewritten  as   
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When  Eq. (3.80)  is  rearranged,  it  is  rewritten  as 
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                                                    s 0 S1
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jk x cos R

PO z 0e e U
 

                                          (3.81) 

where  
1SR  is  equal  to   s 0 0x x cos ysin        according  to  Fig. 13.  
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 S 0x cos 
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                                 Fig. 13.  The  geometry  of   the  incident  part 

According  to  Fig. 13,  the  equation  of  
1SR  is  attached  in  Eq. (3.81).  Hence,  Eq. 

(3.81)  can  be  rewritten  as   

                                           0 0

2
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PO z 0e e U
  

      .                            (3.82) 

The  term  of     can  be  showed  in  Eq. (3.68), which  is  the  detour  parameter,  

where   eg x  is  equal  to  dl ,  and   sg x  is  equal  to  GOl   [2].  It  is  shown  in 

Fig. 14.   
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Fig. 14.  The  geometry  of  obtaining  the  detour  parameter,    , for  incident  part    
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Let   eg x  is  dl ,  and   Sg x  is  GOl ,  according  to  Fig. 10,  dl   is  equal  to  

 1l ,  GOl   is  equal  to   1l x ,  and  x  is  equal  to   cos  ,  where     is 

equal  to   0    ,  and   d GOl l  is  equal  to  
2 02 cos

2

    
   

  
 according  

to  Fig. 14.  Hence,  Eq. (3.70)  can  be  rewritten  as 

                                               02 k cos
2

  
     

 
.                                       (3.83) 

Eq.(3.83)  is  inserted  into  Eq.(3.82).  As  a  result,  the  equation  of  the  incident  

part  of  PO  equations  can  be  obtained  as   

                          0 0

2

jk xcos ysin 0
PO z 0E P e E e U 2 k cos

2

       
    

  
.               (3.84) 
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3.3.   THE  CONVERSION  OF  THE  SCATTERED  ELECTRIC  FIELD   TO  

GO  FORM    

    

In  order  to  find  the  GO  fields,  the  scattered  electric  field,  which  is  found  in  

Eq. (3.36),  is  benefited  from  this  part.  The  stational  phase  method  is  applied  

for  Eq. (3.36),  where  the  stational  phase  value  of  SR   is  defined  as  
1SR ,  

which  is  equal  to   
2 2

Sx x y  
 

.   

Remind  that  we  take  into  account  the  reflected  part  in  order  to  calculate  the  

first  stational  phase  point,  which  is  defined  as  
1S 0   .  In  the  first  stational  

point,  'x  is  defined  as  sx ,  SR   is  defined  as  
1SR ,  and  s   is  defined  as  0 .  

Using  these  parameters  (i.e., sx , 
1SR , and 0 ),  Eq. (3.36)  can  be  rewritten  as 

       

   

 

 

s 0 S1

1

1

2
20

s
S1

j
4

jk x cos R0 00
S z

0 S

sin
jk x x

2R '

sin sin sinke 1
e e

sin sin2 kR

e dx U



 

  



    
   

    

 

  .      (3.85) 

Because  y  is  equal  to  
0

x

sin

 
 

 
 according  to  Fig. 10,  Eqs. (3.59), (3.60),  and  

(3.61)  are  inserted  into  Eq. (3.85).  Hence,  Eq. (3.85)  can  be  rewritten  as 

           

                              
   s 0 S1

1

jk x cos R0
S z 0

0

sin sin
e e U

sin sin

    
    

   
                     (3.86) 

where   
1S s 0 0R x cos cos       .   

It  is  shown  in  Fig. 15.   
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 0  

ϕ 

Sx
 

               Fig.15.  The  geometry  of  
1SR  for  reflected  GO  field 

As  a  result,  Eq. (3.86)  can  be  rearranged  as 

                      
   0

1

jk cos0
S z 0 0

0

sin sin
e e U

sin sin

    
     

   
                       (3.87) 

for  the  reflected  GO  field.   

It  is  clear  that  n,  which  is  called  as  wedge  angle  (WA)  factor,  is  equal  to  2  

for  a  half-plane  because  the  outer  angle  of  a  half  plane,  ,  is  equal  to  

2 360   [1].   Thus,   WA 2 n 0      for  n 2 .   

Using  the  angle  values  (i.e.,   and 0 )  in  the  graph  of  reflected  GO  field  in  

Matlab [3],  the  geometry  of  reflected  GO  field  is  shown  in  Fig. 16. 
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                             Fig.16.  The  geometry  of  the  reflected  GO  field   
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Similarly,  recall  that  we  take  into  account  the  incident  part  in  order  to  

calculate  the  second  stational  phase  point,  which  is  defined  as  
2S 0   .  In  

the  second  stational  point,  s   is  defined  as  0 ,  'x   is  defined  as  sx ,  and  

SR  is  defined  as  
1SR . Eq. (3.36)  can  be  rewritten  as 

                 
S

'
0

2
'

j
jkR24

jkx cos '0 0
s z

Sx 0

ke sin sin sin e
e e dx

sin sin2 kR


 





     
   

    
 .          (3.88) 

Using  these  parameters  (i.e., sx , 
1SR , and 0 ),  Eq. (3.88)  can  be  rearranged  as   

                       

 

 

 

s 0 S

2

1

2
20

s
S1

j
24

jk x cos R0 0
s z

0 S

sin
jk x x

2R '

ke sin sin sin 1
e e

sin sin2 kR

e dx U



 

  



     
   

     

 

.      (3.89) 

Because  y  is  equal  to  
0

x

sin

 
 

 
 according  to  Fig. 10,  Eqs. (3.59), (3.60),  and  

(3.61)  are  inserted  into  Eq. (3.89).  Hence,  Eq. (3.89)  can  be  rewritten  as 

                                
   s 0 S1

2

jk x cos R

s z 0e e U
 

                                           (3.90) 

where   
1S s 0 0R x cos cos       . 

It  is  shown  in  Fig. 17.   
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                  Fig.17.  The  geometry  Of   
1SR  for  incident  GO  field 



37 
 

As  a  result,  Eq. (3.90)  can  be  rearranged  as 

                                   
   0

2

jk cos

S z 0 0E e E e U
 

                              (3.91) 

for  the  incident  GO  field.   

Using  the  angle  values  (i.e.,   and 0 )  in  the  graph  of  incident   GO  field  in  

Matlab [3],  the  geometry  of  incident  GO  field  is  shown  in  Fig. 18.   
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                        Fig.18.  The  Geometry  Of  The  Incident  GO  Field  

In  conclusion,  the  total  GO   field  can  be  obtained  as 

      

       0 0jk cos jk cos0
TGO z 0 0 0

0

sin sin
e e U e U

sin sin

   
    

         
         (3.92) 

where  
    0jk cos

z 0 0e E e U
 

     is  defined  as  the  incident  GO  field,  and  

   0jk cos0
z 0 0

0

sin sin
e E e U

sin sin

 
     

   
     

  is  defined  as  the  reflected  GO  

field.  In  addition,  using  the  graph  of  total  GO  field  in  Matlab [2,3],  the  

geometry  of  the  total  GO  field  is  shown  in  Fig. 19. 
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                         Fig. 19.  The  Geometry  Of  The  Total  GO  Field    
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3.4.  THE  APPLICATION  OF  THE  EDGE  POINT  METHOD  TO  THE  

SCATTERED  FIELD  EQUATION  AND  OBTAINING  THE  

EQUATIONS  OF  THE  DIFFRACTED  FIELD  AND  THE  TOTAL  

FIELD   

In  this  section,  we  will  apply  the  edge  point  method  to  the  expression  of  the  

scattered  electric  field  which  is  obtained  after  applying  the  stationary  phase  

method.  Since  the  integral  spacing  of  this  expression  consists  of  discontinuous  

points,  the  edge  point  method  is  applied  to  the  expression  of   scattered  

electric  field.  In  the  edge  point  method,  calculation  is  made  at  the  edge  point  

of  the  integral.  Using  the  edge  point  method,  the  edge  diffracted  field,  dE ,  

can  be  calculated  by  using  the  formula  

                                                 

 
 jk x jk 0

z '

0

f 01
f x e dx e e

jk 0


 


                           (3.93) 

where   f 0  and   0  denote  the  values  of  the  amplitude  and  the  phase  

functions  of  Eq. (3.88)  at  the  edge  point,  respectively,  and   'g 0   is  the  value  

of  the  first  derivative  of  the  phase  function  at  the  edge  point  [7].  When  the  

edge  point  is  the  upper  value  of  the  integral,  the  minus  sign  in  Eq. (3.93)  is  

used  but  the  plus  sign  is  used  for  the  lower  limit  [7].  Since  the  upper  value  

of  the  integral  in  Eq. (3.36),  the  minus  sign  in  Eq. (3.93)  should  be  used.   

When  the  minus  sign  of  Eq. (3.93)  is  inserted  into  Eq. (3.88),  the  equation  

can  be  obtained  as 

             e

j
24

jkR0 0
d

0e

ke E sin sin sin1 1 1
E e

jk sin sin cos cos2 kR



    
   

       
      (3.94) 

where  eR   is  equal  to   ,    is  equal  to    ,  and    ' 'g x cos cos   at  

the  edge  point  according  to  Fig. 20  [2].   
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                             Fig. 20.  The  Geometry  Of  The  EP  Method  

Eq. (3.94)  can  be  rewritten  as 

                  

j
2 jk4

0
d 0

0

sin sin sine 1 e
E E

sin sin cos cos2 k



     
    

      
.             (3.95) 

In  order  to  make  Uniform  in  Eq. (3.95),  the  equation  of  dE   is  both  

multiplied  and  divided  by  02sin sin
2 2

 
 
 

.  Hence,  Eq. (3.95)  can  be  rewritten  

as 

0j
2 jk4

0
d 0

00

2sin sin
sin sin sine 1 e 2 2E E

sin sin cos cos2 k 2sin sin
2 2




 

 
     

              
 

.     (3.96) 

Eq. (3.96)  can  be  rearranged  as 

0j
2 jk4

0
d 0

0 0

2sin sin
sin sin sin 1 e e2 2E E

sin sin cos cos2 k2sin sin
2 2




 

     
       

                 
     

.    (3.97) 

The  trigonometric  relations  of    

                             

0 00

0 00

cos cos2sin sin
2 22 2

cos cos
2cos cos

2 2

                    
                    

                   (3.98) 
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is  used  for  Eq. (3.97)  [2].  Eq. (3.98)  is  inserted  into  Eq. (3.97).  Therefore,  Eq. 

(3.97)  can  be  rewritten  as 

j
2 jk4

0
d 0

0 0 0

sin sin sin 1 e 1 1 e
E E

sin sin 2 2 k2sin sin cos cos
2 2 2 2




 

   
       
                  

            

.      (3.99) 

In  addition,  the  formula  of  detour  parameter  is  benefited  in  order  to  uniform  

in  Eq. (3.99).  Eq. (3.70)  and  Eq. (3.83)  are  inserted  into  Eq. (3.99), respectively.  

Thus,  Eq. (3.99)  can  be  rearranged  as      

2

2

j
2 4

j kl0
d 0

0 0

j
4

j kl

0

sin sin sin 1 e 1
E E e

sin sin 22sin sin 2k cos
2 2 2

e 1
e

2
2k cos

2








   
 




   
 

 
                           




     

     
   

.(3.100)  

Using  the  equation  of   

                                                 
2j

jx4e e
sign x F x

x2






   


                             (3.101) 

 is  used  for  Eq.(3.100) [2].  Therefore,  Eq. (3.100)  can  be  rewritten  as     

    

   

0

0

2
jk cos0

d 0
00

jk cos

sin sin sin 1
E E e sign F

sin sin
2sin sin

2 2

e sign F

 

 

 

 

 
    

             
 

     

 .     (3.102) 

In  this  manner,  by  obtaining  Eq. (3.102),  the  equation  of  diffracted  field  is  

found.  After  obtaining  the  equation  of  the  diffracted  field,  since  we  know  the  

equation  of  the  total  GO  field,  the  equation  of  the  total  field  can  be  written.  

As  a  result,  using  Eq. (3.92)  and  Eq. (3.102),  the  equation  of  the  total  field  

can  be  written  as  

                                                         T TGO dE E E  .                                         (3.103)            
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3.5.  THE  CONVERSION   OF   THE   SCATTERED   FIELD  EQUATION  

IN  THE   HALF- PLANE   TO  THE  WEDGE    

 

As  mentioned  before,  the  equation  of  the  scattered  field  in  half-plane  is  

obtained  in  Eq. (3.36).  It  is  possible  to  convert  into  the  wedge  form.  In  this  

part,  since  we  deal  with  the  soft  surface  in  this  thesis,  the  expression  of  Eq. 

(3.42)  in  half-plane   will  be  converted  to  the  wedge  form.  At  the  present  

time,  a  wedge  is  taken  into  account  in  Fig. 7  and  Fig. 21  [1,11].   
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Fig. 21.  The  Geometry  Of  The  Wedge  Diffraction With  Two  Impedance  Faces 

According  to  Fig. 21,  a  wedge  has  two  same  boundary  conditions,  which  are  

defined  as  impedance  surfaces.  The  cylindrical  coordinates   are  given  by  

 , , z  .  According  to  Fig. 21,  0   is  the  angle  of  incidence,  Z  is  the  surface  

impedance,  P  is  the  observation  point, and     is  the  outer  angle  of  wedge. 

The  parameter  of  n  is  defined  as  
 

 
 

.  As  mentioned  before,  since  the  outer  

angle  of  a  half-plane,  ,  2 ,  n  is  equal  to  2  for  a  half-plane [1].  The  PO  

integrals  is  used  to  solve  the  wedge  diffraction  problem.  With  this  information  

in  mind,  the  cotangent  function  in  Eq. (3.45)  for  the  wedge  diffraction [1].  As  

mentioned  before,  because  the  soft  surface  is  emphasized  on  this  thesis,  the  
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cotangent  function  in  the  integrand  of  Eq. (3.45),  which  is  equal  to  
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,  will  be  used.   

As  a  result,  the  PO  integrals  can  be  rewritten  as 
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and 

 
   

   2
'

S
'

0

0
j 04

0 S
PO z n 2

0x 0

jkR
jkx cos '0

0 S

y
cos sinsin sin sin n nke R

e sin |
nsin sin2 2

cos cos
n n

cos cos e
e dx

sin kR











                    
                   

   
 

 

      (3.105) 

for  the  parts  of  reflected  and  incident,  respectively.  Again,  the  coefficient  of  
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 in  the  parts  of  reflected  and  incident  

PO  integral   will  be  multiplied  by  the  expression  of  
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.  

The  aim  is  to  eliminate  this  above  coefficient  because  the  coefficient  needs  

the  value  of  1  in  the  stational  phase  method.  In  this  manner,  the  parts  of  

reflected  and  incident  PO  integral  in  half-plane  are  converted  to  the  form  of  

wedge.  Eqs. (104)  and  (105)  can  be  rewritten  as 
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and   
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for  the  parts  of  reflected  and  incident  PO integral,  respectively.  According  to  

Eq.(3.106),  f  is  equal  to  
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multiplied  by 
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Note  that  Eq. (3.45)  directly  reduces  to  Eq. (3.44)  for  n=2  [1].   

In  conclusion,  the  PO  integrals  in  the  wedge  form  can  be  obtained  as   
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Eq. (3.108)  makes  possible  one  to  evaluate  the  wedge  diffracted  waves  with  

the  PO  integral.  
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3.6.  ASYMPTOTIC   EVALUATION   OF   PO  INTEGRAL   

 

In  this  section,  the  wedge  diffracted  fields  of  PO   will  be  obtained  by  the  

uniform  asymptotic  evaluation  of  Eq. (3.108)  [1].  At  the  edge  point,   and  R  

are  equal  to       and    with  respect  to  Fig. 7,  and  Fig. 21,  respectively.  

In  Ref [1],  The  uniform  wedge  waves  of  PO  can  be  written  as 
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where  h  can  be  explained  as 

   

   

   

   
0

0

0 jk cos 0

0

cos sin
u 2sin n n1n

h e cos
n 2 cos sin

cos cosn n
n n

  

        
                       

   

    (3.110) 

according  to  Eq. (108).   sign x ,  which  is  called  as  the  signum  function,  is  

equal  to  one  for  x 0   and  -1  otherwise.  The  formula  of   F x ,  which  is  

called  as  the  Fresnel  function,  can  be  written  as 
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The  parameter  of   , which  is  called  the  detour  parameter,  can  be  obtained  in  

Eq. (3.70), and  Eq. (3.83).  

According  to  the  method  of  PO,   the  surface  current  is  equal  to  zero  at   

because  the  upper  face  of  the  wedge  is  enlightened.  Hence,  the  scattered  

fields  of  PO  by  the  wedge  can  be  acquired  for  n 2 .  According  to  the  

specific  case  of  Eq. (3.109)  for  n 2 ,  the  uniform  scattered  fields  can  be 

directly  written  as   
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47 
 

for  the  classical  PO.  By  applying  the  stationary  phase  method  to  the  incident  

and  reflected  GO  fields  in  chapter  3.3,  the  total  GO  field  was   obtained.  

As  a  result,  the  GO  fields  can  be  rewritten  as 
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where  the  coefficient  of  0
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   
 is  the  reflection  coefficient (R)  in  

impedance  surface,  and   U x ,  which  is  called  as  the  unit  step  function,  is  

equal  to  one  for  x 0   and  zero  otherwise.   
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                                              CHAPTER  4 

  

                                   NUMERICAL  RESULTS 

 

 

In  this  section,  the  numerical  analysis  of  the  field  expressions,  which  is  

involved  in  S ,  
1PO  and  

2PO ,  TGO , d , T ,  and  
 

 
1,2POU   on  the  half-

plane  and  the  wedge ,  will  be  examined.  In  order  to   investigate  the   PO  

method  to  impedance  wedge  diffraction,  because  of  PO,  the  values  of   'x ,  

R, and   are defined as  a sin ir (i.*delta) ,

     ^ ^sqrt((rho. 2 t. 2 2.*rho.*t.*cos(fi)))  ,  and   a sin rho.*sin(fi). / R   in  

Matlab  code,  respectively.  R  is  the  distance  between  the  source  point  to  the  

observation  point.    is  the  angle  between  the  reflected  ray  and  impedance  

half-plane.  The  value  of  the  scatterer’s  size  should  be  larger  than  the  value  of  

the  wavelength  of  incident  wave  because  of  the  high  frequency  asymptotic  

techniques.  Hence,    will  be  taken  6   for  the  situation  of  the  high  frequency  

techniques.  The  value  of  the  angle  of  reflected  field,  which  is   ,  will  be  

changed.      
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               Fig.22.  The  Scattered  Electric  Fields  from impedance  half-plane.   

Figure  22  shows  the  scattered  field  S  ,  which  is  expressed  in  Eq. (3.36),  

from  impedance  half-plane,  and  the  variation  of  Eq. (3.36)  versus  the  

observation  angle,   .  The  scattered  field  integral  does  not  deviate after  

 0     because  the  scattered  electric  field  progresses  as  the  reflected  

field,  perpendicularly.  The  diffracted  fields  and  the  reflected  fields  are  

involved  in  the  PO  scattered  field.  Because  the  impedance  half-plane  is  

examined,  the  value  of     is  between  0  and  360 .  However,  since  a  

deviation  of  360   is  observed,  the  deviation  is  eliminated  by  ending  the  angle  

   at  the  value  of   355
180

   in  the  Matlab.  0   is  the  angle  of  incidence. 

The  amplitude  value  of    is  equal  to  between  1.4  and  1.6   in  reflected  field,  

the  angle  range  of  oscillating  waves  advance  increasing  and  decreasing  

between  0   and  220 .   After  220  in  Fig. 22,  the  wave  decreases  suddenly.  

From  250  to  355 ,  the  wave  progresses  by  oscillating, and  it  is  damped  at  

355   because  of  the  deviation.   
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Fig. 23.  The  Scattered  Electric  Field  on  impedance  half-plane  according  to  the  

variations  of  the  incident  and  reflected  angle  values.      

Figure  23  indicates  that  as  the  angles  of  the  incidence  and  reflected  are  

reduced  (i.e., the  reflected  angle  is  asin(4)  instead  of  asin(3),  and  the  angle  of  

incidence  is   45  instead  of   60  in  Matlab),  the  amplitude  range  value  of  

the  reflected  field  increases  from  1.6  to  between  about  1.6  and  1.8.  Like  Fig. 

22, since  a  deviation  of  360   is  observed,  the  deviation  is  eliminated  by  

ending  the  angle     at  the  value  of   355
180

   in  the  Matlab  for  

obtaining  Fig. 23.  Unlike  Fig. 22,  the  angle  range  of  oscillating  waves  advance  

increasing  and  decreasing  between  0  and  204 ,  and  after  204 ,  the  wave  

decreases  suddenly.  From  240  to  355 ,  the  wave  progresses  by  oscillating, 

and  it  is  damped  at  355   because  of  the  deviation.   
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                       Fig. 24.  The  reflected  part  of  the  PO  equation.                 

Figure  24  shows  the  reflected  part  of  the  PO  equation,  which  is  expressed  in  

Eq. (3.71),  from  impedance  half-plane.  As  can  be  seen  in  Fig. 24,  when  the  

part  of  PO,  which  is  reflected  on  the  impedance  half-plane,  reaches  135  (i.e., 

 0 ,  it  becomes  discontinuous  here.  From  this  point  of  view,  135  is  

expressed  as  the  reflection  boundary  and  the  angle  of  incidence  0 ,  is  45 .    
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                    Fig. 25.  The  incident  part  of  the  PO  equation.                

 

Figure  25  shows  the  incident  part  of  the  PO  equation,  which  is  expressed  in  

Eq. (3.84),  from  impedance  half-plane.  As  can  be  seen  in  Fig. 25,  when  the  

incident  part  of  PO  on  the  impedance  half-plane,  reaches 225 (i.e.,  0 ),  

is  expressed  as  the  shadow  boundary.  From  this  point  of  view,  the  deviation  

angle,  0 ,  is  45 .    
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                     Fig. 26.  The  total  GO  field  on  impedance  half-plane.   

Figure  26  shows  the  total  GO  electric  field,  which  consists  of  the  incident  

GO  and  the  reflected  GO,  on  the  impedance  half-plane.  The  total  GO  electric  

field  is  expressed  in  Eq. (3.92).  In  Fig. 26,  the  angle  between  about 0  and   

240  gives  the  total  of  incident  GO  and  reflected  GO,  and  the  angle  between  

about  240  and  360   gives  the  shadow  region.  
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Fig. 27. The  total  GO  fields  on  impedance  half-plane  according  to  the  

variations  of  the  incident  and  reflected  angle  values.       

Figure 27  indicates  that  as  the  angles  of  the  incident  and  reflected  are  

decreased (i.e., the  reflected  angle  is  asin(4)  instead  of  asin(3),  and  the  angle  

of  incidence  is   45  instead  of   60  in  Matlab),  the  amplitude  of  the  

reflected  field  increases  from  between 1.4  and  1.6  to  between  about  1.6  and   

1.8,  the  total  of  incident  GO  and  reflected  GO  are  reduced   the  range  values  

between 0  to 225 ,  and  the  range  angle  of  the  shadow  region  is  rised  

between  225  and  360 .   
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                Fig. 28.  The  diffracted  field  from  impedance  half-plane  

Figure  28  shows  the  diffracted  field  with  respect  to  the  observation  angle,  . 

The  diffracted  field  is  expressed  in  Eq. (3.102).  As  in  the  other  obtained  

graphs  in  Matlab,  in  Fig. 28,  the  distance  of  observation    is  defined  as  6   

where     is  the  wavelength. While  the  outer  angle  of  the  wedge     is  equal  

to  330 ,  the  angle  of  incidence  0  is  equal  to  60 .  The  extended  PO  

approaches  to  the  exact  solution  between  the  angles  of  135  and  225  when  

the  angle  of  incidence, 0 ,   is  taken  as  45  and  the  reflected  angle,  ,  is  

taken  as  asin(4)  in  Matlab.   
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Fig. 29.  The  diffracted  field  from  impedance  half-plane  according  to  the  

variations  of  the  incident  and  reflected  angle  values.       

Figure  29  depicts  the  diffracted  field  with  respect  to  the  observation  angle,  , 

with  respect  to  the  variations  of  the  incident  and  reflected  angle  values.  

Unlike  Fig. 28,  according  to  the  observation  angle,  as  the  value  of  incident  

angle  decreases, the  value  of  reflected  angle  increases. The  extended  PO  

approaches  to  the  exact  solution  between  the  angles  of  120  and  239  when  

the  angle  of  incidence, 0 ,   is  taken  as  60  and  the  reflected  angle,  ,  is  

taken  as  asin(3)  in  Matlab.  In  this  manner,  the  range  value  of  the  extended  

PO  is  grown  further.  
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Fig. 30. The  total  of  the  reflected  and  diffracted  fields  from  impedance  half-

plane. 

Figure 30 depicts  the  variations  of  the  total  of  the  reflected  and  diffracted  

fields   0     versus  the  observation  angle,  .  The  total  of  the  reflected  and  

diffracted  fields  is  expressed  in  Eq. (3.103).  Unlike the  graph  of  the  scattered  

electric  field, S ,  the  PO  integral  deviates  from  the  exact  asymptotic  solution  

after   0     because  the  edge  diffraction  field  is  not  the  exact  field.  The  

amplitude  value  of    is  equal  to  between  1.4  and  1.6   in  reflected  field,  the  

angle  range  of  oscillating  waves  advance  increasing  and  decreasing  between 0  

and  205   when  the  angle  of  incidence,  0 ,  is  defined  as  60 ,  and  the  

reflected  angle,   ,  is  defined  as  asin(3)  in  Matlab.  After  220  in  Fig. 30,  the  

wave  decreases  suddenly, approaches   zero   and  moves  steadily  down  to  360 .   
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Fig. 31. The  total  of  the  reflected  and  diffracted  fields  from  impedance  half-

plane  according  to  the  variations  of  the  incident  and  reflected  angle  values.       

Figure  31  shows  the  total  of  the  reflected  and  diffracted  fields  from  

impedance  half-plane  according  to  the  variations  of  the  incident  and  reflected  

angle  values.  The  amplitude  value  of   ,  which  is  equal  to  between  about  1.6  

and  1.8,  changes  in  the  reflected  field ,  the  angle  range  of  oscillating  waves  

advance  increasing  and  decreasing  between  0   and  205  unlike  Fig. 30  when  

the  values  of     and  0 ,  which  is  equal  to  asin(4)  and  45 , respectively,  is  

changed  in  Matlab.  After  205  in  Fig. 31,  the  wave  decreases  suddenly, 

approaches  zero and  moves  steadily  up  to  360   unlike  Fig. 30.   
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Fig. 32. The  conversion  of   the  scattered   field  in  the   half-plane   to  the  wedge  

form.  

Figure  32  depicts  the  wedge  form  of  the  scattered  field,  which  is  expressed  in  

Eq. (3.108)  versus  the  observation  angle,  ,  which  is  equal  to   2   where  

   is  the  outer  angle  of  the  wedge.  Unlike  the  total  graph  of  the  reflected  

and  diffracted  fields  from  impedance  half-plane,  the  angle  range  of  oscillating  

waves  advance  increasing  and  decreasing  between  0   and  220 .  After  this  

value  of  the  observation  angle,  which  is  equal  to  220 ,   it  goes  to  nearly  

zero  at  once  and  the  wave  is  moved  forward  by  oscillation.  As  with  the  total  

graph  of  the  reflected  and  diffracted  fields  from  impedance  half-plane,  when  

sin  is  taken  as  3,  and  the  angle  of  incidence, 0 ,  is  taken  as  60 ,  the  

amplitude  value  of  the  reflected  field  is  obtained  between  about  1.4  and  1.6.   
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Fig. 33. The  conversion  of   the  scattered   field  in  the   half-plane   to  the  wedge  

form  according  to  the  variations  of  the  incident  and  reflected  angle  values.      

Figure  33  shows  the  conversion  of   the  scattered   field  in  the   half-plane   to  

the  wedge  form  according  to  the  variations  of  the  incident  and  reflected  angle  

values.  When  the  values  of     and  0 ,  which  is  equal  to  asin(4)  and  45 , 

respectively,  is  changed  in  Matlab,  the  amplitude  range  value  of  the  reflected  

field  is  increased  between  about  1.6  and  1.8,  the  angle  range  of  oscillating  

waves  is  advanced  increasing  and  decreasing  between 0  and  204   because  of  

the  phase  difference  according  to  Fig. 32.  After  this  value  of  the  observation  

angle,  which  is  equal  to  204 ,   it  goes  to  nearly  zero  at  once  and  the  wave  

is  moved  forward  by  oscillation.   
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Fig. 34. The  conversion  of   the  scattered   field  in  the   half-plane   to  the  wedge  

form  according  to  the  variation  of  the  outer  angle  of  wedge,   

Figure  34  shows  the  conversion  of   the  scattered   field  in  the   half-plane   to  

the  wedge  form  according  to  the  variation  of  the  outer  angle  of  wedge,  .  

When  the  value  of  the  outer  angle  of  wedge,  ,  is  changed  in  Matlab,  that  

is,      42    is  used  instead  of      32    in  Matlab,  the  same  amplitude 

range  of  the  reflected  field  is  obtained  between  about  1.6  and  1.8  with  

respect  to  Fig. 33.  Likewise,  the  angle  range  of  oscillating  waves  is  advanced  

increasing  and  decreasing  between  0  and 204 .  Homever,  unlike  Fig. 32,  and  

Fig. 33,  after  this  increasing  range value  of  the  observation  angle,  which  is  

equal  to  314 ,  it  goes  to  nearly  zero  at  once  and  and  the  wave  is  not  moved  

forward  by  oscillation  because  it  is  damped  at  314 .   
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                                                      CHAPTER  5 

                                                    CONCLUSION 

In  this  thesis,  the  scattered  electric  fields  were  examined  for  different  

geometries  using  the  diverse  methods.  At  first,  the  HF  methods,  which  are  

included  in  PO  method  and  GO  method, were  expressed  in  Chapter  2,  

respectively.  The  scattered  electric  field  was  examined  considering  the  PEC  

and  impedance  half-plane. The expression of the scattered electric field was 

obtained by using the expression of incident  electric and  magnetic field  on  an  

infinite  conducting  half plane  in  Chapter  3.  The  obtained  scattered  electric  

field  is  consisted  of  the  incident  electric  field  and  the  reflected  electric  field in  

the  impedance  half-plane. These  incident  and  reflected  electric  fields  were  

obtained  using  PO  method  for  soft  surfaces.  PO  integrals  were  obtained  by  

using  the  stational  phase  method,  which  is  explained   what  its  contribution  is  

to  the  radiation  at  continuous  points. Then,  the expression of the scattered electric 

field  was  converted  to  the  GO  form  because  wave  propagation  for  incident,  

reflected,  and   refracted  fields  are  determined  by  GO  method  and  in  this  

thesis,  the  solutions  of  PO  fields  need  to  be  examined  for  the  PEC  wedge  

and  surface  wave  fields.  The  GO  field  is  also  explained  as  the  sum  of  two  

fields,  which  symbolizes  with  two  wedges  with  impedance  surfaces,  and  it  

was  shown  in  Fig. 21. The  total  region  of  incident  and  reflected  fields,  the  

region  of  incident  field,  and  the  shadow  region  were determined  in  the  

obtained  GO  graph. Moreover,  the  expression  of  edge  diffracted  field  was  

obtained  by  considering  the  impedance  half-plane  using  the  edge  point  

method.  Because  the  edge  diffracted  field,  which  is  obtained  from  the  PO  

phase  contribution,  is  not  the  exact  field,  deviation  was  observed  from  the  

exact  asymptotic  solution  after   0     in  the  graph  of  the  obtained  total  

field.  A  new  approach  to  PO  concept,  which  is  called  Exact  Theory  Of  

Physical  Optics  (MTPO)  in  Ref [7],  was  explained  over  the  well  known  
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problem  of  PEC  half-plane  and  exact  scattered  fields,  which  consist  of  the  

reflected  and  edge  diffracted,  and  also  the  incident  field  for   0      

by  using  asymptotic  methods.   

In  addition,  in  this  thesis,  since  the  PO  method  is  enlarged  for  the  wedge  

diffraction  problem,  the  expression  of  the  scattered  electric field  in  the  

impedance  half-plane  was  converted  to  the  wedge  form.  The  PO  method  was  

extended  for  the  diffraction  problem  of  impedance  half-plane  waves  by  a  PEC  

wedge. According  to  Eq. (3.108),  the  integral  tells  us  information  about  the  

progression  between  the  PO  and  MTPO.  Using  the  uniform  asymptotic  

evaluation  of  Eq. (3.108),  the  wedge  diffracted  fields  of  PO  was  obtained.  In  

Chapter  4,  in  this  thesis,  the  explained  statements  were  analyzed  numerically.  

The  obtained  graphs  were  in  exact  harmony  with  the  rigorous  solution.  
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APPENDIX  A 

       MATLAB   PROGRAMME  FOR  GEOMETRY  IN  CHAPTER  3.1 

 

The  Matlab  code  used  for  the  plot  of  the  scattered  electric  field  in  half-plane    is  

given  below; 

l=0.1;  

k=(2.*pi)./l; 

rho=6.*l; 

fi0=pi./3; 

fi=0:.01:(355.*pi./180); 

x=rho.*cos(fi); 

y=rho.*sin(fi); 

theta=asin(3); 

sum=0; 

N=1000; 

asinir=0; 

usinir=30; 

delta=(usinir-asinir)./N; 

for i=0:N; 

    t=asinir+(i.*delta); 

    R=sqrt((rho.^2)+(t.^2)-(2.*rho.*t.*cos(fi))); 

    beta=asin(rho.*sin(fi)./R); 

    A=sin(fi0).*k.*exp(j.*(pi./4))./(sqrt(2.*pi)); 

    T=(sin(beta)-sin(theta))./(sin(fi0)+sin(theta)); 

    g=T.*(exp(j.*k.*t.*cos(fi0)).*(exp(-j.*k.*R))./sqrt(k.*R)); 

    sum=sum+g; 

end 

m=exp(j.*k.*rho.*cos(fi-fi0))+(A.*sum.*delta); 

plot(180.*fi./pi,abs(m),'r') 

xlabel('fi in degrees') 

ylabel('ES') 

grid on 

hold on   
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  APPENDIX  B 

       MATLAB   PROGRAMMES  FOR  GEOMETRY  IN  CHAPTER  3.2 

 

The  Matlab  code  used  for  the  plot  of  the  incident  and  reflected  PO  integrals  is  

given  below; 

 l=0.1, k=(2.*pi)./1; 

fi=0:.01:(2*pi); 

fi0=pi./4; 

rho=6.*l; 

x=rho.*cos(fi), y=rho.*sin(fi); 

EPO1=-exp(j.*k.*(x*cos(fi0)-

(y*sin(fi0)))).*heaviside(sqrt(2*k*rho).*cos((fi+fi0)./2)); 

plot(180.*fi./pi,abs(EPO1),'g'); 

xlabel('fi in degrees'); 

ylabel('The Reflection PO Integral'); 

grid on; 

hold on; 

 l=0.1, k=(2.*pi)./1; 

fi=0:.01:(2*pi); 

fi0=pi./4; 

rho=6.*l; 

x=rho.*cos(fi), y=rho.*sin(fi); 

EPO2=-exp(j.*k.*(x*cos(fi0)+(y*sin(fi0)))).*heaviside(sqrt(2*k*rho).*cos((fi-

fi0)./2)); 

plot(180.*fi./pi,abs(EPO2),'m'); 

xlabel('fi in degrees'); 

ylabel('The Incident PO Integral'); 

grid on; 

hold on; 
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   APPENDIX  C 

         MATLAB   PROGRAMME  FOR  GEOMETRY  IN  CHAPTER  3.3 

 

The  Matlab  code  used  for  the  plot  of  the  total  GO  field  is  given  below; 

l=0.1, k=(2.*pi)./l; 

fi=0:.01:(2*pi); 

fi0=pi./4; 

rho=6.*l; 

theta=asin(4); 

detour1=-(sqrt(2.*k.*rho).*cos((fi-fi0)./2)); 

detour2=-(sqrt(2.*k.*rho).*cos((fi+fi0)./2)); 

E=exp(j.*k.*rho.*cos(fi-fi0)).*(heaviside(-detour1))+((sin(fi0)-

sin(theta)))./(sin(fi0)+sin(theta)).*exp(j.*k.*rho.*cos(fi+fi0)).*(heaviside(-detour2)); 

plot((180.*fi./pi),abs(E),'k'); 

xlabel('fi in degrees') 

ylabel('ETGO') 

grid on 

hold on 
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   APPENDIX  D 

        MATLAB   PROGRAMMES  FOR  GEOMETRY  IN  CHAPTER  3.4 

 

The  Matlab  code  used  for  the  plot  of  the  diffracted  and  total  fields  is  given  below; 

 l=0.1; 

k=2.*pi./l; 

rho=6.*l; 

fi=0:.01:(2.*pi); 

fi0=pi./4; 

theta=asin(4); 

ei=exp(j.*k.*rho.*cos(fi-fi0)); 

er=exp(j.*k.*rho.*cos(fi+fi0)); 

si=-sqrt(2.*k.*rho).*cos((fi-fi0)./2); 

sr=-sqrt(2.*k.*rho).*cos((fi+fi0)./2); 

R=(sin(fi0)-sin(theta))./(sin(fi0)+sin(theta)); 

gama=((sin(fi).^2)-(sin(fi0).*sin(theta)))./(sin(fi)+sin(theta)); 

p=(ei.*sign(si).*fres(abs(si)))-(er.*sign(sr).*fres(abs(sr))); 

Ed=gama.*p./(2.*sin(fi./2).*sin(fi0./2)); 

plot(180.*fi./pi, abs(Ed), 'b'); 

xlabel('fi in degrees'); 

ylabel('Ed'); 

grid on; 

hold on; 

 l=0.1; 

           k=2.*pi./l; 

           rho=6.*l; 

           fi=0:.01:(2.*pi); 

           fi0=pi./4; 

           theta=asin(4); 

           ei=exp(j.*k.*rho.*cos(fi-fi0)); 

           er=exp(j.*k.*rho.*cos(fi+fi0)); 

           si=-sqrt(2.*k.*rho).*cos((fi-fi0)./2); 

           sr=-sqrt(2.*k.*rho).*cos((fi+fi0)./2); 

          R=(sin(fi0)-sin(theta))./(sin(fi0)+sin(theta)); 
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          ETGO=(ei.*u(-si))+(R.*er.*u(-sr)); 

          gama=((sin(fi).^2)-(sin(fi0).*sin(theta)))./(sin(fi)+sin(theta)); 

          p=(ei.*sign(si).*fres(abs(si)))-(er.*sign(sr).*fres(abs(sr))); 

          Ed=gama.*p./(2.*sin(fi./2).*sin(fi0./2)); 

          ET=ETGO-Ed; 

          plot(180.*fi./pi, abs(ET), 'k'); 

          xlabel('fi in degrees'); 

          ylabel('ET'); 

          grid on; 

          hold on; 
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 APPENDIX  E 

       MATLAB   PROGRAMME  FOR  GEOMETRY  IN  CHAPTER  3.5 

 

The  Matlab  code  used  for  the  plot  of  the  conversion  of  the scattered  field  equation  

in  the  half-plane  to  the  wedge  is  given  below; 

l=0.1; n=2; 

k=(2.*pi)./l; 

rho=6.*l; 

fi0=pi./4; 

fi=0:.01:((2.*pi)-(pi./3)); 

x=rho.*cos(fi); 

y=rho.*sin(fi); 

theta=asin(4); 

sum=0; 

N=1000; 

asinir=0; 

usinir=30 

delta=(usinir-asinir)./N; 

for i=0:N; 

    t=asinir+(i.*delta); 

    R=sqrt((rho.^2)+(t.^2)-(2.*rho.*t.*cos(fi))); 

    beta=asin(rho.*sin(fi)./R); 

    f1=-(sin(pi./n).*((cos(pi./n)-sin((pi-(beta-fi0))./n))./((cos(pi./n)-cos((pi-(beta-

fi0))./n))).*(cos(pi./n)-sin(pi./n)))); 
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    f2=(sin(pi./n).*((cos(pi./n)-sin((pi-(beta+fi0))./n))./((cos(pi./n)-cos((pi-

(beta+fi0))./n))).*(cos(pi./n)-sin(pi./n)))); 

    A=sin(fi0).*(k.*exp(j.*(pi./4)))./(2.*sqrt(2.*pi)); 

    B=((cos(fi0)-cos(beta))./sin(fi0)); 

    T=(sin(beta)-sin(theta))./(sin(fi0)+sin(theta)); 

    C=exp(j.*k.*t.*cos(fi0)).*(exp(-j.*k.*R)./sqrt(k.*R)); 

    g=T.*B.*((f1.*C)+(f2.*C)); 

    sum=sum+g; 

end 

m=(exp(j.*k.*rho.*cos(fi-fi0))+(A.*sum.*delta)); 

plot(180.*fi./pi,abs(m),'m') 

xlabel('fi in degrees') 

ylabel('UPO(1,2)')  

grid on 

hold on 
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