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ABSTRACT

APPLICATION OF THE PHYSICAL OPTICS METHOD

TO IMPEDANCE WEDGE DIFFRACTION PROBLEM

KUCUKKARA, Nebahat Yagmur
M.S.c., Department Of Electronic And Communication Engineering
Supervisor: Prof. Dr. Yusuf Ziya UMUL

In this thesis, the scattered electric field by impedance half-plane and a
perfect electric conducting (PEC) wedge will be investigated by using the
method of physical optics (PO). The physical optics method is enlarged for
the wedge diffraction problem. The integral of physical optics, which consists
of the incident and reflected scattered waves, is considered in the diffraction
problem of plane waves by a PEC half-plane. The expression of scattered
electric fields based on the physical optics method are derived for a PEC
wedge. In addition, the solutions of physical optics integral are examined for
the regions of a PEC wedge and surface wave fields. The integrals are
evaluated by using the stationary phase and edge point methods. The uniform
diffracted waves are obtained by the asymptotic evaluation of the physical
optics integral. The behaviours of the scattered electric field, the incident and
reflected physical optics integrals, total, total geometric optics, diffracted, and
uniform diffracted field were plotted and analyzed numerically. The results

were also compared with the literature.

Keywords: Physical Optics, Wedge Diffraction, Impedance Surfaces.
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EMPEDANS KAMA KIRINIM PROBLEMLERINDE FiZiKSEL
OPTIiK METODUN UYGULANMASI

KUCUKKARA, Nebahat Yagmur
Yiiksek Lisans, Elektronik ve Haberlesme Miihendisligi Anabilim Dali

Tez Yoneticisi: Prof. Dr. Yusuf Ziya UMUL

Bu tezde, empedans yar1 diizlemi ile sacilan elektrik alan1 ve miikemmel bir elektrik
iletken (PEC) kama, fiziksel optik (PO) yontemi kullanilarak incelenecektir. Kama
kirmim problemi igin fiziksel optik yontemi genisletilmistir. Gelen ve yansiyan
sacilan dalgalardan olusan fiziksel optigin integrali, bir miikkemmel iletken yari
diizlemi tarafindan diizlem dalgalarnin kirmim probleminde ele alinir. Fiziksel
optik yontemine dayali sagilan elektrik alanlarmin ifadesi, bir miikkemmel
iletken kama igin tiiretilmistir. EK olarak, bir miikemmel kamanin bolgeleri ve
yiizey dalga alanlart ig¢in fiziksel optik integralinin ¢dziimleri incelenmistir.
Integraller, stasyonel faz ve kose nokta metodu kullanilarak hesaplanmistir.
Diizgiin  kinnmimli  dalgalar, fiziksel optik integralinin asimptotik
degerlendirilmesiyle elde edilir. Sagilan elektrik , gelen ve yansiyan fiziksel optik
integraller, toplam, toplam geometrik optik, kirinimli ve tekdiize kirmnimli alanlarin
grafikleri cizdirilmis ve sayisal olarak analiz edilmistir. Sonuglar ayrica literatiir

ile karsilastirilmistir.

Anahtar Kelimeler: Fiziksel Optik, Kama Kirinimi, Empedans Yiizeyler.
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CHAPTER 1

INTRODUCTION

1.1. Background

The Physical Optics (PO) is a high frequency technique, which is based on
the determination of the equivalent current densities induced on the surface of
an illuminated perfect electric conductor (PEC) plane [3,6]. In 1913, The PO
Method was put forward by Mcdonald [5]. Because the conditions of both
incident and reflection have a property in high frequenciens, the related
approach is valid for the wedge diffraction problem. Many areas of the
electromagnetic theory use this method. For example, The PO Method is
benefited from evaluating approximate uniform diffraction coefficients for
impedance surfaces. The PO is used to determine the surface current density
that causes electromagnetic scattering. So, it is one of the most widely used
methods in the literature. On the other hand, due to the its deficiencies, the
usage of this method is limited [1]. One of these disadvantages is explained
that the edge point contributions of the PO integrals give rise to the
erroneous edge diffracted waves and the erroneous evaluation of the edge
diffracted fields. There have been approachs by some authors in the literature
to do away with this disadvantage. Umul did away with this deficiency of PO
in its mathematical structure through three axioms bottomed on the diffraction
theory. He expressed that the exact diffracted waves are maintained by the
asymptotic evaluation of the modified theory of physical optics (MTPO). At
the same time, this method for wedges and impedances surfaces is improved
by Umul [10,12]. A canonical attempt for the coated conducting geometries is
represented by impedance surfaces [12]. Maliuzhinets was found the first
solution of an impedance wedge problem and the total scattered field with a

spectrum integral of plane waves, which involves an unknown weight function



[14]. The weight function is obtained with respect to the situations of
boundary, radiation, and edge. The zero current density in the shadow region
of the scatterer is defined by another disadvantage of PO [1]. Hence, the
merely one illuminated face of a wedge diffraction problem is symbolized by
PO as a half-plane problem. This problem based on the construction of
MTPO integrals is researched by Umul for a conducting half-plane. He
indicated that according to PO integrals, it is likely to explain the shadow

currents for a conducting half-plane.

The aim of this thesis is to show both illuminated and shadow regions of
PEC half-plane and the wedge diffraction with the high frequency (HF)
methods. It is also aimed to obtain the scattered electric field expression in the
infinite plane problem as a PO integral through a wedge. The scattered electric
field expression is obtained in the infinite plane problem [2], but it is not
included in the literature. In chapter 3.4, the scattered electric field in the
half-plane is converted to the wedge form with the help of the geometry of
wedge and region division for GO and diffracted fields, i.e., Fig. 4. Two cases

of soft and hard surfaces will be considered for PO integrals.

Geometrical Optics is an approximate high frequency method because of
determining wave propagation for incident, reflected, and refracted fields.
Because geometrical optics (GO) uses the electromagnetic waves which
circulate in ray concepts at high frequencies, it is generally referred to ray
optics. According to the PO technique, incident and reflected fields on the
object is determined by the geometrical optics. Stutzman expressed that
because the equations obtained from PO for the scattered field from a
conducting body degrade to the equations of GO in the high frequency (HF)
limit, frequently, the concepts of PO can be accepted a little more general than
geometrical optics. Practically, it is supposed that PO field at the surface of
the scattering surface is the GO surface field. This condition means that the
scattering takes place at each point on the illuminated side of the scatterer as
though there were an infinite tangent plane at that point as the field at the

scattering surface is zero over the shadow zone of the scatterer [8].



In addition, Matlab codes are benefited from Ref. [13]. Since the PO
expressions (i.e.,, x ,R and p), which are used in the Matlab code, are the

same, the same parameters are defined in the Matlab code in this thesis. The
mathematical structure of the PO integrals is also significant point [1]. The
conversion of the integrand of the scattered electric field equation in an
impedance to the wedge diffraction form will give more comprehension concerning
the structure of the PO method. The integrand is also consisted of the incident and
reflected waves to reproduce the wedge diffracted waves. Furthermore, the obtained
integrals will be calculated asymptotically and compared numerically. All obtained
fields during this thesis will be analyzed numerically in the chapter 4, which is
called the numerical parts, by using MATLAB.

The time factor of exp(jwt)is compressed and supposed throughout this thesis

where o is the angular frequency.

1.2. Objectives Of The Study

The primary goal of this study is to switch from the dark situations in wedge
surfaces using the PO method and its application. The illuminated situations
can be applied using the PO method in the wedge surfaces, whereas the PO
method cannot be applied in the dark situations. Hence, the obtained integral
expression of the scattered electric field is generalized for the PEC surfaces.
This expression is used for obtaining the incident PO and reflected PO
equations, the investigation of the wedge diffraction problem. In addition, the
contribution of the diffracted field to the scattered electric field for diverse
geometries such as half-plane with the impedance boundary conditions and
wedge is also examined. In some applications, asymptotic and uniform
scattered electric field expressions are compared. All these fields statements

are examined numerically.



1.3. Organization Of The Thesis

Five chapters are involved in this thesis. All the essential information about
the integral of scattered electric field to the forms of PO, GO, and the wedge,
methods used for the incident and reflected fields, and numerical analysis of
these fields are explained in the diverse geometries. To explain these chapters

briefly;

Chapter 1 involves an introduction to the literature review about this thesis,

organization and objectives of this thesis.

Chapter 2 is an introduction of the HF methods, which will be used in this
thesis. These methods involves the methods of physical optics and geometrical

optics.

Chapter 3 includes line integral representation of the scattered electric field
and generalization process, the incident PO and reflected PO equations for an
impedance half-plane, the conversion of the scattered electric field to GO form
in an impedance half-plane, the conversion of scattered field equation in an
impedance to the wedge form, and comparison of the asymptotic and uniform

scattered electric field.

In Chapter 4, The obtained graphs using MATLAB will be plotted by comparing

them with each other, numerically.

In Chapter 5, the conclusion part is involved.



CHAPTER 2

HIGH FREQUENCY METHODS

2.1. Physical Optics (PO)

The geometry in Fig. 1 is taken into account [7]. Scattered fields from S,

surface are defined as the perfectly conducting surface (PEC surface) and the

aperture part, respectively. A surface current on S, is caused by the incident

waves. The reflected diffracted fields in PO theory are given by the
integration of this current. However, this condition will not contain
information about incident diffracted fields. According to the surface
equivalence theorem, the fields on an imaginary closed surface are obtained
by accommodating the electric and magnetic current densities over the closed
surface that satisfy the boundary conditions [3]. Equivalent currents can be
explained on the aperture according to this theorem. Radiated fields, which
are called the incident and reflected diffracted waves, can be obtained by

integrating the equivalent currents on S, [7].

Source Reflected Ray

Incident Ray
S1 PEC Surface

0> o

Fig. 1. The geometry of scattered fields from PEC surface



According to Fig. 1, J_ is defined as the induced current by the incident ray.

This surface current can be defined as

Joo =NxH; | (2.1)
and,

Joo =0 (2.2)

for both the enlightened region and shadow region in a perfectly conducting

surface , respectively, where H, is the total magnetic field on the PEC

surface, and n is the unit normal vector on the illuminated part of the region
as shown in Fig. 2. According to the boundary conditions of any scatterer’s

surface, this current is formed mathematically. Scattered fields consist of

geometrical optics fields which are defined as the fields of incident (E) and

reflected (E, ), and diffracted fields (E,).

Fig. 2. The geometry of enlightened and shadow regions of PO on the PEC
surface

Because of the image theory, when the PEC surface is altered by equivalent
currents in free space, the tangential component of H at a perfect conductor
are twice those from the same source [8]. Hence, Eq. (2.1) can be rewritten

as

(2.3)



Suppose that the incident field phase is to be zero at the reference plane. The
total scattering PO field in the far field assumptions can be obtained as

——PO

E. =—joA (2.4)

or
~jkR

—-Po__j(ouo - — e .
B =T jsjzani s ——0S (2.5)

where A is defined as the magnetic vector potential. In order to find the
magnetic vector potential, using the surface current, POs scattering integral

can be written as
K:Z‘—;ﬂzﬁxms, GdS (2.6)
S

where the integral is expressed as the surface. The term G, which is called

—jkR

the free space Green’s function, is equal to ( J where minus sign in the

exponential term corresponding the waves is propagating in the outward
direction, and R is called the distance between the source and observation
point. The Green’s function consists of the information of phase and

magnitude alterations apart from the source.

When there are no obstacles in space, the geometry in Fig. 3 is considered

[2].

E, (Incident field)

Pe

Fig. 3. No obstacles in space



According to Fig.3, E, , which is the measured field at point P (observation
point), is formed as a result of the interaction of the incident field with the

object. E, is written as
E, =E, +E, 2.7)

where E, is defined as the incident field and E, is defined as the scattered

field. Using the equation of E,, E, can be rewritten as

E:E—%J;jzﬁxH—i|S¥dS'. (28)
In this manner, it is understood that any field within the PO field does not
exist in space. Keep in mind the equation of the scattered field depends on
the frequency in contrast to the expression of geometrical optics does not
depend on the frequency. Therefore, it may be assumed that a more exact
approximation for the scattered field is provided by physical optics.



2.2. Geometrical Optics (GO)

Geometrical optics, or ray optics was originally developed to analyze the
propagation of light where the frequency is sufficiently high that the wave
nature of light is not to be considered [8]. Geometrical optics can be
improved by the transport of energy from one point to another without any
reference in order to control the transfer environment is particle or wave in

nature.

Using the canonical geometry of Fig. 4, the solutions of PO fields can be
separated from geometrical optics (i.e., incident and reflected), diffracted (i.e.,
incident and reflected) for the PEC wedge and surface wave fields [3].

Surface waves have to be contained since the wedge has impedance surfaces.

y
S Observation E‘l”ltx____\ L Region |
N - . ~- :
4'@,] o - Direcy (o s Direct
gy T~ Acidey, ~. Reflected
e S O/ t) N .
Y %, 2 O~ Diffracted
“Gby, N “%, % .
A 7 0
Region {1 4?%;\ . % 0’00) ource \
: PN
Direct | U~ \ ,
Diffracted ! Q‘)SZ)\ \
H L) > <
| N \
| ; QN \| iy
WA= (2-n)n
/T
2

Fig. 4. The geometry of wedge and region division for GO and diffracted
fields

According to Fig. 4, the geometry is outside the wedge (i.e., (0O<¢<nm)),

which has been subdivided into three different field regions (i.e., Region |,

Region II, Region 111) [3]. WA, which is called the two dimensional electric

conducting wedge of included angle, is equal to [(Z—n)n] radians where n,

FN, is the wedge angle factor, and (n=m), y, is the outer angle of the wedge.



Using the geometrical coordinates of Fig. 4, the geometrical optics fields can
be contributed that Region I, which is called Direct Reflected Diffracted, is

expressed as (0<¢p<m—¢,), Region II, which is called Direct Diffracted, is
expressed as (n—¢, <p<m<d,), and Region Ill, which is called Diffracted,
is expressed as (n+¢,<¢p<nm). With these fields, it is clear that
discontinuous in the field will be modeled along the RSB (i.e., (¢=n—d,))
separating regions | and Il, and along the ISB (i.e, (¢=m+¢,)) separating

regions Il and Ill, and there are no field in region Il (i.e., Shadow Region).

10



CHAPTER 3

THEORY

3.1. THE BASIS OF THE INFINITE PLANE PROBLEM

An infinite conducting half plane, which is located at y=0, x €(0,%), and

ze(—o,0) is considered [2]. An incident plane wave (E) of
e,E,exp[ jk(xcosd, +ysing,)] is illuminating the infinite conducting half

plane, and an incident magnetic plane wave W, defines as the equation of

E sind,e, —cosd, e, Jexp| jk(xcosd, +ysind,)]. €, expresses the propagation
Z 0~x o~y 0 0
0

direction of incident plane wave, ETJ defines as the complex amplitude of the
electric or magnetic field, Z, is the a physical constant relating the

magnitudes of the electricand magnetic fields of electromagnetic radiation

travelling through free space [4], ¢, is the angle of incidence, and k is the

wave number [1]. Boundary condition between total electric field and total
magnetic field on the infinite conductor half plane can be written as

nx(nxEy )|,=-ZnxH;|,. (3.1)
Eq. (3.1) can be rearranged as
Ezlo=-ZHx |0 (3.2)

Eq. (3.2) is the boundary condition to be used here. The Helmholtz Equation
is used to be solve this boundary condition [2]. The Helmholtz Equation can

be written as
V?E, +k’E, =0. (3.3)

11



The expression of E—Z in EQ. (3.3) depends on the parameters of x and v,

and it can be showed that

d’E, +o|2EZ

oy +k’E, =0. (3.4)

Since The Helmholtz Equation is equal to zero, that is, it is homogeneous, this
equation is solved by The Method Of Separation Of Variables. This method

can be written as

E, (X y)=X(X)Y(y). (3.5
Eg. (3.5) can be rearranged as
XY + XY +k2XY =0. (3.6)

Eqg. (3.6) can be divided by XY, and so, the following equation can be
obtained as

X Y e-o (3.7)
X Y

The wave number in the opposite direction x (—kxz) and the wave number
in the opposite direction y (—kyz) can be obtained in Eg. (3.7). The wave
number in the opposite direction x is equal to X and the wave number in

the opposite direction y is equal to YV The reason why (kxz) and (kyz)

are negative; this is because they are not hyperbolic. Hyperbolic expressions
appear in electrostatics and they are phase and amplitude. Therefore, the

constants of (k) and (k,’) must be negative.

The wave number, k, can be shown as

k=K +k? . (3.8)

By taking the combination of the axes, Eq. (3.5) can be written as

12



E,(X,y) = [Ae""xX +Be ].[Cejkyy + De‘jkyy] . (3.9)
When Eg. (3.9) is edited, the general solution can be obtained as

—J(Kyx+k —j(kyx—k j(kyx—k J(kyx+k
EZ :Ae ]( xX+ yy) + Be J( xX yy) +CeJ( xX yy) + Dej( xX+ yy) . (3.10)

The equation providing the expressions which A, B and C coefficients are
existed in Eq. (3.10) is shown as E|_,=0. The coefficient D is E; The

X

representations of parameters of k, and k, in terms of k are defined as

(kcosd,) and (ksing,), respectively. The expression of D coefficient is the

incident plane wave, and it is written as
Ei' _ E)'ej(kcos¢0x+ksin¢0y) ; (311)

Eq. (3.10) can be written as

E—Z:E)'ejk(xcos¢0+ysin¢0)+Ae—jk(xcos¢0+ysin¢0)+Be—jk(xcos¢0+ysin¢0)+Cejk(xcos¢0+ysin¢0). (312)
Eg. (3.12) is taken to derivative according to the parameter of y. It is shown
as

ddEZ _ ijin (I)O [E}'ejk(xcos%wsin%) _Ae—jk(xcos¢0+ysin¢0) + Be—jk(xcos¢0+ysin¢0) _Cejk(xcos¢0+ysin¢0)i| . (313)
y

Eq. (3.2) can be rewritten as

Z dE,

. (3.14)
jop, dy

z |y:0 = |y:0 )

We will substitute Eg. (3.12) and Eq. (3.13) instead of Eg. (3.14). So, the

obtained equation can be written as

(E)' " C)eijCOS% +(A+ B)e—jkxcosq)0 _ Zk(j;l’:d)o[(go' _C)ejlo(cosq)0 —(A _ B)e—jkcos¢D ] . (315)

Eq. (3.15) can be rearranged as

13



=% Eo—c) (3.16)

where Z is equal to ( _ZOOJ. Eq. (3.16) can be rewritten as
sin

sin OE, +sin 6C =sin ¢, E, —sin ¢,C . (3.17)
Eq. (3.17) can be rearranged as

C:ME—O (3.18)
sin¢, +sin©

where R, which is called as reflection coefficient of impedance surface, is

sing, —sin 6

equal to . -
sin ¢, +sin®

}, and C is defined as reflection coefficient separated

from the surface. Consequently, the reflected electric and magnetic fields on

the surface are obtained as

Er — ga Rejk(XCOSd)OfySin(I)o) (3.19)

and,

R, . — . _
Hr — ez OZ (Sln d)oex +COS (I)Oey )e]k(XCOS¢O_ySIn¢0) (3.20)

respectively, and the incident electric and magnetic fields on the surface are

obtained as

Ei _ gz'E)'ejk(xcos¢o+ysin¢o) (321)

and,

H, = _%(sin do, —COS e, |l xertoryen) (3.22)
0

,respectively, where Z;, which is called as free space impedance, is equal to

/ﬁ or Zsin®. After finding the incident and reflected electric and magnetic fields,
€9

the electric and magnetic field densities coming to the impedance surface must be

14



found. The electric field density, J.., is equal to ﬁ><H—T|S or ng—T|y:0. Eq.

es !

—_—

(3.20) is inserted into the formula of J . It is obtained as

=20 SH (3.23)
sin¢, +sin O

where the equation of (ZﬁxH—i) defines as physical optics, and the

expression of sin@—oo is defined as perfect electric surfaces. Otherwise, the

magnetic field density, J__

ms

, is equal to (—ﬁxE|S), where E is equal to
(E+E) The sum of Egs. (3.19) and (3.21) are inserted into the formula of

J__. It is obtained as

R LN (3.24)
sin ¢, +sin©
If we know the fields that come to the impedance surface, we can write the current

densities. In this manner, both electric and magnetic current densities are

obtained as
o —jkR .
ﬂ SN0 S ds (3.25)
sma+sm6 R
and,
o —jkR ‘
F= ﬂ sine__ - B 1. & ds (3.26)
sma+sm¢ R

,respectively. ¢, changes in cylindrical and spherical waves, so in the equations of

current densities, we need to substitute o instead of ¢,.

After obtaining the electric field and magnetic field intensities, the expression of

scattered field can be written as

E. = —JoA——VxE. (3.27)
&g

15



Egs. (3.25) and (3.26) are inserted into Eg. (3.27), and so, Eq. (3.27) can be

rewritten as

— - . . akr .
__ j(DuO H sin® _ H sina v, x| nxE, | e ds (3.28)
S|ncx+3|n6 sino.+sin® R

where VvV,  defines as the rotational, and the equation of

—jkR

- = X' cos eJkR —z-z
Vl,><[n><Ei s } is equal to E e % (—jk) {ey —e l}

R R

After obtaining the scattered expression, we need to calculate at the P

observation point of all the rays coming to the x point as shown in Fig. 5.

Fig. 5. Rays coming to the observation point P
Eqg. (3.28) can be rewritten as

” sm¢o(sinemp0 );+kl sina e—-_kz—z' sina -
sina+sin®) °  Rsina+sin® ° R sinoa+sind ” ] (3.29)

, —JkR
weloeosto & gy
R

where k, the wave number is equal to ©u, . z part of the integrand of Eq.
Z0

(3.29) will be calculated. It is written as

g(z')zR—[(x—x')2+y2+(z—z')1%. (3.30)
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Eq. (3.30) is rearranged as

dy__2-2 (3.31)
dz R
When Eq. (3.31) is equal to zero, the stationary phase function, which is

showed as z =z, is obtained. Since the amplitude term of the stationary

phase function changes slowly, we only need to take the first term. The first

term can be written as

sin al—sinq)osine

f(x,z,)= BS _ e, (3.32)
sina+sino

where x is defined as the amplitude function. In this manner, the first two

terms of Eq. (3.29) is combined and because of z=z, its third term

disappears. Eq. (3.30) can be rewritten as

i 1 . 2
z, )=R¢+ z-12). 3.33
9(z)=Rs+ 52-(2-2) (3.33)
Eq. (3.29) can be rewritten as
e sinocl—sinq)osine iR
E:ngEO J' Rs ejkx'<:os:1>O e S
R sina +sin @ R . (3.39)

0 — ke ' )
The error function can be applied in the expression of je Rt Tdzin

—00

Eq. (3.34). The error function is defined as

s
jezdy:m. (3.35)
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Eq. (3.35) is inserted into Eq. (3.34). As a result, the scattered electric field

[2] is obtained as

JLIN— RA sina.—sin¢,sin O y
. . k 4E ° R 0 o JkRg
Eo —e, ——0 [ = et £ gy
s — N N \v
* Jon 2, sina+sin 0 kR

where R is equal to \/[(x—x')2+y2]

18
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3.2. THE INCIDENT AND REFLECTED PO EQUATIONS

From the obtaining scattered electric field equation in EQ.(3.36), both the
incident and reflected PO equations in the half plane are obtained. Since the
integrand of Eg. (3.36) goes infinity, we cannot apply the method of far field
approximation to Eg. (3.36). Therefore, The Stationary phase method was applied
to this above integral. With this method, the discontinuous point was taken out and
the continuous points were calculated. Because this method gives points that are
continuous on the surface. If this method is applied, this area should be limited to
U(x).

At the x point, the radiation goes at an angle. It is shown in the Fig. 6.

Fig. 6. Angular propagation of the radiation at the x point

The integrand of ES is both multiplied and divided by (cos¢,—cosp). Eqg.

(3.36) can be rewritten as

y

G ——sino —sin ¢, sin 6
Ei:(?ke E, I[cosq)o—cosBJ R pikx cosd
N27 Lo\ COS ¢, —Ccosf3 sino+sin® . (3.37)
—JkRg
x € dx’
kR

The trigonometric relations of
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! ! {cotgﬁ_zd)0 —coth+—;)°} (3.38)

cosd)O—cosB:Zsinq)0
can be obtained for soft surfaces [1]. Eq. (3.37) is rearranged as

L Lsinoc—sinq)osine
5 _o ke‘E, f[ 1 j R,
s ?,Lcosd,

- NI —cosp sina+sin® (COS%_COSB). (3.39)
><ejkx'cosd)O eiijS dx’
KR
Eq. (3.38) is inserted into Eq. (3.39). It is written as
- akengﬁ " 1 B—d B o Rysinoc—sind)osine
E, = 0 cot % —cot > 3
s =% 2n XJOZSincbo[ 975 95 } sino+sin O . (3.40)
iy e—ijs
cos ¢, —cosp)el* @ ——dx’
X( o B) ,—kRS
Eq.(3.40) is rearranged as
kejgi ” . R)’/ sino.—sin ¢, sin
E,=e, ———%— I {cotg&—cotgB d)O} S .
2\2msing, 7, 2 2 sin o +sin O (3.41)
o 0050 g IR
x(Cos ¢, —cosp)e’™ % ———dx’
(cos¢, —cosp) =)

In this manner, based on the Eq. (3.41), the PO integrals may be explained as

K ng_ . F\Y sina —sin ¢, sin 6 cos cos
o (P)=e 5 2t [ feongl e | B by —c0sp
' 242rn 2, 2 sina +sin 0 sin ¢, (3.42)
. —jkRs
><ejkx cosdg € dX
kR
and
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R y

B R—sinoc—sinq)osine
Eqo (P)=-€, 0 .[ [cotgﬁﬂbo} S _ cosq)'o—cosB
2 221 o 2 sina+Ssin 6 sin ¢, (3.43)
ejkx'cos% e_ijS dx
kR

where R, is equal to \/[(x—x')2+y2} for both soft and hard surfaces,

respectively [1]. The soft surface is emphasized on this thesis. Thus, we will
use Eq. (3.42). According Ref [1], The cotangent functions in the integrand of
Egs. (3.42) and (3.43) can be written as

COthzd)o— 75_([3214)0). (3.44)

Because the soft surface is emphasized on this thesis, the cotangent function
in the integrand of Eq. (3.42), which is equal to cotg%:tan—n_(ﬁz_%),
will be used.

The geometry of wedge diffraction [1], which is shown in Fig. 7, will be

considered.

Reflected Ray

Incident Ray

Fig. 7. Diffraction geometry of the wedge

According to Fig. 7, the outer angle of the wedge, which is shown as v, is

equal to nm, where n is the parameter. Since the outer angle of half-plane is
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equal to 2w, n is equal to 2 for half-plane. Based on this information, Eq.

(3.44) can be written as

5%

B cos (/) ~sin [n—(irrq)o)]
B+2¢0 =sin(%7) )Coj[n([? M% loca

(3.45)

cotg

COS(

5%

for wedge diffraction [1]. Because the soft surface is emphasized on this

thesis, the cotangent function in the integrand of Eg. (3.45), which is equal to
cos(%)—sin{n_(n_%)}

cotangent function in the integrand of Eq. (3.45) for soft surface is inserted

coth_—;)O :sin(%)

l._, r» will be used. So, the

into EQ. (3.42). In this manner, the PO integrals for soft surface can be

expressed as

" 4 COS(T/)_Sm{’f—(B%}
i ke E . n n cos ¢, —cosf
Eoo, (P)=¢, 2| |sin(™ In-2 [ ; j
2\2n XJ:o (A) cos(%)—cos{n_(i_%)} sin s (3.46)
Xejkx‘cos% e_ijS dx’
kR,

and

Ccos (

s

)-sin ﬂ—(i—%) o
)°°$(B%%”( )

=0 cos (

s

L kR
><ejkx CoS ¢y dX

JKR<

for the parts of reflected and incident, respectively. Because Egs. (3.46) and

(3.47) are obtained, the total PO integral for soft surface, EPO(M), which is

equal 10 (Eso, +Epq, ), can be written.
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The coefficient of the cotangent function for soft surface in the integrands of
Egs. (3.46) and (3.47) will be multiplied by the expression of

cos(%)fr—sin(%) ,

it must be the value of 1 in the stational phase method. In this manner, Egs.

(3.46) and (3.47) can be rewritten as

respectively. The goal is to eliminate this coefficient and

«ke‘*E ismoc sin ¢, sin ® cos(%) sin n—(B—d)
Upo, (P) = zdﬁ I sino +sin© S'n(%)cos(%)—cos{_(i_q)o)} (3.48)
X - (COS(])O_COSBJeikx'COS% eiijS dXI
cos(%)—sin(%) sind, \/@
and
er“E lsma sin ¢, sin® cos(%)_sin{“_(i_(bo)}
Ueo, (P 2«/5 j

sina.+sin @ Sin(%) n )—COS{n_(ﬁ:_d)o)} (3.49)

Cos (

ST

‘ iR
1 Cos ), — cosﬁje woicassy €

XLS(%)_SM%J[ S

S
where R, is equal to \/[(x—x')2+y2] , respectively. Egs. (3.48) and (3.49)

can be expressed as the parts of both reflected and incident for half-plane to

wedge.

In order to obtain the PO integrals in half-plane, we need to apply the

stational phase method in the parts of both reflected and incident the integral.

Y sina—sin ¢, Sin6

Therefore, the coefficient of S - is neglected to obtain the
sina+sin O

PO integrals in half-plane. In addition, the stational phase method tells us

what its contribution is to the radiation at continuous points. Thus, the
equation of R, must be differentiated with respect to x. When the stational
phase method is applied, the expression can be obtained as
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p(x)=x cos¢, —Rs. (3.50)

When Eq. (3.50) is differentiated with respect to x, Eg. (3.50) can be

rewritten as

dp X—X
&:cosq)o—[ = J (3.51)

S

Eq.(3.51) is needed to use the phase function. According to Fig. 2, Eqg. (3.51)

can be rewritten as

d—P. =C0S ¢, —Ccosal . (3.52)
dx

To be able to apply the stational phase method, EQ.(3.52) is equal to zero. In

this manner, two phase points are obtained as ag =¢, and ag =-¢,. These

phase points are shown in Fig.8 and Fig. 9, respectively.

o o

Fig. 8. First stational phase point, o = b,

e

Fig. 9. Second stational phase point, ag =—d,

Eq. (3.52) is differentiated with respect to x . Eq. (3.52) can be rewritten as
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I,::sina% (3.53)

where sina is equal to (le Because the stational phase point is calculated

S
according to o in Fig. 8 and Fig. 9, the expression with term o is derived

with respect to x in Eq.(3.53). Thus, the stational phase value of R, which
is defined as Ry, is equal to ( (x—x5)2+y2), where xg is equal to F¢,

shown in Fig. 10.

Fig. 10. The stational phase point, x4 =F¢,

Now, we take into account the reflected part in order to calculate the first

stational phase point, which is defined as ag =¢,. In the first stational phase

point, x is defined as x,, R is defined as R, and B is defined as ¢,.

Sl ]

Thus, Eg. (3.48) can be rearranged as

i02
. 7.ksm %(x—xs)z

[cosg,—cosp) 1 eik(xsws%*%)je PR Y U(-¢)
sing, ) KR, L s

Eq. (3.54) can be rearranged as
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B (P)=e, kNZE [( A){cos(%)_sm[ “-<Bn-¢o>jH JklR A

sin 2 . (355)
(cos ¢, —cosB) % ik ZRiO(X x,)

et ]

According to the parameter of 3, The L’Hopital’s Rule can be applied in Eqg.
(3.55). Thus, Eq. (3.55) can be rewritten as

X

Epo, (P):E kze\;;: l:sm(A){COS(%)_S"][n_(i_%)JH \/kT?SI eik(XsCOS%—RsJ

(3.56)

- sin? ¢y 2
— 0 — k(X=X
«| Tim cos ¢, —cosf3 2Ry, (x=x5)

ot 8]

If The L’Hopital’s Rule is applied in Eq. (3.56), Eq. (3.56) can be rewritten as

dx,U(-€)

£ (15,2 a5 s T8 L

(3.57)

©

. sin %
. sin I (xx, )
x| lim B J‘e 2R

(e

After applying The L’Hopital’s Rule in Eq. (3.57), Eq. (3.57) can be expressed

dx,U (=€)

as

LT
j=—

B ()2, 0 0 {sm(%){cos(%)_sm[n—(ﬁn—%)m e

(3.58)
{ sind }j K00y
x 0 e M dxU(-%)
(Pa)sin(7)
The conversion in Ref. [2] can be written as
] 2
—jkM(x' —x) =-L. (3.59)
2R 2
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Because y is equal to [ ]according to Fig. 6, Eg. (3.59) can be

sin ¢,

rearranged as

Xx—X —e * Sy, (3.60)

(3.61)

Egs. (3.59) and (3.61) is inserted into Eqg. (3.58). So, EQ. (3.58) can be

rewritten as

i
%

o 7)) s{5) s E |t

(3.62)
o Sindg [ —y%ii\/g 1 Ui
e e e g
When simplifying the Eq. (3.62), Eqg. (3.62) can be rearranged as
JRA—
—e*E - Tc_(B_(I)O) jk(xscoscbD—R )
E.o (P)=e¢, = {cos(%)—sm{—He =
22n i . (3.63)

]

Eq. (3.35), which is defined as the error function, is inserted into Eq. (3.63).

X

i fe e ayu(-g)

Eq. (3.63) can be rewritten as

i
2 e(n) ()

ghlsetoRaly (). (3.64)
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If we remember, it is clear that n is equal to 2 for a half-plane from
because the outer angle of a half-plane is 2r [1]. Thus, Eq. (3.64) can be

rewritten as

- (P)zgl ncos(%)—sin{ﬁ—(ﬂ—%)} -
' 2 cos(%)—sin(%)

ejk(xscosd)o*Ra)U (_g) . (365)

When Eqg. (3.65) is rearranged, it is rewritten as

Ero, (P) =, Ee" ™y (-¢) (3.66)
where R is equal to [(x,—x)cosd,+ysing, | according to Fig. 11,

y

Fig. 11. The geometry of the reflection part

According to Fig. 11, the equation of R is attached in Eg. (3.66). Hence, Eq.

(3.66) can be rewritten as

Epo, (P) =€, E @/ inty (—g), (3.67)

z

The term of & can be represented as

azi\/k[g(xe)—g(xs)] (3.68)

which is the detour parameter, where g(x,) is equal to I, and g(x,) is

equal to g, [2]. It is shown in Fig. 12.
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Fig. 12. The geometry of obtaining the detour parameter, & , for reflected part

Let g(x,)is Iy, and g(Xs)is ls,, according to Fig. 8, |, is equal to (p+1,)
, lgo is equal to (I,+x), and x is equal to (pcosa), where a is equal to

[m—(—¢,)] according to Fig. 12.
Eqg. (3.68) can be rearranged as

&= —k[ly~ o] (3.69)

¢_¢0

where [I,—1s,] is equal to {chos 5

H Hence, Eq. (3.69) can be

rewritten as

& =—2pk 008(4) ¢°j (3.70)

Eq.(3.70) is inserted into EQ.(3.67). As a result, the equation of the reflected
part of PO equations can be obtained as

Epo, (P)= Ezl?oejk(xc°s¢°‘y5i”¢°)u( 20k cos(—d) _2¢° D . (3.71)

Similarly, we take into account the incident part in order to calculate the

second stational phase point, which is defined as ag =-¢,. In the second
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stational phase point, x is defined as x,, R is defined as Ry, and B is

defined as —¢,. Thus, Eq. (3.49) can be rearranged as

i e

s

sin( 7
E(p)o e s T %)cos(%)_cos{“—@n—%)} . B7)
PO, z 2@ 2
X : (COS%_COSBJeik“m% e ™ dx
cos(%)—sin(%) sin ¢, kRg

Eq. (3.72) can be rearranged as

- — e147 in(T T . T (B+, k(X cosdp—Rs;
ST A e B

(3.73)

(cos ¢, —cosp) Kb x

x je " )dst(—g)

sm%[cos(%)_cos{—(m%ﬂ !

According to the parameter of B, The L’Hopital’s Rule can be applied in Eq.
(3.73). Thus, Eq. (3.73) can be rewritten as

Eo, (P)=-€, kze\;% l:sin(%){cos(%)_sin{n—(i+ %)}H \/k;SI QKX costnR5)

(3.74)

i2
o 7.ksm Po(y 2

x| lim COS b, —cosp jej o ) dx,U(-2)

T sing, [cos(%) —cos {n_(iw)")}} -

If The L’Hopital’s Rule is applied in Eq. (3.74), Eq. (3.74) can be rewritten as

e |

sm 2
© %X x)

x| lim —sinp je T 0t

AT

After applying The L’Hopital’s Rule in Eq. (3.75), Eq. (3.75) can be expressed

N A,ke4

B, (P)=—e 2t
POZ() zzm

(3.75)

as
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- kej%]?o e /) n—(B+¢o) 1 k(% coso—Rs,)
E.o, (P)=—¢, > Jom {sm(A){cos(A) sm{—n }H—kRsl e | 376

(P T

Egs. (3.59), (3.60), and (3.61) are inserted into Eq. (3.76) [2]. Hereby, Eq.

(3.76) can be rewritten as
ake E T i n_(ﬁ"‘d)o) 1 jk(xscos%—Rsl)
E.o, (P)= odon [sm(%){cos(A) sm{ . }H \/kRsl e 377
. nsin(—¢,) |7 ¥4 -7 [Rs
Lin(%) ]ff il
When simplifying the Eq. (3.77), Eq. (3.77) can be rearranged as

P)=—e. E COS(%)_Sin{n_(Bn—i_(I)O)} jk(x;cosdo—Rs, nsm( ¢0)
. )__912\/% cos(%)—sin(%) ° { sin ¢, } (3.78)

x T e_y%dyU (-€)

Eq. (3.35), which is defined as the error function, is inserted into Eq. (3.78).
When simplifying the Eq. (3.78), Eq. (3.78) can be rewritten as

g [olomteg)-sn[ 2]

Ero,(P) =8, M (). 379)

©2 cos(%)—sin(%)

If we remember, it is clear that n is equal to 2 for a half-plane because the

outer angle of a half-plane is 2w [1]. Thus, Eqg. (3.79) can be rewritten as

L

EPOZ (P) =—e, o I, ejk(xscos%—Rsl)U (_g) (3.80)

2 [cos(%)—sin(%ﬂ

When Eqg. (3.80) is rearranged, it is rewritten as
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Ero, (P) = —&, Ege" =" sy () (3.81)

where R is equal to [(x,—x)cosd,+ysing, | according to Fig. 13,

y
N

Fig. 13. The geometry of the incident part

According to Fig. 13, the equation of R is attached in Eg. (3.81). Hence, Eqg.

(3.81) can be rewritten as

Ep02 (P) _ _e_Z’EO’ejk(xcos¢0+ysin¢o)U (_a) . (382)

The term of & can be showed in Eg. (3.68), which is the detour parameter,
where g(x,) is equal to I, and g(x,) is equal to Iy, [2]. It is shown in

Fig. 14.

Fig. 14. The geometry of obtaining the detour parameter, & , for incident part
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Let g(x.)is l;, and g(xg)is ls, according to Fig. 10, I, is equal to

(p+1,), lso is equal to (I,+x), and x is equal to (pcosa), where o is

equal to [n—(¢+¢0)], and [l;—lgo] is equal to {chos2 ((IH—;)OH according

to Fig. 14. Hence, Eq. (3.70) can be rewritten as
£ =—2pk cos(q) (boj (3.83)

Eq.(3.83) is inserted into EQ.(3.82). As a result, the equation of the incident

part of PO equations can be obtained as

EPOZ (P) — _gz'aejk(xcos¢o+ysin¢o)u [\/Z[D_kCOS(q) ¢0 j} (384)
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3.3. THE CONVERSION OF THE SCATTERED ELECTRIC FIELD TO
GO FORM

In order to find the GO fields, the scattered electric field, which is found in
Eq. (3.36), is benefited from this part. The stational phase method is applied

for Eq. (3.36), where the stational phase value of Ry is defined as R,

which is equal to \/[(x—x5)2+y2]

Remind that we take into account the reflected part in order to calculate the

first stational phase point, which is defined as ag =¢,. In the first stational
point, x is defined as x,, Rq is defined as R, and a, is defined as ¢,.

Using these parameters (i.e., X,, Ry, and ¢,), Eqg. (3.36) can be rewritten as

. ~kej415—0{sin¢o(sin¢0—sine)} 1 (oot rs)

E. =e
S on sin ¢, +sin© «/kRsl (3.85)

© 7'kﬁ(X*XS)2
x[e e dx'U(-&)

—o0

Because y is equal to [ _X ] according to Fig. 10, Egs. (3.59), (3.60), and

sing,

(3.61) are inserted into Eg. (3.85). Hence, Eq. (3.85) can be rewritten as

E—Sl' _ e—Z’E—:O' S!n (I)0 —S!n 0 ejk(xscos%—RSl)U (é) (386)
sing, +sin0

where Rg =X, C0sd,+pcos[m—(d+d,)].

It is shown in Fig. 15.
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X

Fig.15. The geometry of R, for reflected GO field

As a result, Eq. (3.86) can be rearranged as

—  ——1SINd, —SINO | jxocos(or
E. =e B | 20>~ |gheeslbrbo)y (r ¢ — 3.87
BT OLin<|>o+sin€)} (m=4-¢) (3.87)

for the reflected GO field.

It is clear that n, which is called as wedge angle (WA) factor, is equal to 2

for a half-plane because the outer angle of a half plane, ¢, is equal to

2n=360" [1]. Thus, WA=(2-n)n=0 for n=2.

Using the angle values (i.e., ¢ and ¢,) in the graph of reflected GO field in
Matlab [3], the geometry of reflected GO field is shown in Fig. 16.

Reflection Shadow Boundari S~

-7 Incident Shadow

Boundary (I1SB) d):E

Fig.16. The geometry of the reflected GO field
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Similarly, recall that we take into account the incident part in order to

calculate the second stational phase point, which is defined as og =—¢,. In

the second stational point, o, is defined as —¢,, x is defined as x., and

S

s Is defined as R . Eq. (3.36) can be rewritten as

(3.88)

52

—_~ke4E J{sinza—sincbosine o cosbg e‘kRS

sino +Sin 0 ./

Using these parameters (i.e., X, Ry, and —¢,), Eq.(3.88) can be rearranged as

. _ke*E, {sin2 d, —sin¢sin 6} 1 ik(x.cosbo-Ry)

=e e
N ) —sind, +sin0 kR
T b S (3.89)

—jk=—0(x—
x[e dx'U (&)

] according to Fig. 10, Egs. (3.59), (3.60), and

4 X
Because y is equal to | —
sin ¢,

(3.61) are inserted into Eqg. (3.89). Hence, Eq. (3.89) can be rewritten as

E, =—e By (g) (3.90)

where Rg =X, c0s¢, +pcos[ m—(¢—d,)].

It is shown in Fig. 17.

Fig.17. The geometry Of Rg for incident GO field
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As a result, Eqg. (3.90) can be rearranged as

Es, =—€,E ™" U (¢p—n—,) (3.91)
for the incident GO field.

Using the angle values (i.e., ¢ and ¢,) in the graph of incident GO field in
Matlab [3], the geometry of incident GO field is shown in Fig. 18.

Fig.18. The Geometry Of The Incident GO Field

In conclusion, the total GO field can be obtained as

ETGO = e:ﬂ ejkpcoswi%)u (TH'd)o _¢)+ w ejkpcos(¢+¢0)u (TE—(I)O _¢)
sing, +sin® (3.92)

where {EE—Oejkp°°s(¢‘¢°)U(n+¢0—4))} is defined as the incident GO field, and

e,E, | ——2 " |eloelrtoly (¢ — is defined as the reflecte
e,E,| 2000 —SINO | soestortly (g, — )} s defined as the reflected GO
sing, +sino

field. In addition, using the graph of total GO field in Matlab [2,3], the
geometry of the total GO field is shown in Fig. 19.
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Fig. 19. The Geometry Of The Total GO Field
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3.4. THE APPLICATION OF THE EDGE POINT METHOD TO THE
SCATTERED FIELD EQUATION AND OBTAINING THE
EQUATIONS OF THE DIFFRACTED FIELD AND THE TOTAL
FIELD

In this section, we will apply the edge point method to the expression of the
scattered electric field which is obtained after applying the stationary phase
method. Since the integral spacing of this expression consists of discontinuous
points, the edge point method is applied to the expression of scattered

electric field. In the edge point method, calculation is made at the edge point
of the integral. Using the edge point method, the edge diffracted field, ET,
can be calculated by using the formula

@ . _ f(o) .
£ (x )My ~ 7o+ T1O) gi) 3.93

where f(0) and vy(0) denote the values of the amplitude and the phase

functions of Eq. (3.88) at the edge point, respectively, and ¢ (O) is the value

of the first derivative of the phase function at the edge point [7]. When the
edge point is the upper value of the integral, the minus sign in Eq. (3.93) is
used but the plus sign is used for the lower limit [7]. Since the upper value
of the integral in Eq. (3.36), the minus sign in Eq. (3.93) should be used.

When the minus sign of Eg. (3.93) is inserted into Eg. (3.88), the equation

can be obtained as

. _ Jg_’ -2 _ci . -
Ed:__1ke E, smft) smc_l)osme 1 1 e M (3.04)
jk 2r sing+sin® ) kR, | cos¢+cosd,

where R, is equal to p, o is equal to (nm—¢), and (g'(x'):cosq)—cow)at

the edge point according to Fig. 20 [2].
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Fig. 20. The Geometry Of The EP Method

Eq. (3.94) can be rewritten as

R ¢ = sin® g —sin ¢, sin O 1 R (3.95)
0 Lr Pl sing+sin® Cosd+Ccosd, ) Jkp - '

In order to make Uniform in Eqg. (3.95), the equation of Ej is both

multiplied and divided by (Zsingsind)—z"]. Hence, Eqg. (3.95) can be rewritten

as
T . H (I) H (I)O
— e '4 _(sin?¢—sing,sin0 1 et ZS'nES'nE
Ey=- E, . . . (3.96)
N sing+sin® cos§+cosd, ) Jkp 2in Psin %
2 2
Eq. (3.96) can be rearranged as
[ oeinPein®o |
E_E sin® ¢ —sin ¢, sin O 1 et 25|n§sm? et (3.97)
@7 sing+sino oin Pin %o || V2| coso+cosdy [Jkp |
2 2
The trigonometric relations of
Zsingsin% COS(¢_2¢OJ—COS(¢+2¢O)
22 |- (3.98)
COS ¢+ COS ¢, ZCOS(d)_d)OjCOS(dH_d)O)
2 2
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is used for Eq.(3.97) [2]. Eq. (3.98) is inserted into Eq. (3.97). Therefore, Eq.
(3.97) can be rewritten as

—=E—{Sin2¢—sin¢05in6} 1 et 1 1 e | (3.99)
d 0 Sin¢+Sin9 ZSinﬁsin% 2\/% COS(¢+¢0) Cos(d)_d)oj \/E
27 2 2

In addition, the formula of detour parameter is benefited in order to uniform
in Eg. (3.99). Eq. (3.70) and Eq. (3.83) are inserted into Eq. (3.99), respectively.
Thus, Eq. (3.99) can be rearranged as

T

E:E{sin2¢—sin &, sin 9} 1 e s 1 o ile v
sin¢g+sino Zsmism do || 2w (—\/%cos(d)_z%j) .(3.100)
e 4 1 o e w]

)

Using the equation of

signat(x

(3.101)

2J_x

is used for Eq.(3.100) [2]. Therefore, Eq. (3.100) can be rewritten as

Ea(sin2-¢5inéosin6]L2 - q)l 5 }I:ejkpcos(tb%)sign(g)Fl:lctbl:l_ (3.102)
sin

sin ¢, +sin© P gin Lo
2 2

7ejkpcos(¢+¢o)sign (E_H_ ) FI:|§+ |:|:|

In this manner, by obtaining Eq. (3.102), the equation of diffracted field is
found. After obtaining the equation of the diffracted field, since we know the
equation of the total GO field, the equation of the total field can be written.
As a result, using Eg. (3.92) and Eg. (3.102), the equation of the total field

can be written as

E,=E,+E, . (3.103)
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3.5. THE CONVERSION OF THE SCATTERED FIELD EQUATION
IN THE HALF-PLANE TO THE WEDGE

As mentioned before, the equation of the scattered field in half-plane is
obtained in Eg. (3.36). It is possible to convert into the wedge form. In this
part, since we deal with the soft surface in this thesis, the expression of Eg.
(3.42) in half-plane will be converted to the wedge form. At the present

time, a wedge is taken into account in Fig.7 and Fig.21 [1,11].

Incident
Diffracte Ray

Ray
¢,  Impedance Surface

(face-0) |
21-y  Wedge

Impedance Surface
(face-n)

Fig. 21. The Geometry Of The Wedge Diffraction With Two Impedance Faces

According to Fig. 21, a wedge has two same boundary conditions, which are
defined as impedance surfaces. The cylindrical coordinates are given by

(p,d),z). According to Fig. 21, ¢, is the angle of incidence, Z is the surface

impedance, P is the observation point, and w is the outer angle of wedge.

The parameter of n is defined as (Ej As mentioned before, since the outer

T
angle of a half-plane, v, 2r, n is equal to 2 for a half-plane [1]. The PO

integrals is used to solve the wedge diffraction problem. With this information
in mind, the cotangent function in Eq. (3.45) for the wedge diffraction [1]. As
mentioned before, because the soft surface is emphasized on this thesis, the
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cotangent function in the integrand of Eq. (3.45), which is equal to

S
{5 -en{ 0

As a result, the PO integrals can be rewritten as

l,_, ¢+, will be used.

()

- lsmoc sin g, sin® cos(™ —sin{n_(ﬁ_%)}

i‘_g‘kze\/zi J. sino+sin® Sln(%) (A) i |n:2 (3 104)
= o COS(%)_COS{TC—(I?]WO)} .

[ 050, =058 | rom, €

sin ¢, kRq

and
: lsma sin ¢, sin 0 cos<%)_sin{”_(ﬁ+¢o)}

? —ke E J‘ - - Sm(y) n |n:2

X ZJE sina +sin @ n cos(y)—cos{n_(ﬁﬂbo)} (3.105)
n n

‘ —jkR
o cos%—cosﬁ ok costy g I i
sin ¢, kR

for the parts of reflected and incident, respectively. Again, the coefficient of
: TE_(B¢¢0)
cos(%)—sm{n
|n:2
= (B o)
cos(%)—cos{no}

in the parts of reflected and incident

sin(7)

ol

The aim is to eliminate this above coefficient because the coefficient needs

PO integral will be multiplied by the expression of

the value of 1 in the stational phase method. In this manner, the parts of
reflected and incident PO integral in half-plane are converted to the form of

wedge. Egs. (104) and (105) can be rewritten as
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Rysinoc—sin d,SINO

i > (f— )

ke E. = sina+sin©
U.o, (P)=¢, 2\/2_710 | (3.106)
x'=0 )
X(cos%—cosﬁjejkx-ms% g IMRs dx
sin ¢, ,/kRS
and
kejEE— . Rysinoc—sincbosine
Uro, =—€ 2\/2_710 I S sino.+sin® (f+)[cosi)ion_c|>COSBj
X0 ° (3.107)
o —JkRg )
><ejkx COS g € dX

R,

for the parts of reflected and incident PO integral, respectively. According to
cos(%)—sin{n_([?f%)}
cos(%)—cos {“‘(Eﬁ%)} .

Eq.(3.106), (f.) is equal to Si”(%)

multiplied by [ 1 , and (f,) s equal to

cos(%)—sin(%)

A N y
]| )

Note that Eq. (3.45) directly reduces to Eq. (3.44) for n=2 [1].

sin(%)

In conclusion, the PO integrals in the wedge form can be obtained as

y

. | =sina—sin¢,sin®
J- R () C0s ¢, —Ccosf
o[ ¥ sino+sin® B sing, . (3_108)
—ke*E,
Uso (P)=e, L
(L2)
A2n e R Rlsina—sintbosine 05, —COSP) ey €%
><e]kx cosdy dX‘+ S i i (f ) 0 eJkX oSy dX.
kR o sinot+sin® sing, kR

44



Eqg. (3.108) makes possible one to evaluate the wedge diffracted waves with
the PO integral.
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3.6. ASYMPTOTIC EVALUATION OF PO INTEGRAL

In this section, the wedge diffracted fields of PO will be obtained by the
uniform asymptotic evaluation of Eq. (3.108) [1]. At the edge point, B and R

are equal to (m—¢) and p with respect to Fig. 7, and Fig. 21, respectively.

In Ref[1], The uniform wedge waves of PO can be written as
Uno =(h_)sign(&_)F[[€_|]—(h. )sign(&, ) F[[€,|] (3.109)

where h_ can be explained as

h—Mejk"°°s(“’+*°)cos(¢+¢°){ 1 J COS(%)_Sin{((ﬁrj)O)} (3.110)
TN ? Aeo(n)-sn(50) ) (5o (0]

according to Eg. (108). sign(x), which is called as the signum function, is

equal to one for x>0 and -1 otherwise. The formula of F[x], which is

called as the Fresnel function, can be written as

t2
\/_ j e’ (3.111)
The parameter of &, ,which is called the detour parameter, can be obtained in

Eqg. (3.70), and Eq. (3.83).

According to the method of PO, the surface current is equal to zero at ¢ =y

because the upper face of the wedge is enlightened. Hence, the scattered
fields of PO by the wedge can be acquired for n=2. According to the
specific case of EgQ. (3.109) for n=2, the uniform scattered fields can be

directly written as

Upo, =h_1,_, sign(&_)F[|&_|]-h, |,, sign(&, ) F[&.]] (3.112)
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for the classical PO. By applying the stationary phase method to the incident
and reflected GO fields in chapter 3.3, the total GO field was obtained.

As a result, the GO fields can be rewritten as

jkpcos(o—dg Sin _Sine jkpcos(d+dg
UG":”{ew (M)U(‘é)‘[smi"mjew (M)U(_”} —
0

sin¢, —sin6

where the coefficient of - -
sing, +sin®

j is the reflection coefficient (R) in

impedance surface, and U(x), which is called as the unit step function, is

equal to one for x>0 and zero otherwise.
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CHAPTER 4

NUMERICAL RESULTS

In this section, the numerical analysis of the field expressions, which is

involved in Eg, Ey, and Ep, , Ergo, Ey, Er, and Uy  (P) on the half-

plane and the wedge , will be examined. In order to investigate the PO

method to impedance wedge diffraction, because of PO, the values of (x)
R, and B are defined as (asinir+(i.*delta)),
(sart((rho."2) +(t."2)—(2.*rho.*t.*cos(fi)))), and (asin(rho.*sin(fi)./R)) in
Matlab code, respectively. R is the distance between the source point to the

observation point. B is the angle between the reflected ray and impedance
half-plane. The value of the scatterer’s size should be larger than the value of
the wavelength of incident wave because of the high frequency asymptotic
techniques. Hence, p will be taken 6) for the situation of the high frequency
techniques. The value of the angle of reflected field, which is o, will be

changed.
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Fig.22. The Scattered Electric Fields from impedance half-plane.

Figure 22 shows the scattered field E: , Which is expressed in Eg. (3.36),

from impedance half-plane, and the variation of Eqg. (3.36) versus the

observation angle, ¢. The scattered field integral does not deviate after
(¢:n+¢0) because the scattered electric field progresses as the reflected

field, perpendicularly. The diffracted fields and the reflected fields are
involved in the PO scattered field. Because the impedance half-plane is

examined, the value of ¢ is between 0 and 360°. However, since a
deviation of 360° is observed, the deviation is eliminated by ending the angle
¢ at the value of (355X%80) in the Matlab. ¢, is the angle of incidence.

The amplitude value of © is equal to between 1.4 and 1.6 in reflected field,

the angle range of oscillating waves advance increasing and decreasing
between 0° and 220°. After 220" in Fig. 22, the wave decreases suddenly.
From 250° to 355°, the wave progresses by oscillating, and it is damped at

355" because of the deviation.
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Fig. 23. The Scattered Electric Field on impedance half-plane according to the

variations of the incident and reflected angle values.

Figure 23 indicates that as the angles of the incidence and reflected are
reduced (i.e., the reflected angle is asin(4) instead of asin(3), and the angle of

incidence is (45) instead of (60°) in Matlab), the amplitude range value of

the reflected field increases from 1.6 to between about 1.6 and 1.8. Like Fig.

22, since a deviation of 360" is observed, the deviation is eliminated by
ending the angle ¢ at the value of (355><“180) in the Matlab for
obtaining Fig. 23. Unlike Fig. 22, the angle range of oscillating waves advance
increasing and decreasing between 0° and 204, and after 204, the wave

decreases suddenly. From 240" to 355°, the wave progresses by oscillating,

and it is damped at 355" because of the deviation.
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Fig. 24. The reflected part of the PO equation.

Figure 24 shows the reflected part of the PO equation, which is expressed in
Eg. (3.71), from impedance half-plane. As can be seen in Fig. 24, when the

part of PO, which is reflected on the impedance half-plane, reaches 135 (i.e.,

(n—¢,), it becomes discontinuous here. From this point of view, 135 is

expressed as the reflection boundary and the angle of incidence ¢,, is 45°.
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Fig. 25. The incident part of the PO equation.

Figure 25 shows the incident part of the PO equation, which is expressed in
Eq. (3.84), from impedance half-plane. As can be seen in Fig. 25, when the

incident part of PO on the impedance half-plane, reaches 225 (i.e., (n+¢0)),

is expressed as the shadow boundary. From this point of view, the deviation

angle, ¢,, is 45",
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Fig. 26. The total GO field on impedance half-plane.

Figure 26 shows the total GO electric field, which consists of the incident
GO and the reflected GO, on the impedance half-plane. The total GO electric

field is expressed in Eg. (3.92). In Fig. 26, the angle between about 0° and
240° gives the total of incident GO and reflected GO, and the angle between
about 240° and 360" gives the shadow region.
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Fig. 27. The total GO fields on impedance half-plane according to the
variations of the incident and reflected angle values.

Figure 27 indicates that as the angles of the incident and reflected are
decreased (i.e., the reflected angle is asin(4) instead of asin(3), and the angle

of incidence is (45') instead of (60°) in Matlab), the amplitude of the
reflected field increases from between 1.4 and 1.6 to between about 1.6 and
1.8, the total of incident GO and reflected GO are reduced the range values
between 0° to 225", and the range angle of the shadow region is rised

between 225" and 360°.
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Fig. 28. The diffracted field from impedance half-plane

Figure 28 shows the diffracted field with respect to the observation angle, ¢ .
The diffracted field is expressed in Eq. (3.102). As in the other obtained
graphs in Matlab, in Fig. 28, the distance of observation (p) is defined as 61

where 2 is the wavelength. While the outer angle of the wedge (\lf) is equal
to 330", the angle of incidence (¢,) is equal to 60". The extended PO

approaches to the exact solution between the angles of 135 and 225" when

the angle of incidence, ¢,, is taken as 45 and the reflected angle, 6, is

taken as asin(4) in Matlab.
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Fig. 29. The diffracted field from impedance half-plane according to the

variations of the incident and reflected angle values.

Figure 29 depicts the diffracted field with respect to the observation angle, ¢,

with respect to the variations of the incident and reflected angle values.
Unlike Fig. 28, according to the observation angle, as the value of incident

angle decreases, the value of reflected angle increases. The extended PO
approaches to the exact solution between the angles of 120" and 239" when
the angle of incidence, ¢,, is taken as 60" and the reflected angle, 6, is

taken as asin(3) in Matlab. In this manner, the range value of the extended

PO is grown further.
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Fig. 30. The total of the reflected and diffracted fields from impedance half-
plane.

Figure 30 depicts the variations of the total of the reflected and diffracted

fields (B=¢,) versus the observation angle, ¢. The total of the reflected and
diffracted fields is expressed in Eq. (3.103). Unlike the graph of the scattered
electric field, ES the PO integral deviates from the exact asymptotic solution
after (¢=m+¢,) because the edge diffraction field is not the exact field. The

amplitude value of © is equal to between 1.4 and 1.6 in reflected field, the
angle range of oscillating waves advance increasing and decreasing between 0°

and 205 when the angle of incidence, (¢,), is defined as 60", and the

reflected angle, 0, is defined as asin(3) in Matlab. After 220" in Fig. 30, the

wave decreases suddenly, approaches zero and moves steadily down to 360°.
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Fig. 31. The total of the reflected and diffracted fields from impedance half-

plane according to the variations of the incident and reflected angle values.

Figure 31 shows the total of the reflected and diffracted fields from
impedance half-plane according to the variations of the incident and reflected
angle values. The amplitude value of 6, which is equal to between about 1.6

and 1.8, changes in the reflected field , the angle range of oscillating waves
advance increasing and decreasing between 0° and 205 unlike Fig. 30 when
the values of © and ¢,, which is equal to asin(4) and 45, respectively, is
changed in Matlab. After 205" in Fig. 31, the wave decreases suddenly,

approaches zero and moves steadily up to 360° unlike Fig. 30.
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Fig. 32. The conversion of the scattered field in the half-plane to the wedge

form.

Figure 32 depicts the wedge form of the scattered field, which is expressed in

Eq. (3.108) versus the observation angle, ¢, which is equal to (2n—\|1) where

v is the outer angle of the wedge. Unlike the total graph of the reflected
and diffracted fields from impedance half-plane, the angle range of oscillating
waves advance increasing and decreasing between 0° and 220°. After this

value of the observation angle, which is equal to 220", it goes to nearly
zero at once and the wave is moved forward by oscillation. As with the total

graph of the reflected and diffracted fields from impedance half-plane, when
sin® is taken as 3, and the angle of incidence, ¢,, is taken as 60", the

amplitude value of the reflected field is obtained between about 1.4 and 1.6.
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Fig. 33. The conversion of the scattered field in the half-plane to the wedge

form according to the variations of the incident and reflected angle values.

Figure 33 shows the conversion of the scattered field in the half-plane to

the wedge form according to the variations of the incident and reflected angle
values. When the values of 6 and ¢,, which is equal to asin(4) and 45,

respectively, is changed in Matlab, the amplitude range value of the reflected
field is increased between about 1.6 and 1.8, the angle range of oscillating

waves is advanced increasing and decreasing between 0" and 204" because of

the phase difference according to Fig. 32. After this value of the observation

angle, which is equal to 204", it goes to nearly zero at once and the wave

is moved forward by oscillation.
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Fig. 34. The conversion of the scattered field in the half-plane to the wedge

form according to the variation of the outer angle of wedge, vy

Figure 34 shows the conversion of the scattered field in the half-plane to

the wedge form according to the variation of the outer angle of wedge, v .

When the value of the outer angle of wedge, v, is changed in Matlab, that
is, ((2m)—(%)) is used instead of ((2m)—(7)) in Matlab, the same amplitude

range of the reflected field is obtained between about 1.6 and 1.8 with

respect to Fig. 33. Likewise, the angle range of oscillating waves is advanced

increasing and decreasing between 0° and 204°. Homever, unlike Fig. 32, and

Fig. 33, after this increasing range value of the observation angle, which is
equal to 314°, it goes to nearly zero at once and and the wave is not moved

forward by oscillation because it is damped at 314°.
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CHAPTER 5
CONCLUSION

In this thesis, the scattered electric fields were examined for different
geometries using the diverse methods. At first, the HF methods, which are
included in PO method and GO method, were expressed in Chapter 2,
respectively. The scattered electric field was examined considering the PEC
and impedance half-plane. The expression of the scattered electric field was
obtained by using the expression of incident electric and magnetic field on an
infinite conducting half plane in Chapter 3. The obtained scattered electric
field is consisted of the incident electric field and the reflected electric field in
the impedance half-plane. These incident and reflected electric fields were
obtained using PO method for soft surfaces. PO integrals were obtained by
using the stational phase method, which is explained what its contribution is
to the radiation at continuous points. Then, the expression of the scattered electric
field was converted to the GO form because wave propagation for incident,
reflected, and refracted fields are determined by GO method and in this
thesis, the solutions of PO fields need to be examined for the PEC wedge
and surface wave fields. The GO field is also explained as the sum of two
fields, which symbolizes with two wedges with impedance surfaces, and it
was shown in Fig. 21. The total region of incident and reflected fields, the
region of incident field, and the shadow region were determined in the
obtained GO graph. Moreover, the expression of edge diffracted field was
obtained by considering the impedance half-plane using the edge point
method. Because the edge diffracted field, which is obtained from the PO

phase contribution, is not the exact field, deviation was observed from the

exact asymptotic solution after (¢=n+¢0) in the graph of the obtained total

field. A new approach to PO concept, which is called Exact Theory Of
Physical Optics (MTPO) in Ref [7], was explained over the well known
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problem of PEC half-plane and exact scattered fields, which consist of the

reflected and edge diffracted, and also the incident field for (n<¢<m+¢,)

by using asymptotic methods.

In addition, in this thesis, since the PO method is enlarged for the wedge
diffraction problem, the expression of the scattered electric field in the
impedance half-plane was converted to the wedge form. The PO method was
extended for the diffraction problem of impedance half-plane waves by a PEC
wedge. According to Eg. (3.108), the integral tells us information about the
progression between the PO and MTPO. Using the uniform asymptotic
evaluation of Eq. (3.108), the wedge diffracted fields of PO was obtained. In
Chapter 4, in this thesis, the explained statements were analyzed numerically.
The obtained graphs were in exact harmony with the rigorous solution.
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APPENDIX A

MATLAB PROGRAMME FOR GEOMETRY IN CHAPTER 3.1

The Matlab code used for the plot of the scattered electric field in half-plane is

given below;

1=0.1;

k=(2.*pi)./I;

rho=6.*I;

fi0=pi./3;

fi=0:.01:(355.*pi./180);

x=rho.*cos(fi);

y=rho.*sin(fi);

theta=asin(3);

sum=0;

N=1000;

asinir=0;

usinir=30;

delta=(usinir-asinir)./N;

for i=0:N;
t=asinir+(i.*delta);
R=sqrt((rho.”2)+(t.*2)-(2.*rho.*t.*cos(fi)));
beta=asin(rho.*sin(fi)./R);
A=sin(fi0).*k.*exp(j.*(pi./4))./(sqrt(2.*pi));
T=(sin(beta)-sin(theta))./(sin(fi0)+sin(theta));
g=T.*(exp(j.*k.*t.*cos(fi0)).*(exp(-j.*k.*R))./sqrt(k.*R));
sum=sum-+g;

end

m=exp(j.*k.*rho.*cos(fi-fi0))+(A.*sum.*delta);

plot(180.*fi./pi,abs(m),'r’)

xlabel(‘*fi in degrees’)

ylabel('ES’)

grid on

hold on
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APPENDIX B

MATLAB PROGRAMMES FOR GEOMETRY IN CHAPTER 3.2

The Matlab code used for the plot of the incident and reflected PO integrals is

given below;

o 1=0.1, k=(2.*pi)./1;
fi=0:.01:(2*pi);
fi0=pi./4;
rho=6.*I;
x=rho.*cos(fi), y=rho.*sin(fi);
EPO1=-exp(j.*k.*(x*cos(fi0)-
(y*sin(fi0)))).*heaviside(sgrt(2*k*rho).*cos((fi+fi0)./2));
plot(180.*fi./pi,abs(EPO1),'g");
xlabel('fi in degrees");
ylabel('The Reflection PO Integral");
grid on;
hold on;

e 1=0.1, k=(2.*pi)./1;
fi=0:.01:(2*pi);
fi0=pi./4;
rho=6.*I;
x=rho.*cos(fi), y=rho.*sin(fi);
EPO2=-exp(j.*k.*(x*cos(fi0)+(y*sin(fi0)))).*heaviside(sqrt(2*k*rho).*cos((fi-
fi0)./2));
plot(180.*fi./pi,abs(EPO2),'m");
xlabel('fi in degrees");
ylabel('The Incident PO Integral’);
grid on;

hold on;
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APPENDIX C

MATLAB PROGRAMME FOR GEOMETRY IN CHAPTER 3.3

The Matlab code used for the plot of the total GO field is given below;

1=0.1, k=(2.*pi)./I;

fi=0:.01:(2*pi);

fi0=pi./4;

rho=6.*I;

theta=asin(4);

detourl=-(sqrt(2.*k.*rho).*cos((fi-fi0)./2));
detour2=-(sqrt(2.*k.*rho).*cos((fi+fi0)./2));
E=exp(j.*k.*rho.*cos(fi-fi0)).*(heaviside(-detourl))+((sin(fi0)-
sin(theta)))./(sin(fi0)+sin(theta)).*exp(j.*k.*rho.*cos(fi+fi0)).*(heaviside(-detour2));
plot((180.*fi./pi),abs(E),'k");

xlabel('fi in degrees’)

ylabel(ETGO")

grid on

hold on
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APPENDIX D

MATLAB PROGRAMMES FOR GEOMETRY IN CHAPTER 3.4

The Matlab code used for the plot of the diffracted and total fields is given below;

e |=0.1;
k=2.*pi /I,
rho=6.*I;
fi=0:.01:(2.*pi);
fi0=pi./4;
theta=asin(4);
ei=exp(j.*k.*rho.*cos(fi-fi0));
er=exp(j.*k.*rho.*cos(fi+fi0));
si=-sqrt(2.*k.*rho).*cos((fi-fi0)./2);
sr=-sqrt(2.*k.*rho).*cos((fi+fi0)./2);
R=(sin(fi0)-sin(theta))./(sin(fi0)+sin(theta));
gama=((sin(fi).~2)-(sin(fi0).*sin(theta)))./(sin(fi)+sin(theta));
p=(ei.*sign(si).*fres(abs(si)))-(er.*sign(sr).*fres(abs(sr)));
Ed=gama.*p./(2.*sin(fi./2).*sin(fi0./2));
plot(180.*fi./pi, abs(Ed), 'b");
xlabel(‘fi in degrees";
ylabel('Ed);
grid on;
hold on;
e |=0.1;
k=2.*pi./l,
rho=6.*I;
fi=0:.01:(2.*pi);
fi0=pi./4;
theta=asin(4);
ei=exp(j.*k.*rho.*cos(fi-fi0));
er=exp(j.*k.*rho.*cos(fi+fi0));
si=-sgrt(2.*k.*rho).*cos((fi-fi0)./2);
sr=-sqrt(2.*k.*rho).*cos((fi+fi0)./2);
R=(sin(fi0)-sin(theta))./(sin(fi0)+sin(theta));
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ETGO=(ei.*u(-si))+(R.*er.*u(-sr));
gama=((sin(fi).”2)-(sin(fi0).*sin(theta)))./(sin(fi)+sin(theta));
p=(ei.*sign(si).*fres(abs(si)))-(er.*sign(sr).*fres(abs(sr)));
Ed=gama.*p./(2.*sin(fi./2).*sin(fi0./2));

ET=ETGO-Ed;

plot(180.*fi./pi, abs(ET), 'k);

xlabel('fi in degrees";

ylabelCETY;

grid on;

hold on;
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APPENDIX E

MATLAB PROGRAMME FOR GEOMETRY IN CHAPTER 35

The Matlab code used for the plot of the conversion of the scattered field equation

in the half-plane to the wedge is given below;

1=0.1; n=2;

k=(2.*pi)./l;

rho=6.*l,

fi0=pi./4;

fi=0:.01:((2.*pi)-(pi./3));

x=rho.*cos(fi);

y=rho.*sin(fi);

theta=asin(4);

sum=0;

N=1000;

asinir=0;

usinir=30

delta=(usinir-asinir)./N;

for i=0:N;
t=asinir+(i.*delta);
R=sqrt((rho.”2)+(t.*2)-(2.*rho.*t.*cos(fi)));
beta=asin(rho.*sin(fi)./R);

f1=-(sin(pi./n).*((cos(pi./n)-sin((pi-(beta-fi0))./n))./((cos(pi./n)-cos((pi-(beta-
fi0))./n))).*(cos(pi./n)-sin(pi./n))));
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f2=(sin(pi./n).*((cos(pi./n)-sin((pi-(beta+fi0))./n))./((cos(pi./n)-cos((pi-
(beta+fi0))./n))).*(cos(pi./n)-sin(pi./n))));

A=sin(fi0). * (k. *exp(j.*(pi./4)))./(2.*sqrt(2.*pi));
B=((cos(fi0)-cos(beta))./sin(fi0)):
T=(sin(beta)-sin(theta))./(sin(fi0)+sin(theta));
C=exp(j.*K.*t.*cos(fi0)).*(exp(-j.*k.*R)./sqrt(k.*R));
g=T.*B.*((fL.*C)+(f2.*C)):
sum=sum+g;

end

m=(exp(j.*k.*rho.*cos(fi-fi0))+(A.*sum.*delta));

plot(180.*fi./pi,abs(m),'m’)

xlabel(‘fi in degrees’)

ylabel(UPO(1,2))

grid on

hold on
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