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ABSTRACT 

 

DESIGN AND IMPLEMENTATION OF VSLAM NAVIGATION SYSTEM 

 

 

BEKCAN, Arda 

M.Sc., Department of Mechatronics Engineering 

Supervisor: Assistant Prof. Dr. Halit ERGEZER 

 

February 2021, 90 pages 

It is very important to guess the location of the redetected objects and loop closures 

with the visual simultaneous localization and mapping system (VSLAM), one of the 

biggest problems of a mobile robot. Noise in the sensor measurements and non-linear 

motion of the mobile robot make it difficult to determine the robot pose and causes 

low quality map. VSLAM makes it possible to eliminate and/or reduce these 

applications' errors and improve the robot’s direction and position by using previously 

detected environment. 

 

The aim of this thesis is to achieve an autonomous navigation of a ground vehicle using 

VSLAM algorithm in an unknown environment. In this context, a differential drive 

mobile robot with a monocular camera was designed and an experimental platform 

was built for robot to explore. A VSLAM algorithm was implemented according to 

theoretical information and the performance of  visual odometry and the loop closing 

process were compared.  As a result of the experiments, it was determined that loop 

closing had a great role in reducing the accumulating drift errors.  

 

Keywords: Localization, Mapping, Computer Vision.
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ÖZ 

 

VSLAM SEYİR SİSTEMİ TASARIMI VE UYGULAMASI 

 

 

BEKCAN, Arda 

Yüksek Lisans, Mekatronik Mühendisliği Anabilim Dalı 

Tez Danışmanı: Dr. Halit ERGEZER 

 

Şubat 2021, 90 Sayfa 

 

Bir mobil robotun en büyük sorunlarından biri olan görsel eşzamanlı konumlama ve 

haritalama sistemi (VSLAM) ile yeniden tespit edilen nesnelerin ve döngü 

kapanışlarının konumunu tahmin etmek çok önemlidir. Sensör ölçümlerindeki gürültü 

ve mobil robotun doğrusal olmayan hareketi, robot duruşunun belirlenmesini 

zorlaştırmakta ve düşük kaliteli haritaya neden olmaktadır. VSLAM, bu uygulamaların 

hatalarını ortadan kaldırmayı ve / veya azaltmayı ve önceden tespit edilen ortamı 

kullanarak robotun yönünü ve konumunu iyileştirmeyi mümkün kılar. 

  

Bu tezin amacı, bilinmeyen bir ortamda VSLAM algoritması kullanarak bir kara 

taşıtının otonom navigasyonunu sağlamaktır. Bu bağlamda, monoküler kameralı 

diferansiyel sürüşlü bir mobil robot tasarlanmış ve robotun keşfetmesi için deneysel 

bir platform oluşturulmuştur. Teorik bilgilere göre bir VSLAM algoritması 

uygulanmış ve görsel odometri ile döngü kapama işlemi performansı kıyaslanmıştır. 

Deneyler sonucunda biriken kayma hatalarının azaltılmasında döngü kapatmanın 

büyük rolü olduğu tespit edilmiştir. 

 

Anahtar Kelimeler: Konumlama, Haritalama, Bilgisayarla Görme.
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CHAPTER I 

 

INTRODUCTION 

 

 

1.1 Background 

 

VSLAM refers to visual simultaneous localization and mapping. Its working principle 

is based on determining an autonomous vehicle’s location by using visual information 

taken from surrounding objects while mapping the environment simultaneously where 

location and environment are unknown. Today, VSLAM is used in many different 

areas like; 3D modeling, AR (Augmented Reality), and unmanned aerial vehicles 

(UAVs)  [1]. 

There are four main processes in VSLAM: 

• Tracking: Processing input images to calculate the depth and vehicle position 

by extracted features.  

• Mapping: Drawing a map using depth information acquired from an input 

image. 

• Global Optimization: Correcting tracking and mapping information depending 

on passing from the same path and detecting loop closures during this stage. 

• Relocalization: Estimating the pose by comparing current input and previous 

inputs when a track is lost [2].  

 

There is a chicken-egg problem in SLAM algorithms. Which one should be done first, 

mapping or localization? Without a map, localization is not possible because a 

reference is needed to detect which direction the vehicle is faced and its position. Also, 

without a known position and orientation, surroundings cannot be imperceptible or 

mapped. Some applications choose an estimated starting location, which causes errors 

during localization and mapping, whereas some applications define landmarks as 
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having well-known locations to prevent pose drift [1]. The errors in the sensor 

measurement, environmental factors, and complex non-linear motion of the vehicle  

make it difficult to correctly estimate the vehicle's pose. These errors accumulate as 

the vehicle progresses, gradually causing the vehicle’s pose to drift from the ground 

truth. Since the distances of the objects are measured with respect to the vehicle’s pose, 

the vehicle’s pose's errors affect the determination of the objects’ coordinates, which 

affects the map quality. 

 

Figure 1 Uncertainty in-vehicle position as the vehicle progresses. 

 

Furthermore, some applications use the loop closure technique to reduce the pose drift. 

Because of the drift, the same spots visited at different times do not match. The current 

environment and the previously visited environment are compared. If the 

environments are similar, the loop is assumed to be detected. Various algorithms such 

as SIFT (Scale Invariant Feature Transform), SURF (Speeded-Up Robust Features), 

and ORB (Oriented Fast Rotated Brief) descriptors make it possible to compare 

environments with each other [3] and deep learning algorithms help speed up the 

process [4], [5]. Different types of cameras can be used to get information about the 

environment, such as monocular, stereo, RGB-D (Red Green Blue Depth) cameras. 

Estimating depth using a monocular camera is very hard and includes complex 

mathematical calculations that are time-consuming. With a monocular camera, 

rotations can be computed, but translation can be computed up to a scale. 

 

There are different ways to estimate the scale, such as: 
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 line angles 

 perspective 

 object size 

 image position 

 atmospheric effects 

 extra sensor usage (range, IMU (Inertial Measurement Unit) ) 

 

Also, deep learning algorithms can increase the accuracy of depth measuring [6]. Each 

of these methods has its drawbacks. Stereo cameras are superior to monocular cameras 

as it is easy to detect depth by calculating the pixel position difference between camera 

frames. This difference is called a disparity. Unfortunately, the stereo camera also has 

a limitation as to the distance between the camera and the object increases, the 

accuracy of the depth measurement decreases. After some distance, which is a function 

of the length between stereo lenses and camera resolution, stereo cameras start to act 

like monocular cameras [7]. The stereo camera model consists of two lenses aligned 

perfectly side by side. Also, it can be mimicked by using two different cameras (Figure 

2). Nevertheless, it is impossible to align lenses perfectly in real-world conditions, so 

remaining errors can be reduced by rectification technique.                                              

 

   

Figure 2 Mimicked stereo camera system 

 

VSLAM is one of the multiple techniques to solve the problem mentioned above. 

There are different approaches, for example, inertial sensors, LIDAR (Light Detection 

and Ranging), and control strategies to overcome this problem. In this thesis, VSLAM 
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is chosen because of its advantages over other methods. With today’s technology, it is 

possible to extract useful information from visual data thanks to computer vision 

advancement. The biggest superiority compared to IMU is using a map of the 

environment built by taken visual data. A map helps to carry out autonomous tasks 

such as preventing collision, obstacle analysis, path planning, and a better 

understanding of the environment to the system's primary user. Also, local features 

previously detected on the map can decrease the drift caused by an error in sensor 

measurements. This error makes VSLAM less prone to deviations than other methods 

[8], [9]. Furthermore, cameras used in VSLAM are smaller, lighter, and cheaper than 

laser counterparts, making them suitable for mobile systems where weight and design 

complexity are critical. 

 

1.2. Objective and Overview 

 

As mentioned above, a major challenge in VSLAM is errors in sensor measurements 

while localizing mobile robots and sensing the environment. The errors increase as the 

robot moves, and correlated errors lead the robot’s current pose to diverge from the 

ground truth. Various techniques have been developed to minimize errors. According 

to the theoretical information, a VSLAM algorithm was implemented in this thesis. 

The thesis focuses on testing the theoretical information in real-world conditions and 

showing the performance of loop closure compared to visual odometry. 

 

In this framework, a differential wheeled mobile robot was designed. A monocular 

camera was used to get information from the environment. The camera was calibrated 

using a checkerboard pattern. The main idea behind this is, converting the camera to a 

bearing sensor using image-processing techniques. FAST (Features from Accelerated 

Segment Test) corner detection and BRIEF (Binary Robust Independent Elementary 

Features) descriptor extraction algorithms were used as an image processing technique 

to find the robot orientation. Since the translation is computed up to a scale in a 

monocular camera, encoder outputs were used to determine the scale factor. A BRIEF 

descriptor set was trained using bag of words model to detect the revisited places. 

Finally, to perform loop closing and global optimization, a 2D pose graph model was 

chosen. Optimization was solved using the nonlinear least square method. 
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The overview of the thesis after the introduction is as follows: 

 Chapter 2 explains vehicle models and compares their advantages and 

disadvantages. The reason for chosen vehicle model was discussed considering 

the usefulness and the ease of implementation. 

 Chapter 3 includes optimization techniques used in SLAM to deal with errors 

in sensor measurements. The reason behind the chosen technique is reviewed. 

A method to eliminate wrong matches and a way to further optimize the map 

are given. 

 Chapter 4 explains object-tracking methods and geometry between image 

frames. How to convert the camera to a bearing sensor. What are the 

requirements needed to convert a camera to a range sensor are described. 

 Chapter 5 expresses the experiments conducted in the framework of the 

theoretical basis formed in the previous chapters. The results are compared 

with the state-of-the-art method, and critical parts are discussed. 

 Chapter 6 presents a conclusion with the key components of SLAM algorithms. 
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CHAPTER II 

 

VEHICLE MODEL 

 

 

The fast advancement in technology increased the demand for robots where humans 

are insufficient, such as precision works and hazardous areas. The main purpose of 

robots is automating an operation to increase productivity. Different operations require 

robots with different features such as; autonomous ground vehicles, underwater 

vehicles, and UAVs. Some were designed to work under conditions unsafe for living 

organisms to carry out important high radioactivity [10], [11]. The most common 

robots are ground robots. They are widespread robots because of their advantages in 

designing simplicity, powering, strength, size-weight ratio, and cost-effectiveness over 

others. Ground robots consist of two groups, wheeled and legged robots. 

 

In most cases, wheeled robots are used on smooth surfaces, while legged robots are 

used on rough surfaces. The advantages of wheeled robots are being cheaper, less 

complex, and besides they do not need to balance themselves. Wheeled robots have 

vast usage of an area in the industry such as hospitals, military, educational purposes, 

and space. For these reasons, a wheeled robot model is chosen in this thesis. 

 

Many different types are designed for wheeled robots. Three-wheeled [12], [13], four 

and more wheeled robots have been studied. Two different kinematic and dynamic 

modelling techniques were used to model these robot designs, vector [14], [12], [15] 

and transformation [16], [17], [18], based solution. There is no standard in computing 

kinematic and dynamic models of moving robots, including complex computation of 

transformation. A kinematic model will be sufficient for understanding the motion of 

the robot. For this reason, commonly used models such as Ackermann and differential 

drive models where kinematics can be easily computed from trigonometry are focused 

on this thesis.  
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Furthermore, as mentioned before, translation can be computed up to a scale using a 

monocular camera, and another information source is required to find the scale. In the 

absence of this extra source, dead-reckoning localization can be used by assuming 

vehicles moving with a constant velocity.  In this thesis, a localization simulation was 

conducted in Matlab based on the Kalman filter and the dead-reckoning model 

(Chapter 3). Dead reckoning, Ackermann, and differential drive models are explained, 

and the reasons for the suitable model chosen for the thesis are discussed in the 

following pages. 

 

2.1 Dead Reckoning Localization 

 

Dead reckoning is an old method used to navigate ships. The new position is estimated 

using the previous position, heading, and the average speed in an elapsed time. 

 

 

Figure 3 External forces acting during navigation 

 

When a new position is estimated according to forces acting on the system and the 

previous position, frame transformation can be used. We need to express input vector 

𝑢𝑟(𝑘)  in map coordinate frame. If we assume our map coordinates consist of the x 

and y-axis, the mobile robot rotates in the z-axis. The counter-clockwise rotation 

matrix is: 

Rot(z)= [
cos(𝜃𝑟) − sin(𝜃𝑟) 0

sin(𝜃𝑟) cos(𝜃𝑟) 0
0 0 1

] , 𝑢𝑟(𝑘) = [

𝑣𝑟𝑥(𝑘)

𝑣𝑟𝑦(𝑘)

𝜃𝑟𝑏(𝑘)

] (2.1) 
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The translation between steps can be found by the multiplication of the rotation matrix 

and control input. 

 

[

𝑥𝑟(𝑘)

𝑦𝑟(𝑘)

𝜃𝑟(𝑘)
] =

𝑥𝑟(𝑘 − 1) + 𝑣𝑟𝑥 cos(𝜃𝑟(𝑘)) − 𝑣𝑟𝑦 sin(𝜃𝑟(𝑘))

𝑦𝑟(𝑘 − 1) + 𝑣𝑟𝑥 sin(𝜃𝑟(𝑘)) + 𝑣𝑟𝑦 cos(𝜃𝑟(𝑘))

𝜃𝑟(𝑘 − 1) + 𝜃𝑟𝑏

 (2.2) 

 

2.2 Ackermann Vehicle Model 

 

In Ackermann geometric model, the main goal is to prevent wheels from sliding 

laterally when moving on a curved path. To solve this problem, wheels are arranged 

in a way where they turn around a common center.  With enough inputs, the change in 

the vehicle’s position can be solved for this model as follows [19]: 

 

𝑋𝑠𝑡𝑎𝑡𝑒 = [

𝑥𝑟
𝑦𝑟
𝜃𝑟
], (2.3) 

𝑣𝑟 =
𝑑𝑥

𝑑𝑡
 (2.4) 

𝑥�̇� = 𝑣𝑟 cos(𝜃𝑟) (2.5) 

𝑦�̇� = 𝑣𝑟 sin(𝜃𝑟) (2.6) 

 

Where 𝑣𝑟 and 𝜃𝑟 are robot’s instantaneous forward velocity and rotation angle, 

respectively. 

 

𝑆𝑟 = 𝑟𝑟𝜃𝑟 , 𝜔𝑟 =
𝑑𝜃𝑟
𝑑𝑡

 (2.7) 

 

Where 𝑆𝑟 and 𝜔𝑟 are arc length of a circle and change of angular position, respectively 

while 𝑟𝑟 is the radius of the circle. If we take the derivative of 𝑆𝑟 with respect to time, 

linear velocity can be written utilizing radius and change of angular position.  

 

𝑆𝑟 = 𝑟𝑟𝜃𝑟 (2.8) 

𝑣𝑟 =
𝑑𝑆𝑟
𝑑𝑡
= 𝑟𝑟

𝑑𝜃𝑟
𝑑𝑡
= 𝑟𝑟𝜔𝑟 (2.9) 
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𝐿𝑟
𝑟𝑟
= tan(𝜙𝑟)  (2.10) 

𝜔𝑟 =
𝑣𝑟
𝐿𝑟
tan(𝜙𝑟) (2.11) 

Where 𝜙𝑟 and 𝐿𝑟 are steer angle and distance between the back and front wheels, 

respectively. As the model is nonlinear, it is in the following form: 

 

𝑥𝑟(𝑘 + 1) = 𝑓(𝑥𝑟(𝑘), 𝑢𝑟(𝑘)); 𝑢𝑟(𝑘) = [
𝑣𝑟(𝑘)

𝜙𝑟(𝑘)
] (2.12) 

[

𝑥𝑟(𝑘 + 1)

𝑦𝑟(𝑘 + 1)

𝜃𝑟(𝑘 + 1)
] =

[
 
 
 
 
𝑥𝑟(𝑘) + 𝑑𝑡𝑣𝑟(𝑘)co s(𝜃𝑟(𝑘))

𝑦𝑟(𝑘) + 𝑑𝑡𝑣𝑟(𝑘)si n(𝜃𝑟(𝑘))

𝜃𝑟(𝑘) +
𝑑𝑡𝑣𝑟(𝑘)ta n(𝜙𝑟(𝑘))

𝐿𝑟 ]
 
 
 
 

 (2.13) 

 

Where 𝑢𝑟(𝑘) is an input vector, and it consists of velocity and steering angle. The 

outer wheel steer angle should be smaller than the inner steer angle as the outer wheel 

draws a circle with a bigger radius. For this reason, in a perfect Ackerman steering 

model, the outer wheel’s angular velocity must be higher than the inner wheel to travel 

a longer distance at the same time. 

 

Figure 4 Ackermann steering geometry 

 

From taking the inverse of Eq. (2.10), a more compact solution can be found for wheel 

steer angles [20]. 
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𝑟𝑟
𝐿𝑟
= 𝑡𝑎𝑛(

𝜋

2
− 𝜙𝑟) (2.14) 

tan (
𝜋

2
− 𝝓𝒓𝑳) =

𝑟𝑟
𝐿𝑟

 (2.15) 

tan (
𝜋

2
− 𝝓𝒓𝑹) =

𝑟𝑟 + 𝑑𝑟
𝐿𝑟

 (2.16) 

 

The width of the robot is noted as 𝑑𝑟. Taking the inverse of the tangent function, the 

angles 𝜙𝑟𝐿, 𝜙𝑟𝑅 left and right steel angles respectively can be calculated. 

 

𝜙𝑟𝐿 =
𝜋

2
− 𝑎𝑟𝑐𝑡𝑎𝑛(

𝑟𝑟
𝐿𝑟
) (2.17) 

𝜙𝑟𝑅 =
𝜋

2
− 𝑎𝑟𝑐𝑡𝑎𝑛(

𝑟𝑟 + 𝑑𝑟
𝐿𝑟

) (2.18) 

 

The rate of change of angular position 𝜔𝑟 is the same for both wheels as they are both 

attached to the robot body. Linear velocities of each wheel can be found by using Eq. 

(2.11). 

 

𝜔𝑟 =
𝑣𝑟𝐿
𝐿
tan(𝜙𝑟𝐿) (2.19) 

𝜔 =
𝑣𝑟𝑅
𝐿𝑟
tan(𝜙𝑟𝑅) (2.20) 

 

If we substitute Eq. (2.10) in Eq. (2.20) and Eq. (2.21), linear wheel velocities can be 

derived [21].  

 

𝑣𝑟𝑅 = 𝜔𝑟(𝑟𝑟 + 𝑑𝑟) (2.21) 

𝑣𝑟𝐿 = 𝜔𝑟𝑟𝑟 (2.22) 

 

2.3 Differential Drive Model 

 

The differential drive model is similar to the Ackermann vehicle model. The difference 

is instead of having a steering angle, the model includes two wheels placed on the same 

axis, and both wheels can rotate clock and counter-clockwise direction independently 

from each other. As in the Ackermann model, wheels circle around a common center 

called the instantaneous center of curvature. Center location and radius are determined 
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by changing the wheel’s angular velocities. The vehicle’s position for this model can 

be solved as follows [22]:   

𝜔𝑟 (𝑟𝑟 +
𝑙𝑟
2
) = 𝑣𝑟𝑅 (2.23) 

𝜔𝑟 (𝑟𝑟 −
𝑙𝑟
2
) = 𝑣𝑟𝐿 (2.24) 

𝑟𝑟 =
𝑙𝑟(𝑣𝑟𝐿 + 𝑣𝑟𝑅)

2(𝑣𝑟𝑅 − 𝑣𝑟𝐿)
 (2.25) 

𝜔𝑟 =
𝑣𝑟𝑅 − 𝑣𝑟𝐿

𝑙𝑟
 (2.26) 

  

Radius and change of angular position is related to wheel velocities and the distance 

between the left and right wheel, which is noted as 𝑙𝑟. 

 

There are three special case scenarios: 

 If  𝑣𝑟𝑅 = 𝑣𝑟𝐿, there is no rotation. 

 If 𝑣𝑟𝑅 = −𝑣𝑟𝐿, the vehicle does a pure rotation around itself without 

translation. 

 If  𝑣𝑟𝑅 = 0 𝑜𝑟 𝑣𝑟𝐿 = 0, vehicle rotates around the stationary wheel. 

 

The following equation can find the instantaneous center of curvature: 

 

𝐼𝐶𝐶 = [𝑥𝑟 − 𝑟𝑟𝑠𝑖𝑛(𝜃𝑟), 𝑦𝑟 + 𝑟𝑟𝑐𝑜𝑠(𝜃𝑟)] (2.27) 

  

To apply rotation, ICC must be moved to the center of the world origin. 

 

[

𝑥𝑟 − 𝐼𝐶𝐶𝑥
𝑦𝑟 − 𝐼𝐶𝐶𝑦

𝜃𝑟

] (2.28) 

 

It is about rotating a vector in 2D. To rotate the state vector, a rotation matrix can be 

used.  
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[
𝑥𝑟
′

𝑦𝑟
′

1

] = [
𝑐𝑜𝑠(𝜔𝑟) −𝑠𝑖𝑛(𝜔𝑟) 0
𝑠𝑖𝑛(𝜔𝑟) 𝑐𝑜𝑠(𝜔𝑟) 0
0 0 1

] [
𝑥𝑟 − 𝐼𝐶𝐶𝑥
𝑦𝑟 − 𝐼𝐶𝐶𝑦

1

] (2.29) 

 

To find the robot position, 𝐼𝐶𝐶 is moved back to its previous position from the origin. 

 

[
𝑥𝑟
′

𝑦𝑟
′

𝜃

] = [
𝑐𝑜𝑠(𝜔𝑟) −𝑠𝑖𝑛(𝜔𝑟) 0
𝑠𝑖𝑛(𝜔𝑟) 𝑐𝑜𝑠(𝜔𝑟) 0
0 0 1

] [
𝑥𝑟 − 𝐼𝐶𝐶𝑥
𝑦𝑟 − 𝐼𝐶𝐶𝑦

𝜃

] + [
𝐼𝐶𝐶𝑥
𝐼𝐶𝐶𝑦
𝜔𝑟

] (2.30) 

 

 

Figure 5 Differential drive kinematics 

 

The differential model was evaluated as the most useful model for the thesis, 

considering the explanation above. The following reasons influence the chosen vehicle 

model. 

 

In the Ackermann model, the minimum turning angle of the vehicle is non-zero. In 

other words, the vehicle cannot perform a pure rotation, whereas the vehicle in the 

differential model can move more freely and avoid obstacles in the environment easily. 

Therefore, the differential model is more convenient in indoor conditions. 

 

Besides, the front wheels must have different steering angles from each other in the 

Ackermann model to prevent slippage. For example, the left wheel must turn more 

than the right one when the vehicle turns left. Namely, the wheel in the vehicle rotation 

direction must have a greater steer angle than the other wheel. Such a mechanism is 

too complex to build and increases the cost. 
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The differential vehicle has a disadvantage when it comes to moving in a straight line. 

Even a small difference between right and left wheel speeds causes the vehicle to move 

in an arc instead of a line. This difference can be minimized using encoder readings 

and a speed controller.
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CHAPTER III 

 

TECHNIQUES USED TO REDUCE AND ELIMINATE ERRORS IN 

SLAM 

 

 

As mentioned before, the main problem of VSLAM is accumulating random errors. 

Unmodeled system inputs and noisy sensor data cause the final pose to drift and 

mapping the environment wrong. For this reason, some recursive algorithms are used 

to estimate the state. For prediction algorithms, the Kalman Filter, Extended Kalman 

Filter, and Particle Filter can be given examples, whereas Gauss-Newton, Levenberg-

Marquardt for least squares approach.  

 

Another important method is the loop closing method used to further reduce the drift 

caused by sensor errors. Loop closing is the detection of the previously visited places 

having low drift error when the robot moves. Thus, drift error is reduced in the robot’s 

current pose. This method is used in all SLAM algorithms and not just specific for 

used recursive algorithms.  

 

Besides sensor noise, errors occur during the feature matching process (see chapter 4 

for detailed information). Although matching accuracy is not expected to be 100%, a 

general consistency is desired among matched features as wrong matches make the 

measurement model diverge from the truth. To eliminate the wrong matches, the 

RANSAC method can be used.  

 

The methods mentioned above are explained, and the reasons for the practical 

recursive method chosen for the thesis are discussed in the following pages. 
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3.1 Kalman Filter 

 

Kalman filter is a state estimator that can reduce the system noise and fuse sensors. By 

combining the predicted state, which is calculated according to the system model and 

sensor output, the Kalman filter comes up with a better estimate [4]. 

 

Figure 6 The illustration of how Kalman filter optimizes states. 

 

Kalman filter consists of two parts called prediction and update. The update part is 

derived from The Bayes rule. We have an estimated value 𝑥𝑒 of our state. We have a 

given measurement z. This measurement somehow related to our estimate, and this is 

expressed in likelihood function 𝑝(𝑧𝑒|𝑥𝑒). Probability of event z, given that event x, 

occurs. 

 

From Bayes rule, a posterior estimate is [19]: 

 

𝑝(𝑥𝑒|𝑧𝑒) =
𝑝(𝑧𝑒|𝑥𝑒)𝑝(𝑥𝑒)

𝑝(𝑧𝑒)
 (3.1) 

 

P(𝑧𝑒)=∑(𝑧𝑒|𝑥𝑒)𝑝(𝑥𝑒) 𝑜𝑟 P(𝑧𝑒)=∫𝑝(𝑧𝑒|𝑥𝑒)𝑝(𝑥𝑒) (3.2) 

 

𝑃(𝑧𝑒) is constant relative to 𝑥𝑒. It is called normalizing or scaling constant therefore 

its neglected in practice. 

 

𝑝(𝑥𝑒|𝑧𝑒) ≈ 𝑝(𝑧𝑒|𝑥𝑒)𝑝(𝑥𝑒) (3.3) 
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When 𝑝(𝑧𝑒|𝑥𝑒) and 𝑝(𝑥𝑒) on 𝑥𝑒 assumed Gaussian distribution, observation model 

becomes: 

𝑧𝑒 = 𝐻𝑒𝑥𝑒 + 𝑤𝑒, (3.4) 

 

Where 𝑤𝑒 is a gaussian noise with zero mean and covariance 𝑅𝑒. The prior estimate 

can be described with mean 𝑥𝑒−and covariance 𝑃𝑒−. 

𝑝(𝑧𝑒|𝑥𝑒) =
1

(2𝜋)
𝑛𝑧𝑒
2  |𝑅𝑒|

1
2

exp {−
1

2
(𝑧𝑒 − 𝐻𝑒𝑥𝑒)

𝑇𝑅𝑒
−1(𝑧𝑒 − 𝐻𝑒𝑥𝑒)} (3.5) 

𝑝(𝑥𝑒) =
1

(2𝜋)
𝑛𝑥𝑒
2  |𝑃𝑒|

1
2

exp {−
1

2
(𝑥𝑒 − 𝑥𝑒−)

𝑇𝑃𝑒−
−1(𝑥𝑒 − 𝑥𝑒−)} (3.6) 

 

 

We know that the multiplication of two Gaussian functions is also Gaussian. So above 

multiplication can be expressed with the below notation: 

 

(𝑥𝑒 − 𝑥𝑒+)
𝑇𝑃𝑒+

−1(𝑥𝑒 − 𝑥𝑒+) (3.7) 

 

𝑥𝑒+ is a new mean and 𝑃𝑒+ is a new covariance. 

 

The prediction part is derived from the MMSE (minimum mean square error) estimate 

[19].  

 

The new state and its covariance are needed to be predicted in the next step.  

 

The new state is predicted from the state model: 

 

𝑥𝑒(𝑘) = 𝐹𝑒𝑥𝑒(𝑘 − 1) + 𝐵𝑒𝑢𝑒(𝑘) (3.8) 

  

Where 𝐹𝑒 and 𝐵𝑒 are system coefficients while 𝑢𝑒 is the input of the system. 

 

However, the system has a noise. Real state is expressed as: 

 

𝑥𝑒(𝑘) = 𝐹𝑒𝑥𝑒(𝑘 − 1) + 𝐵𝑒𝑢𝑒(𝑘) + 𝑣𝑒(𝑘) (3.9) 
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Where 𝑣𝑒 is Gaussian noise with zero mean and covariance 𝑄𝑒. 

MMSE estimation of 𝑥𝑒 for a given 𝑍𝑒
𝑘: 

 

�̂�𝑒𝑚𝑚𝑠𝑒 = 𝑡𝑟{𝐸{(�̂�𝑒 − 𝑥𝑒)(�̂�𝑒 − 𝑥𝑒)
𝑇}} (3.10) 

 

Where 𝑍𝑒
𝑘 is k set of measurements. We can define covariance with the above notation.  

 

𝑃𝑒(𝑘|𝑘 − 1) = 𝐸 {(𝑥𝑒(𝑘) − �̂�𝑒(𝑘|𝑘 − 1))(𝑥𝑒(𝑘) − �̂�𝑒(𝑘|𝑘 − 1))
𝑇
|𝑍𝑘−1} (3.11) 

 

It is found by substituting corresponding equalities in below into Eq. (3.11): 

 

𝑥𝑒(𝑘) = 𝐹𝑒𝑥𝑒(𝑘 − 1) + 𝐵𝑒𝑢𝑒(𝑘) + 𝑣𝑒(𝑘) (3.12) 

�̂�𝑒(𝑘|𝑘 − 1) = 𝐹𝑒𝑥𝑒(𝑘 − 1) + 𝐵𝑒𝑢𝑒(𝑘) (3.13) 

 

(k│k) denotes updated variable at step k, and (k│k-1) denotes the predicted variable 

at step k. The final form of the prediction step is as follows: 

 

�̂�𝑒(𝑘|𝑘 − 1) =  𝐹𝑒�̂�𝑒(𝑘 − 1|𝑘 − 1) + 𝐵𝑒𝑢𝑒(𝑘) (3.14) 

𝑃𝑒(𝑘|𝑘 − 1) =  𝐹𝑒𝑃𝑒(𝑘 − 1|𝑘 − 1)𝐹𝑒
𝑇  + 𝑄𝑒 (3.15) 

 

The final form of the update step is as follows: 

 

𝑥𝑒(𝑘|𝑘) = �̂�𝑒(𝑘|𝑘 − 1) + 𝑊𝑒(𝑘)𝜈𝑒(𝑘) (3.16) 

𝑃𝑒(𝑘|𝑘) =  𝑃𝑒(𝑘|𝑘 − 1) −𝑊𝑒(𝑘)𝑆𝑒𝑊𝑒(𝑘)
𝑇 (3.17) 

 

Where 𝑣𝑒  and 𝑊𝑒 are innovation and Kalman gain respectively while 𝐻𝑒 is the 

observation model. 

𝜈𝑒(𝑘) = 𝑧𝑒(𝑘) − 𝐻𝑒�̂�𝑒(𝑘|𝑘 − 1) (3.18) 

𝑆𝑒 = 𝐻𝑒𝑃𝑒(𝑘|𝑘 − 1)𝐻𝑒
𝑇 + 𝑅𝑒 (3.19) 

𝑊𝑒(𝑘) = 𝑃𝑒(𝑘|𝑘 − 1)𝐻𝑒
𝑇𝑆𝑒
−1 (3.20) 
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3.2 Extended Kalman Filter 

 

Most systems in the world are nonlinear. Therefore, the Kalman Filter cannot be 

directly used. For this reason, the system is linearized using a Taylor series expansion 

before filtering [19].  The prediction step of the Kalman Filter is changed as follows: 

 

�̂�𝑒(𝑘|𝑘 − 1) = 𝑓(�̂�𝑒(𝑘 − 1|𝑘 − 1), 𝑢𝑒(𝑘)) (3.21) 

𝑃𝑒(𝑘|𝑘 − 1) =  𝛻𝐹𝑒𝑃𝑒(𝑘 − 1|𝑘 − 1)𝛻𝐹𝑒
𝑇  + 𝑄𝑒 (3.22) 

  

Symbol 𝛻 represents the Jacobian, which consists of partial derivatives with respect to 

each variable in the system. Update step of the Kalman filter is changed as follows: 

 

𝑥𝑒(𝑘|𝑘) = �̂�𝑒(𝑘|𝑘 − 1) + 𝑊𝑒(𝑘)𝜈(𝑘) (3.23) 

𝑃𝑒(𝑘|𝑘) =  𝑃𝑒(𝑘|𝑘 − 1) −𝑊𝑒(𝑘)𝑆𝑒𝑊𝑒(𝑘)
𝑇 (3.24) 

 

Where: 

𝜈𝑒(𝑘) = 𝑧𝑒(𝑘) − 𝛻𝐻𝑒�̂�𝑒(𝑘|𝑘 − 1) (3.25) 

𝑆𝑒 = 𝛻𝐻𝑒𝑃𝑒(𝑘|𝑘 − 1)𝛻𝐻𝑒
𝑇 + 𝑅𝑒 (3.26) 

𝑊𝑒(𝑘) = 𝑃𝑒(𝑘|𝑘 − 1)𝛻𝐻𝑒
𝑇𝑆𝑒
−1 (3.27) 
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Figure 7 Gaussian distribution after sin function. 

 

3.3 Least Squares 

 

In determined systems, there is only one solution. However, in overdetermined 

systems, this may not be true due to how the real world works. As no system is 

flawless, errors in the acquired data lead to each equation's solution not matching with 

each other. In such a situation, the best solution is which makes the error in each 

equation minimum. “Least squares” is a method to find the best solution for an 

overdetermined system of equations by approximating. In linear systems, least squares 

can be solved in closed form. The goal is to minimize the squared errors described as 

follows [23]: 

 

𝐴𝑥 = 𝑏 (3.28) 

𝑒2 = ‖𝐴𝑥 − �̂�‖
2
 (3.29) 
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𝑒2
𝑚𝑖𝑛
⇒   

𝜕𝑒2

𝜕𝑥
= 0 (3.30) 

 

Where 𝐴 and 𝑏 are independent and dependent variables in a matrix-vector form, 

respectively, a minimum error can be found by setting the derivative to zero. 

 

𝜕𝑒2

𝜕𝑥
=
𝜕[(𝐴𝑥 − �̂�)

𝑇
(𝐴𝑥 − �̂�)]

𝜕𝑥
= 0 (3.31) 

𝜕𝑒2

𝜕𝑥
=
𝜕(�̂�𝑇�̂� − �̂�𝑇𝐴𝑥 − 𝑥𝑇𝐴𝑇�̂� + 𝑥𝑇𝐴𝑇𝐴𝑥)

𝜕𝑥
= 0 (3.32) 

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇�̂� (3.33) 

 

Unfortunately, in the real world, most systems are nonlinear and in the form of a 

function, 𝑓(𝑥) = �̂� that maps inputs to outputs. The commonly used non-linear method 

is Gauss-Newton. According to the Gauss-Newton method, the solution is found by 

iterating as follows [23]. 

 

𝑒(𝑥) = 𝑧 − 𝑓(𝑥) (3.34) 

𝑒(𝑥 + ∆𝑥) ≈ 𝑒 + 𝐽𝑥∆𝑥 (3.35) 

 

The error function is linearized by Taylor series expansion and 𝐽𝑥 is the jacobian matrix 

while ∆𝑥 is the increment. 

 

𝑒2(𝑥 + ∆𝑥) ≈ (𝑒 + 𝐽𝑥∆𝑥)
𝑇(𝑒 + 𝐽𝑥∆𝑥) (3.36) 

𝑒2(𝑥 + ∆𝑥) ≈ 𝑒𝑇𝑒 + 𝑒𝑇𝐽𝑥∆𝑥 + ∆𝑥
𝑇𝐽𝑥
𝑇𝑒 + ∆𝑥𝑇𝐽𝑥

𝑇𝐽𝑥∆𝑥 (3.37) 

 

Eq. (3.37) can be simplified as: 

 

𝑒2(𝑥 + ∆𝑥) ≈ 𝑐 + 2𝑏𝑇∆𝑥 + ∆𝑥𝑇𝐻ℎ∆𝑥 (3.38) 

 

Where 𝑐 = 𝑒𝑇𝑒, 𝑏𝑇 = 𝑒𝑇𝐽𝑥 and 𝐻ℎ = 𝐽𝑥
𝑇𝐽. The equation can be solved by taking 

derivative with respect to ∆𝑥 and setting derivative to zero. 
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𝜕𝑐 + 2𝑏𝑇∆𝑥 + ∆𝑥𝑇𝐻ℎ∆𝑥

𝜕∆𝑥
 = 0 (3.39) 

2𝑏 + 2𝐻ℎ∆𝑥 = 0 (3.40) 

∆𝑥 = −𝐻ℎ
−1𝑏 (3.41) 

∆𝑥 = −(𝐽𝑥
𝑇𝐽𝑥)

−1𝐽𝑥
𝑇𝑒 (3.42) 

 

The state is updated as 𝑥 = 𝑥 + ∆𝑥 and all steps iterated until it converges. In other 

words, ∆𝑥 becomes zero or very close to zero. 

 

In EKF SLAM methods, the newly detected objects' positions are initialized by adding 

them to the state matrix. This addition causes the state matrix to grow gradually with 

the increase of the detected objects. So, the computation in a reasonable time becomes 

impossible after a while. To optimize the robot’s state, the same objects must be 

determined in the next images again. Therefore, EKF methods assume that the data 

association problem has been solved. If objects cannot be detected again, they are 

defined as new objects, this type of repetition will cause the state matrix to grow faster. 

For this reason, a graph-based SLAM model was chosen in the thesis. In graph-based 

SLAM, robot poses are described as nodes, and observations are represented as links 

between the nodes. In other words, objects are not included in the state matrix. Thus, 

a more compact state model is constructed. To solve the graph-based SLAM problem, 

non-linear least squares methods can be used. In this thesis, the Gauss Newton 

algorithm is chosen for non-linear least-squares methods. The following factors also 

contribute to the choice of the graph-based SLAM method. EKF and GNA use Taylor 

series expansion to linearize non-linear functions and require the computation of 

Jacobian matrices. Both of them assume data distribution to be Gaussian, and one 

minimizes the variance error, and the other minimizes the squared errors. In other 

words, their working principles are similar. GNA can be thought of as the update part 

of the EKF, and it does not contain a prediction process. Therefore, the computational 

complexity of GNA for one iteration is lower than EKF. GNA is easier and faster to 

implement in programming languages. 

 

Furthermore, as GNA is an iterative method, it deals with high nonlinearity better than 

EKF. Last but not least, besides the prediction model, process noise also needs to be 

known accurately. Otherwise, the EKF result diverges from the truth. 
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3.4 RANSAC (RANdom SAmple Consensus) 

 

Random sample consensus method estimates the inliers by repeatedly iterating in a 

small portion of the data set. Due to errors, some of the data do not fit among the model 

and thus called outliers. A small random set is chosen to eliminate these outliers, and 

the model is estimated according to this set. Model fitness is compared with the rest of 

the data. Multiple random small sets are chosen, and computed models are compared 

with the data. Among these models, a model that best expresses the data is selected. 

According to a defined threshold, data parameters far from the final chosen model are 

selected as outliers and discarded from the data. A new model can be computed from 

the remaining inliers [24]. 

 

For example, when a sensor measures a tree trunk's height and diameter, some of the 

measurements will be wrong due to mismatches. If the model is known, for example, 

diameter and height are linearly dependent, and then incorrect measurements can be 

eliminated using RANSAC. 

 

 

Figure 8 Line fitting using RANSAC. 

 

If the outlier ratio is known, the number of required iterations for a specific accuracy 

can be found as follows [24]:  

 

𝑝𝑖𝑛 = (1 − 𝑒𝑜𝑢𝑡𝑙𝑖𝑒𝑟)
𝑠𝑠𝑒𝑡   (3.43) 
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Where 𝑝𝑖𝑛 is the probability of selecting one inlier, while 𝑒𝑜𝑢𝑡𝑙𝑖𝑒𝑟 and 𝑠𝑠𝑒𝑡 are outlier 

ratio and minimum required random set size, respectively. Then the probability of 

selecting outlier 𝑇𝑡𝑚 times are: 

 

1 − 𝑝𝑖𝑛 = (1 − (1 − 𝑒𝑜𝑢𝑡𝑙𝑖𝑒𝑟)
𝑠𝑠𝑒𝑡)𝑇𝑡𝑚   (3.44) 

 

Iteration number 𝑇𝑡𝑚 can be found by taking the logarithm of both sides. 

 

log(1 − 𝑝𝑖𝑛) = 𝑇𝑡𝑚 log(1 − (1 − 𝑒𝑜𝑢𝑡𝑙𝑖𝑒𝑟)
𝑠𝑠𝑒𝑡) (3.45) 

𝑇𝑡𝑚 =
log(1 − 𝑝𝑖𝑛)

log(1 − (1 − 𝑒𝑜𝑢𝑡𝑙𝑖𝑒𝑟)𝑠𝑠𝑒𝑡)
 (3.46) 

 

Probability of selecting inlier decreases as the minimum required random set size 

increases. For this reason, 𝑠𝑠𝑒𝑡 is tried to be kept as small as possible. 

 

3.5 Loop Closure 

 

Loop closure is the detection of where the mobile robot has passed before. As errors 

accumulate while moving, the position of the robot shifts from the actual value. When 

a previously seen area is detected, this observation adds a dependency between the 

current pose and pose at the previously seen area [25]. According to the measurement's 

reliability, a weight can be assigned, and robot poses can be converged together. The 

problem is detecting the previously seen area. If the poses are mismatched, the robot 

pose will diverge. There are different methods to detect similar places for different 

slam techniques, such as iterative closest point for radar-based SLAMs and bag of 

words for visual SLAMs. Various methods use statistics and leverage deep learning 

algorithms to further increase accuracy [26]. Since the feature-based method is chosen 

in this thesis, the bag of words method is explained below. 

 

3.5.1 Bag of Words 

 

In a bag of words model, vocabulary vectors represent the images. Matching every 

taken image with each other is very time-consuming, so corresponding vocabulary 

vectors are compared to calculate the similarity between images. Vocabulary vectors 
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are commonly constructed based on the frequency of detected features in an image. In 

other words, a bag of words model is representing images with a histogram of detected 

features. Due to the presence of many features with different properties, using whole 

features is inefficient. 

 

For this reason, similar features are grouped, and centers of these many groups are 

selected as words for vocabulary vectors. There are different ways to group features, 

such as Euclidian distance, Mahalanobis distance, cosine similarity, and hamming 

distance. The similarity between images can be computed using the following equation 

[27], [28].  

  

𝑆𝑖𝑚 = 1 −
1

2
|
𝐻ℎ𝑖𝑠1
|𝐻ℎ𝑖𝑠1|

−
𝐻ℎ𝑖𝑠2
|𝐻ℎ𝑖𝑠2|

| (3.47) 

 

Where 𝐻ℎ𝑖𝑠1 and 𝐻ℎ𝑖𝑠2 are histograms of the first and second image, respectively. 

 

3.5.2 K-Medoid Clustering 

 

K-medoid clustering is a method of classifying similar data under the same group. K 

represents the number of groups that data is partitioned. Medoid is part of the data in 

the center of a group, while the mean of a data set is just an algebraic distance. Being 

part of the data makes medoid clustering less vulnerable to noise and extreme outliers 

as they can shift the mean from the actual center. Also, medoid clustering can be used 

on data types with no algebraic distance, such as binary data. Binary data consists of 

only zeros and ones, and hamming distance can be used as a similarity criterion. The 

most used medoid clustering technique is PAM, partitioning around medoids and 

converges faster than brute force searching but can be stuck at local minima as a small 

area is focused on. First, k medoids are chosen randomly or according to their 

similarity between the rest of the data. Then each point in the data is assigned to the 

closest medoid. In each medoid group, every point is selected and tested. Similarities 

between the selected point and other points in the group are calculated and summed 

together. The point with the smallest sum of similarity is chosen as the new medoid. 

After new medoids are found, each point in the data is assigned to the closest medoid. 

This step is iterated until there is no medoid change in all groups [29]. 
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(a) 

 

(b) 

Figure 9 (a) Randomly selected medoids, (b) medoids after one iteration 
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CHAPTER IV 

 

OBJECT TRACKING WITH IMAGE PROCESSING 

 

 

Analyzing objects by taking their images has become important in computer systems 

in recent years. Availability of high computing performance, superior cameras for a 

much reasonable price, and the need for automated systems attracted attention to object 

tracking. Image analysis grouped under three main heading: 

 Detection of objects according to their pattern, form, and shape. 

 Tracking detected objects in other frames. 

 Examination of tracks to understand the object’s motion. 

 

Object tracking applications focus on identifying object’s movements (sensing 

unexpected movement, creature spotting, gesture recognition, managing traffic flow, 

planning vehicle navigation, and obstacle detection) and their interactions with each 

other. In brief, object tracking is computing the object’s path moving around the 

camera scene while taking information about the object such as its shape, size, and 

orientation. Although tracking algorithms of objects and creatures are becoming 

important, their problems have not been fully solved yet because of some reasons; 

 losing information while transforming from a 3D world to a 2D plane; some 

motions cannot be determined because of their complexity and randomness;  

 deformable objects cannot be tracked in the next frame due to change of shape; 

light state of the scene causes a change in reflection and shadowing which 

affect the object color;  

 Last but not least, processing time constrains where algorithm must run in a 

reasonable time like real-time applications [30].  

 

There are different tracking algorithms, and some have been developed to solve these 

problems. A unique property of an object that defines it is critical in object tracking. 
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Various object properties are used to differentiate them from each other. They can be 

investigated under four main categories. Color, this property is affected by physical 

factors. The wavelength and frequency of the light and the object’s response to the 

light determine the object's color. The most used color space in image processing is 

RGB (Red, Green, and Blue). Unfortunately, it is not a uniform space for human eye 

recognition. The human eye is sensitive to green color more than others [31].  There 

are other uniform color spaces, such as Lab and HSV, but they are susceptible to noise 

[32].  

 

The second property is the edges of the object. Pixel intensity difference is high around 

the boundaries of an object. These are areas that are not much affected by the properties 

of light, and algorithms often use the edge of an object to make detection more reliable. 

Some of the most popular edge detectors are Canny, Laplace, and Sobel edge detectors. 

Another visual property is optical flow. When an object moves, its intensity pattern 

also moves with it. Optical flow can be defined as the distribution of apparent motion 

velocities of these intensity patterns in an image. In other words, optical flow consists 

of displacement vectors that describe the motion of pixels in a small region of the 

image (5x5). The last property is texture. The object’s smoothness and roughness are 

the main factors affecting the detection of the object. Texture properties are less 

affected by light than colors but need an extra step to extract descriptors [30].  

 

There are several methods developed to detect similarities between frames by using 

these object properties to their advantage. These methods can be grouped under four 

titles [30].   

 Point Detectors 

Point Detectors are based on texture comparison. To find distinctive textures 

first finds interest points like corner and edge points where neighbor points 

have a unique sequence. 

 Segmentation 

The segmentation method uses color and gradient information to group pixels 

in an image to multiple regions according to their similarities. 

 Background Subtraction 
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Background subtraction uses both color and texture properties to detect 

changes between frames by subtracting a previous frame from the current 

frame. 

 Machine/Deep Learning 

Learning Algorithms are functions that try to find the local minima or, if lucky, 

the global minima of the given problem set. They consist of nodes carrying 

weights, which are calculated by training lots of data. By using these weights, 

inputs are mapped to outputs. In other words, learning algorithms give an 

estimated output for a certain input.  

 

How the aforementioned tracking methods using object properties are adapted to 

VSLAM algorithms and how object tracking can be used to compute camera 

orientation and translation are explained in the following pages.  

 

4.1 Object Tracking in VSLAM Algorithms 

 

VSLAM Algorithms can be classified under two main groups as a direct and feature-

based method [2], [3]. The direct method achieves tracking by using whole image 

pixels. This causes high-quality mapping but runs slow as there is a high amount of 

pixel information. There are three general approaches for the direct method such as 

DTAM, LSD-SLAM, and DSO. The feature-based method achieves tracking by using 

descriptive image features. This causes low-quality maps but runs fast as less 

information is used to describe objects. There are three main approaches for a feature-

based method: MonoSLAM, PTAM, and ORB-SLAM [33]. 

 

Some methods come to the fore considering the advantages of algorithms using the 

properties of the objects mentioned above. The biggest factor in VSLAM algorithms 

is the computation time. Due to the real-time requirements, the system has to make 

quick decisions. Therefore, the most used method in VSLAM algorithms is texture-

based identification and classification like feature point finding and descriptor 

extraction. The other advantage of this method is the accuracy can be optimized by an 

increasing amount of feature points detected, using outlier detection algorithms like 

RANSAC or modified descriptor algorithms that are invariant to affine transform at 
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the expense of the calculation time. For these reasons, the feature-based method was 

chosen in this thesis. 

 

Feature-based image matching consists of two main parts, descriptive feature 

detection, and feature descriptor extraction. Descriptive feature detection is the 

detection of pixels or pixel patches having rich information. For example, corners and 

areas having different brightness or color than surrounding areas (neighbor pixels). 

Feature descriptor extraction is to get information about neighbor pixels around 

descriptive feature points for matching. Namely, it can be thought of as a DNA or 

fingerprint to differentiate descriptive feature points from each other. Various feature 

detection and descriptor extraction algorithms are shown in Figure 10, and those used 

in this thesis are explained in detail below. 

 

 

Figure 10 Feature detection and matching algorithms. 

 

4.1.1 Harris Corner Detection 

 

In Harris detector, a small patch in size 𝑆𝑝 × 𝑆𝑝 is defined to scan the whole image by 

shifting 1-by-1. In each shift operation, it calculates an intensity difference between 

the current patch and the previous patch. The mathematical calculation is given below 

[34]: 

 

𝐸(𝑢𝑝. 𝑣𝑝) = ∑ 𝑤𝑤𝑖𝑛 (𝑥𝑝, 𝑦𝑝) [𝐼(𝑥𝑝 + 𝑢𝑝, 𝑦𝑝 + 𝑣𝑝) − 𝐼(𝑥𝑝, 𝑦𝑝)]
2

𝑥𝑝,𝑦𝑝

 (4.1) 
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Where 𝑢𝑝, 𝑣𝑝 is the displacement  of the pixel in horizontal and vertical directions, 

respectively while 𝑤𝑤𝑖𝑛 is the window function determines the weight of the pixels. 

𝑤𝑤𝑖𝑛 can be a square window (𝑤𝑤𝑖𝑛 = 1) or a Gaussian one. 𝑥𝑝 and 𝑦𝑝 are the 

positions of pixels inside the patch area. The above equation can be approximated by 

Taylor series expansion. According to [35], multivariable functions can be expanded 

as follows: 

𝑇(𝑥1, … , 𝑥𝑑) = ∑ ∑
(𝑥1 − 𝑎1)

𝑛1 …(𝑥𝑑 − 𝑎𝑑)
𝑛𝑑

𝑛1!…𝑛𝑑!
 (
𝜕𝑛1+⋯+𝑛𝑑𝑓

𝜕𝑥1
𝑛1 …𝜕𝑥𝑑

𝑛𝑑
)

∞

𝑛𝑑=0

∞

𝑛1=0

(𝑎1, … , 𝑎𝑑) (4.2) 

 

The final equation is derived as shown below by using the first three expansion 

elements: 

𝑇(𝑥, 𝑦) = 𝑓(𝑎, 𝑏) + (𝑥 − 𝑎)𝑓𝑥(𝑎, 𝑏) + (𝑦 − 𝑏)𝑓𝑦(𝑎, 𝑏) (4.3) 

𝑇(𝑥𝑝 + 𝑢𝑝, 𝑦𝑝 + 𝑣𝑝) = 𝑓(𝑥𝑝, 𝑦𝑝) + (𝑥𝑝 + 𝑢𝑝 − 𝑥𝑝)𝑓𝑥(𝑥𝑝, 𝑦𝑝) 

+(𝑦𝑝 + 𝑣𝑝 − 𝑦𝑝)𝑓𝑦(𝑥𝑝, 𝑦𝑝) 
(4.4) 

𝐼(𝑥𝑝 + 𝑢𝑝, 𝑦𝑝 + 𝑣𝑝) = 𝑓(𝑥𝑝, 𝑦𝑝) + 𝑢𝑝𝐼𝑥 + 𝑦𝑝𝐼𝑦 (4.5) 

 

When Eq. (4.5) substituted in Eq. (4.1) 

 

𝐸(𝑢𝑝, 𝑣𝑝) ≈ 𝑤 (𝑥𝑝, 𝑦𝑝)∑[(𝐼(𝑥𝑝, 𝑦𝑝) + 𝐼𝑥𝑢𝑝 + 𝐼𝑦𝑣𝑝 − 𝐼(𝑥𝑝, 𝑦𝑝)]
2

𝑥,𝑦

 (4.6) 

𝐸(𝑢𝑝, 𝑣𝑝) ≈ 𝑤𝑤𝑖𝑛 (𝑥𝑝, 𝑦𝑝)∑𝑢𝑝
2𝐼𝑥
2

𝑥,𝑦

+ 2𝑢𝑝𝑣𝑝𝐼𝑥𝐼𝑦 + 𝑣𝑝
2𝐼𝑦
2 (4.7) 

𝐸(𝑢𝑝, 𝑣𝑝) ≈ [𝑢𝑝 𝑣𝑝] (𝑤𝑤𝑖𝑛 (𝑥𝑝, 𝑦𝑝) ∑ [
𝐼𝑥
2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]

𝑥𝑝,𝑦𝑝

) [
𝑢𝑝
𝑣𝑝
] (4.8) 

𝑀𝑡𝑒𝑛𝑠𝑜𝑟 = (𝑤𝑤𝑖𝑛 (𝑥𝑝, 𝑦𝑝)∑[
𝐼𝑥
2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]

𝑥,𝑦

) (4.9) 

 

𝑀𝑡𝑒𝑛𝑠𝑜𝑟 is called structure tensor while 𝐼𝑥 and 𝐼𝑦 are derivatives of image 𝐼 in 

horizontal and vertical directions. To find the image derivatives, a differentiation 

operator that approximately computes the gradient of the image intensity is used. 

These operators use 𝑁𝑘𝑥𝑁𝑘 kernels to convolute images together where 𝑁𝑘 is the size 

of the kernel. According to Prewitt, a 3𝑥3 kernel is used as follows [36]:   
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𝐾𝑝𝑥 = [
+1 0 −1
+1 0 −1
+1 0 −1

], 𝐾𝑝𝑦 = [
+1 +1 +1
   0    0    0
−1 −1 −1

] (4.10) 

 

In addition, for Sobel, a 3x3 kernel is used as below [37]: 

 

𝐾𝑠𝑥 = [
+1 0 −1
+2 0 −2
+1 0 −1

], 𝐾𝑠𝑦 = [
+1 +2 +1
   0    0    0
−1 −2 −1

] (4.11) 

 

Where 𝐾𝑝𝑥, 𝐾𝑠𝑥and 𝐾𝑝𝑦𝐾𝑠𝑦 are kernels for x and y directions, respectively. Image 

derivative can be found by convolving the image with respective kernels.  

 

𝐼𝑥 = 𝐾𝑠𝑥 ∗ 𝐼, 𝐼𝑦 = 𝐾𝑠𝑦 ∗ 𝐼 (4.12) 

 

Harris response is then calculated to decide if the patch area is a corner. It is calculated 

by using eigenvalues of the matrix 𝑀𝑡𝑒𝑛𝑠𝑜𝑟. 

 

𝑅ℎ𝑎𝑟𝑟𝑖𝑠 = 𝜆1𝜆2 − 𝑘(𝜆1+𝜆2)
2 (4.13) 

𝜆1𝜆2 = det (𝑀𝑡𝑒𝑛𝑠𝑜𝑟) (4.14) 

𝜆1+𝜆2 = 𝑡𝑟(𝑀𝑡𝑒𝑛𝑠𝑜𝑟) (4.15) 

𝑅ℎ𝑎𝑟𝑟𝑖𝑠 = det(𝑀𝑡𝑒𝑛𝑠𝑜𝑟) − 𝑘ℎ𝑎𝑟𝑟𝑖𝑠(𝑡𝑟(𝑀𝑡𝑒𝑛𝑠𝑜𝑟))
2
 (4.16) 

 

𝑘ℎ𝑎𝑟𝑟𝑖𝑠 is a constant and suggested to be between 0,04 and 0,06. 𝜆1 and 𝜆2 are 

eigenvalues of the matrix 𝑀𝑡𝑒𝑛𝑠𝑜𝑟 and 𝑅ℎ𝑎𝑟𝑟𝑖𝑠 is Harris response, and 𝑡𝑟( ) is trace 

operation. If 𝑅ℎ𝑎𝑟𝑟𝑖𝑠 is bigger than a predefined threshold, the patch area is considered 

as the corner. In [38], it is proposed to use a minimum of eigenvalues for the response 

criteria. 

𝑅ℎ𝑎𝑟𝑟𝑖𝑠 = 𝑚𝑖𝑛(𝜆1, 𝜆2) ≈
𝜆1𝜆2
𝜆1 + 𝜆2

=
𝑑𝑒𝑡 (𝑀𝑡𝑒𝑛𝑠𝑜𝑟)

𝑡𝑟(𝑀𝑡𝑒𝑛𝑠𝑜𝑟)
 (4.17) 

 

4.1.2 FAST Corner Detection 

 

Features from the accelerated segment test, FAST is one of the fastest corner detection 

algorithms. It is mostly preferred in projects needed to run in real-time. Instead of a 
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square patch, FAST uses a circle around the candidate pixel. The pixel is considered a 

corner according to the properties of this circle that consists of neighbor pixels. The 

working principle of the algorithm is as follows [39]: 

• In an 8-bit greyscale image, a pixel's intensity is defined with integers between 

0 and 255.  

• Pixel having intensity 𝐼𝑖𝑛𝑡𝑠𝑝 is selected.  

• An appropriate threshold value 𝑡𝑓𝑎𝑠𝑡 is selected. 

• A circle consists of 16 pixels is defined around the selected pixel. 

• Selected pixel is corner if 12 contiguous pixels’ intensities in the circle are 

greater or smaller than  𝐼𝑖𝑛𝑡𝑠𝑝 + 𝑡𝑓𝑎𝑠𝑡 and 𝐼𝑖𝑛𝑡𝑠𝑝 − 𝑡𝑓𝑎𝑠𝑡, respectively. 

 

 

Figure 11 Fast corner detection [39]  

 

To increase the computation speed [39], two horizontal pixels (Pixel 13 and Pixel 5 in 

Figure 11) in the circle are compared with the selected pixel. If both pixels are not in 

the required intensity, then the selected pixel cannot be a corner. Else, two vertical 

pixels (Pixel 1 and Pixel 9 in Figure 11) in the circle are compared with the selected 

pixel. Three of these four pixels must satisfy the rule, or the selected pixel cannot be a 

corner. If at least three of the four pixels satisfy the rule, the rest of the eight pixels in 

the circle are compared. In this way, comparing all the sixteen pixels is prevented if 

the selected pixel is not a corner. 
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4.1.3 BRIEF Descriptor Extraction 

 

Binary robust independent elementary features, BRIEF is one of the fastest descriptor 

algorithms. The BRIEF vector consists of binary values zeros and ones. For this 

reason, a comparison of two binary vectors is made by computing Hamming distance 

between two vectors. As Hamming distance computation is just an XOR operation, it 

is at least two orders of magnitude faster than the other state-of-the-art matching 

algorithms such as SIFT and SURF. The working principle of the algorithm is as 

follows [40]: 

• A patch in size of 𝑆𝑝 × 𝑆𝑝 is defined around detected features. 

• Random two pixels are selected in Gaussian distribution where the standard 

deviation is: 

 

𝜎 = 0.04𝑆𝑝
2 (4.18) 

 

• 𝑛 numbers of pixel pairs are selected and only initialized once. 

• 𝑛 pixel pairs are converted to a bit-string by following criteria: 

 

𝑣𝑖,…,𝑛 = {
1 𝑖𝑓 𝐼𝑖𝑛𝑡𝑠𝑝1 < 𝐼𝑖𝑛𝑡𝑠𝑝2
0 𝑖𝑓 𝐼𝑖𝑛𝑡𝑠𝑝1 > 𝐼𝑖𝑛𝑡𝑠𝑝2

 (4.19) 

 

• A bit-string is assigned for every feature detected. 

• Hamming distance is calculated between every feature’s corresponding bit-

string for matching. 

• A threshold value 𝑡𝑏𝑟𝑖𝑒𝑓 is selected. Features with a Hamming distance less 

than the threshold 𝑡𝑏𝑟𝑖𝑒𝑓 are matched. 

• In multiple matching, features having the smallest distance are chosen.  
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Figure 12 Randomly chosen pixel pairs in a patch [40] 

 

4.1.4 Steered BRIEF Descriptor 

 

Steered BRIEF is the modified version of the BRIEF descriptor, and it is invariant to 

rotation changes. The rotation invariance of the descriptor is achieved by computing 

patch orientation beforehand. To find the orientation, the intensity centroid is used. 

According to Rosin, patch centroid can be calculated as follows [41]:  

 

𝑚𝑎𝑏 = ∑ 𝑥𝑎𝑦𝑏𝐼𝑖𝑛𝑡𝑠(𝑥𝑝, 𝑦𝑝),   𝑥𝑝, 𝑦𝑝
𝑥𝑝,𝑦𝑝

 (4.20) 

𝐶 = (
𝑚10
𝑚00

,
𝑚01
𝑚00

) (4.21) 

 

Where 𝑚 and 𝐶 are the moments and intensity centroid, respectively. 𝐼𝑖𝑛𝑡𝑠(𝑥𝑝, 𝑦𝑝) is 

the intensity of the pixel at location 𝑥𝑝, 𝑦𝑝 in image patch where 𝑥𝑝, 𝑦𝑝 = 0 at the 

center of the patch, 𝑂. Then a vector is defined from center to centroid 𝑂𝐶⃗⃗⃗⃗  ⃗. The rotation 

angle 𝜃𝑝, then can be derived as: 

 

𝜃𝑝 = 𝑎𝑡𝑎𝑛2(𝑚01,𝑚10) (4.22) 
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After rotation of the patch is calculated, it is applied to the positions of 𝑛 pixel pair 

selected in the original BRIEF algorithm by multiplying the corresponding rotation 

matrix. 

 

𝑆𝑝 = (
𝑥1, … , 𝑥𝑛
𝑦1, … , 𝑦𝑛

) (4.23) 

𝑆𝜃 = 𝑅𝜃𝑝𝑆𝑝 (4.24) 

 

Where 𝑆𝑝 and 𝑆𝑝𝜃  are the positions of pixel pairs and steered pixel pairs, respectively. 

𝑅𝜃𝑝 is the 2D rotation matrix corresponds to 𝜃𝑝 angle. Furthermore, instead of a 

randomly selected pixel set, a specific pixel set can be chosen according to trained data 

to increase the accuracy [42].  

 

4.2 Camera Calibration 

 

To measure depth from cameras, a geometry problem must be solved. Some 

assumptions are made to simplify the problem. For example, a camera aperture is a 

point and has no lens to focus light rays. That is why this mathematical method of 

describing the relationship between a real scene and its projection onto an image plane 

is called a pinhole camera model. The pinhole camera model is used to calibrate the 

camera by defining camera constants related to the sensor size and its orientation with 

respect to the aperture inside a camera. The pinhole model is in the following form 

[43]: 

 

𝑝 = 𝜆𝐴𝑐[𝑅|𝑡]𝑃 (4.25) 

 

Where 𝑃 and 𝑝 are world coordinates of a point and corresponding pixel coordinates 

in an image, respectively, in a column vector. [𝑅|𝑡] is a rotation-translation matrix that 

shows the camera’s orientation in the world frame. 𝐴𝑐 is called a camera matrix and 

consists of constant camera parameters. As transforming from 3D to 2D, there is an 

information loss. Consequently, this geometry problem can be computed up to a scale 

noted as 𝜆 [43]. 
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[
𝑢
𝑣
1
] = 𝜆 [

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3

] [

𝑋
𝑌
𝑍
1

] (4.26) 

 

The camera matrix consists of focal lengths and principal points in pixel length in 

horizontal and vertical directions. An object or a pattern having a known size can be 

used to find the camera matrix. One of the most used ways is a checkerboard pattern. 

It is easy to detect corner points with minimal error using corner detection algorithms. 

The world coordinate origin is selected on the checkerboard pattern to simplify the 

pinhole camera equation. If checkerboard is assumed a perfect plane, then detected 

corner points would have zero displacements in the z-axis [43]. 

 

[
𝑢
𝑣
1
] = 𝜆 [

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3

] [

𝑋
𝑌
0
1

] (4.27) 

 

 

Figure 13 Checkerboard pattern 

 

In matrix-vector multiplication, the elements of a rotation-translation matrix that 

corresponds to vector element Z will be zero. This column will not affect the 

multiplication, so it can be discarded. A homography then can be defined as [43]: 

 

𝐻 = 𝜆𝐴𝑐[𝑟1𝑟2𝑡] (4.28) 
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Where H is a 3𝑥3 homography matrix while 𝜆 =
1

𝑠
 is a scale factor and 𝑟1, 𝑟2, 𝑡 are 

non-discarded columns in the rotation-translation matrix, respectively. Homography 

can be found by singular value decomposition after simplified to a vector h. 

 

[

ℎ1 ℎ2 ℎ3
ℎ4 ℎ5 ℎ6
ℎ7 ℎ8 ℎ9

] [
𝑋
𝑌
1
] = [

𝑢𝑠
𝑣𝑠
𝑠
] (4.29) 

ℎ1𝑋 + ℎ2𝑌 + ℎ3 − 𝑢𝑠 = 0 (4.30) 

ℎ4𝑋 + ℎ5𝑌 + ℎ6 − 𝑣𝑠 = 0 (4.31) 

ℎ7𝑋 + ℎ8𝑌 + ℎ9 = 𝑠 (4.32) 

 

These equations can be combined in a matrix-vector multiplication 

𝐿ℎ = 0. (4.33) 

 

Where: 

 

𝐿 = [
𝑋 𝑌 1
0 0 0

0 0 0
𝑋 𝑌 1

−𝑢𝑋 −𝑢𝑌 −𝑢
−𝑣𝑋 −𝑣𝑌 −𝑣

] , ℎ =

[
 
 
 
 
 
 
 
 
 
ℎ1
ℎ2
ℎ3
ℎ4
ℎ5
ℎ6
ℎ7
ℎ8
ℎ9]
 
 
 
 
 
 
 
 
 

 (4.34) 

 

ℎ vector is a right singular vector of 𝐿 matrix that corresponds to the smallest singular 

value. Vector ℎ has nine elements but has only eight unknowns; one of them is a scale. 

When all elements divided to, for example, the last element ℎ9 vector ℎ left with eight 

unknowns. For this reason, there must be eight observations to solve the equation. 

Each point detected in the calibration pattern image contributes to two observations. 

At least four points are necessary to be detected to solve for homography. 

If the homography matrix is inspected under columns, then columns 𝑟1 and 𝑟2 can be 

derived as: 

 

[ℎ1ℎ2ℎ3] = 𝜆𝐴𝑐[𝑟1𝑟2𝑡] (4.35) 
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𝑟1 = 𝐴𝑐
−1ℎ1 (4.36) 

𝑟2 = 𝐴𝑐
−1ℎ2 (4.37) 

 

It is known that rotation axes are in the unit distance, and they are perpendicular to 

each other. So, their magnitudes will be one, and dot products will be zero [43].  

 

𝑟1
𝑇𝑟2 = 0, (4.38) 

‖𝑟1‖ = ‖𝑟2‖ = 1 (4.39) 

 

When equations (4.36) and (4.37) substitute in (4.38) and (4.39), respectively 

 

ℎ1
𝑇𝐴𝑐
−𝑇𝐴𝑐

−1ℎ2 = 0 (4.40) 

ℎ1
𝑇𝐴𝑐
−𝑇𝐴𝑐

−1ℎ1 − ℎ2
𝑇𝐴𝑐
−𝑇𝐴𝑐

−1ℎ2 = 0 (4.41) 

 

To simplify the equations, camera matrix components will be described as 𝐵𝑐. 

 

𝐵𝑐  = 𝐴𝑐
−𝑇𝐴𝑐

−1 (4.42) 

 

Then equations (4.40) and (4.41) becomes: 

 

ℎ1
𝑇𝐵𝑐ℎ2 = 0 (4.43) 

ℎ1
𝑇𝐵𝑐ℎ1 − ℎ2

𝑇𝐵𝑐ℎ2 = 0 (4.44) 

 

Furthermore, the matrix 𝐵𝑐 can be simplified to a vector using Cholesky 

decomposition. Cholesky decomposition says that a symmetric matrix 𝑀𝑠𝑦𝑚 can be 

decomposed into the following form: 

 

𝑀𝑠𝑦𝑚 = 𝑁𝑁
𝑇 (4.45) 

 

The matrix 𝐵𝑐 is also in the same form, so it is a symmetric matrix. 

 

𝐵𝑐 = 𝐴𝑐
−𝑇(𝐴𝑐

−𝑇)𝑇  = 𝐴𝑐
−𝑇𝐴𝑐

−1 (4.46) 
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A vector 𝑏𝑐 with six elements is constructed by using non-similar elements of the 

matrix 𝐵𝑐. 

 

𝐵𝑐 = [
𝐵11 𝐵12 𝐵13
𝐵12 𝐵22 𝐵23
𝐵13 𝐵23 𝐵33

] (4.47) 

𝑏𝑐 = [𝐵11, 𝐵12, 𝐵22, 𝐵13, 𝐵23, 𝐵33] (4.48) 

 

Corresponding terms in multiplication are also described as a vector 𝑣𝑖𝑗 where [43]: 

 

𝑣𝑖𝑗 = [ℎ𝑖1ℎ𝑗1, ℎ𝑖1ℎ𝑗2 + ℎ𝑖2ℎ𝑗1, ℎ𝑖2ℎ𝑗2, ℎ𝑖3ℎ𝑗1 + ℎ𝑖1ℎ𝑗3, ℎ𝑖3ℎ𝑗2 + ℎ𝑖2ℎ𝑗3, ℎ𝑖3ℎ𝑗3]
𝑇
 (4.49) 

Eq. (4.43) and Eq. (4.44) further simplified to: 

 

 

ℎ1
𝑇𝐵𝑐ℎ2 = 𝑣12

𝑇 𝑏𝑐 = 0 (4.50) 

ℎ1
𝑇𝐵𝑐ℎ1 − ℎ2

𝑇𝐵𝑐ℎ2 = (𝑣11 − 𝑣12)
𝑇𝑏𝑐 = 0 (4.51) 

[
𝑣12
𝑇

(𝑣11 − 𝑣22)𝑇
] 𝑏c = 𝑉𝑏𝑐 = 0 (4.52) 

 

As vector 𝑏𝑐 has six unknowns, there need to be six observations to solve the equation. 

Each taken pattern image contributes two observations to the equation. For this reason, 

there must have at least three images of the calibration pattern taken from different 

orientations. Because of errors, the multiplication result cannot be zero for four or 

more taken images; instead, equations are solved to find the minimum error for vector 

𝑏𝑐. The vector 𝑏𝑐 is found by singular value decomposition. Its equal to the right 

singular vector of 𝑉 corresponds to the smallest singular value. Once vector 𝑏𝑐 is 

found, camera parameters can be calculated as follows [43]: 

 

𝑐𝑦 =
𝐵12𝐵13 − 𝐵11𝐵23

𝐵11𝐵22 − 𝐵12
2  (4.53) 

𝜆 = 𝐵33 −
[𝐵13
2 + 𝑐𝑦(𝐵12𝐵13 − 𝐵11𝐵23)]

𝐵11
 (4.54) 

𝑓𝑥 = √
𝜆

𝐵11
 (4.55) 
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𝑓𝑦 = √
𝜆𝐵11

𝐵11𝐵22 − 𝐵12
2  (4.56) 

𝑐𝑥 =
𝑐𝑦

𝑓𝑦
−
𝐵13𝑓𝑥

2

𝜆
 (4.57) 

 

Errors stem from different reasons. The camera sensor is affected by Gaussian random 

noise; shifts occur due to alignment of the lens, and impurities on the lens surface cause 

distortion. Distortion has the most visible effect on the image. For this reason, many 

applications undistort the image before extracting information.  

 

Figure 14 Lens Distortion Types 

 

The distortion model is in the following form [43]: 

 

�̅� = �̆� + �̆�[𝑘1𝑟 + 𝑘2𝑟
2] (4.58) 

�̅� = �̆� + �̆�[𝑘1𝑟 + 𝑘2𝑟
2] (4.59) 

𝑟𝑝 = �̆�
2 + �̆�2 (4.60) 

 

Where �̆�, �̆� and 𝑟𝑝 are the normalized camera coordinates of the point and norm of 

pixel coordinates, respectively while �̅� and �̅� is the ideal distortion-free normalized 

image coordinates. 𝑘1 and 𝑘2 are the distortion coefficients. Previously estimated 

camera parameters are used to estimate the ideal pixel positions [43]. 

 

[
(𝑢 − 𝑐𝑥)𝑟 (𝑢 − 𝑐𝑥)𝑟2

(𝑣 − 𝑐𝑦)𝑟 (𝑣 − 𝑐𝑦)𝑟2
] [
𝑘1
𝑘2
] = [

�̂� − 𝑢
𝑣 − 𝑣

] (4.61) 

𝐷𝑘 = 𝑑 (4.62) 
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Where u and �̂� are ideal pixel position (not observable) and the observed pixel position 

of the point.  

 

Distortion coefficients are found from linear least square solution by the following 

form: 

 

𝑘 = (𝐷𝑇𝐷)−1𝐷𝑇𝑑 (4.63) 

 

Camera parameters and distortion coefficients can be further refined using non-linear 

minimization algorithms [43]. 

 

 

Figure 15 Distorted and undistorted images, respectively. 

 

4.3 Distance Measurement 

 

Detecting objects’ positions is necessary to understand the environment around the 

robot. According to object positions, the robot should effectively take actions like path 

planning and obstacle avoidance to achieve the given task. For a useable map of the 

environment, object positions must be measured accurately, or at least the drawn map 

should have some consistency between regions. There are several ways to measure the 

distance of tracked objects and further refine them. 
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4.3.1 Distance Measurement with Stereo Triangulation Method 

 

A depth equation can be found from the pinhole camera model for stereo systems. 

When the world frame is parallel and has the same origin as the camera, the rotation 

matrix becomes an identity matrix, and translations corresponding to x, y, and z-axis 

become zero. 

 

[
𝑢
𝑣
1
] = [

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3

] [

𝑋
𝑌
𝑍
1

] (4.64) 

[
𝑢
𝑣
1
] = [

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [
1 0 0 0
0 1 0 0
0 0 1 0

] [

𝑋
𝑌
𝑍
1

] (4.65) 

 

𝐷 = 𝑍 is the distance between the feature point and the camera. As stereo cameras are 

conditioned next to each other on the x-axis, depth can be computed using the distance 

between two cameras and the row of the camera matrix corresponding to the x-axis, 

which is the first row. 

 

[
𝑢
𝑣
1
] =  [

𝑓𝑥𝑋 + 𝑐𝑥𝐷
𝑓𝑦𝑌 + 𝑐𝑦𝐷

𝐷

] , 𝑢 =
𝑓𝑥𝑋

𝐷
+ 𝑐𝑥 (4.66) 

𝑢1 =
𝑓1𝑋1
𝐷
+ 𝑐1, 𝑢2 =

𝑓2𝑋2
𝐷
+ 𝑐2 (4.67) 

 

Where 𝑋𝑖 is the distance between the point and the corresponding camera on the x-

axis while 𝑓𝑖 and 𝑢𝑖 are the focal length and pixel coordinate in the horizontal axis, 

respectively. The distance between the point and the cameras can be found as follows 

[44]: 

(𝑢1 − 𝑐1)

𝑓1
=
𝑋1
𝐷
,

(𝑢2 − 𝑐2)

𝑓2
=
𝑋2
𝐷

 (4.68) 

𝑓2(𝑢1 − 𝑐1) − 𝑓1(𝑢2 − 𝑐2)

𝑓1𝑓2
=
𝑋1 − 𝑋2
𝐷

 (4.69) 

𝑏 = 𝑋1 − 𝑋2 (4.70) 
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𝐷 = (
𝑓2(𝑢1 − 𝑐1) − 𝑓1(𝑢2 − 𝑐2)

𝑓1𝑓2𝑏
)

−1

 (4.71) 

 

Where 𝑏 is the distance between two cameras.  

 

Figure 16 Stereo geometry [44]. 

 

4.3.2 Distance Measurement with Epipolar Geometry 

 

In the triangulation method, a physical distance constraint between stereo cameras is 

used. Simultaneously, epipolar geometry is based on view geometry where an epipolar 

plane intersects both image planes in line. For this reason, epipolar geometry can work 

on single-camera systems but up to a scale factor. Any point X in the world is seen by 

two cameras and noted as 𝑥 and 𝑥’ in the first and second camera, respectively. If an 

imaginary line is drawn from the first camera’s center to point X, this imaginary line 

is also seen as a second camera line. The line seen by the second camera is called an 

epipolar line. This situation is also the same for vice versa. If another imaginary line 

is drawn from the first camera’s center to the second camera’s center, this line 

intersects the first image plane at point 𝑒 and the second image plane at point 𝑒’. The 

line and intersection points are called baseline and epipole points, respectively [45]. 
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Figure 17 Epipolar geometry [45] 

 

Both 𝑥 and 𝑥’ are the projection of point 𝑋 and the transformation from 𝑥 to 𝑥’ can be 

described with a 2D homography 𝐻 where: 

 

𝑥’ = 𝐻𝑥 (4.72) 

 

To find the epipolar line, the geometric definition of a standard line can be used: 

 

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 (4.73) 

𝑙 = [
𝑎
𝑏
𝑐
] (4.74) 

 

The dot product of line 𝑙 and any point 𝑥 = [𝑥 𝑦 1]′ on line 𝑙 is zero, so they are 

orthogonal to each other. 

 

𝑥𝑇 . 𝑙 = [𝑥 𝑦 1] [
𝑎
𝑏
𝑐
] = 0 (4.75) 

 

This orthogonality is valid for both epipole 𝑒’ and point 𝑥’ on epipolar line 𝑙’. In other 

words, both epipole 𝑒’ and point 𝑥’ are orthogonal to epipolar line 𝑙’. 

 

𝑒′
𝑇
. 𝑙′ = 0 (4.76) 

𝑥′
𝑇
. 𝑙′ = 0 (4.77) 
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So, to find a line orthogonal to both point vectors, the cross product rule can be used. 

𝑒′ × 𝑥′ = 𝑙′ (4.78) 

 

Substituting Eq. (4.72), one can derive the epipolar line as: 

 

𝑒′ × 𝐻𝑥 = 𝑙′ (4.79) 

 

The term 𝑒′ × 𝐻 is called as 𝐹, fundamental matrix. 

 

𝐹𝑥 = 𝑙′ (4.80) 

 

The fundamental matrix describes a transformation from a 2D plane to a 1D line. When 

𝑙′ is substituted in Eq. (4.77), the fundamental matrix's basic features obtained [45]. 

 

𝑥′
𝑇
𝐹𝑥 = 0 (4.81) 

 

In Eq. (4.81), if normalized image coordinates are used, the transformation is described 

by an 𝐸, essential matrix instead of a fundamental matrix. 

 

𝐸 = [

𝑒𝑠1 𝑒𝑠2 𝑒𝑠3
𝑒𝑠4 𝑒𝑠5 𝑒𝑠6
𝑒𝑠7 𝑒𝑠8 𝑒𝑠9

] (4.82) 

 

In normalized camera coordinates, the transformation between cameras can be directly 

described with a rotation and a translation [45]. 

 

�̆�′ = 𝑅(�̆� − 𝑡) (4.83) 

𝐸 = [𝑡]×𝑅 (4.84) 

 

Where 𝑅 is a rotation matrix and [𝑡]𝑥 is the matrix representation of a translation vector 

cross product. This representation is a skew-symmetric matrix. Where: 

  

[𝑡]× = [
0 −𝑡3 𝑡2
𝑡3 0 −𝑡1
−𝑡2 𝑡1 0

] , 𝑡 = [

𝑡1
𝑡2
𝑡3

] (4.85) 
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�̆�′
𝑇
𝐸 �̆� = 0  (4.86) 

 

Where �̆� and �̆�′denote the normalized image coordinates of the pixels 𝑥 and 𝑥’, 

respectively. 

 

�̆� = [
�̆�
�̆�
1
] (4.87) 

�̆�′ = [
�̆�′
�̆�′
1

] (4.88) 

 

An essential matrix can be derived by simplification of Eq. (4.86) into vector 

multiplication. 

 

𝑒𝑠. �̃� = 0 (4.89) 

 

Where 𝑒𝑠 and �̃� are: 

  𝑒𝑠 =

[
 
 
 
 
 
 
 
 
𝑒𝑠1
𝑒𝑠2
𝑒𝑠3
𝑒𝑠4
𝑒𝑠5
𝑒𝑠6
𝑒𝑠7
𝑒𝑠8
𝑒𝑠9]
 
 
 
 
 
 
 
 

, �̃� =

[
 
 
 
 
 
 
 
 
�̆�′�̆�
�̆�′�̆�
�̆�′
�̆�′�̆�
�̆�′�̆�
�̆�′
�̆�
�̆�
1 ]
 
 
 
 
 
 
 
 

 (4.90) 

 

The vector 𝑒𝑠 has nine unknowns, but one is a scale, so there needs to be a minimum 

of eight points to solve for the essential vector using singular value decomposition 

[45]. 

 

𝑒𝑠𝑇�̃�𝑘 = 0, 𝑘 = 1…8,… , 𝑛 (4.91) 

 

The vector 𝑒𝑠 is the left singular vector of �̃�𝑘 matrix corresponding to the smallest 

singular value. Due to errors in the pixel coordinates, the resulting essential matrix 

does not satisfy a true essential matrix's constraints. As it is a multiplication of a 

rotation and a skew-symmetric matrix, the essential matrix must have skew-symmetric 
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properties. Any 3 × 3 skew-symmetric matrix has two equal singular values, and the 

last singular value is equal to zero. The third and smallest singular value is set to zero 

to estimate a better essential matrix [45]. 

 

𝐸
𝑠𝑣𝑑
⇔ 𝑈𝛴𝑉𝑇 (4.92) 

 

Symbol 𝛴 indicates the diagonal matrix of singular values while 𝑈 and 𝑉 are left and 

right singular vectors of essential matrix 𝐸. 

 

𝛴 = [
𝑠1 0 0
0 𝑠2 0
0 0 𝑠3

] , 𝑠1 > 𝑠2 > 𝑠3 (4.93) 

�̂� = [
𝑠1 0 0
0 𝑠2 0
0 0 0

] (4.94) 

�̂� = 𝑈�̂�𝑉𝑇 (4.95) 

 

After the new essential matrix is computed, rotation and translation values are found 

by applying singular value decomposition on this new essential matrix. 

 

�̂�
𝑠𝑣𝑑
⇔ �̂��̂�′�̂�𝑇 (4.96) 

 

Where �̂�, �̂�′, �̂� are singular value decomposition components of the newly estimated 

essential matrix, �̂�. 

 

To find rotation and translation, an orthogonal and skew-symmetric matrix, 𝑊 is 

constructed. 

 

𝑊 = [
0 −1 0
1 0 0
0 0 1

]  

(4.97) 

 

First, an educated guess is made to derive rotation and translation using 𝑊 matrix, and 

then it is proven to be true. 
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[𝑡]× = �̂� 𝑊�̂�
′�̂�𝑇 (4.98) 

𝑅 = �̂�𝑊−1�̂�𝑇 (4.99) 

 

When equations (4.98) and (4.99) are substituted in Eq. (4.84), the result is equal to an 

essential matrix. So, these equations are proven to be correct. 

 

[𝑡]×𝑅 = �̂� 𝑊�̂�
′�̂�𝑇 �̂�𝑊−1�̂�𝑇 = �̂��̂�′�̂�𝑇 = 𝐸 (4.100) 

 

Taking the inverse of 𝑊 and 𝑊−1 terms in Eq. (4.98) and Eq. (4.99) also satisfy Eq. 

(4.100). 

 

[𝑡]×2 = �̂� 𝑊
−1�̂�′�̂�𝑇 (4.101) 

𝑅2 = �̂�𝑊�̂�
𝑇 (4.102) 

 

For this reason, there are four possible solutions to find orientation between camera 

frames. Although there are four solutions, three of them are imaginary, and only one 

is real. To find the real solution, points are projected according to four orientation 

solutions; in three solutions, projected points are behind the first or second camera. 

One solution will give the correct position of the points where they are in front of both 

cameras. In other words, only one solution gives points that are seen by both cameras. 

Due to errors, it is advised to derive the translation vector using singular value 

decomposition [45]. 

 

[𝑡]×𝑅𝑡 = 𝐸𝑡 = 0 (4.103) 

 

Translation vector 𝑡  is equal to the right singular vector of in �̂�𝑇 which corresponds 

to the smallest singular value. Inversing 𝑊 in Eq. (4.98) only changes the sign of the 

translation vector. For this reason, 𝑡2 = −𝑡 equation can be used to find four possible 

solutions [41]. Detected points can be projected as follows [46]: 

 

�̆�′ =
𝑋′

𝑍′
=
𝑟1(𝑃 − 𝑡)

𝑟3(𝑃 − 𝑡)
 (4.104) 
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Where 𝑃 = [𝑋, 𝑌, 𝑍]𝑇 and 𝑃′ = [𝑋′, 𝑌′, 𝑍′]𝑇 are world coordinates of a point 𝑃 respect 

to the first and second camera, respectively. P vector is normalized by dividing to 𝑍, 

to simplify the equation.   

 

�̆�′ =
𝑋′

𝑍′
=
𝑟1 (�̆� −

𝑡
𝑍)

𝑟3(�̆� −
𝑡
𝑍)

 (4.105) 

 

Then equation is solved for 𝑍 

 

𝑍 =
(𝑟1 − �̆�

′𝑟3)𝑡

(𝑟1 − �̆�′𝑟3)�̆�
 (4.106) 

 

After 𝑍 is found, X and Y coordinates of the point 𝑃 can be computed as 

 

[
𝑋
𝑌
] = 𝑍�̆� (4.107) 

 

The vector 𝑃 can also be found by using �̆�′ and 𝑟2 instead of �̆�′ and 𝑟1 respectively 

[46]. 

 

4.3.3 Stereo Rectification and Disparity Calculation 

 

Rectification is transforming image planes so that they become parallel to each other. 

In other words, epipolar lines in each image become parallel. Rectification helps to 

simplify the data association problem from 2D to 1D. After rectification, detected 

points in the first camera will be observed in the same row in the second camera. For 

image planes to become parallel, they must share the same x-axis. The baseline that 

intersects both image planes can be used as a common x-axis. The vector in the 

baseline direction is the translation vector between cameras that are calculated before 

in Eq. (4.98) or Eq. (4.101) [47]. 

 

𝑟𝑟𝑒𝑐𝑡1 =
𝑡

‖𝑡‖
 

 

(4.108) 

 



50 
 

The only thing known about the new y-axis is it is orthogonal to the new x-axis 𝑟𝑟𝑒𝑐𝑡1 . 

An orthogonal vector can be found by the cross product of the new x-axis and old z-

axis then normalized. Due to anticommutativity, the cross product 𝑖 × 𝑘 = −𝑗   

 

−𝑟𝑟𝑒𝑐𝑡2 = 𝑟𝑟𝑒𝑐𝑡1 × [0 0 1]
𝑇 = [𝑡2 −𝑡10]

𝑇 (4.109) 

𝑟𝑟𝑒𝑐𝑡2 𝑛𝑜𝑟𝑚
⇒   

1

√𝑡1
2 + 𝑡2

2
[−𝑡2 𝑡10]

𝑇  

(4.110) 

 

The new z-axis is the cross product of two new axes 𝑟𝑟𝑒𝑐𝑡1 and 𝑟𝑟𝑒𝑐𝑡2. 

 

𝑟𝑟𝑒𝑐𝑡3 = 𝑟𝑟𝑒𝑐𝑡1 × 𝑟𝑟𝑒𝑐𝑡2 (4.111) 

 

Rectification transformation can be represented as a matrix 𝑅𝑟𝑒𝑐𝑡. 

 

𝑅𝑟𝑒𝑐𝑡 = [

𝑟𝑟𝑒𝑐𝑡1
𝑟𝑟𝑒𝑐𝑡2
𝑟𝑟𝑒𝑐𝑡3

] (4.112) 

𝑅𝑙𝑟𝑒𝑐𝑡 = 𝐴𝑅𝑟𝑒𝑐𝑡𝐴
−1 (4.113) 

𝑅𝑟𝑟𝑒𝑐𝑡 = 𝐴𝑅𝑟𝑒𝑐𝑡𝑅
−1𝐴−1 (4.114) 

�̌� = [
�̌�
𝑣
1
] = 𝑅𝑙𝑟𝑒𝑐𝑡𝑥 (4.115) 

�̌�′ = [
�̌�′
𝑣′
1

] = 𝑅𝑟𝑟𝑒𝑐𝑡𝑥
′ (4.116) 

 

Where �̌� and �̌�′ are new rectified pixel coordinates and 𝑣, 𝑣′ are equal to each other. 

For this reason, it is enough to search pixel correspondence only in rows of the images 

[47]. 

 

After images are rectified, a disparity map can easily be computed by using brute force 

matching. This computation can be performed via block-matching algorithm using the 

sum of absolute differences (SAD), mean absolute difference (MAD), or mean squared 

error (MSE) as a cost function. Block matching uses two small kernels sized 𝑆 × 𝑆. 

One is for the reference image, and the second one is for searching for the best fit in 
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the other image. The kernels are centered at pixels to be compared. The sum of 

intensity differences of corresponding pixels in both kernels is computed and stored. 

The previous operation repeats until the kernel in the second image scans the entire 

search region. Stored sums of intensity differences are compared, and the one that 

satisfies the cost function best is chosen. The commonly used cost functions are as 

follows [48]: 

 

𝑆𝐴𝐷 =∑∑|𝑝𝑙𝑖𝑗 − 𝑝𝑟𝑖𝑗|

𝑆−1

𝑗=0

𝑆−1

𝑖=0

 (4.117) 

𝑀𝐴𝐷 =
1

𝑆2
∑∑|𝑝𝑙𝑖𝑗 − 𝑝𝑟𝑖𝑗|

𝑆−1

𝑗=0

𝑆−1

𝑖=0

 (4.118) 

𝑀𝑆𝐸 =
1

𝑆2
∑∑(𝑝𝑙𝑖𝑗 − 𝑝𝑟𝑖𝑗)

2
𝑆−1

𝑗=0

𝑆−1

𝑖=0

 (4.119) 

 

The kernel size is important, according to [48]. If kernel size is chosen too small, it 

causes a poor-quality disparity map. Since there is not enough information, it is 

susceptible to noise. On the other hand, if kernel size is too big, it causes blurred 

regions around the edges. The bigger the kernel area is, the more edges it can contain. 

Edges can be defined as rapid changes in pixel intensities. These rapid intensity 

changes alter the result and lead to wrong pixel matching, as the disparity is affected 

by all the pixels in the kernel. This phenomenon is called the fattening effect. There 

are different techniques to decrease the fattening effect, such as semi-global matching 

and multi-block matching, which use global cost function and multiple kernels, 

respectively. Comparing every pixel in one image to every pixel in another image is 

computationally intensive. There are different ways to minimize the search area and 

decrease the computation time. Rectangular, diamond, and hexagonal shape searching 

patterns have been developed [49]. The one having a better accuracy of them is 

diamond search. It consists of two diamond shapes; one is large, and the other one is 

small. Block cost function is computed for each point of diamond shape. The center of 

the diamond shape is shifted towards the point with minimum cost. This step is 

repeated until the center point has the minimum cost function. Then at the last step, 

block cost functions are computed in the form of a small diamond shape around the 
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found center point. The point with the minimum cost function is chosen as the final 

best match [50]. 

 

          

Figure 18 Diamond search [50] 
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CHAPTER V 

 

EXPERIMENTS AND RESULTS 

 

 

5.1 Hardware Setup 

 

Our study investigates how theoretical information performs in the real world with the 

infrastructure we have created. Below, an unmanned ground vehicle used in this study 

was described. As a differential drive model was adopted, the vehicle has two wheels 

with a diameter of 80 mm, and a caster wheel of 12.7 mm diameter. Wheels were 

mounted on two brushed DC motors, and encoders were attached to each motor shaft 

to read the motor speed. L298 motor driver was used to control the speed of both 

motors via PWM. Raspberry Pi 4B, an ARM processor, was used to program the 

vehicle. Two 3A Li-Po power banks were used as 5V voltage sources, one for the 

processor and the other for motors. USB camera is mounted on the robot frame to 

observe the environment. Lastly, an LCD screen was connected for monitoring the 

output and debugging problems quickly. 

 

 

Figure 19 Design autonomous mobile robot 
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5.2 Software Setup 

 

Raspberry Pi OS 64-bit version was installed as a main operating system to use all 

8GB system memory. Pi OS was chosen because it is designed and optimized better 

for ARM processors and Pi hardware. Python 3 programming language and an open-

source library called OpenCV (version 4.5.0) were used for image processing tasks. 

 

5.3 Camera Calibration 

 

In this section, a camera calibration procedure has been performed to find intrinsic and 

extrinsic parameters. When corner points are detected, it is assumed that the points are 

on a plane. However, in real life, no surface is smooth enough to be considered a plane 

and causes error in calibration. Besides, adhesives and tapes create air bubbles under 

the checkerboard paper, which increases error. For this reason, the checkerboard 

pattern was placed between the dark chipboard and window glass. The camera 

resolution was set to 640x480, and images were taken with the camera from nine 

different positions. 

 

 

Figure 20 Checkerboard pattern setup 

 

Harris corner detector explained in chapter 4 was used to find corner points. Harris 

detector gives better results than the FAST detector as it directly finds the intersection 

of edges. The corner points found from the images were used to estimate the camera 
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parameters with homography (Figure 21). As a result of this technique, the camera was 

calibrated with sub-pixel accuracy where the mean pixel re-projection error was less 

than 0.05. 

 

 

Figure 21 Detected corner points in camera calibration 

 

 

Figure 22 Calibration error 

 

5.4 Bag of Words Construction 

 

A small bag of words was generated using randomly taken images of the home instance 

to detect previously passed areas. A total of 2600 detected FAST corners were used 

over five images, and BRIEF descriptors were extracted around each detected corner. 

Using the K-medoids algorithm, BRIEF descriptors were classified under ten groups. 
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Then descriptors in each group were also classified under ten groups. A total of 100 

groups were created. The reason for creating layers of groups is decreasing the 

comparison amount. Instead of comparing all the descriptors of detected corners with 

100 words, only 20 comparisons will be made. Ten comparisons in the first layer and 

ten comparisons in the second layer. If there were a bag with a million words having 

six layers, instead of a million comparisons, only 60 comparisons would be made. 

Related code is given in Appendix B. 

 

Figure 23 Layers created using k-medoid clustering 

 

   

Figure 24 Images used to construct bag of words. 

 

5.5 Experiment Overview 

 

Due to Covid-19, experiments were conducted in a home instance with different 

furniture. FAST corner detection and BRIEF descriptor extraction are used for motion 

tracking. Orientation and translation of the robot were computed using epipolar 

geometry. 5-point essential matrix algorithm gave poor results; thus, the 8-point 

fundamental matrix algorithm was used in Eq. (4.91).  
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Figure 25 Detected FAST corners. 

 

Epipolar constraint was set to 1, and matched points were cleaned from outliers using 

RANSAC. In other words, points having more than 1-pixel error were discarded. The 

essential matrix was computed from the resulting fundamental matrix using camera 

parameters determined in the camera calibration part. 

 

𝐸 = 𝐾𝑇𝐹𝐾 (5.1) 

 

Where 𝐸 and 𝐹 are essential matrix and fundamental matrix, respectively, while 𝐾 is 

the camera matrix, the essential matrix was used to find the rotation and translation of 

the robot. Yet, translation is computed only up to a scale. For this reason, robot motion 

was assumed as a constant velocity model.  

 

 

Figure 26 Matched inlier points between frames 
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2D pose-graph optimization model was used to close detected loops. It is based on the 

nonlinear least square explained in Chapter 3. Frames are represented as nodes, while 

observations are represented as edges in the graph. Detected loops are also new 

observations and create a dependency between nodes. Weight is associated with each 

edge showing how reliable the observation is. The system was solved by minimizing 

the following error function [23]: 

 

𝑒 = 𝑅𝑖𝑗(𝑅𝑖(𝑡𝑗 − 𝑡𝑖) − 𝑡𝑖𝑗) (5.2) 

 

𝑡𝑖 and 𝑡𝑗 are robot poses at steps 𝑖 and 𝑗. 𝑅𝑖 is the heading angle of the robot at step 𝑖 

while 𝑅𝑖𝑗 and 𝑡𝑖𝑗 are measurements of rotation and translation between steps 𝑖 and 𝑗, 

respectively. For weights, the inverse of the covariance matrix was used. If a 

measurement is predicted to be wrong, associated weight can be decreased further. 

Loops were detected between frames having a similarity of more than 85%. As 

explained in Chapter 3, the similarity score was computed using the constructed bag 

of words model. 

  

 

5.6 Experiment Platform 

 

The robot was programmed to move in a square to make it easier to measure the ground 

truth. First, both motor speeds were set to 20 RPM manually by using PWM clock 

cycles. The required time was computed to perform a 90-degree turn using Eq. (2.24) 

in Chapter 2. Ground velocities of the wheels were computed using the wheels’ 

perimeter, which is 25.1327 cm.  

 

 

 

 

  



59 
 

  

  
 

Figure 27 Constructed robot environment 

 

As shown in Figure 27, an environment was constructed by multiple boards attached 

with printed images to test the robot’s performance. A board marker was placed on the 

robot to mark its route (Figure 28). It is impossible to detect all the measurements 

corresponding to points on the robot path. Therefore, the corners of the rectangular 

path were chosen as ground truth points, and their coordinates were measured 

manually. 

 

 

Figure 28 Path drawn by the mobile robot 
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Figure 29 Corners used for the ground truth estimation 

 

   

Figure 30 Measured ground truth in cm. 

 

The camera data was taken every 0.1 seconds, but translation between camera frames 

was not enough to measure mobile robot movement, as robot speed was slow. For this 

reason, frames were processed every 1 second. As mentioned before, the translation in 

each step is computed up to a scale; therefore, robot movement was assumed as a 

constant velocity, and scale factors were set as one unit. Unfortunately, raspberry pi 

was not powerful enough to perform image processing in real-time, so images are 

processed offline. The computed robot path is given in Figure 31 and compared with 

another SLAM algorithm called SURF-SLAM in Figure 32 [51]  
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Figure 31 Computed robot path by monocular visual odometry 

 

 

Figure 32 Mobile robot path computed by SURF-SLAM 

  

As seen from Figures 31 and 32, mobile robot paths are similar and rectangular due to 

scale ambiguity. Nevertheless, computed translation vectors are not accurate due to 

wrong matches during feature matching. In addition, the constructed environment 

consists of planar surfaces, which causes degeneration. Degeneracy refers to the 

existence of multiple solutions that satisfy a system of equations. In epipolar geometry, 

this means that multiple fundamental matrices are satisfying the epipolar constraints 

[52]  
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The robot path was also computed by using encoder readings to solve the scale 

ambiguity. Firstly, the error model of the mobile robot was decided. As mentioned in 

Chapter 2, the differential vehicle model has special cases. Different equations are 

required to compute the mobile robot's movement while it is rotating and moving 

straight. To bypass this problem, the dead reckoning model was used as in Eq. (2.30). 

The mobile robot’s rotation and velocity were computed using Eq. (2.24) and 

averaging left and right wheel velocities, respectively. Data from the encoder was also 

taken every 0.1 seconds to synchronize the encoder with the camera. Since raspberry 

pi was not powerful enough to read data from the camera and encoder simultaneously, 

related code was written by using multiprocessing, and camera outputs were taken in 

compressed MJPEG format instead of raw YUYV format. The robot path computed 

by encoder readings is given in Figure 33. The measured ground truth corners and the 

encoder readings corresponding to the corners were compared, and RMSE was 

calculated as 3.1433 cm by following equation where 𝑥 and �̂� represent ground truth 

and encoder corner values, respectively: 

 

𝑅𝑀𝑆𝐸(�̂�) = √
∑ (𝑥𝑡 − �̂�𝑡)2
𝑡=𝑛
𝑡=1

𝑛
 (5.3) 

 

 

Figure 33 Computed robot path by the encoder. 

 

Sensor noises are commonly assumed as Gaussian noise. Data taken from both 

encoders were tested to determine the noise model, and encoder noise was found in 

Gaussian distribution, as shown in Figure 34. The mean and standard deviation of both 
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encoders were almost equal and computed as 19.9752 RPM and 1.1440 RPM, 

respectively. 

 

Figure 34 Encoder noise fit in Gaussian model 

 

The Gaussian noise in both encoders causes the uncertainty in the mobile robot’s pose 

to increase gradually as the mobile robot moves. This uncertainty can be found with 

the MMSE estimator, as explained in Chapter 3, Eq. (3.15). Since the dead reckoning 

model is nonlinear, the system must be linearized using Taylor series expansion. This 

expansion can be done by taking partial derivatives with respect to each state variable. 

In addition, inputs to the system are velocities in x, y-axis, and change in rotation, a 

3D vector. However, the state vector is a 3D vector consisting of a mobile robot’s pose 

in x, y-axis, and heading angle. In such a case, noise in the input is a multiplicative 

noise and can be propagated by taking partial derivatives with respect to each input 

variable. Gradually increasing uncertainty in robot pose can be computed as follows: 

 

𝐽𝑠 = [

1 0 −𝑉𝑥 sin(𝜃) − 𝑉𝑦cos (𝜃)

0 1 𝑉𝑥 cos(𝜃) − 𝑉𝑦sin (𝜃)

0 0 1

] (5.4) 

 

𝐽𝑖 = [
cos (𝜃) −sin (𝜃) 0
sin (𝜃) cos (𝜃) 0
0 0 1

] 

 

(5.5) 

 

𝑃𝑡 = 𝐽𝑠𝑃𝑡−1𝐽𝑠
𝑇 + 𝐽𝑖𝑄𝐽𝑖

𝑇 
(5.6) 
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Where 𝐽𝑠 and 𝐽𝑖 are the Jacobian matrices of state and input, respectively while 𝑃𝑡 and 

𝑄 are the uncertainties or covariance matrices of the mobile robot pose at step 𝑡 and 

encoder, respectively. The uncertainty in the robot pose can be visualized by 

covariance ellipses computed from the covariance matrix 𝑃𝑡. The size and orientation 

of the ellipses are related to Eigenvalues and Eigenvectors of covariance matrix 𝑃 

respectively. The covariance ellipses can be drawn by the following equation [19]: 

 

𝑥 = 𝑉√𝐷𝑦 (5.7) 

 

Where 𝑉 and 𝐷 are Eigenvector and Eigenvalues of covariance matrix 𝑃 respectively 

while 𝑥 and 𝑦 are coordinates of points on ellipse and unit circle respectively, drawing 

the covariance ellipses is important to understand how error propagates during 

localization. Ellipses represent the errors in the system proportionally. The covariance 

ellipses of the mobile robot’s pose are shown in Figure 35. 

 

Figure 35 The size of covariance ellipses as mobile robot moves. 

 

The translation vectors computed from corresponding fundamental matrices are 

normalized so that their Euclidean norm is one. To find the scale factors, translation 

vectors were multiplied by the corresponding velocity values computed from encoder 

readings. The resulting mobile robot path is given in Figure 36. As seen in Figure 36, 

due to noise and degeneracy, projected point locations are also not accurate. In 

addition, the camera field of view is only 60 degrees and can only detect points in front 

of it.  
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Figure 36 Mobile robot path and detected points in the corrected scale. 

 

The mobile robot’s position drifts as it moves due to noise in measurements. To 

decrease the drift, the loop closure technique was used in the form of a 2D graph-

SLAM. Loop was closed by using the error function in Eq. (5.2). To minimize the 

error function, GNA was performed. To linearize the non-linear error function, partial 

derivatives were taken with respect to the mobile robot’s states. Jacobian matrices 

were computed as follows [23]: 

 

𝐴𝑖𝑗 = [
−𝑅𝑖𝑗

𝑇𝑅𝑖
𝑇 𝑅𝑖𝑗

𝑇
𝜕𝑅𝑖

𝑇

𝜕𝜃𝑖
(𝑡𝑗 − 𝑡𝑖)

0𝑇 −1

] (5.8) 

𝐵𝑖𝑗 = [
𝑅𝑖𝑗
𝑇𝑅𝑖

𝑇 0

0𝑇 1
] (5.9) 

𝐽𝑖𝑗 = (0…0 𝐴𝑖𝑗⏟
𝑠𝑡𝑒𝑝 𝑖

 0…0 𝐵𝑖𝑗⏟
𝑠𝑡𝑒𝑝 𝑗

 0…0) (5.10) 

 

Errors in the mobile robot’s positions were minimized using Eq. (3.41) and a weighting 

factor. The inverse of covariance matrix in Eq. (5.6) was used as the weighting factor. 

For camera covariance matrix, an identity matrix was used since camera noise model 

is unknown. The final form of the equation is as follows: 
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∆𝑥 =∑(𝐽𝑖𝑗
𝑇𝑃𝑖

−1𝐽𝑖𝑗)
−1

𝑖,𝑗

𝐽𝑖𝑗
𝑇𝑃𝑖

−1𝑒𝑖𝑗 (5.11) 

Mobile robot path before and after loop closing is given in Figure 37. Before and after 

loop closing, the RMSEs of mobile robot path were computed 10.3323 cm and 4.8011 

cm, respectively. 

 

Figure 37 Robot path before and after loop closing 
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CHAPTER VI 

CONCLUSION 

 

 

This thesis aims to design and implement a VSLAM algorithm for autonomous 

navigation of a mobile robot. According to the theoretical information given in thesis, 

a VSLAM algorithm was designed and implemented. The algorithm was tested in real-

world conditions. To perform the test, an autonomous vehicle was constructed. The 

robot was made to follow a specific path with a control input, and the environment was 

mapped.  

 

Differential drive model was chosen for the mobile robot model. Information from the 

environment was taken from a monocular camera. Camera was calibrated using 

checkerboard pattern with nine images taken from different locations and orientations. 

Bag of words model was chosen to detect similar places since it is fast and easy to 

train. Information from the images was extracted using FAST corner and BRIEF 

descriptors algorithms. Since BRIEF descriptors are binary data, they were classified 

under 100 groups using K-medoid (PAM) algorithm. By the nature of the algorithm, 

due to local searches algorithm could not converge to global minimum. For this reason, 

algorithm was run several times and best solution was chosen. Images having 

similarity score higher than 85% were chosen as loop closure candidates.  

 

Rotation and translation between consecutive images were computed using epipolar 

geometry. 8-point algorithm was chosen to solve epipolar constraints. Wrong matches 

(outliers) were removed using RANSAC method. By nature of epipolar geometry, 

there are degeneracy cases. RANSAC method cannot eliminate outliers in degeneracy 

cases. The poor translation computed from visual odometry in the experiments were 

caused by the planar surfaces used in the construction of the platform. The 

implemented algorithm was compared with another VSLAM algorithm called SURF-

SLAM. Translation result was also similar to the result of thesis experiment due to 
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degeneracy. Detected loops were closed by 2D pose graph optimization. Gauss-

Newton algorithm was chosen since it converged faster. Mobile robot path before and 

after loop closing were compared with the ground truth. The accuracy of the loop 

closure was detected to be higher than visual odometry.  

 

As understood from the experiments, it is important to detect similar places. Because 

of sensor noise, the uncertainty of robot pose gradually increases without bound. As 

the map gets bigger, the accumulated error also gets bigger and resulting map becomes 

very different from the actual map. To reduce the drift and construct a consistent map, 

loop closure techniques are very important. The loop closure performance is directly 

dependent to loop detection algorithm. If loops cannot be detected or mismatched, the 

map quality will be poor. In other words, without a proper loop detection algorithm, a 

VSLAM algorithm cannot work efficiently. On the other hand, the accuracy of 

consecutive measurements are also very important. The detection of degeneracy cases 

in epipolar geometry and using different techniques in such cases can greatly increase 

the accuracy of the resulting map. 
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APPENDIX A 

 

Materials Used in the Experiment 

 

 

Figure 38 Brushed DC motor 

 

Operating Voltage: 6v; Min. Current: 70mA; Max. Load Current: 1.6A; Stall Torque: 

4kg/cm; Max. Speed: 100rpm; Weight: 9.5g; Gear Ratio: 298/1; In our project, two 

previously shown motors are used to drive and rotate the vehicle. 

 

 

Figure 39 L298 motor driver. 

 

Operating Voltage: 4.8-24V; Output Voltage: 5V; Motor Channels: 2; Current per 

Channel: 2A; Motor driver is used to controlling the speed of the motors and their 

rotation direction. 
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Figure 40 Wheels 

 

Diameter: 80mm; Width: 10mm; Weight: 20g; Shaft Diameter: 3mm. wheels are 

surrounded by plastic material 

 

 

Figure 41 Caster wheel 

 

Wheel Diameter: 12.7mm; Total Width: 20.3mm; Weight: 9g 
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Figure 42 IPS LCD capacitive touch screen 

 

Resolution: 800x480; Interface: HDMI 

 

 

Figure 43 Raspberry Pi 4 8GB - model B 

 

Raspberry Pi 4 is a small DIY computer with 28nm based 1.5G Quad-Core CPU and 

8Gb DRR4 RAM. Raspberry Pi 4 features 4K Micro HDMI, USB 3.0, BLE Bluetooth 

5.0, dual-band 2.4 / 5.0 GHz Wireless LAN to achieve PC-like capabilities USB-C 

power input, and True Gigabit Ethernet compatible with PoE. The main aspect of 

Raspberry Pi 4 is better performance; It has a 1.5 GHz Quad-Core ARM Cortex-A72 

CPU with better VideoCoreVI Graphics. The Pi 4 can display a 4K 60fps HEVC video 

via a Micro-HDMI port and simultaneously connect to two 4K displays with only a 30 

frame per second refresh rate. There are 1000Mbps True Gigabit Ethernet and four 

USB ports, but two are USB 3.0 ports with ten times the USB 2.0 transfer speed. 
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Additionally, the Raspberry Pi 4 uses a new 5V / 3A power supply and connects via a 

USB Type C port, which has better endurance and can work on both sides. 

 

 

Figure 44 Xiaomi 20000 mAh Powerbank 3 Pro. 

 

Voltage: 5.1 Volts; Max. Watt: 45 watts; Battery Capacity: 20000 Milliamp Hours; 

Number of Ports: 3; Product Dimensions: 15 x 7.35 x 3 cm; 400 g 

 

 

Figure 45 4 mm 24 cm x 35 cm transparent plexi mica plexi. 

 

It is a kind of plastic that is crystal clear, compatible with all environments, easily 

shaped with heat, and available in colored and colorless varieties. Plexi, which we can 

also call plastic glass, is a remarkable and useful material in aesthetics. Plexi, which is 

lighter than glass, is even more durable. Plexi, which is preferred because it adapts 
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easily with many materials, gives a sense of spaciousness and spaciousness due to its 

transparency. 

 

 

Figure 46 Magnetic Encoders 

 

6-pole magnetic disks and TLE4946-2K hall effect sensors. Operating Voltage: 2.7-

24V; Rise and Fall Time: 1μs; Switching Frequency: 15 kHz 

 

 

Figure 47 Logitech C270 720p webcam. 

 

Technical specifications: Max Resolution: 720p/30fps; Focus type: fixed focus; Lens 

technology: standard; Built-in mic: mono; FoV: 60°; Cable length: 1.5 m. 
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Figure 48 Soldering iron, solder wire, flux pasta solder, and jumper wire. 
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APPENDIX B 

 

DC Motor Control 

 

1. import RPi.GPIO as GPIO   
2. import time   
3.    
4. GPIO.setmode(GPIO.BCM)   
5. GPIO.setwarnings(False)   
6. c=17   
7. pin27=27   
8. en=22   
9. inr=23   
10. inrr=24   
11. inl=13   
12. inll=19   
13. en2=26   
14. GPIO.setup(c, GPIO.IN)   
15. GPIO.setup(pin27, GPIO.IN)   
16.    
17. GPIO.setup(inr, GPIO.OUT)   
18. GPIO.output(inr,GPIO.LOW)   
19. GPIO.setup(inrr, GPIO.OUT)   
20. GPIO.output(inrr,GPIO.LOW)   
21. ####   
22. GPIO.setup(inl, GPIO.OUT)   
23. GPIO.output(inl,GPIO.LOW)   
24. GPIO.setup(inll, GPIO.OUT)   
25. GPIO.output(inll,GPIO.LOW)   
26.    
27. GPIO.setup(en, GPIO.OUT)   
28. l=GPIO.PWM(en,1000)   
29. l.start(100)   
30. ####   
31. GPIO.setup(en2, GPIO.OUT)   
32. l2=GPIO.PWM(en2,1000)   
33. l2.start(100)   
34.    
35. b=GPIO.input(c)   
36. p=GPIO.input(pin27)   
37. Time1=time.process_time()   
38. count=0   
39. count2=0   
40. kp=0.85   
41. kp2=kp   
42. ki=0.01   
43. ki2=ki   
44. kd=0.11   
45. kd2=kd   
46. wrpm=30  
47. wrpm2=30   
48. wlc=100   
49. wlc2=wlc   
50. ep=0   
51. ep2=0   
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52. inte=0   
53. inte2=0   
54. while 2>1:   
55.     
56.  bb=GPIO.input(c)   
57.  pp=GPIO.input(pin27)   
58.     
59.  if(bb!=b):   
60.   count=count+1   
61.   ####   
62.  if(pp!=p):   
63.   count2=count2+1   
64.      
65.  Time2=time.process_time()   
66.  if((Time2-Time1)>0.1):   
67.   e=wrpm-count/1788*60*10   
68.   inte=inte+(e+ep)/2*0.1   
69.   dtv=kp*e+kd*(e-ep)/0.1+ki*inte   
70.   ep=e   
71.   ####   
72.   e2=wrpm2-count2/1788*60*10   
73.   inte2=inte2+(e2+ep2)/2*0.1   
74.   dtv2=kp2*e2+kd2*(e2-ep2)/0.1+ki2*inte2   
75.   ep2=e2   
76.   ####   
77.   if(wlc+dtv)>100:   
78.    dtv=dtv-(wlc+dtv-100)   
79.     
80.   if(wlc+dtv)<10:   
81.    dtv=dtv-(wlc+dtv-10)   
82.    ####   
83.   if(wlc2+dtv2)>100:   
84.    dtv2=dtv2-(wlc2+dtv2-100)   
85.     
86.   if(wlc2+dtv2)<10:   
87.    dtv2=dtv2-(wlc2+dtv2-10)   
88.      
89.   wlc=wlc+dtv   
90.   l.start(wlc)   
91.   ####   
92.   wlc2=wlc2+dtv2   
93.   l2.start(wlc2)   
94.      
95.      
96.   print(count/1788*60*10)   
97.   print(" ")   
98.   print(count2/1788*60*10)   
99.   count=0   
100.   count2=0   
101.   Time1=Time2   
102.  b=bb   
103.  p=pp   

 

 

K-Medoid 

 

1. import cv2   
2. import numpy as np   
3. from random import seed   
4. from random import choice   
5. #import cPickle   
6. index=[]   
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7. lst=[]   
8. lst2=[]   
9. lst3=[]   
10. m=[]   
11. m2=[]   
12. t=[]   
13. t2=[]   
14. mm=[]   
15. mm2=[]   
16. lyr2=[]   
17. tgroup=[0,0,0,0,0,0,0,0,0,0,0]   
18. group=[0,0,0,0,0,0,0,0,0,0]   
19. group2=[0,0,0,0,0,0,0,0,0,0]   
20. group3=[0,0,0,0,0]   
21. im1=cv2.imread("opencv_frame_0.png")   
22. im2=cv2.imread("opencv_frame_1.png")   
23. im3=cv2.imread("opencv_frame_2.png")   
24. im4=cv2.imread("opencv_frame_3.png")   
25. im5=cv2.imread("opencv_frame_4.png")   
26. gr1=cv2.cvtColor(im1,cv2.COLOR_BGR2GRAY)   
27. gr2=cv2.cvtColor(im2,cv2.COLOR_BGR2GRAY)   
28. gr3=cv2.cvtColor(im3,cv2.COLOR_BGR2GRAY)   
29. gr4=cv2.cvtColor(im4,cv2.COLOR_BGR2GRAY)   
30. gr5=cv2.cvtColor(im5,cv2.COLOR_BGR2GRAY)   
31.    
32. fast = cv2.FastFeatureDetector_create()   
33. brief = cv2.xfeatures2d.BriefDescriptorExtractor_create()   
34. bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)   
35. kp1=fast.detect(gr1)   
36. kp2=fast.detect(gr2)   
37. kp3=fast.detect(gr3)   
38. kp4=fast.detect(gr4)   
39. kp5=fast.detect(gr5)   
40. cr1, des1=brief.compute(gr1,kp1)   
41. cr2, des2=brief.compute(gr2,kp2)   
42. cr3, des3=brief.compute(gr3,kp3)   
43. cr4, des4=brief.compute(gr4,kp4)   
44. cr5, des5=brief.compute(gr5,kp5)   
45. for point in des1:   
46.     #temp = (point.pt[0], point.pt[1], point.size, point.angle, poin

t.response, point.octave,    
47.         #point.class_id)    
48.     #index.append(temp)   
49.     lst.append(point)   
50. for point in des2:   
51.     lst.append(point)   
52. for point in des3:   
53.     lst.append(point)   
54. for point in des4:   
55.     lst.append(point)   
56. for point in des5:   
57.     lst.append(point)   
58. arr = np.array(lst)   
59. tt=0   
60. tt2=0   
61. for x in range(10):   
62.     #print(x)   
63.     med=choice(arr)   
64.     m.append(med)   
65. n=np.array(m)   
66. nn=n   
67. while(True):   
68.        
69.  for z in range(10):   
70.   print(group)      
71.   group=[0,0,0,0,0,0,0,0,0,0]     



83 
 

72.   for x in range(len(arr)):   
73.    matches = bf.match(arr[x:x+1],n)   
74.    group[matches[0].trainIdx]=group[matches[0].trainIdx]+1   
75.    if matches[0].trainIdx==z:   
76.     lst2.append(x)   
77.   for x in range(len(lst2)):   
78.    for y in range(len(lst2)):   
79.      matc = bf.match(arr[lst2[x]:lst2[x]+1],arr[lst2[y]:lst2[y]+1]) 

  
80.      tt=tt+matc[0].distance   
81.    t.append(tt)   
82.    tt=0   
83.   mm.append(arr[lst2[t.index(min(t))]])   
84.   lst2.clear()   
85.   t.clear()   
86.   print(len(mm))   
87.  nm=np.array(mm)   
88.  if (n==nm).all():   
89.   break   
90.  else:   
91.   n=nm   
92.   mm.clear()   
93.      
94. ####     
95. group=[0,0,0,0,0,0,0,0,0,0]   
96. for y in range (10):   
97.  for x in range(len(arr)):   
98.     matches = bf.match(arr[x:x+1],n)   
99.     if y==0:   
100.      group[matches[0].trainIdx]=group[matches[0].trainIdx]+1   
101.     if matches[0].trainIdx==y:   
102.      lst2.append(x)   
103.      tt=tt+matches[0].distance   
104. for x in range(11):   
105.  if x>0:      
106.   tgroup[x]=tgroup[x-1]+group[x-1]   
107.  else:   
108.   tgroup[x]=0      
109.       
110. #### 2.layer   
111. for c in range(10):   
112.  print(c)      
113.  m2.clear()   
114.  for x3 in range(10):   
115.      #print(x)   
116.      med=choice(arr[lst2[tgroup[c]:tgroup[c+1]]])   
117.      m2.append(med)   
118.  n2=np.array(m2)   
119.  nn2=n2   
120.     
121.  while(True):   
122.      
123.   for z in range(10):   
124.    print(group3)   
125.    group3=[0,0,0,0,0,0,0,0,0,0]    
126.    for x2 in range(tgroup[c],tgroup[c+1]):   
127.          
128.     matches = bf.match(arr[lst2[x2]:lst2[x2]+1],n2)   
129.     group3[matches[0].trainIdx]=group3[matches[0].trainIdx]+1   
130.     if matches[0].trainIdx==z:   
131.      lst3.append(x2)   
132.    for x in range(len(lst3)):   
133.     for y in range(len(lst3)):   
134.       matc = bf.match(arr[lst2[lst3[x]]:lst2[lst3[x]]+1],arr[lst2[ls

t3[y]]:lst2[lst3[y]]+1])   
135.       tt2=tt2+matc[0].distance   
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136.     t2.append(tt2)   
137.     tt2=0   
138.    #if len(t2)==0:   
139.    if group3[z]==0:   
140.     mm2.append(n2[z])   
141.    else:      
142.     mm2.append(arr[lst2[lst3[t2.index(min(t2))]]])   
143.       
144.           
145.    lst3.clear()   
146.    t2.clear()   
147.    print(len(mm2))   
148.   nm2=np.array(mm2)   
149.     
150.   if (n2==nm2).all():   
151.     mm2.clear()    
152.     break   
153.   else:   
154.    print('iter')   
155.    n2=nm2   
156.    mm2.clear()   
157.      
158.  lyr2.append(n2)    
159. #### 2.layer       
160. t.append(tt)   
161. tt=0   
162. print(t)   
163. print(group)   
164. summ=sum(t)   
165. summ=np.array(summ)   
166. summ=np.array_str(summ)   
167. t=np.array(t)   
168. t=np.array_str(t)   
169. ####   
170. a_file = open("des5.txt", "w")   
171. for row in n:   
172.     np.savetxt(a_file, row)   
173.    
174. a_file.close()   
175. ####   
176. a_file = open("des55.txt", "w")   
177. for x in range(10):   
178.  for row in lyr2[x]:   
179.     np.savetxt(a_file, row)   
180. a_file.close()   
181.    
182.    
183. ####   
184. f = open("distance5.txt", "w")   
185. for point in t:   
186.  f.write(point)   
187. for point in summ:   
188.  f.write(point)   
189. f.close()   

 

Bag of Word Histogram Computation 

 

1. import cv2   
2. import numpy as np   
3. # Load Trained Medoids   
4. medoid1= np.loadtxt("des5.txt").reshape(10, 32)   
5. medoid1=medoid1.astype('uint8')   
6. medoid2= np.loadtxt("des55.txt").reshape(100, 32)   
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7. medoid2=medoid2.astype('uint8')   
8. # Initialize Algorithms   
9. fast = cv2.FastFeatureDetector_create()   
10. brief = cv2.xfeatures2d.BriefDescriptorExtractor_create()   
11. bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)   
12. hlist=[]   
13. #### Image Proccessing Loop   
14. i=1   
15. while(i<50):   
16. # Read Image and Convert to Gray   
17.    
18.  im1=cv2.imread("opencv_frame_left%s.png" % i)   
19.  gr1=cv2.cvtColor(im1,cv2.COLOR_BGR2GRAY)   
20.  i=i+1   
21. # Detect Corners and Extract Descriptors   
22.    
23.  kp1=fast.detect(gr1)   
24.  cr1, des1=brief.compute(gr1,kp1)   
25.  ucr1=cv2.undistortPoints(cr1[0].pt, K, distcf,None,K)   
26.  ucr1=np.append(ucr1,1)   
27. # Create Bag of Words Histogram of Each Image   
28.   
29.  hist=np.zeros(100)   
30.  for x in range(len(des1)):   
31.   matches = bf.match(des1[x:x+1],medoid1)   
32.   tindx1=matches[0].trainIdx   
33.   matches = bf.match(des1[x:x+1],medoid2[tindx1*10:tindx1*10+10])   
34.   tindx2=matches[0].trainIdx   
35.   hist[tindx1*10+tindx2]=hist[tindx1*10+tindx2]+1   
36.  hist=hist/len(des1)   
37.  hlist.append(hist) 
38. # Computing Similarity Example   
39. dsim=sum(np.abs(hlist[0]-hlist[1]))/2   
40. sim=1-dsim   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 
 

APPENDIX C 

 

Tracking and Mapping 

 

1. from copy import deepcopy   
2. import cv2   
3. import numpy as np   
4. import transforms3d.euler as eul   
5. import math   
6. from copy import deepcopy   
7. import matplotlib.pyplot as plt   
8. ##########   
9. K1=np.array([816.2478,0,301.3167,0,809.7487,242.6526,0,0,1]).reshape

(3,3)   
10. Ki1=np.linalg.inv(K1)   
11. distcf1=np.array([0.016,0.4792,0,0])   
12. fast = cv2.FastFeatureDetector_create(threshold=10)   
13. #fast.setNonmaxSuppression(0)   
14. brief = cv2.xfeatures2d.BriefDescriptorExtractor_create()   
15. bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)   
16. p1=[]   
17. p2=[]   
18. d1=[]   
19. d2=[]   
20. pnt1=[]   
21. pnt2=[]   
22. rot=[]   
23. trn=[]   
24. ##########   
25. ic=0   
26. while(ic<48):   
27.     p1=[]   
28.     p2=[]   
29.     pnt1=[]   
30.     pnt2=[]   
31.     d1=[]   
32.     d2=[]   
33.     ic=ic+1   
34.     imgn = "opencv_frame_left{}.png".format(ic)   
35.     imgn2 = "opencv_frame_left{}.png".format(ic+1)   
36.     frame1=cv2.imread(imgn)   
37.     frame2=cv2.imread(imgn2)   
38.     gr1=cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)   
39.     gr2=cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)   
40.     kp1=fast.detect(gr1)   
41.     kp2=fast.detect(gr2)   
42.     cr1, des1=brief.compute(gr1,kp1)   
43.     cr2, des2=brief.compute(gr2,kp2)   
44.     matches = bf.match(des1,des2)   
45.     matches2=[]   
46.     for x in range(len(matches)):   
47.      if matches[x].distance<40:   
48.       matches2.append(matches[x])   
49.     lm=len(matches2)   
50.     for x in range(lm):   
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51.      p1=np.append(p1,cr1[matches2[x].queryIdx].pt)   
52.      p2=np.append(p2,cr2[matches2[x].trainIdx].pt)   
53.     ####   
54.     p1=p1.reshape(lm,2)   
55.     p2=p2.reshape(lm,2)   
56.     p1=cv2.undistortPoints(p1, K1, distcf1,None,K1)   
57.     p2=cv2.undistortPoints(p2, K1, distcf1,None,K1)   
58.     F, mask=cv2.findFundamentalMat(p1,p2,cv2.FM_RANSAC,0.5,0.999)   
59.     count=0   
60.     for x in range(lm) :   
61.      if mask[x]!=0:      
62.      #if p2[x]*F*p1[x].transpose()<50:   
63.       #if p2[x]*F*p1[x].transpose()>0:   
64.         pnt1=np.append(pnt1,p1[x])   
65.         pnt2=np.append(pnt2,p2[x])   
66.         d1=np.append(d1,des1[matches2[x].queryIdx])   
67.         d2=np.append(d2,des2[matches2[x].trainIdx])   
68.         count=count+1   
69.     #######       
70.     pnt1=pnt1.reshape(count,2)   
71.     pnt2=pnt2.reshape(count,2)   
72.     d1=d1.reshape(count,32).astype('uint8')   
73.     d2=d2.reshape(count,32).astype('uint8')   
74.     pp1=[]   
75.     pp2=[]   
76.     mlist=[]   
77.              
78.     for x in range(len(pnt1)):   
79.      pp1.append(cv2.KeyPoint(pnt1[x,0],pnt1[x,1],float(7.0)))   
80.      mlist.append(cv2.DMatch(x,x,0))   
81.     for x in range(len(pnt2)):   
82.      pp2.append(cv2.KeyPoint(pnt2[x,0],pnt2[x,1],float(7.0)))   
83.           
84.     img3 = cv2.drawMatches(frame1,pp1,frame2,pp2,mlist,None,flags=cv

2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)   
85.     cv2.imshow('frame',img3)   
86.     cv2.waitKey(1)   
87.     E=np.matmul(K1.transpose(),F)   
88.     E=np.matmul(E,K1)   
89.     pointst,R,t,mask2t=cv2.recoverPose(E,pnt1,pnt2,K1)   
90.     angt = eul.mat2euler(R, axes='sxyz')      
91.     angtt=np.dot(angt,57.2957795)   
92.     angle=angtt[1]   
93.     rot.append(angle)   
94.     trn.append(t)   
95. ############################   
96. Rot2=[]   
97. Rot2.append(0)   
98. for x in range(len(rot)):   
99.  o=sum(rot[0:x+1])/57.2957795   
100.  Rot2.append(o)   
101.     
102. Pos2=[]   
103. v=np.matrix([0,0.15]).transpose()   
104. p=np.matrix([0,0]).transpose()   
105. Pos2.append(p)   
106. for x in range(len(Rot2)-1):   
107.  t=Rot2[x]   
108.  rotz=np.matrix([[math.cos(t),-

math.sin(t)],[math.sin(t),math.cos(t)]])   
109.  tr=-np.matrix([trn[x][0,0],trn[x][2,0]])   
110.  p=p+rotz*tr.transpose()   
111.  Pos2.append(p)   
112. Posx=[]   
113. Posy=[]   
114. for x in range(len(Pos2)):   



88 
 

115.  Posx.append(float(Pos2[x][0]))   
116.  Posy.append(float(Pos2[x][1]))   
117. plt.plot(Posx,Posy)   
118. ############################   
119. s=(3,3)   
120. ww=np.eye(3)   
121. ww[2,2]=1   
122. ss=np.matrix(np.zeros(s))   
123. hi=[]   
124. hi.append([1,45])   
125. ic=0   
126. Pos=deepcopy(Pos2)   
127. Rot=deepcopy(Rot2)   
128. while ic<15: 
129.     el=[]   
130.     j=[]   
131.     jj=[]   
132.     hh=[]   
133.     bb=[]   
134.     countt=len(Pos)   
135.     hcount=0   
136.     for i in range(countt-1+len(hi)): 
137.      if i<countt-1:   
138.         t1=Rot[i]   
139.         t2=rot[i]/57.2957795   
140.         e1=Rot[i+1]-Rot[i]-t2   
141.    
142.         #########   
143.         tr=-np.matrix([trn[i][0,0],trn[i][2,0]]).transpose()   
144.         Ri=np.matrix([[math.cos(t1),-

math.sin(t1)],[math.sin(t1),math.cos(t1)]])   
145.         Rij=np.matrix([[math.cos(t2),-

math.sin(t2)],[math.sin(t2),math.cos(t2)]])   
146.         e0=Rij.transpose()*(Ri.transpose()*(Pos[i+1]-Pos[i])-tr)   
147.         e=np.vstack([e0,e1])   
148.         A0=-Rij.transpose()*Ri.transpose()   
149.         A1=np.vstack([A0,np.matrix([0,0])])   
150.         Rid=np.matrix([[-math.sin(t1),-math.cos(t1)],[math.cos(t1),-

math.sin(t1)]])   
151.         A2=Rij.transpose()*Rid.transpose()*(Pos[i+1]-Pos[i])   
152.         AA=np.vstack([A2,-1])   
153.         Aij=np.hstack([A1,AA])   
154.         B0=Rij.transpose()*Ri.transpose()   
155.         B1=np.vstack([B0,np.matrix([0,0])])   
156.         Bij=np.hstack([B1,np.matrix([0,0,1]).transpose()])   
157.         el=np.append(el,e)   
158.         for y in range(countt):   
159.                 
160.           if y==i:   
161.            j.append(Aij)   
162.           elif y==i+1:   
163.            j.append(Bij)   
164.           else:   
165.            j.append(ss)   
166.         j1=np.concatenate(j,axis=1)   
167.         jj=np.append(jj,j1)   
168.         j=[]   
169.      else:   
170.         c1=hi[hcount][0]   
171.         c2=hi[hcount][1]   
172.         t1=Rot[c1]   
173.         t2=0   
174.         e1=Rot[c2]-Rot[c1]-t2   
175.    
176.         #########   
177.         tr=-np.matrix([0,0]).transpose()   
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178.         Ri=np.matrix([[math.cos(t1),-
math.sin(t1)],[math.sin(t1),math.cos(t1)]])   

179.         Rij=np.matrix([[math.cos(t2),-
math.sin(t2)],[math.sin(t2),math.cos(t2)]])   

180.         e0=Rij.transpose()*(Ri.transpose()*(Pos[c2]-Pos[c1])-tr)   
181.         e=np.vstack([e0,e1])   
182.         A0=-Rij.transpose()*Ri.transpose()   
183.         A1=np.vstack([A0,np.matrix([0,0])])   
184.         Rid=np.matrix([[-math.sin(t1),-math.cos(t1)],[math.cos(t1),-

math.sin(t1)]])   
185.         A2=Rij.transpose()*Rid.transpose()*(Pos[c2]-Pos[c1])   
186.         AA=np.vstack([A2,-1])   
187.         Aij=np.hstack([A1,AA])   
188.         B0=Rij.transpose()*Ri.transpose()   
189.         B1=np.vstack([B0,np.matrix([0,0])])   
190.         Bij=np.hstack([B1,np.matrix([0,0,1]).transpose()])   
191.         el=np.append(el,e)   
192.         for y in range(countt):   
193.                 
194.           if y==c1:   
195.            j.append(Aij)   
196.           elif y==c2:   
197.            j.append(Bij)   
198.           else:   
199.            j.append(ss)   
200.               
201.         j1=np.concatenate(j,axis=1)   
202.         jj=np.append(jj,j1)   
203.         j=[]   
204.     jj=jj.reshape(countt-1+len(hi),3,(countt)*3)   
205.     el=el.reshape(countt-1+len(hi),3)   
206.     weighti=50   
207.     for x in range(countt-1+len(hi)):   
208.          if x<48:   
209.           we=ww*(weighti)   
210.          else:   
211.           we=ww*0.5   
212.          h1=np.matmul(jj[x].transpose(),we)   
213.          h2=np.matmul(h1,jj[x])   
214.          b1=np.matmul(jj[x].transpose(),we)   
215.          b2=np.matmul(b1,el[x])   
216.          hh=np.append(hh,h2)   
217.          bb=np.append(bb,b2)   
218.          weighti=weighti-1   
219.            
220.     bb=bb.reshape(countt-1+len(hi),countt*3,1)   
221.     hh=hh.reshape(countt-1+len(hi),countt*3,countt*3)   
222.     H=sum(hh)   
223.     B=sum(bb)   
224.     hz=np.zeros((len(H),len(H)))   
225.     hz[0][0]=1   
226.     hz[1][1]=1   
227.     hz[2][2]=1   
228.     H2=H+hz   
229.     HH=np.linalg.inv(H2)   
230.     dltx=-np.matmul(HH,B)   
231.     yy=0   
232.     for x in range(int(len(dltx)/3)):   
233.      Pos[x]=deepcopy(Pos[x])+deepcopy(dltx[yy:yy+2])   
234.      Rot[x]=deepcopy(Rot[x])+deepcopy(dltx[yy+2])   
235.      yy=yy+3   
236.     ic=ic+1   
237. ######################    
238. Posx=[]   
239. Posy=[]   
240. for x in range(len(Pos)):   
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241.  Posx.append(float(Pos[x][0]))   
242.  Posy.append(float(Pos[x][1]))   
243. plt.plot(Posx,Posy)   
244. plt.show()    
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