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ABSTRACT 

 

A MILK-RUN DISTRIBUTION SYSTEM DESIGN  

FOR INTEGRATING DRONES 

ÖZBİLGE, Efe Bedirhan  

M.Sc., Department of Industrial Engineering 

Supervisor: Assist. Prof. Dr. Benhür SATIR 

 

February 2021, 143 pages 

 

The frequency and scope of use of logistics activities are increasing rapidly all over 

the world. As a result of the continuous development in technology, new 

transportation vehicles are produced and are also started to being used in logistics 

activities. One of these vehicle types is the unmanned aerial vehicle (UAV), also 

called as drone. 

Milk-Run distribution is one of the most basic logistics delivery activities. In the 

literature, there exists studies where drones are used together with trucks in milk-run 

distributions; but a case where the truck makes a continuous movement during the 

milk-run tour and the delivery is made with only drones has not yet been analyzed. 

The aim of this study is to analyze the benefits of this specific case with respect to 

problem specific parameters and to reveal the situations that it is superior to the 

classical milk-run distribution. The methodology used in this study is mathematical 

modeling approach, including linear and nonlinear mixed-integer programming 
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models. The proposed model is original since 'time' is considered to be continuous 

rather being discrete and time is directly represented by decision variables rather than 

a discrete index set of decision variables in creating the required constraints. To 

alleviate the complexity brought by nonlinearity, the actual flight times of the drones 

are estimated by quadratic regression models, which are shown to produce 

estimations quite close to actual values. All the problem specific parameters are 

found from or estimated in accordance with state-of-the-art technology and real-life 

sources.  

The proposed model was run on a numerical setting that consists of those parameters 

which includes two drone speeds, two flight ranges, and two cases which in terms of 

presence of empty drones at the customers before start of the milk-run. Our main 

finding is that integrating drones in a milk-run distribution is beneficial compared to 

the classical milk-run under any problem setting. However, the cost difference 

between those two milk-run types does not seem to be sufficient to make an 

investment for integrating drones as we propose under current cost figures. This 

result is also confirmed by several practitioners. 

Keywords: Milk-Run Distribution, Unmanned Aerial Vehicle (UAV), Drone, 

Regression, Mathematical Modeling, Nonlinear Mixed-Integer Programming Model. 
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ÖZ 

 

A MILK-RUN DISTRIBUTION SYSTEM DESIGN  

FOR INTEGRATING DRONES 

ÖZBİLGE, Efe Bedirhan  

Yüksek Lisans, Endüstri Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Dr. Öğr. Üyesi Benhür SATIR 

Şubat 2021, 143 sayfa 

Lojistik faaliyetlerin kullanım sıklığı ve kapsamı tüm dünyada hızla artmaktadır. 

Teknolojideki sürekli gelişme neticesinde yeni taşıma araçları üretilmiş ve lojistik 

faaliyetlerde de kullanılmaya başlanmıştır. Bu araç türlerinden biri de insansız hava 

aracıdır (İHA). 

Sürekli sevkiyat, en temel lojistik dağıtım faaliyetlerinden birisidir. Literatürde 

sürekli sevkiyatta İHA'ların kamyonlarla birlikte kullanıldığı çalışmalar 

bulunmaktadır; ancak sürekli sevkiyat sırasında kamyonun sürekli hareket ettiği ve 

teslimatın sadece İHA ile yapıldığı bir durum henüz analiz edilmemiştir. 

Bu çalışmanın amacı, bu belirli durumun probleme özgü parametreler açısından 

faydalarını analiz etmek ve klasik sürekli sevkiyata üstün olduğu durumları ortaya 

çıkarmaktır. Bu çalışmada kullanılan yöntem, doğrusal olan ve doğrusal olmayan 

karma tamsayılı programlama modellerini içeren matematiksel modelleme 

yaklaşımıdır. Önerilen model orijinaldir, çünkü 'zaman' kesikli değil, sürekli olarak 

kabul edilir ve zaman, gerekli kısıtlamaların yaratılmasında karar değişkenlerinin 

ayrı bir indeks kümesi yerine karar değişkenleri tarafından doğrudan temsil 

edilmiştir. Doğrusal olmamanın getirdiği karmaşıklığı hafifletmek için, insansız hava 
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araçlarının gerçek uçuş süreleri, gerçek değerlere oldukça yakın tahminler ürettiği 

gösterilen ikinci dereceden regresyon modelleriyle tahmin edilmiştir. Probleme özgü 

tüm parametreler, en son teknoloji ile üretilmiş gerçek hayat kaynaklarından 

bulunarak direkt olarak kullanılmış veya bunlara paralel olarak tasarlanmıştır.  

Önerilen model, iki İHA hızı, iki uçuş menzili ve sürekli sevkiyat başlamadan önce 

müşterilerde boş İHA’ların varlığı açısından iki durum içeren parametrelerden oluşan 

sayısal veri setleri kullanılarak çalıştırılmıştır. Bu çalışmanın ana bulgusu, İHA'ları 

bir sürekli sevkiyata entegre etmenin, problemin tüm parametre ayarlarında klasik 

sürekli sevkiyata kıyasla daha faydalı olduğudur. Ancak, mevcut maliyetler 

kapsamında önerildiği gibi, bu iki sürekli sevkiyat tipi arasındaki maliyet farkı, 

İHA'ları entegre etmek için bir yatırım yapmak için yeterli görünmemektedir. Bu 

sonuç aynı zamanda birkaç uygulayıcı tarafından da doğrulanmıştır. 

Anahtar Kelimeler: Sürekli Sevkiyat Dağıtımı, İnsansız Hava Aracı (İHA), İkinci 

Dereceden Regresyon Modeli, Doğrusal Olan ve Doğrusal Olmayan Programlama. 
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Use Synonym Abbr. Turkish Synonym 

Milk-run   Sürekli Sevkiyat Döngüsel 

Hareket  

Vehicle Truck V Araç Kamyon 

Drone UAV (unmanned 

aerial vehicles) 

D İHA (İnsansız 

Hava Aracı) 

 

Item Parts/materials I Ürün  

Location Customer L Müşteri  

Depot Receiving plant  Depo  

Arrival   arr Varış İniş 

Departure  dep Kalkış  

Limit   Limit Üst sınır 
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Classic Milk-Run CMR    
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Hybrid Milk-Run HMR    

Launch Dispatch, Take-

off, Release, 

Send-off 

 Kalkış  

Land Reconvene  İniş  

Departure   Çıkış  

Arrive   Varış  

Loaded   Yüklü Dolu 

Empty   Boş  
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CHAPTER 1 

INTRODUCTION 

The use of logistic activities throughout the world has an exponential incline. 

According to IMARC (2019), the worldwide value of the logistic market has reached 

a fairly high value such as $ 4,000 trillion. Considering this enormous value, it is not 

surprising that in the logistic market there are various applied studies with the main 

purposes of increasing efficiency and minimizing cost. One of these applications is 

the “Milk-Run Distribution”, which is a circular transportation method. Milk-Run 

distribution is an approach that is first founded on the delivery and collection of milk 

in the northern parts of the UK. Starting from the center, while moving on the pre-

determined route, the vehicles leave the milk-filled bottles at the door of each 

household (i.e. the customer), collect the remaining empty bottles during delivery, 

and then return to the center (Satoh, 2008).  

The general name used for logistics of internal or external units in procurement by 

manufacturers and/or customers is “Milk-Run Logistic System” (Sadjadi et al., 

2009). In this system, all the input and output (I/O) material requirements of 

manufacturers and/or customers (represented by stations) are satisfied within the 

milk-run route. In case the I/O volume of the stations is much less than truck 

capacity, the milk-run logistic system provides economical solutions (Baudin, 2005).    

Meyer (2015) states the characteristics of the milk run logistics system as follows:  

 The system has at least one supplier which supplies the demands of specified 

stations in a fixed tour, according to a fixed schedule, and with a fixed 

sequence of stops. 

 Demands are determined daily which enables an ordering policy that 

aggregates the request between shipments. 

 The supplier plans the milk-run. 
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 The constructed plan is valid for a long period of time such as a few weeks or 

months. 

 Transshipments are allowed within the milk-run. 

 The route of a milk-run system can be a circular tour that starts and ends at 

the depot. 

 The distance and duration of the route determine the cost of the logistic 

system.  

Some examples of milk-run logistics are given in Figure 1:  

 

Figure 1. Examples of Milk-Run Logistics (Roser, 2019) 

One of the most common uses of milk-run distribution is that manufacturers use it 

for collection instead of distribution. While collecting the materials from the 

suppliers on certain days of the week on a pre-defined route with a truck, they leave 

empty containers used to bring the materials to these suppliers (Sadjadi et al., 2009). 

To illustrate, EKOL Logistics brings the materials it regularly receives from a 

Turkish truck manufacturer to the production facility on certain routes determined by 

the manufacturer (Satır et al., 2018) 

Meyer (2015) defines one of the important features of milk-run distribution as the 

possibility of replacing empty and full containers in a cycle that starts and ends at the 

center. Some of the advantages of milk-run distribution are the aggregation of loads 
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of different manufacturers, reduction of the transportation costs, minimization of the 

total distance, and the increase in the utilization of the loading capacity of the 

vehicles (Brar & Saini, 2011). 

With the ongoing improvement of technology, the transportation methods 

continuously adapt to this improvement and make use of new methodologies and 

devices developed. One of these developed devices is the “Unmanned Aerial 

Vehicle” (UAV), which is also called as drone. In general, if an aircraft does not 

require a human operator during flight, it is considered a UAV, which means that the 

vehicle is operated remotely or independently. The two main applications of UAVs 

are military and civilian. As might be expected, the first use of the drone was a 

military application, which is accomplished by the British Royal Navy in 1933. The 

use and development of drones in commercial and civil areas become widespread 

much later. But there is a rapid increase in their use and the civil use of UAVs has 

increased by almost threefold since 2005 (Güner, Rathnayake, & Ahmadi, 2017). 

The models and features of some of the UAVs currently available on the market are 

given in Table 1. Ehang is a special model which is known as Dubai Taxi. It is used 

for human transportation, has a pretty high carrying capacity, and has a maximum 

speed of 100 km/h. Except for Ehang, the carriage capacities are very limited and 

Inspire 2 model has the highest speed of 94 km/h. The Griff 135, Griff Auteur and 

Griff Savior models have high carrying capacity and are suitable for material 

transportation. In all UAV models, the maximum flight time is around half an hour.  

Table 1. UAV Models and Features ( DJI, 2020, EHang, 2020 and Griff, 2020) 

UAV Model 
Max Flight 

Time (min) 

Max Carriage 

Capacity (kg) 

Max Speed 

(km/h) 
Price 

Matrice 210 RTK 32 3.27 82.8 unavailable 

Matrice 210 27 2.3 61.2 $6,500 

Matrice 600 Pro 38 6 65 $8,599 

Inspire 2 27 3.4 94 $3,499 

Prime Air unavailable 2.7 24 unavailable 

Ehang 23 100 100 $200,000 

Griff 135 45 75 unavailable unavailable 

Griff Auteur 45 30 unavailable unavailable 

Griff Saviour 45 200 unavailable unavailable 
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The main advantage of UAV is that it does not encounter highway transportation 

problems. On the other hand, it currently has many disadvantages as well. Some of 

these disadvantages are limits on the flight times because of battery run times, low 

carriage capacities, and limited maximum speed they can reach. Due to its 

disadvantages, the current technology of UAVs is not sufficient to be fully used for 

transportation in an efficient manner. On the other hand, there are two facts we want 

to stress about the recent development of the use of UAVs.   

First of all, drones are inevitably becoming popular in every field of industry. 

Domino's Pizza was the first who started using UAVs in order to deliver pizza to its 

customers. Next, Amazon adopted the use of drones in providing faster services. 

Having realized the success of using drones, the cargo company UPS started using 

them, but for longer distances and heavier products, and a picture of these drones is 

given in Figure 2 (UPS, 2021). With respect to the company’s report named 

'Unmanned Aerial Vehicles' 2014, there exist seven different areas of best practices. 

These practices are defined as (i) energy/infrastructure, (ii) agriculture/forestry, (iii) 

construction industry, (iv) environmental protection, (v) emergency response and 

police, (vi) film and (vii) photography development (Güner et al., 2017). 

 

Figure 2. UPS Drone Delivery Service  

Accordingly, despite of the fact that it is difficult for various reasons such as 

technology limitations, security, privacy violation, and public view usage of UAV 

for daily life; (Lewis, 2014; Keeney, 2016; Wang et al., 2017) it was launched by 

world-renowned companies such as Amazon, Google, Walmart and DHL (Hovrtek, 

2018 and Butter, 2015) and today it is especially applied in the last step deliveries 

state that milk-run distribution started in the dairy industry and have been widely 

used in various fields for a long time.  
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One such field is retail e-commerce, which has become widespread nowadays and 

the sector size in the world has been very close to $ 3 trillion in 2018. Companies 

that make distributions to end customers, especially retailers, are researching 

innovative methods for distribution. One such method is “last-mile delivery”. The 

last-mile delivery is the last step of the supply chain. It contains the delivery of 

relatively small purchase points. These purchase items have the characteristics of 

having low demands in size but being frequent. UAVs are being tested for last-mile 

delivery in logistics due to their suitability. The reason UAVs are suitable for this 

purpose is that they do not encounter road transportation problems. Therefore, they 

will be able to perform more efficient and faster delivery and collection from the 

vehicle.   

Large multinational e-commerce companies such as Amazon, Google have invested 

substantially in the research and development (R&D) of drone technology to use 

drones in their last-mile deliveries. There are also various other companies 

worldwide that follow these big multinational companies in terms of working to 

develop new technology for drones in a similar manner (Erceg et al., 2017). 

In the United States, the first transportation company to achieve a drone delivery has 

been Wing, according to the news announced on Wing’s official website on 23 April 

2019. The company received Air Carrier Certification from the United States Federal 

Aviation Administration (FAA). Chao, who is U.S. Secretary of Transportation, 

declared the integration of drones to transportation being an important step in the 

economy of the USA (Wing becomes first certified Air Carrier for drones in the US, 

2019). Around six months later, another important transportation company UPS, 

followed its competitor Wing and started delivery of medicine ordered by its 

customers using drones (Bıktım, 2019). 

Although the transportation companies in Turkey have not started to use drones yet, 

an interesting event has occurred in March 2020 at Serik, Antalya. A citizen named 

Hasan Kurt did his shopping from a grocery store by drone without going out to 

protect himself and his family from COVID-19. After this event, the grocery store 

owner İbrahim Çetin announced that they plan to provide four or five drones to 

supply customer demands via drone transportation (Demirci, 2020). This news also 
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supports the fact that drone transportation is capable to have very important side 

benefits such as measures taken against the coronavirus.  

It is estimated that the dollar volume of drone production throughout the world will 

increase from its current level of 4 billion USD per year to a level of 14 billion USD 

per year within the following ten years. Considering the current plans and anticipated 

plans in drone R&D, and its potential uses, drones have clearly performed major 

advances. These advances include the discovery of new platforms in which drone 

robustness and autonomy have increased and the development of necessary software 

that analyses and processes captured images. Today, the UAV market is mainly 

dominated by military applications with 72 percent of the overall market. It is 

followed by consumers with 23 percent and civilian applications with 5 percent. 

Although the implementation in civil sectors currently is at a relatively low level, it is 

growing rapidly (Erceg et al., 2017).   

One of the main motivations of this research is as follows. Amazon’s CEO Jeff 

Bezos believes that in the future, drone delivery will be normal just like mail trucks. 

This shows the fact that the understanding in business logistics is changing. The 

related findings by Material Handling Institute showed that in future supply chains, 

the use of drones will be more important in parallel to the discovery of new 

technologies (Erceg et al., 2017). 

The second fact we will consider about the recent development of the use of UAVs is 

that there is an increasing number of academic studies for the modelling of 

transportation systems which includes UAVs. The number of publications has been 

single-digit since 2001, exceeded the number ten for the first time in 2013, and 

approached the hundreds level in 2017 with an exponential increase (Otto et al., 

2018). According to the study of Otto et al. (2018), distribution-related studies are 

discussed as vehicle routing and traveling salesman problems. However, to the best 

of our knowledge, a delivery where the truck makes a continuous movement during 

the tour and the delivery is made by only the drones has not yet been studied. 

Within the scope of this thesis, we will discuss some of UAV's usage methods in the 

milk-run distribution and study the optimization of a specific system with 

mathematical programming models that we develop. The basic and the least complex 
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method is the classical application in milk-run distribution, which is as follows. First, 

a vehicle is loaded at the distribution center or warehouse. Next, it follows a 

predetermined route on certain periods, leaves its loads which are brought by the 

containers (cages, special transport units, etc.) on this route, and brings the remaining 

empty containers back to the center.  

At this point, we would like to explain the reason why the model we propose is 

called a milk-run model. The basic similarity between the classic milk-run model and 

the model we propose is as follows. In the classic milk-run, the empty containers are 

left at the customers served and are collected at a later time. Likewise, in the model 

we propose, after satisfying the customer’s demand, the empty drones are left at the 

customer to be taken off later. For this reason, calling the proposed model a milk-run 

would be consistent with the concept of milk-run. However, as might be expected, 

leaving the UAVs at the customers would incur a higher cost compared to the cost of 

the containers. In addition, there are some physical difficulties in holding the UAVs 

at the customers. If a UAV is to be held outside; it may be badly affected by adverse 

weather conditions such as snow, rain, etc. In addition, there would be security 

problems caused by holding the UAVs outside. On the other hand, if a storage area 

for UAVs were to be arranged, there would be extra costs. However, in this study, 

such difficulties are ignored. The assumption that such difficulties can be overcome 

can be attributed to the fact that the nature of this work is a futuristic one. 

Besides the classical application, UAV use in milk-run distribution can be designed 

in many other ways, some of which are as follows. Vehicle's loads can be sent 

completely with UAVs, the vehicle can complete its route without going to any 

point, the vehicle can stop at some points that do not involve customers and 

meanwhile distribute to surrounding customers with UAVs, and so on. Moreover, 

hybrid use of vehicles and UAVs is also possible in which the vehicle serves to some 

customers while UAVs are serving to nearby customers. The main structures of the 

milk-run models with their important features are summarized in Table 2.  
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Table 2. The Structure of Main Milk-Run Types 

Structure of 

Milk-Run 

Distribution 

Classical 

Application 

Hybrid use of 

UAV and 

truck in 

delivery 

Only UAV 

delivery where 

truck waits for 

UAV 

Only UAV 

delivery with 

a slower 

truck 

Only UAV 

delivery with 

a faster truck 

Does truck 

make delivery? 
YES YES NO NO NO 

Is truck speed 

less than UAV 

speed? 

(no UAV) unimportant unimportant YES NO 

Does the truck 

stop at 

customer 

points? 

YES YES NO NO NO 

Does the truck 

stop at specific 

points? 

inapplicable NO YES NO NO 

Does UAV 

make delivery? 
inapplicable YES YES YES YES 

 

The left-most and right-most columns in Table 2 stand for the two end structures in 

terms of additional assumptions added. Starting with the classical milk-run by 

adding, changing, or relaxing some of the model assumptions, one can obtain the 

other structures given in the columns to the right of the classical milk-run. In the 

column next to the classical application, the properties of the hybrid structure in 

which both the vehicle and UAVs make deliveries is given. In the hybrid structure, 

since the truck waits for the UAV during its delivery, it does not matter whether the 

truck speed is higher or lower than the UAV speed. Moreover, trucks stop at 

customer points since it also makes deliveries, but it does not stop at any other points 

and UAV also makes deliveries. These details can be followed in the remaining cells 

of the second column. In the structure given in the third column which is “Only UAV 

Delivery Where Truck Waits for UAV”, the truck pauses at certain points, but not at 

the customer points. Finally, in the structures given in the last two columns, the truck 

neither makes a delivery nor waits for the UAVs. The difference between these two 

structures is that in the fourth column, UAV is faster whereas, in the last one, the 

truck is so.   
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The structure we will study is the one in the fifth column: “Only UAV delivery with 

a faster truck”. The basic assumptions of this structure are given as follows:  

i. UAV’s speed is less than the truck’s speed. 

ii. The truck never stops and moves at a fixed speed. 

iii. UAVs cannot move between customers. 

The method of the study is mathematical modeling, which includes nonlinear and 

mixed integer models. The mathematical model that we propose for this structure of 

milk-run is given in detail in the “Model” section of this study. The model we 

propose is original compared to the models in the literature since ‘time’ is taken as a 

decision variable rather than a clustered index to be used in creating necessary 

constraints. 

We will explain the importance of those studies involving milk-run models with 

UAV delivery in general. Specifically, we explain the importance of this study in 

three categories, which are its academic, economic, and social effects.  

Due to the fact that UAVs more actively partake in daily life, the demand for UAV 

usage is expected to increase in all other sectors, especially in the logistics sector. 

Accordingly, studies on distribution models with UAVs have become widespread in 

recent years. Hence, studies in this area have a high academic impact and have the 

potential to start National / International R&D Collaborations. Companies and 

universities will be able to accelerate R&D activities, increase the number of 

researchers and enable university-industry collaborations to satisfy this increasing 

demand. The main academic importance of this study is that it is expected to 

contribute to the literature by the use of UAVs in the milk-run distribution. 

When it comes to economic effects, it is important to note that, UAV production is 

mostly foreign originated currently. Therefore, within the midterm, it is expected that 

UAV production will be carried out domestically through foreign capital investment 

or domestic UAV production will be realized by entrepreneurs in our country. As 

domestic or foreign new investments are created, the number of people participating 

in employment will increase. With the increase in the use of UAVs, such 

contributions as low cost and high-speed delivery are expected to strengthen our 

economy. On the other hand, researches on potential application areas especially in 
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the logistics sector and diversification of corresponding studies hereby on 

distribution models with UAV will increase the competitiveness of such companies 

as UPS, DHL, MediaMarkt, Amazon, etc. who want to apply these models. 

Last but not least, we will explain the expected social effects of milk-run distribution 

studies with UAV. As UAVs will cover some of the distance required for delivery, 

trucks will make less mileage. Air pollution and carbon emission will be lessened 

due to the fact that UAVs’ carbon-dioxide generation is almost negligible compared 

to vehicles working with fossil fuel because UAVs are powered by electricity. 

Especially in the metropoles, the traffic problem will be reduced in part and thus, the 

cities will become more comfortable. 
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CHAPTER 2 

LITERATURE REVIEW 

In an effort to provide faster and more cost-efficient delivery for goods ordered 

online, companies are looking for new technologies to bridge the last-mile to their 

customers. One technology-driven opportunity that has recently received much 

attention is the deployment of unmanned aerial vehicles or drones to support parcel 

delivery. An important advantage of a delivery drone as compared to a regular 

delivery vehicle is that it can operate without a costly human pilot. Another 

advantage is that a drone is fast and can fly over congested roads without delay. 

Several companies, including Amazon, Alibaba, and Google, are currently running 

practical trails to investigate the use of drones for parcel delivery (Popper, 2014). 

These trails typically involve multi-propeller drones that can carry parcels of 

approximately 2 kilograms over a range of 20 kilometers. There are examples of 

drones that are already used for deliveries in practice, albeit solely in a non-urban 

environment. DHL Parcel, for instance, recently started operating a drone delivery 

service to deliver medications and other urgently needed goods to one of Germany's 

North Sea islands (Hern, 2014). In this example, the drone flies automated but still 

has to be continuously monitored. Aeronautics experts expect that drones will be able 

to fly autonomously and safely in urban environments within the next few years, 

based on rapid advances in obstacle detection and avoidance technology (Bensinger 

& Nicas, 2015). 

Agatz et al. (2018) propose a system in which the delivery truck and the drone 

collaboratively serve all customers. While the delivery truck moves between 

different customer locations to make deliveries, the drone simultaneously serves 

another set of customer locations, one by one, returning to the truck after each 

delivery to pick up another parcel. From a transportation planning perspective, this 

innovative new concept gives rise to several relevant planning problems. Even for a 

single truck and a single drone, the problem involves both assignment decisions and 
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routing decisions. This variant of the traveling salesman problem (TSP) is called the 

TSP with Drone (TSP-D). They develop a new integer programming formulation as 

well as several fast route first-cluster second heuristics based on local search and 

dynamic programming for the TSP-D. They prove worst-case approximation ratios 

for the heuristics and test their performance by comparing the solutions to the 

optimal solutions for small instances.  

Ferrandez et al. (2016) examine a truck-drone team from an operational viewpoint to 

better understand the impact of the number and location of truck stops with regards 

to its effect on delivery time and energy requirements. Initially, they analyze a single 

drone to deliver all packages to all locations. This requires one truck stop centrally 

positioned among the delivery locations using K-means. The drone uses a hub 

configuration to egress and ingress from the truck to each delivery location and back, 

not constrained by range. They intend to understand the total time, cost, and energy 

involved in a hub configuration (star-distance) in order to contrast this configuration 

with truck-only delivery using a TSP route. TSP truck route is computed using a 

genetic algorithm to satisfy all the deliveries to all the locations. Furthermore, they 

use a combination of truck and drone to find the optimal number of truck stops and 

locations using the K-means algorithm to cluster demands in conjunction with a TSP 

genetic algorithm. The problem herein assumes that one or more drones and a single 

truck work in tandem to deliver packages to delivery locations within a given 

delivery space; and that the uniformly distributed delivery demands are known a 

priori. The drones are not constrained by range to gain a better sense of the 

upper/lower boundaries of time and energy. The truck is constrained to move along a 

TSP route while the drone is constrained to egress and ingress from the truck in hub 

(star) configuration to a nearby delivery location and then back to the truck.  

Poikonen et al. (2017) consider a fleet of m homogeneous trucks each carries k 

drones with a speed of α times that of the truck. Each drone may dispatch from the 

top of the truck and carry a package to a customer location. The drone then returns to 

the top of its truck to recharge or swap batteries (we assume instantaneously). The 

truck itself is allowed to move and deliver packages but must be stationary at a 

delivery location or the depot when launching or retrieving drones. The goal is to 
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minimize the completion time to deliver all packages and return all vehicles back to 

the central depot. 

Ham (2018) extends the problem by considering two different types of drone tasks: 

drop and pickup. After a drone completes a drop, the drone can either fly back to the 

depot to deliver the next parcels or fly directly to another customer for pickup. 

Integrated scheduling of multiple depots hosting a fleet of trucks and a fleet of 

drones is further studied to achieve operational excellence. A constraint 

programming approach is proposed and tested with problem instances of m-truck, m-

drone, m-depot, and hundred-customer distributed across an 8-mile square region. 

This paper contributes a novel application of constraint programming (CP) to multi-

truck, multi-drone, and multi-depot scheduling problems constrained by time-

window, drop-pickup, and multi-visit, with the objective to minimize the maximum 

completion time over all tasks.  

Baloch & Gzara (2020) study the economic feasibility of UAV parcel delivery in 

terms of its impact on an e-retailer's distribution network while taking into account 

customer preferences, locational decisions, and regulatory and technological 

limitations. They consider an e-retailer offering multiple same day delivery services 

including a fast UAV service and develop a distribution network design formulation 

under service based competition where the services offered by the e-retailer not only 

compete with the stores (convenience, grocery, etc.) but also with each other. To 

solve the resulting nonlinear mathematical formulation, they develop a novel logic-

based Benders decomposition approach and build a case based on NYC, carry out 

numerical testing, and perform sensitivity analyses over delivery charge, delivery 

time, government regulations, technological limitations, customer behavior, and 

market size. The results show that government regulations, technological limitations, 

and service charge decisions play a vital role in the future of UAV delivery. 

Wang et al. (2017) study the vehicle routing problem with drones (VRPD). A fleet of 

trucks equipped with drones delivers packages to customers. Drones can be 

dispatched from and picked up by the trucks at the depot or any of the customer 

locations. The objective is to minimize the maximum duration of the routes (i.e., the 

completion time). Drone delivery (from trucks) would enable trucks to visit 

customers located centrally on the route and drones to visit farther-away customers. 
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In other words, trucks would get “close enough” to more distant customers and then 

dispatch drones. Drone delivery could reduce the number of required trucks and 

drivers on the road. More significantly, drones might speed up delivery. They pose 

several questions in order to study the maximum savings that can be obtained from 

using drones; then derive a number of worst-case results. The worst-case results 

depend on the number of drones per truck and the speed of the drones relative to the 

speed of the truck. 

Han et al. (2019) consider the utilization of drones for delivery with the aim of 

increasing customer satisfaction and minimizing transportation costs per delivery in a 

green way. İstanbul’s Bakırköy district is selected as the implementation region, and 

daily drug delivery to pharmacies with drones is examined. In the first stage, a 

mathematical model that uses pharmacy coordinates as input is developed for 

clustering analysis. In the second stage, one of these clusters is selected, and the 

location of the drone center that will serve pharmacies in the cluster is obtained by 

the center of gravity method. Then, a vehicle routing model is proposed for finding 

the drone routes and calculating the total distance travelled within this cluster. 

Cheng et al. (2018) solve a multi-trip drone routing problem, where drones' energy 

consumption is influenced by payload and travel distance whereas such relationships 

are nonlinear. To tackle the nonlinear (convex) energy function, which can be 

incorporated in the objective function within this particular problem, they propose 

two types of cuts, logical cuts, and sub-gradient cuts. This allows making an exact 

calculation of energy consumption, instead of using the linear approximation method 

as in the literature, which can fail to detect infeasible routes due to excess energy 

consumption. They introduce two formulations to solve the problem, one with a 

drone index and the other without, which are further enhanced by valid inequalities. 

Branch-and-cut algorithms are developed for the formulations and benchmark 

instances (with up to 50 customers) are first generated for this problem. Extensive 

numerical experiments indicate that the formulation without a drone index is superior 

in solving more instances to optimality and providing high quality solutions for all 

the generated instances. The results also indicate that even though the original model 

is nonlinear, the proposed approach is highly efficient, and the performance does not 
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deteriorate so much compared to the linear approximation model in which the 

structure is much simpler.  

Pugliese & Guerriero (2017) address the problem of managing a drone-based 

delivery process and consider the specific situation of a delivery company, that uses 

a set of trucks equipped with a given number of drones. In particular, items of limited 

weight and size could be delivered by using drones. A vehicle, during its trip, can 

launch a drone when serving a customer, the drone performs a delivery for exactly 

one customer and returns to the vehicle, possibly at a different customer location. 

Each drone can be launched several times during the vehicle’s route. It is imposed a 

limit on the maximum distance that each drone can travel and synchronization 

requirements between vehicle and drone should be ensured. In particular, it is 

assumed that a vehicle waits for a drone for a maximum period of time. The aim is to 

serve all customers within their time window. The problem is modeled as a variant of 

the vehicle routing problem with time windows. The aim of this work is to analyze 

the delivery process with drones, by taking into account the total transportation cost 

and highlighting strategic issues, related to the use of drones. The numerical results, 

collected on instances generated to be very close to reality, show that the use of 

drones is not economically convenient in classical terms. However, when 

considering negative externalities related to the use of classical vehicles and quality 

of service requirements, the benefit of using drones becomes relevant. 

Carlsson & Song (2018) study the efficiency of a delivery system with UAVs. In the 

system the UAVs provides service to customers and return to a truck that is moving. 

The UAV picks the package from the truck, deliver the product to the customer, and 

return to the truck that is moving for picking the next package. It is stated that the 

hardware for this system is ready, but it is not completely understood to what extent 

such an approach can provide improved quality of service. They conduct a 

theoretical analysis in Euclidean plane using real-time simulations on a road 

network. As a result, they conclude that the efficiency improvement is proportional 

to the square root of the ratio of the speeds of the truck and the UAV.  

Drones are known for the advantage of speed, ease in delivering commodities to 

customers, and flexibility in services. in addition they are extremely useful for the 

tasks that are dangerous and dull. Chiang et al. (2019) argue whether the use of drone 



16 

 

delivery is beneficial to the environment and results in cost savings. It is stated that 

drone delivery results in lower energy consumption and hence reduce CO2 emissions 

and carbon footprint. They study the impact of drone delivery on CO2 emissions and 

costs. They propose a binary mixed integer programming model to exploit the 

sustainability features of drones for parcel delivery services. As a result of 

computational analysis, it is shown that drones are effective in terms of cost and 

environmental friendliness.    

Dorling et al. (2017) propose two multi-trip vehicle routing problems for drone 

delivery that addresses cost minimization subject to delivery time limit and overall 

delivery time minimization subject to budget constraint. They mathematically drive 

an energy consumption model for multirotor drones and validate the results 

experimentally. They demonstrate that energy consumption varies approximately 

linearly with battery weight and total payload.  

Khoufi et al. (2019) propose a literature review related with UAV path optimization 

problems and they focus on mobility on macroscopic scale. They study the recent 

literature that modified the problems to the UAV context, offer a general 

classification and taxonomy of the problems and their formulation. In addition, they 

provide a synthetic overview of the resolution techniques, performance metrics and 

the numerical results. 

Kilic et al. (2012) categorize and explain the milk-run distribution problem in the 

plants based on real manufacturing environment and related literature. For one main 

category they develop a model that minimizes the number of vehicles and the 

distance travelled. They also present a numerical example for a real-world 

application and explain the applicability of the developed models.  

Marinelli et al. (2018) propose a novel approach that maximizes the use of drones in 

parcel delivery. The assume that a truck can pick up and deliver a drone not only at 

nodes of the network, but also along the route. Hence the operations of drones are not 

strictly related with the customer locations and hence they can serve a larger area 

along the truck route. They tested the proposed heuristic on test instances and state 

the benefits of the proposed approach.  
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Ponza (2016) consider the cooperation between a truck and a drone for last-mile 

delivery. He considers a system where the drone launches from the truck, deliver the 

goods to a customer and then meets with the truck. While the drone is flying, the 

truck delivers to other customers as long as the drone has enough battery to hover 

waiting for the vehicle. A mixed integer mathematical model is constructed and 

solved using Simulated Annealing metaheuristic. The numerical analysis show that 

significant savings can be obtained if trucks and drones are used together. 

Otto et al. (2018) conducts a literature review on optimization approaches to civil 

applications of drones. They explain the most promising drone applications and 

summarize the characteristics of drones applicable to operations planning. More than 

200 articles are reviewed and they insights are provided regarding emerging 

modeling approaches. they also suggest some future research directions.  
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CHAPTER 3 

PROBLEM DEFINITION 

In this chapter, we will give the problem definition using illustrative demonstrations. 

First, we will introduce the problem environment with a potential real-life example 

presented in the city map of Ankara. Via this example, both classical milk-run 

distribution and milk-run distribution only with drones are handled and the 

advantages of drone usage in the milk-run distribution in terms of time and distance 

are presented. The next section will be devoted to the abstraction of the problem. Via 

the abstraction, the problem will be mathematically tractable and suitable for 

modelling. In the third section, we will explain the methodology that is used in 

calculating the flight times of the drones, from the truck to the customers and vice 

versa.  Finally, in the last section of this chapter, we will clarify the abstraction by 

two giving two examples. The first example is a classical milk-run model in which 

delivery is made only by the truck. The second example considers a delivery with 

drones while the truck follows its route. This second example contains the notation 

of sets and parameters of the mathematical model that we will introduce in Chapter 4 

in detail.  

3.1. Problem Environment 

The example to be given in this chapter is not completely an application of a real-life 

example but the hypothetical example is designed on a real map. In particular, the 

problem to be modeled as milk-run with drones will be explained on a hypothetical 

example built on the Ankara map. 

In this example, it is assumed that the demands of seven customers with fixed 

locations are delivered from the warehouse in the center; the default locations of the 

warehouse and customers are shown on the Ankara map in Figure 3. The truck, 

which is initially on the warehouse at point 0, will deliver the demands of the 

customers located at points numbered 1 to 7. In order to more clearly demonstrate the 
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advantages of the milk-run model that will be proposed using the drone, the situation 

in which delivery is made with the classical milk-run will be handled first.   

In Figure 3, the route of the shortest path problem is assumed to be solved for the 

classical milk-run is given. In this route, there will be situations just like as it travels 

from the second customer to the third customer where the truck uses the highway. It 

is also possible that the truck can choose to go into the city traffic for deliveries and 

continue through the city just like in the case when the truck travels from the fifth 

customer to the sixth customer. The length of the route of this example is 179 

kilometers and the total duration of the route is given by Google Maps as 3 hours and 

17 minutes, excluding pauses at customer points (11 November 2019, 15:12). 

 

 

Figure 3. Classical Milk-Run Distribution Route  

If the delivery in this example is made with the designed milk-run model using the 

drone, a route similar to that shown in Figure 4 will appear. This route is 111 

kilometers long and is shorter than the classical milk-run route. Likewise, the 

duration of the route is completed in 1 hour and 5 minutes and is much shorter than 

the classical milk-run route. Compared to the milk-run distribution made with 

drones, the classical milk-run distribution has a 61% longer tour length and takes 

203% more time. 
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Figure 4. The Route of Milk-Run Distribution with Drones  

In the milk-run distribution system with drones, the truck does not make a direct 

delivery to customers. As can be followed from Figure 4, when the truck approaches 

each customer, delivery is carried out by transporting the requested product to the 

customer through the drone. On the other hand, the drone, which is already empty in 

the customer, should move towards the truck in the right direction and correct time 

so that they can meet at a common point.  

In Figure 4, straight arrows show the path of the drones that go from the truck to the 

customer, and the dashed arrows show the path of empty drones from the customer to 

the truck. That the truck sends the full drone to the customer and takes the empty one 

from the customer simultaneously is exemplified by the second customer on the map. 

On the other hand, the truck may pick up the empty drone from the customer before 

sending the full drone to the customer as exemplified by the third customer. In cases 

where the empty drone was taken into the truck early enough; it is also possible to 

load the product requested by the customer to the same drone, change its battery if 

necessary and then send it back to the same customer.  

In comparison with the speed of a truck moving on the highway in the current 

technology, the speed of the UAV is expected to be lower. Therefore, after the 

product is delivered to the customer, it is only possible for the UAV to return to the 

truck if the truck waits to receive the UAV. On the contrary, most of the studies on 

this subject in the current literature assume that the UAVs used during delivery are 

faster than trucks. This assumption may be valid in cases where the truck cannot 
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travel fast due to heavy city traffic. However, in a milk-run distribution using the 

highway as described here, this assumption does not seem a valid one.  

When it comes to a possible investment in UAVs, someone who evaluates that 

UAVs are slower than trucks may ask what kind of advantage the use of UAVs will 

provide in an intended type of transportation. It may be thought that there are 

justifiable reasons for asking this question because the investment in question may 

include high cost details such as the infrastructure required to collect UAVs that 

remain at the customer point in the next day. 

Despite the high investment cost that will be required initially, distribution with 

UAV can provide economic advantages in the long term due to three reasons. First of 

all, considering the improvements obtained in possible performance measures of the 

distribution in the imaginary sample designed on the Ankara map, it is anticipated 

that milk-run distribution with UAVs may have promising benefits. Even if a small 

cost reduction in a route is achieved compared to classical delivery, UAV 

transportation will become attractive for those companies whose long-term 

investments are at the forefront and who carry a large number of units daily. Second, 

slower UAVs do not always result in slower completion of the route. In cases where 

customers are relatively far from the route to be used in UAV transportation and thus 

it is difficult to reach these customers, that the truck waits to take UAVs may not 

extend the total time of the route. Finally, with the development of UAV technology 

in the future, it will be possible to produce UAVs faster than trucks and UAVs will 

be possibly produced at lower costs. Therefore, being able to detect the situations in 

which UAV transportation is more profitable will provide important advantages for 

the future. 

This study presents a milk-run model for cities having a circular-like highway around 

them. We have already illustrated a hypothetical milk-run tour at Ankara. In Figure 

5, we present two additional examples of such cities appropriate for the possible use 

of the proposed model in this study. In the figure to the left city of Eindhoven and to 

the right Indianapolis can be seen.   
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Figure 5. Examples for Circular Highways around the Cities 

 

3.2. An Abstraction of the Problem 

Before introducing the general characteristics of the milk-run model with drones, we 

will illustrate the abstraction of a classical milk-run model. In the classical milk-run 

model, the truck follows a predetermined route within the city and performs the 

delivery of the goods demanded by the customers. In the actual tour, the traveling 

times between the depot and the customers, and within the customers cannot be 

strictly determined due to some unexpected traffic or weather conditions. Moreover, 

some unexpected daily life problems like being sick can lead to delays. But in order 

to enable the tractability of the problem, such cases are generally neglected thinking 

that they do not change the overall performances significantly. Therefore, we can 

abstract a classical milk-run tour by assigning average speeds as constant speeds and 

using bird’s-eye distances instead of actual distances and neglecting weather 

conditions or humanly delays. An illustration of such an abstraction is given in 

Figure 6. In this example, two customers with demands q(1) and q(2) are served by 

the truck using the specified route: 𝐷𝑒𝑝𝑜𝑡 − 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟1 − 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟2 − 𝐷𝑒𝑝𝑜𝑡.  
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Figure 6. Abstraction of the Classical Milk-Run Tour 

Now, we will introduce the general characteristics of the milk-run model with drones 

that we study. Via the abstraction of the real-life system, the obtained model will be 

mathematically tractable.  

A representative circular route of the milk-run is given in Figure 7. The radius of the 

circle is 𝑟. Since the tour starts at the depot, the circle is centered at the 

location (0,0), which is shown by the blue point. The equation of the circle is (1): 

 𝑥2 + 𝑦2 = 𝑟2 (1)  
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Figure 7. Route of the Milk-Run  

The truck will start from the depot, located at (x, y) = (-r,0) at time t = 0. The entire 

route of the truck will be the tour around the circle, which is formed by tracking the 

360-degree angle. In the numerical calculations, we will assume the truck’s speed to 

be 𝑉𝑇𝑟 = 90𝑘𝑚/ℎ and the tour time to be 60 minutes, or equivalently 1 hour. These 

assumptions lead to the following calculation of the radius of the circular route (2): 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  𝑆𝑝𝑒𝑒𝑑 ∗  𝑇𝑖𝑚𝑒 

𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  90𝑘𝑚/ℎ ∗  1ℎ =  90 𝑘𝑚 =  2𝜋𝑟 

𝑟 =
90𝑘𝑚

2𝜋
=

45𝑘𝑚

𝜋
= 14.3239𝑘𝑚 

(2)  

The figurative representations of the model are given in Figure 8. These 

figures will be used to develop the explanations step by step.   
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Figure 8. Figurative Representations of the Model 

 

3.3. Calculation of Flight Times  

In this section, we will explain the mathematical formulas that calculate the flight 

times from the truck to a specific customer location and vice versa. It will appear that 

the direct calculations of these equations for flight times will not be suitable to use in 

the mathematical milk-run model with drones, since they are highly nonlinear. 

Therefore, an approximation will be needed for this purpose. The approximation to 

be used in this study is a quadratic regression equation, which is also nonlinear, but 

less complex compared to actual flight time giving equations. The regression 

equations are customer specific, meaning that for each customer, a different 

quadratic regression equation is built. The response variable is flight time, which is 

explained by the start time of the flight.  

Figure Representation Definition

Empty drone

Loaded drone

Origin of the         

Circular Route

Depot:                   

Where Truck starts       

the route

Vehicle (Truck)

Position of the Truck 

in the Circle

Customer locations, 

where 0 refers to 

depot
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To start with, we will explain how we calculated the earliest time and latest time that 

truck and customer can interact. In the first stage of calculations, we need the 

intersection points of the two circles: circle of milk-run route and circle of 

customer’s range. For illustration, we will demonstrate the calculation of the two 

intersection points within which a loaded drone at a specified customer can be in 

interact with the truck. As previously mentioned, the truck route has a radius of r = 

14.32 km. We will let the specified customer’s coordinates to be (𝑥𝐶 , 𝑦𝐶) = (9,7), and 

the range of the drone to be 5.92km. The intersection points of these two circles are 

calculated to be (𝑥𝐸 , 𝑦𝐸)  =  (6.93,12.53) and (𝑥𝐿 , 𝑦𝐿)  =  (13.85,3.63). The center 

and intersection points for this specified customer are given in Table 3. 

Table 3. Center and Intersection Points of the Customers 

  
Intersection Points 

XC YC xE yE xL yL 

9 7 6.93 12.53 13.85 3.63 

 

Corresponding intersection points are shown in Figure 9 (Luckhurst, 2018).  

 

Figure 9. Points of Intersection 

From these intersection points, we will calculate the earliest and latest times truck 

keeps interaction with drones, related to that customer. The notations that we will use 

for the calculations are given in Figure 10. We represented the points (𝑙, 𝑚) on the 

circular route as 𝐻𝑡(𝑙, 𝑚). The subscript 𝑡 here shows the time of the truck at which 
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it is at the coordinate point (𝑙, 𝑚). Hence, this point is a function of 𝑡 and can be 

shown as (𝑙(𝑡), 𝑚(𝑡)), which can be used interchangeably with 𝐻𝑡(𝑙, 𝑚). The angle 

that the line segment from 𝑄(0,0) to 𝐻𝑡(𝑙, 𝑚) makes in the clockwise direction is 

given by 𝛼, and the angle that the line segment from 𝑄(0,0) to 𝑃𝑗(𝑋𝑐, 𝑌𝑐) makes in 

the clockwise direction is given by 𝜔.  

 

 

Figure 10. Distance Analysis: Intersection Points 

Since the initial position of the truck is (-r,0), the initial angle of the truck is  𝛼 =

180 degrees. Hence, during a full tour of the truck, 𝛼  changes in the interval 

(−180,180). The truck will complete the tour in 1 hour, or equivalently 60 minutes. 

This makes the angular speed of the truck to be −6/𝑚𝑖𝑛𝑢𝑡𝑒. Since the truck’s 

rotation is clockwise, at each minute, its positional angle decreases by 6 degrees. 

Initially at 𝑡 = 0, the truck is at the angle 𝛼 = 180, and at 𝑡 = 60, the truck is at the 

angle 𝛼 = −180. The linear relationship between 𝑡 and 𝛼 is given in equation (3).  

 𝑡 = 30 −
𝛼

6
     𝛼 ∈ (−180,180)    (3)  
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From equation 3, the equation of 𝛼 in terms of 𝑡 is found as in equation (4).  

 𝛼 = 6 ∗ (30 − 𝑡)    𝑡 ∈ (0,60)    (4)  

 

In order to find the time from the Cartesian coordinates, we make use of the 

trigonometric equations given in (5) and (6). 

 𝑙(𝑡) = 𝑟𝑐𝑜𝑠(𝛼) (5)  

 
𝑚(𝑡) = 𝑟𝑠𝑖𝑛(𝛼)   

(6)  

When 𝛼 is replaced in equations (5) and (6) using its time formula of equation (4), 

and considering the range properties of the inverse trigonometric functions, we 

obtained the time formulations, which we illustrate for the specified customer as 

given in Table 4. So, as given in Figure 10, the interaction of the truck with a drone 

related to the specified customer appears to be within the time interval 

(19.82 𝑚𝑖𝑛, 27.54 𝑚𝑖𝑛). 

Table 4. Time Formulations 

XC 9  

YC 7  

xE 6.93  

yE 12.53  

xL 13.85  

yL 3.63  

F1 19.82 F1=30-(1/6)arcCos(xE/r) 

F2 19.83 F2=30-(1/6)arcSin(yE/r) 

F3 70.17 F3=60-(1/6)arcSin(-yE/r) 

F4 27.54 F4=30-(1/6)arcCos(xL/r) 

F5 27.55 F5=30-(1/6)arcSin(yL/r) 

F6 62.45 F6=60-(1/6)arcSin(-yL/r) 

tE 19.82  

tL 27.54  

AlphaDepE 61.07  

AlphaDepL 14.78  

 

At this final step of calculations, we will find the flight times of the drones, from the 

truck to the customer and vice versa.  To make the notations remembered we used so 

far, the coordinates of the truck around the circular route at time t is (𝑙(𝑡), 𝑚(𝑡)), or 

equivalently 𝐻𝑡(𝑙, 𝑚), and the angle that the line segment from 𝑄(0,0) to 𝐻𝑡(𝑙, 𝑚) 

makes in the counter clockwise direction is 𝛼. We will introduce a new distance 
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𝐵 = 𝐵(𝑡) which corresponds to the distance of the truck to the customer at time t. 

For illustrative purposes, we will consider the instance at 𝑡 = 24.99. Unless stated 

otherwise, distances are in kilometers and times are in minutes. At this instance, 

which is shown in Figure 11, the distance between the truck and the specified 

customer’s location is given in equation (7): 

 𝐵 = 𝐵(𝑡) = B(24.99) = 3.40 (7)  

 

 

 

Figure 11. Distance between Drones and Customers 

 

We will introduce the function 𝑓𝑗
𝐴𝑐𝑡(𝑡) for the flight time from the truck to the j

th
 

customer at time t and vice versa. The superscript “Act” stands for “Actual”. The 

reason for using such a superscript is that we will later define “Estimated” flight 

times and use the superscript “Est” for the corresponding function. The derivation of 

this function is as follows.  First, we will show the algebra at the time 𝑡 = 24.99 for 
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a one-sided flight which is from the truck to the customer and then generalize the 

findings. The Euclidean distance between P and H is found by the equation (8): 

 

 

𝐵(𝑡)          = |𝑃j(𝑥𝐶 , 𝑦𝐶), 𝐻𝑡(𝑙, 𝑚)| = √(𝑥𝐶 − 𝑙(𝑡))2 + (𝑦𝐶 − 𝑚(𝑡))2 

𝐵(24.99) = |𝑃j(9,7), 𝐻𝑡(12.40,7.17)| 

                   = √(9 − 12.40)2 + (7 − 7.17)2 = 3.40 

(8)  

 

Now, 𝑓j
𝐴𝑐𝑡(24.99) is the actual time for the drone to take a distance of 3.40. 

Adding the drone’s speed 𝑉𝐷 to the notation developed so far, it becomes sufficient 

to find the flight time of the drone from the truck to the customer as a function of 

takeoff time from the truck. We will assume the drone’s speed to be 45 km/h. 

Accordingly, the drone’s speed is: Since, for this specific case under consideration 

𝑉𝐷 = 45𝑘𝑚/ℎ =
𝜋𝑟

60
, the following numerical calculations follow for this specific 

point: 

 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 ⋅ 𝑡𝑖𝑚𝑒 

𝐵(𝑡) = 𝑉𝐷 ⋅ 𝑓j
𝐴𝑐𝑡(𝑡) 

𝐵(24.99) = 𝑉𝐷 ⋅ 𝑓j
𝐴𝑐𝑡(24.99) 

3.40 =
𝜋𝑟

60
⋅ 𝑓j

𝐴𝑐𝑡(24.99) 

𝑓j
𝐴𝑐𝑡(24.99) =

60

14.32𝜋
⋅ 3.40 = 4.54 

(9)  

 

The generalization of this finding is given as follows: 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 ⋅ 𝑡𝑖𝑚𝑒 

𝐵(𝑡) = 𝑉𝐷 ⋅ 𝑓j
𝐴𝑐𝑡(𝑡) 

𝑓j
𝐴𝑐𝑡(𝑡) = 𝐵(𝑡) ⋅

1

𝑉𝐷
 

𝑓j
𝐴𝑐𝑡(𝑡) = √(𝑥𝐶 − 𝑙(𝑡))2 + (𝑦𝐶 − 𝑚(𝑡))2 ⋅

1

𝑉𝐷
 

(10)  
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3.4. A Sample Problem 

We defined a sample problem based on the abstraction of the real problem to clarify 

our approach. The settings for the truck route was 𝑟 = 14.32 𝑘𝑚 and the time of the 

tour was 60 minutes. In this chapter, we have two examples for comparison 

purposes. These examples contain two specified customers with fixed demands. In 

the first example, the truck makes a TSP tour to serve two customers, and hence the 

truck travels within the city. The second example illustrates the milk-run distribution 

system design for integrating drones.  

In the second example, the truck’s highway speed is taken to be 90km/h as stated 

before. For the first example, we need a working assumption for the truck’s speed 

within the city. The allowed maximum speed of trucks in the city is 50km/h (General 

Directorate of Highways, 2020). However, considering several speed lowering 

factors such as loss of time due to red lights and the difference between bird’s eye 

view and travels in the city-way, we assumed the average speed of the truck to be 

30km/h, or 0.5km/min. We will call this assumed speed as effective speed, which 

corresponds to the speed that Euclidean distance between two points is traveled by 

time t. Another assumption we made is about the setup times. In the first example, 

we assumed the delay time of unloading the item is to be 5 minutes and in the second 

one, we assumed the setup time of the drone to be 3 minutes.  

3.4.1. Milk-Run Distribution with Truck Alone 

We make the following assumptions about the first sample problem: 

i. The milk-run system has two customers. The first customer has a demand for 

two items and the second customer has a demand for a single item.  

ii. Initially, the truck is at the depot and distribution will be made using only the 

truck.  

iii. The truck will travel within the city and use Euclidean distances between the 

customer locations and the depot.  

iv. The effective speed of the truck is assumed to be 30km/h. 

v. The load/unload time in the customers are assumed to be 5 min. 
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The initial conditions (when time t is zero 0) of the sample milk-run problem are 

given in Figure 12. Representations of the figures introduced in Figure 8 and are used 

in this illustration of the initial conditions. 

 

Figure 12. Initial Conditions of the Sample Problem with Truck Only 

The route of the truck is given in Figure 13. For such a simple map of two customers, 

the best route is straightforward. For larger size problems, a TSP solution is 

desirable. The given distances between the three points are Euclidean distances.  

 

Figure 13. The Route of the Truck for the Sample Problem with Truck Only 
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x

Truck
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The calculation of the Euclidean distances and corresponding driving times are given 

in Table 5.  Since the effective speed of the truck is 30km/h, or equivalently 0.5 

km/min, drive times in minutes are found by dividing the distance by 0.5.  

Table 5. Driving Times Used in the Sample Problem Truck Only  

From To Distance 
Driving 

Time 

Depot: (-14.32,0) Customer 1: (-7,9) √(−14.32 + 7)2 + (0 − 9)2 = 23.15 
23.15

0.5
= 46.3 

Customer 1: (-7,9) Customer 2: (9,-7) √(−7 − 9)2 + (9 + 7)2 = 22.63 
22.63

0.5
= 45.3 

Customer 2: (9,-7) Depot: (-14.32,0) √(9 + 14.32)2 + (−7 − 0)2 = 8.79 
8.79

0.5
= 17.6 

 

Calculation of the arrival and departure times is given in Table 6. Since load/unload 

time is assumed to be 5 minutes, departure times from the customers are 5 more than 

the corresponding arrival times.  

Table 6. Arrival and Departure Times Used in the Sample Problem Truck Only 

From To 
Start 

Time 

Drive 

Time 
Arrival Time 

Departure 

Time 

Depot: 

(-14.32,0) 

Customer 1: 

(-7,9) 
0 46.3 0 + 46.3 = 46.3 46.3 + 5 = 51.3 

Customer 

1: (-7,9) 

Customer 2: 

(9,-7) 
51.3 45.3 51.3 + 45.3 = 96.6 

96.6 + 5
= 101.6 

Customer 

2: (9,-7) 

Depot: 

(-14.32,0) 
101.6 17.6 

101.6 + 17.6
= 119.1 

𝐸𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑜𝑢𝑟 

 

Using the arrival and departure times calculated in Table 6, the critical times and 

summary of the events in the sample problem are given in Table 7. 
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Table 7. Critical Times and Summary of Events for the Sample Problem Truck Only  

Time Event 

0.0 Departure of the Truck from Depot 

46.3 Arrival to Customer 1 

51.3 Departure from Customer 1 

96.6 Arrival to Customer 2 

101.6 Departure from Customer 2 

119.1 End of the Tour 

 

The critical events given in Table 7 will be demonstrated step by step in the 

following figures. To start with, Figure 14 gives the snapshot of the example’s 

feasible solution at t=0.00. This is the time when the truck departs from the depot. 

 

Figure 14. Snapshot at t = 0.00 

Figure 15 gives the snapshot of the example’s feasible solution at t=46.3. This is the 

time when the truck arrives at the first customer.  

t=0.0

j=1

j=2
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Figure 15. Snapshot at t = 46.3 

 

Figure 16 gives the snapshot of the example’s feasible solution at t=51.3. This is the 

time when the truck departs from the first customer.  

 

Figure 16. Snapshot at t = 51.3 

t=46.3
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j=2

t=51.3

j=1
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Figure 17 gives the snapshot of the example’s feasible solution at t=96.6. This is the 

time when the truck arrives at the second customer.  

 

Figure 17. Snapshot at t = 96.6 

Figure 18 gives the snapshot of the example’s feasible solution at t=101.6. This is the 

time when the truck departs from the second customer.  

 

Figure 18. Snapshot at t = 101.6 
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Figure 19 gives the snapshot of the example’s feasible solution at t=119.1. This is the 

time when the truck arrives back at the depot, and hence, the end of the tour.  

 

Figure 19. Snapshot at t = 119.1 

3.4.2. Milk-Run Distribution with Truck and Drones 

We make the following assumptions about customers, drones, and drones’ initial 

positions about the sample problem: 

i. The milk-run system has two customers and five drones.  

ii. Initially, three drones are at the depot. Two of them are loaded whereas the 

third one is empty.  

iii. The fourth drone is at the first customer and the fifth drone is at the second 

customer.  

The initial conditions (when time t is zero 0) of the sample milk-run problem are 

given in Figure 20. Representations of the figures introduced in Figure 8 are used in 

this illustration of the initial conditions. As can be followed from Figure 20, the truck 

is located in the depot at point (-14.32,0). The two customer’s locations are 𝑃1(−7,9) 

and 𝑃2(9, −7). The empty drone range is 11.84km and its loaded range is 5.92km. 

t=119.1

j=1

j=2
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Figure 20. Initial Conditions of the Sample Problem with Truck and Drones 

 

Of the three drones at the depot given in Figure 20, the first two drones are loaded 

and taken into the truck whereas the third drone is empty and not taken into the truck. 

The loaded drones are shown in black with a white cross inside them whereas the 

empty drones are shown in white with a black cross inside them. The first customer 

is located in the second quarter and the second customer is in the fourth quarter of 

the coordinate system. The fourth and fifth drones are represented near the first and 

second customers’ locations respectively and are empty. This is a complete 

explanation of Figure 20. 

The equation to calculate flight times where necessary is restated as follows:  

 𝑓j
𝐴𝑐𝑡(𝑡) = √(𝑥 − 𝑙)2 + (𝑦 − 𝑚)2 ∗

1

𝑉𝐷
 (11)  

 

For the first customer in the sample problem, the customer location is (−7,9) and the 

speed of the drone was taken as 𝑉𝐷 = 45𝑘𝑚/ℎ =
𝜋𝑟

60
 when loaded and 𝑉𝐷 =

y

x

Initial Conditions

t=0.01

r=14.32

Q(0,0)

P2(9,-7)

P1(-7,9)

d=   2 d=   1 

d=   3

d=   4

d=   5

q(2) = 1

q(1) = 2

t=4.83

t=12.55 t=17.57

t=27.41

t=32.45

t=40.17
t=45.22

j=1

j=2
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60𝑘𝑚/ℎ =
𝜋𝑟

45
 when empty.  Therefore, for loaded and empty drones,  

1

𝑉𝐷
=

60

14.32𝜋
 

and 
1

𝑉𝐷
=

45

14.32𝜋
 respectively. We will use the abbreviations “Arr” and “Dep” for the 

flight times of empty and loaded drones respectively. The reason is that drone 

“Arrives” at the truck when empty, and it “Departs” from the truck when loaded. 

Substituting 
1

𝑉𝐷
 values to equation (11), the flight times for the sample problem are 

found by equations (12) and (13), as follows: 

𝑓1
𝐴𝑐𝑡,𝐴𝑟𝑟(𝑡) = √(−7 − 𝑟𝑐𝑜𝑠(6 ∗ (30 − 𝑡)))

2
+ (9 − 𝑟𝑠𝑖𝑛(6 ∗ (30 − 𝑡)))

2

∗
45

14.32𝜋
 

(12)  

𝑓1
𝐴𝑐𝑡,𝐷𝑒𝑝(𝑡) = √(−7 − 𝑟𝑐𝑜𝑠(6 ∗ (30 − 𝑡)))

2
+ (9 − 𝑟𝑠𝑖𝑛(6 ∗ (30 − 𝑡)))

2

∗
60

14.32𝜋
 

(13)  

Likewise, for the second customer in the sample problem, the customer location 

appears to be (9, −7). Substituting the location of the second customer in equation 

(11), the flight times for the sample problem related to the second customer is found 

by equation (14), as follows: 

 
𝑓2

𝐴𝑐𝑡(𝑡) = √(9 − 𝑟𝑐𝑜𝑠(6 ∗ (30 − 𝑡)))
2

+ (−7 − 𝑟𝑠𝑖𝑛(6 ∗ (30 − 𝑡)))
2

∗
1

𝑉𝐷
 

 

(14)  

The calculations of flight times to determine critical events of the sample problem 

are performed using equations (12), (13), and (14). The results are given in Table 8. 

Table 8. Actual Flight Times to be used in the Sample Problem 

t: Time Drone From To 
Flight 

Time 

Arrival 

Time 

1.06 4 Customer 1 Truck 13.80 14.86 

6.53 1 and 2 Truck Customer 1 5.47 12.00 

28.30 5 Customer 2 Truck 14.42 42.72 

33.45 4 Truck Customer 2 6.41 39.86 

 

https://www.seslisozluk.net/en/what-is-the-meaning-of-abbreviation/
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A feasible solution for the problem will be given with supporting explanations step 

by step and with the help of snapshots. A feasible solution for the example is 

summarized in Table 9.   

Table 9. Summary of the Critical Times and Events with Actual Flight Times 

Time Event 

0.00 The Departure of the Truck from Depot 

1.06 The Departure of Drone 4 from Customer 1 towards the Truck 

6.53 The Departure of Drone 1 and 2 from the Truck towards Customer 1 

12.00 The Arrival of Drone 1 and 2 to Customer 1 

14.86 The Arrival of Drone 4 to the Truck 

28.30 The Departure of Drone 5 from Customer 2 towards the Truck 

33.45 The Departure of Drone 4 from the Truck towards Customer 2 

39.86 The Arrival of Drone 4 to Customer 2 

42.72 The Arrival of Drone 5 to the Truck 

60.00 The End of the Tour 

 

The explanation of the critical events in chronological order is as follows. At time 

0.0, the truck starts its tour and departs from the depot. Interaction range with the 

first customer starts at time 0.01 and approximately one minute after the range is 

entered, at time 1.06, the fourth drone departs from the first customer towards the 

truck. The flight time of this drone is found to be 13.80 by the 

function 𝑓1
𝐴𝑐𝑡,𝐴𝑟𝑟(1.06). Next, the truck enters the range of the loaded drone at time 

4.83, and at time 6.53, both of the drones in the truck departs through the first 

customer so that the demand of the first customer is fully satisfied. The flight time of 

these two drones at 6.53 is found to be 5.47 by the function 𝑓1
𝐴𝑐𝑡,𝐷𝑒𝑝(6.53) and the 

arrival of these two drones to the first customer is at 6.53 + 5.47 =  12.00. At time 

14.86 (found by 1.06+13.80=14.86), the fourth drone arrives to the truck. 

Because of the fact that the two customers in the example are located at the opposite 

quarters, no critical event occurs between 𝑡 = 14.86 and 𝑡 = 28.30.  At 𝑡 = 28.30, 

which is just after the starting time of the second customer’s interaction region, the 
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events related to the second customer start and the first event is the departure of the 

fifth drone from the second customer towards the truck. The flight time of this drone 

is found to be 14.42 by the function 𝑓2
𝐴𝑐𝑡,𝐴𝑟𝑟(28.30) and the arrival of the fifth drone 

to the truck is 28.30 + 14.42 = 42.72 . At time 33.45, the fourth drone departs from 

the truck towards the second customer and the corresponding flight time is found to 

be 𝑓2
𝐴𝑐𝑡,𝐷𝑒𝑝(33.45) = 6.41. Accordingly, the arrival of the fourth drone to the 

second customer is at time 33.45 + 6.41 = 39.86. Finally, at 𝑡 = 60.0 the truck 

arrives at the depot and the tour ends. 

Next, the explained events will be given step by step with corresponding snapshots. 

Figure 21 gives the snapshot of the example’s feasible solution at t=0.00. This is the 

time when the truck departs from the depot.  

 

Figure 21. Snapshot at t = 0.00 

Figure 22 gives the snapshot of the example’s feasible solution at t=1.06. This is the 

time when the fourth drone departs from the second customer towards the truck.  
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Figure 22. Snapshot at t = 1.06  

 

Figure 23 gives the snapshot of the example’s feasible solution at t=6.53. This is the 

time when the first two drones depart from the truck towards the first customer. 

 

Figure 23. Snapshot at t = 6.53 
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Figure 24 gives the snapshot of the example’s feasible solution at t=12.0. This is the 

time when the first two drones arrive at the first customer. 

 

Figure 24. Snapshot at t = 12.0  

Figure 25 gives the snapshot of the example’s feasible solution at t=14.86. This is the 

time when the fourth drone arrives at the truck.  

 

Figure 25. Snapshot at t = 14.86  
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Figure 26 gives the snapshot of the example’s feasible solution at t=28.30. This is the 

time when the fifth drone departs from the second customer towards the truck.  

 

Figure 26. Snapshot at t = 28.30  

Figure 27 gives the snapshot of the example’s feasible solution at t=33.45. This is the 

time when the fourth drone departs from the truck towards the second customer.  

 

Figure 27. Snapshot at t = 33.45  
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Figure 28 gives the snapshot of the example’s feasible solution at t=39.86. This is the 

time when the fourth drone arrives at the second customer.  

 

Figure 28. Snapshot at t = 39.86  

Figure 29 gives the snapshot of the example’s feasible solution at t=42.72. This is the 

time when the fifth drone arrives at the truck.  

 

Figure 29. Snapshot at t = 42.72  
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Figure 30 gives the snapshot of the example’s feasible solution at t=60. This is the 

time when the tour ends and the truck returns back to the depot.  

 

Figure 30. Snapshot at t = 60.0   
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CHAPTER 4 

MODELING APPROACH 

This chapter consists of the model that we propose for the milk-run distribution with 

drones.  First, we will give the classical milk-run model to be used later for 

comparison purposes. In the next section, we will introduce our proposed model with 

detailed explanations for its objective function and each of the constraints. In this 

initial model, we will show the flight times of the drones with functions ft,j
arr and 

ft,j
dep

. Next, we fit quadratic estimation functions for flight times and show their 

adequacy. Then, we will introduce the model again with the flight time functions 

replaced with their quadratic estimation functions. Finally, we will revisit the sample 

problem and give two solutions for the sample problem using estimated flight time 

functions. The first of these solutions is an arbitrary feasible solution, shown step by 

step with visual figures. The second solution is the optimal solution for the sample 

problem found by the application of the proposed model. 

4.1. The Classical Milk-Run Model  

Before introducing the proposed model, we will give the classical milk-run model for 

comparison purposes (Winston, 2004).  

It is worth mentioning the practical usage of classical milk-run at this point. In 

general, Classical milk-run tours are not optimized but the truck follows a pre-

specified route. Although this route is not optimized by the practitioner, the 

considered route is generally not far away from the optimal. Moreover, the tour is 

updated with respect to practical changes. To illustrate, if a tour is specified to be 

𝐷𝑒𝑝𝑜𝑡 − 𝐴 − 𝐵 − 𝐶 − 𝐷𝑒𝑝𝑜𝑡, and customer B is missing on a given day, the tour 

becomes 𝐷𝑒𝑝𝑜𝑡 − 𝐴 − 𝐶 − 𝐷𝑒𝑝𝑜𝑡.  

Due to the abstraction of the classical milk run model, we used the same tour and 

eliminated such adjustments. In fact, we used the TSP model to minimize the total 
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classical milk-run tour distance. Therefore, at any rate, our findings and comparisons 

are valid in practice.  

4.1.1. Sets 

The only set of the classical milk-run model is the set of customer locations, which is 

given as follows: 

j : 𝑆𝐿 = {𝑗: 𝑗 = 0,1,2, … , 𝑗, … 𝐽} 𝑤ℎ𝑒𝑟𝑒 0 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑡 

 

4.1.2. Parameters 

The parameters of the classical milk-run model are given as follows:  

𝜏 : Total time of milk-run in DMR model (minutes) 

σ : Speed of the truck on the highway (km/h) 

𝜗 : Speed ratio of the truck on the highway to in the city (𝜗 > 1) 

𝑞𝑗 : Demand at customer location j 

𝑐𝑐𝑡𝑦 : Operating and fuel cost of the truck in the city ($/km) 

𝑐𝑜𝑝𝑐 : Opportunity cost ($/min) 

𝜆𝑖𝑗 : Euclidean distance between customer location i and j (km) 

𝑡𝑤𝑎𝑖𝑡  : Waiting time of the truck at each customer j (min) 

 

4.1.3. Decision Variables 

The decision variables of the classical milk-run model are given in as follows. The 

first decision variable set determines the optimal tour, and the last two variables are 

used to form the objective function.  

𝑉𝑖𝑗 : {
1 if truck goes from location 𝑖 to 𝑗
0 otherwise

 

𝑍𝑐𝑡𝑦 : The truck’s total traveling cost within the city during the milk-run tour ($) 

𝑍𝑜𝑝𝑐 : 
The cost stems from the total time difference between the classical milk-run tour and 

the proposed milk-run tour with drones ($) 
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4.1.4. Objective Function 

The objective function is the total cost of the milk-run tour which is the sum of the 

truck’s traveling cost within the city, and the opportunity cost. Opportunity cost is 

the cost that stems from the total time difference between the classical milk-run tour 

and the proposed milk-run tour with drones. The idea is that if the tour were 

performed in accordance with the model proposed in this thesis, the total time of the 

tour would be less than the classical milk-run tour. In this time difference, the 

company has the opportunity of serving more customers and making more money. 

The objective function and definition constraints of the cost functions are given in 

equations (15), (16) and (17). 

𝑀𝑖𝑛 ∑ 𝑍𝑐𝑡𝑦 + 𝑍𝑜𝑝𝑐 (15) 

𝑍𝑐𝑡𝑦 = 𝑐𝑐𝑡𝑦 ∙ ∑ ∑ 𝜆𝑖𝑗𝑉𝑖𝑗

∀𝑗∀𝑖

 (16) 

𝑍𝑜𝑝𝑐 = 𝑐𝑜𝑝𝑐 ∙ [60
∑ ∑ 𝜆𝑖𝑗𝑉𝑖𝑗∀𝑗∀𝑖

𝜎/𝜗
+ 𝑡𝑤𝑎𝑖𝑡𝐽 − 𝜏] (17) 

 

4.1.5. Model Constraints 

The constraints of the classical milk-run model are given as follows:   

∑ 𝑉𝑖𝑗

∀𝑗,𝑖≠𝑗

= 1 (18) 

∑ 𝑉𝑖𝑗

∀𝑖,𝑖≠𝑗

= 1 (19) 

𝜐𝑖 − 𝜐𝑗 + 𝐽 ∙ 𝑉𝑖𝑗 ≤ 𝐽 − 1 (20) 

 

Explanations of the constraints are as follows. Constraint (18) ensures that the truck 

enters each customer exactly once and constraint (19) confirms that the truck leaves 

from each customer exactly once. Constraint (20) is the sub-tour elimination 

constraint. 
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4.2. The Proposed Model 

In this section, we will explain the assumptions, sets, parameters, decision variables, 

objective functions, and constraints of the proposed model.  

4.2.1. Assumptions  

In the model to be studied in this thesis, the settings regarding the milk-run 

distribution system using drones are as follows. The single truck follows a predefined 

route at a given time and it can take multiple drones within the tour, without a fixed 

capacity for the maximum number of drones. Having delivered the parts or materials 

to the customers, the truck returns back to the depot. The Milk-run system is a 

circular tour that starts and ends at the initial point. The system allows an exchange 

of full and empty drones. 

When it comes to the settings about the drones, the following are noted. Each of the 

drones can carry only a single item, i.e., its capacity is one and drones have a limited 

range of flight. It is assumed that the speed of the drone is less than the truck. 

Accordingly, the truck may slow down for landing drone but the additional time 

spent for this activity is negligible. The mechanism we consider here for landing on 

the truck or taking off from the truck is like the landing and boarding activities of the 

aircraft on the aircraft carrier. As a result, both the truck and the drone are assumed 

to make simultaneous movements during arrival and departure activities without 

causing a time delay.  

For the delivery of the items, only drones are used and the truck never waits for the 

drone, which means that they are synchronized in the delivery. Whenever two 

consequent use of the same drone is required, its reload time is considered as a fixed 

constant but the time required to charge or change its battery if necessary, is assumed 

to be negligible. The assumptions can be summarized as follows: 

A.1. All customer demands are known before the start of operations and all 

customers must be served.  

A.2. The truck never stops during its tour and launching/landing operations of 

drones are performed as the truck moves. Possible loss of time for these 

operations is negligible.  
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A.3. A specific drone can make at most two movements through a single tour. 

Either it makes no movement at all, or it makes a movement from the truck 

to a customer or vice versa, or it is taken from a customer to be used for 

service of a latter customer.  

A.4. The capacity of a drone is one-unit demand. 

A.5. The demand of each customer can be fulfilled only by drones; the truck is 

not used to satisfy demands.   

A.6. In case a drone is taken from a customer to be used to satisfy a latter 

customer's demand, it has fixed item-loading and battery-change times 

before it launches. 

A.7. Multiple drones can be launched / landed simultaneously. 

A.8. Speed of truck and drones are fixed through their whole travel; drone 

speed is different if it is loaded or unloaded. 

A.9. The flight range of drones is fixed and different if they are loaded or 

unloaded.  

A.10. There is no technical problem with the drones such as drone’s failure, 

crash, disconnection of a drone with the truck, and so on. In other words, 

we assume that our model is free from technical problems.  

4.2.2. Sets 

The nonlinear mixed integer programming milk-run model with drones is developed 

via the following steps.  

To start with it will be useful to explain the sets and their corresponding indices used 

in the mathematical modelling of the problem. As is mentioned before, "time" does 

not correspond to indices of a set in this study. The milk-run model assumes a 

number of J customers whose locations are fixed within the circle, and there are D 

drones in the model. Some of these drones are at specified customers and the 

remaining are at the depot initially. The other sets and corresponding details are also 

given as follows:      

j : 𝑆𝐿 = {𝑗: 𝑗 = 0,1,2, … , 𝑗, … 𝐽}, 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (0 𝑚𝑒𝑎𝑛𝑠 𝑑𝑒𝑝𝑜𝑡) 

d : 𝑆𝐷 = {𝑑: 𝑑 = 1,2, … , 𝑑, … 𝐷}, 𝑈𝐴𝑉𝑠 

𝑆𝑗
𝐷 : (𝑆𝑗

𝐷 ⊂ 𝑆𝐷), 𝑈𝐴𝑉𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑒𝑚𝑝𝑡𝑦 𝑖𝑛 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 

𝑆0
𝐷 : (𝑆0

𝐷 ⊂ 𝑆𝐷), 𝑈𝐴𝑉𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑡 
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𝑆0
𝐷−𝑒 : (𝑆0

𝐷−𝑒 ⊂ 𝑆𝐷), 𝑈𝐴𝑉𝑠 𝑒𝑚𝑝𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑡 

𝑆0
𝐷−𝑙 : 

(𝑆0
𝐷−𝑙 ⊂ 𝑆𝐷) 

 

(𝑆0
𝐷 = 𝑆0

𝐷−𝑒 ∪ 𝑆0
𝐷−𝑙) 𝑎𝑛𝑑 (𝑆𝐷 = ⋃ 𝑆𝑗

𝐷

∀𝑗

∪ 𝑆0
𝐷), 𝑈𝐴𝑉𝑠 𝑙𝑜𝑎𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑡 

t : Time 

(d,j) : 𝑆𝐷𝐽 = {(𝑑, 𝑗): 𝑑 ∈ 𝑆𝑗
𝐷 𝑎𝑛𝑑 𝑑 𝑖𝑠 𝑎𝑡 𝑗}, 𝑇ℎ𝑒 𝑑𝑟𝑜𝑛𝑒𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 

 

4.2.3. Parameters 

The parameters of the model are as follows: 

𝜏 : Total time of milk-run, minutes 

σ : Speed of the truck on the highway, km/h 

𝑞𝑗 : Demand at customer location j 

𝑡𝑗
𝑑𝑒𝑝−𝑒

 : The earliest time that a drone can take-off from vehicle to location j 

𝑡𝑗
𝑑𝑒𝑝−𝑙

 : The latest time that a drone can take-off from vehicle to location j 

𝑡𝑗
𝑎𝑟𝑟−𝑒 : 

The earliest time that a drone can land-on to the vehicle departed 

from location j 

𝑡𝑗
𝑎𝑟𝑟−𝑙 : 

The latest time that a drone can land-on to the vehicle departed from 

location j 

𝑓𝑡,𝑗
𝑑𝑒𝑝

 : 
Flight time of a drone that takes-off at time t for customer location j 

(=0 if out of range. A nonlinear function. Proportional to the distance 

between vehicle location at time t and customer location j) 

𝑓𝑡,𝑗
𝑎𝑟𝑟 : Flight time of a drone that takes-off at time t from customer location j 

𝑡𝑠𝑒𝑡𝑢𝑝 : 
Setup time of a drone (land-on time & battery replacement & load 

payload) 

𝑐ℎ𝑤𝑦 : Operating and fuel cost of the truck on the highway, $/km 

𝑐𝑑𝑟𝑛 : Operating and battery usage cost of a drone, $/min 
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4.2.4. Decision Variables 

In this section, the decision variables of the model are given. The decision variable 

𝑈𝑑
𝐵 is the binary variable that takes the value of one if d

th
 drone is taken to the truck 

from the depot. The objective function of the model will be to minimize the total 

costs. The two sets of decision variables X stand for the actions of the drones from 

the truck to the customers whereas Y stands for the other way around. Specifically, 

𝑋𝑑,𝑗
𝐵  is the binary decision variable that takes one if d

th
 drone is sent to satisfy a unit 

demand of the j
th

 customer, and 𝑋𝑑,𝑗  is the corresponding take-off time to this 

sending. Likewise, 𝑌𝑑,𝑗
𝐵   is the binary decision variable that takes one if d

th
 empty 

drone is sent from the j
th

 customer to the truck customer, and 𝑌𝑑,𝑗 is the 

corresponding take-off time to this taking. Finally, 𝑍ℎ𝑤𝑦 is the total operating and 

fuel cost of the truck during the tour on the highway, and 𝑍𝑑𝑟𝑛is total operating and 

battery usage cost of the drones during the tour. The objective function of the model 

is the sum of these last two decision variables. The decision variables of the model 

are given as follows: 

𝑈𝑑
𝐵 : 1 if drone d is put into the truck at the depot, 0 otherwise (𝑑 ∈ 𝑆0

𝐷) 

𝑋𝑑,𝑗
𝐵  : 1 if drone d serves location j , 0 otherwise 

𝑋𝑑,𝑗 : 
The departure time of drone d from the truck for location j (=0 means 

no departure of drone d for customer j) 

𝑌𝑑,𝑗
𝐵  : 1 if drone d departs from location j , 0 otherwise 

𝑌𝑑,𝑗 : 

Launch time of drone d from location j to arrive at the truck (=0 

means no launch of drone d from customer j. This decision variable is 

valid only for drones in the set 𝑆𝑗
𝐷) 

𝑍ℎ𝑤𝑦 : 
Total operating and fuel cost of the truck during the tour on the 

highway 

𝑍𝑑𝑟𝑛 : Total operating and battery usage cost of the drones during the tour 

 

4.2.5. Objective Function and the Constraints 

The objective function of the model is given as follows. The objective is to minimize 

the total cost of the tour, which consists of the cost incurred on the highway by the 

truck and the cost of the drones used in the delivery of the demanded items. In fact, 

the truck’s highway cost is a fixed cost since the truck never stops during the tour in 
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our proposed model. However, we need to add this fixed cost to our model so that we 

can compare the results of our proposed model with the classical milk-run model.  

𝑀𝑖𝑛 𝑍ℎ𝑤𝑦 + 𝑍𝑑𝑟𝑛 (21) 

𝑍ℎ𝑤𝑦 = 𝑐ℎ𝑤𝑦 ∙ 𝜎 ∙
𝜏

60
 (22) 

𝑍𝑑𝑟𝑛 = 𝑐𝑑𝑟𝑛 ∙ [∑ 𝑓𝑡,𝑗
𝑎𝑟𝑟

∀𝑗

+ ∑ 𝑓𝑡,𝑗
𝑑𝑒𝑝

∀𝑗

] (23) 

 

In the objective function, a point is worth mentioning. The arrival flight times of the 

drones 𝑓𝑡,𝑗
𝑎𝑟𝑟 takes part in the constraints whereas departure flight times of the drones 

𝑓𝑡,𝑗
𝑑𝑒𝑝 does not take part in the constraints. One can consider this case as a problem 

thinking that the optimal departure flight times would all be equal to zero in the 

optimum solution. However, this is not the case due to the following reason. We will 

update this initially proposed model by replacing the flight times with their quadratic 

estimation functions. These estimation functions are functions of the decision 

variables 𝑋𝑑,𝑗 and 𝑌𝑑,𝑗. Accordingly, the proposed problem does not suffer from such 

a problem. The constraints of the model and their explanations are given as follows:  

𝑈𝑑
𝐵 = 0            ∀𝑑 ∉ 𝑆0

𝐷
 (24) 

𝑌𝑑,𝑗
𝐵 = 0            ∀𝑗, 𝑑 ∉ 𝑆𝑗

𝐷
 (25) 

𝑌𝑑,𝑗 ≤ 𝑀 ∙ 𝑌𝑑,𝑗
𝐵                ∀𝑗, 𝑑, (𝑑, 𝑗) ∈ 𝑆𝐷𝐽

 (26) 

𝑋𝑑,𝑗′ = 0           ∀𝑗, 𝑗′ < 𝑗, 𝑑, (𝑑, 𝑗) ∈ 𝑆𝐷𝐽
 (27) 

∑ 𝑋𝑑,𝑗
𝐵

∀𝑗

≤ 1           ∀𝑗, 𝑑 (28) 

𝑋𝑑,𝑗 ≤ 𝑀 ∙ 𝑋𝑑,𝑗
𝐵            ∀𝑗, 𝑑 (29) 
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∑ 𝑋𝑑,𝑗
𝐵

∀𝑑

≥ 𝑞𝑗              ∀𝑗 (30) 

∑ 𝑋𝑑,𝑗
𝐵

∀𝑗

≤ 𝑈𝑑
𝐵           ∀𝑗, 𝑑 ∈ 𝑆0

𝐷
 (31) 

∑ 𝑋𝑑,𝑗′
𝐵

𝐽

𝑗′=𝑗

 ≤ 𝑌𝑑,𝑗
𝐵            ∀𝑗, 𝑗′ ≥ 𝑗, 𝑑 ∈ 𝑆𝑗

𝐷
 (32) 

𝑋𝑑,𝑗′  ≤ 𝑀 ∙ 𝑌𝑑,𝑗
𝐵            ∀𝑗, 𝑗′ ≥ 𝑗, 𝑑 ∈ 𝑆𝑗

𝐷
 (33) 

𝑌𝑑,𝑗 + 𝑓𝑡,𝑗
𝑎𝑟𝑟 + 𝑡𝑠𝑒𝑡𝑢𝑝 ≤ ∑ 𝑋𝑑,𝑗′

𝐽
𝑗′=𝑗 + 𝑀 ∙ (1 − ∑ 𝑋𝑑,𝑗′

𝐵𝐽
𝑗′=𝑗 )       ∀𝑑 ∉ 𝑆0

𝐷, (𝑑, 𝑗) ∈ 𝑆𝐷𝐽
 (34) 

𝑌𝑑,𝑗 + 𝑓𝑡,𝑗
𝑎𝑟𝑟 ≤ 𝑡𝑗

𝑎𝑟𝑟−𝑙 + 𝑀 ∙ (1 − 𝑌𝑑,𝑗
𝐵 )                    ∀𝑗, 𝑑, (𝑑, 𝑗) ∈ 𝑆𝐷𝐽

 (35) 

𝑡𝑗
𝑎𝑟𝑟−𝑒 − 𝑀 ∙ (1 − 𝑌𝑑,𝑗

𝐵 ) ≤ 𝑌𝑑,𝑗 + 𝑓𝑡,𝑗
𝑎𝑟𝑟                  ∀𝑗, 𝑑, (𝑑, 𝑗) ∈ 𝑆𝐷𝐽

 (36) 

𝑋𝑑,𝑗 ≤ 𝑋𝑑,𝑗
𝐵 ∙ 𝑡𝑗

𝑑𝑒𝑝−𝑙
               ∀𝑗, 𝑑 (37) 

𝑋𝑑,𝑗
𝐵 ∙ 𝑡𝑗

𝑑𝑒𝑝−𝑒
≤ 𝑋𝑑,𝑗               ∀𝑗, 𝑑 (38) 

𝑋𝑑,𝑗 ≤ 𝜏             ∀𝑗, 𝑑 (39) 

𝑌𝑑,𝑗 + 𝑓𝑡,𝑗
𝑎𝑟𝑟 ≤ 𝜏 + 𝑀 ∙ (1 − 𝑌𝑑,𝑗

𝐵 )    ∀𝑗, 𝑑, (𝑑, 𝑗) ∈ 𝑆𝐷𝐽
 (40) 

 

Constraint (24) guarantees that drones that are not initially at the depot cannot be 

taken into the truck. Constraint (25) ensures that drones that are not in customer 𝑗 

cannot be taken off from customer 𝑗. Constraint (26) enforces that a drone that is not 

taken off from the customer 𝑗 (𝑌𝑑,𝑗
𝐵 = 0) has takeoff time equal to zero (𝑌𝑑,𝑗 = 0) 

which indicates that it has not taken off from that customer. Constraint (27) 

guarantees that a drone at customer 𝑗 cannot be sent to another customer which is 

prior to the 𝑗𝑡ℎ customer. Constraint (28) ensures that a drone can be sent to a 

customer at most once. Constraint (26) enforces a drone that is not taken off from the 
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truck  (𝑋𝑑,𝑗
𝐵 = 0) has takeoff time equal to zero (𝑋𝑑,𝑗  =  0 ) which indicates that it 

has not taken off from the truck. Constraint (30) guarantees that all customers' 

demands must be met. Therefore, at least 𝑞𝑗 drone must go to the customer 𝑗. 

Constraint (31) ensures that regarding the drones those are initially at the depot, only 

those drones taken from the depot can be used to satisfy a customer’s demand. 

Constraint (32) guarantees the fact that in order to send a drone that is initially at 

customer 𝑗 to that customer or to a subsequent customer, it is required that the drone 

is taken off from customer 𝑗. Constraint (33) guarantees that if a drone is initially at 

customer 𝑗 and it will be used to satisfy the demand of that customer or to a 

subsequent customer, to take the drone into the truck is required. Constraint (34) 

states that if a drone which is initially at customer 𝑗 will be used to satisfy a 

customer’s demand, the earliest time that drone can depart from the truck is found by 

the addition of three components: its departure time from the customer, travel time to 

the truck and setup time. Constraint (35) guarantees that if a drone is to be taken 

from customer 𝑗 to the truck, its arrival time to the truck, which is the addition of its 

departure time from the customer and travel time to the truck, must not exceed the 

latest available time that the truck can take the drone. Constraint (36) ensures that if a 

drone is to be taken from customer 𝑗 to the truck, its arrival time to the truck, which 

is the addition of its departure time from the customer and travel time to the truck, 

must not be before the earliest time the truck can take the drone. Constraint (37) 

enforces that if a drone will depart from the truck towards customer 𝑗, its departure 

must not be later than its latest departure time. Constraint (38) guarantees that if a 

drone will depart from the truck towards customer 𝑗, its departure must not be before 

its earliest departure time. Constraint (39) ensures that all departures from the truck 

must be within the total time prescribed for milk-run distribution. Constraint (40) 

ensures that all arrivals to the truck must be within the total time prescribed for milk-

run distribution. 

4.3. Approximating Flight Times 

The mathematical formula that calculates the flight times from the truck to the 

customer location was given in Chapter 3.3 with the function  𝑓j
𝐴𝑐𝑡(𝑡). Later, using 

these actual flight times, we illustrated a numerical example. In the model 

formulation, flight times are left with this formula. However, it appears that the 
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direct application of this formula for flight times will not be suitable to use in the 

mathematical milk-run model with drones, due to its computational difficulties. For 

large sized problems, since a polynomial approximation is faster it will be practically 

feasible. Therefore, the flight times will be approximated with a polynomial function.  

4.3.1. Regression for Quadratic Approximation 

The approximation to be used in this study is a quadratic regression equation. The 

response variable of the regression is flight time, and the explanatory variable is the 

start time of the flight. In other words, 𝑓j
𝐴𝑐𝑡(𝑡) is the response variable and 𝑡 is the 

explanatory variable. The notations to be used in this quadratic regression model is 

given as follows: 

𝐵(𝑡) : 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑟𝑢𝑐𝑘 𝑎𝑛𝑑 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑓𝑗
𝐴𝑐𝑡(𝑡) : 𝐴𝑐𝑡𝑢𝑎𝑙 𝑓𝑙𝑖𝑔ℎ𝑡 𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 the 𝑡𝑟𝑢𝑐𝑘 𝑡𝑜 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑓𝑗
𝐸st(𝑡) : 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑓𝑙𝑖𝑔ℎ𝑡 𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 the 𝑡𝑟𝑢𝑐𝑘 𝑡𝑜 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

 

The regression model of the flight time is given by: 

 𝑓𝑗
𝐴𝑐𝑡(𝑡) = 𝑓𝑗

𝐸st(𝑡) + 휀 (41)  

 

Estimated flight time regression is given by: 

 𝑓𝑗
𝐸st(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 (42)  

 

The estimates are valid within the interaction time interval of the truck with a drone 

related to a specific customer. We will demonstrate the regression using the same 

specified customer centered at (9,7) for comparison purposes. The corresponding 

interaction time interval is (19.82𝑚𝑖𝑛, 27.54𝑚𝑖𝑛). The time interval has a range of 

27.54 − 19.82 = 7.71𝑚𝑖𝑛. The angles that correspond to the earliest and latest 

times are given by the function: 

 𝛼 = 6 ∗ (30 − 𝑡)     𝑡 ∈ (0,60)    (43)  
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Application of equation (43) to the specified customer yields: 

 
𝛼𝐸 = 6 ∗ (30 − 19.82) = 61.07 

𝛼𝐿 = 6 ∗ (30 − 27.54) = 14.78 
(44)  

 

The angle interval has a range of 61.07 − 14.78 = 46.29 𝑚𝑖𝑛. For the regression 

equation estimate of each customer, we will take a sample of 100 t values. These t 

values are obtained by the inverse function of alpha, which is given in equation (45): 

 𝑡 = 30 −
𝛼

6
     𝛼 ∈ (−180,180) (45)  

 

To take a sample of 100-time values, we started with the initial alpha value 𝛼𝐸. We 

systematically decreased this value each time with a decremented value of 

DecAlpha, which is one hundredth of the range of alpha. The formula for DecAlpha 

is given in equation (46): 

 𝐷𝑒𝑐𝐴𝑙𝑝ℎ𝑎 =
𝛼𝐸 − 𝛼𝐿

100
 (46)  

 

The calculations of the formulations explained so far for the specified customer are 

given in Table 10. 

 

Table 10. Results of the Calculations 

tE tL tRange AlphaE AlphaL AlphaRange DecAlpha 

19.82 27.54 7.71 61.07 14.78 46.29 0.46 

 

 

Finding B(t) values that correspond to each t value using equation (8), the regression 

data is obtained, and a part of the obtained values is given in Table 11. 
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Table 11. Departure Regression 

Sample B time time^2 fDep Actual fDep Estimated 

1 5.91 19.82 392.93 7.88 8.15 

2 5.82 19.90 395.99 7.76 7.99 

3 5.74 19.98 399.07 7.65 7.83 

4 5.65 20.05 402.15 7.53 7.67 

5 5.56 20.13 405.25 7.42 7.52 

… … … … … … 

99 5.72 27.38 749.79 7.62 7.80 

100 5.80 27.46 754.03 7.74 7.96 

101 5.89 27.54 758.27 7.86 8.12 

 

Running the regression for the specified customer’s data, the summary statistics are 

obtained for flight time estimation function 𝑓𝑗
𝐸st(𝑡) and are given in Table 12.  

Table 12. Regression Fit for the Specified Customer’s Flight Times 

REGRESSION STATISTICS 

Adjusted R square 0.9912 

ANOVA (OVERALL SIGNIFICANCE OF THE MODEL) 

Significance F 0.0000 

REGRESSION COEFFICIENTS AND SIGNIFICANCES 

 Coefficient p-value 

Intercept 157.8335 0.0000 

Time: 𝒕 -12.9844 0.0000 

Time Squared: 𝒕𝟐 0.2741 0.0000 

 

Analyzing the fitted regression given in Table 12, the following observations are 

obtained. The estimated regression function is: 

 𝑓j
(𝐸)(𝑡) = 157.8335 − 12.9844𝑡 + 0.2741𝑡2 (47)  
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The regression model is significant since the “Significance F” value of the ANOVA 

is 0.0000, and is less than any practical significance level. The individual estimated 

coefficients of 𝑡 and 𝑡2are also significant since the corresponding t values are again 

0.0000.  

The explanatory power of the model is 99.12%, which is very close to 1. Hence, the 

approximation is quite a good one.  

To illustrate the regression equation found, we estimate the flight time at 𝑡 = 24.99 

and compare it with its actual value. At this value of t, flight time is estimated to be: 

 𝑓j
(𝐸)(24.99) = 157.8335 − 12.9844 ∗ 24.99 + 0.2741 ∗ 24.992 (48)  

 

The actual and estimated flight times are given in Figure 31.  

 

 

Figure 31. The Actual and Estimated Flight Times 
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4.3.2. Quality of Approximation 

In the previous chapter, we have shown the validity of the regression equation with a 

significance value of 0. 0000, and the explanatory power of the model is found to be 

99.12%, which is very close to 1. In this section, we will give a graphical 

demonstration that shows the difference between actual and estimated flight times.  

The customer used in previous demonstrations and also in this section is located at 

the point (9,7). The actual flight time for this specified customer is given by equation 

(49), which is the actual flight time equation introduced in chapter 3.3: 

𝑓𝑗
𝐴𝑐𝑡(𝑡) = √(9 − 𝑟𝑐𝑜𝑠(6 ∗ (30 − 𝑡)))

2
+ (7 − 𝑟𝑠𝑖𝑛(6 ∗ (30 − 𝑡)))

2
∗

60
14.32𝜋

 (49)  

 

The interaction of the truck with a drone related to this specified customer is 

calculated previously in chapter 3.3. as the time interval (19.82𝑚𝑖𝑛, 27.54𝑚𝑖𝑛). 

Within this time interval, the quadratic estimated flight time function is given in 

equation (50).  

𝑓𝑗
𝐸𝑠𝑡(𝑡) = 157.8335 − 12.9844𝑡 + 0.2741𝑡2 (50)  

 

We will demonstrate the quality of approximation using two graphs. The first graph 

is the comparison within all the time range of the route, which is (0,60), and the 

second graph is the comparison within the interaction time interval (19.82, 27.54). 

The first of the comparisons is given in Figure 32. Except for the interval around the 

interaction range, the approximation can be considered as a bad one because, in 

Figure 32, the differences between orange and blue lines are quite high. In this 

figure, the blue line shows the actual flight times and the orange line shows the 

estimated flight times. However, this case is not a problem for our estimation 

purpose because, for each customer, we will use a different estimated flight time 

function within its own interaction range. 
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Figure 32. Regression in (0,60) Time Range 

The second and the important comparison is given in Figure 33. In this figure, we 

observe that the estimated and the actual flight times are quite close to each other. 

This result supports the quality of our approximation and we will use this quadratic 

approximation methodology in estimating the actual flight times.  

 

Figure 33. Regression in Customer Time Range 
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4.4. The Quadratic Model  

The final version of the proposed model will be obtained by replacing the flight time 

functions with their quadratic estimation functions. The parameters of the model 

were given previously in Chapter 4.2.3. The estimation functions contain the 

estimated regression coefficients a, b, and c which are the additional parameters of 

the proposed model. These additional parameters are given as follows: 

 

𝑎𝑗
𝑑𝑒𝑝

 : Regression a coefficient of drone departures from vehicle to location j 

𝑏𝑗
𝑑𝑒𝑝

 : Regression b coefficient of departures from vehicle to location j 

𝑐𝑗
𝑑𝑒𝑝

 : Regression c coefficient of departures from vehicle to location j 

𝑎𝑗
𝑎𝑟𝑟 : Regression a coefficient of arrivals from location j to vehicle 

𝑏𝑗
𝑎𝑟𝑟 : Regression b coefficient of arrivals from location j to vehicle 

𝑐𝑗
𝑎𝑟𝑟 : Regression c coefficient of arrivals from location j to vehicle 

 

The revised model with quadratic flight times is given as follows. As previously 

mentioned, 𝑓𝑡,𝑗
𝑎𝑟𝑟 and 𝑓𝑡,𝑗

𝑑𝑒𝑝
 functions are replaced in this revised model with their 

quadratic estimation functions which are derived in the previous section. It is worth 

expressing a modelling detail in replacing the original functions with their estimation 

counterparts. In equation (53), the constant coefficient of the quadratic regression 

functions 𝑎𝑗
𝑎𝑟𝑟 and  𝑎𝑗

𝑑𝑒𝑝
 are multiplied by 𝑌𝑑,𝑗

𝐵  and  𝑋𝑑,𝑗
𝐵  respectively. The reason is 

that if the flight of the drone has not occurred, we need to prevent the contribution of 

these coefficients to the cost. In other words, the quadratic flight time estimation 

function must be active only if there is such a flight. On the other hand, such a 

correction is not required for 𝑏 and 𝑐 coefficients because constraints in equations 

(56) and (63) force 𝑌𝑑,𝑗  and 𝑋𝑑,𝑗 values to be zero when 𝑌𝑑,𝑗
𝐵 = 0 and  𝑋𝑑,𝑗

𝐵 = 0 

respectively. Accordingly, it appears to be that 𝑏 and 𝑐 coefficients are indirectly 

multiplied by the corresponding 𝑌𝑑,𝑗
𝐵  and  𝑋𝑑,𝑗

𝐵  variables.  
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𝑀𝑖𝑛 𝑍ℎ𝑤𝑦 + 𝑍𝑑𝑟𝑛 (51) 

𝑍ℎ𝑤𝑦 = 𝑐ℎ𝑤𝑦 ∙ 𝜎 ∙
𝜏

60
 (52) 

𝑍𝑑𝑟𝑛 = 𝑐𝑑𝑟𝑛 ∙ [ ∑ ∑(𝑎𝑗
𝑎𝑟𝑟 ∙ 𝑌𝑑,𝑗

𝐵 + 𝑏𝑗
𝑎𝑟𝑟 ∙ 𝑌𝑑,𝑗 + 𝑐𝑗

𝑎𝑟𝑟 ∙ 𝑌𝑑,𝑗
2)

∀𝑗∀𝑑∈𝑆𝑗
𝐷

+ ∑ ∑(𝑎𝑗
𝑑𝑒𝑝

∙ 𝑋𝑑,𝑗
𝐵 + 𝑏𝑗

𝑑𝑒𝑝
∙ 𝑋𝑑,𝑗 + 𝑐𝑗

𝑑𝑒𝑝
∙ 𝑋𝑑,𝑗

2)

∀𝑗∀𝑑∈𝑆𝑗
𝐷

] 

(53) 

Subject to 

𝑈𝑑
𝐵 = 0            ∀𝑑 ∉ 𝑆0

𝐷 (54) 

𝑌𝑑,𝑗
𝐵 = 0            ∀𝑗, 𝑑 ∉ 𝑆𝑗

𝐷 (55) 

𝑌𝑑,𝑗 ≤ 𝑀 ∙ 𝑌𝑑,𝑗
𝐵                ∀𝑗, 𝑑, (𝑑, 𝑗) ∈ 𝑆𝐷𝐽 (56) 

𝑋𝑑,𝑗′ = 0           ∀𝑗, 𝑗′ < 𝑗, 𝑑, (𝑑, 𝑗) ∈ 𝑆𝐷𝐽 (57) 

∑ 𝑋𝑑,𝑗
𝐵

∀𝑗

≤ 1           ∀𝑗, 𝑑 
(58) 

𝑋𝑑,𝑗 ≤ 𝑀 ∙ 𝑋𝑑,𝑗
𝐵            ∀𝑗, 𝑑 (59) 

∑ 𝑋𝑑,𝑗
𝐵

∀𝑑

≥ 𝑞𝑗              ∀𝑗 
(60) 

∑ 𝑋𝑑,𝑗
𝐵

∀𝑗

≤ 𝑈𝑑
𝐵            ∀𝑗, 𝑑 ∈ 𝑆0

𝐷 
(61) 

∑ 𝑋𝑑,𝑗′
𝐵

𝐽

𝑗′=𝑗

 ≤ 𝑌𝑑,𝑗
𝐵            ∀𝑗, 𝑗′ ≥ 𝑗, 𝑑 ∈ 𝑆𝑗

𝐷 

(62) 

𝑋𝑑,𝑗′  ≤ 𝑀 ∙ 𝑌𝑑,𝑗
𝐵            ∀𝑗, 𝑗′ ≥ 𝑗, 𝑑 ∈ 𝑆𝑗

𝐷 (63) 

𝑌𝑑,𝑗 + (𝑎𝑗 + 𝑏𝑗 ∙ 𝑌𝑑,𝑗 + 𝑐𝑗 ∙ 𝑌𝑑,𝑗
2) + 𝑡𝑠𝑒𝑡𝑢𝑝 ≤ ∑ 𝑋𝑑,𝑗′

𝐽
𝑗′=𝑗 + 𝑀 ∙ (1 − ∑ 𝑋𝑑,𝑗′

𝐵𝐽
𝑗′=𝑗 )       ∀𝑑 ∉

𝑆0
𝐷, (𝑑, 𝑗) ∈ 𝑆𝐷𝐽  

(64) 

𝑌𝑑,𝑗 + (𝑎𝑗 + 𝑏𝑗 ∙ 𝑌𝑑,𝑗 + 𝑐𝑗 ∙ 𝑌𝑑,𝑗
2) ≤ 𝑡𝑗

𝑎𝑟𝑟−𝑙 + 𝑀 ∙ (1 − 𝑌𝑑,𝑗
𝐵 )                    ∀𝑗, 𝑑, (𝑑, 𝑗) ∈ 𝑆𝐷𝐽 (65) 
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𝑡𝑗
𝑎𝑟𝑟−𝑒 − 𝑀 ∙ (1 − 𝑌𝑑,𝑗

𝐵 ) ≤ 𝑌𝑑,𝑗 + (𝑎𝑗 + 𝑏𝑗 ∙ 𝑌𝑑,𝑗 + 𝑐𝑗 ∙ 𝑌𝑑,𝑗
2)                 ∀𝑗, 𝑑, (𝑑, 𝑗) ∈ 𝑆𝐷𝐽 (66) 

𝑋𝑑,𝑗 ≤ 𝑋𝑑,𝑗
𝐵 ∙ 𝑡𝑗

𝑑𝑒𝑝−𝑙
               ∀𝑗, 𝑑 (67) 

𝑋𝑑,𝑗
𝐵 ∙ 𝑡𝑗

𝑑𝑒𝑝−𝑒
≤ 𝑋𝑑,𝑗               ∀𝑗, 𝑑 (68) 

𝑋𝑑,𝑗 ≤ 𝜏             ∀𝑗, 𝑑 (69) 

𝑌𝑑,𝑗 + (𝑎𝑗 + 𝑏𝑗 ∙ 𝑌𝑑,𝑗 + 𝑐𝑗 ∙ 𝑌𝑑,𝑗
2) ≤ 𝜏 + 𝑀 ∙ (1 − 𝑌𝑑,𝑗

𝐵 )    ∀𝑗, 𝑑, (𝑑, 𝑗) ∈ 𝑆𝐷𝐽 (70) 

Explanations of the constraints are as follows. Constraint (54) guarantees that drones 

that are not initially at the depot cannot be taken into the truck. Constraint (55) 

ensures that drones that are not in customer 𝑗 cannot be taken off from customer 𝑗. 

Constraint (56) enforces that a drone that is not taken off from the customer 𝑗 

(𝑌𝑑,𝑗
𝐵 = 0) has takeoff time equal to zero (𝑌𝑑,𝑗 = 0) which indicates that it has not 

taken off from that customer. Constraint (57) guarantees that a drone at customer 𝑗 

cannot be sent to another customer which is prior to the 𝑗𝑡ℎ customer. Constraint (58) 

ensures that a drone can be sent to a customer at most once. Constraint (59) enforces 

a drone that is not taken off from the truck  (𝑋𝑑,𝑗
𝐵 = 0) has takeoff time equal to zero 

(𝑋𝑑,𝑗  =  0 ) which indicates that it has not taken off from the truck. Constraint (60) 

guarantees that all customers' demands must be met. Therefore, at least 𝑞𝑗 drone 

must go to the customer 𝑗. Constraint (61) ensures that regarding the drones those are 

initially at the depot, only those drones taken from the depot can be used to satisfy a 

customer’s demand. Constraint (62) guarantees the fact that in order to send a drone 

that is initially at customer 𝑗 to that customer or to a subsequent customer, it is 

required that the drone is taken off from customer 𝑗. Constraint (63) guarantees that 

if a drone is initially at customer 𝑗 and it will be used to satisfy the demand of that 

customer or to a subsequent customer, to take the drone into the truck is required. 

Constraint (64) states that if a drone which is initially at customer 𝑗 will be used to 

satisfy a customer’s demand, the earliest time that drone can depart from the truck is 

found by the addition of three components: its departure time from the customer, 

travel time to the truck and setup time. Constraint (65) guarantees that if a drone is to 

be taken from customer 𝑗 to the truck, its arrival time to the truck, which is the 

addition of its departure time from the customer and travel time to the truck, must not 
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exceed the latest available time that the truck can take the drone. Constraint (66) 

ensures that if a drone is to be taken from customer 𝑗 to the truck, its arrival time to 

the truck, which is the addition of its departure time from the customer and travel 

time to the truck, must not be before the earliest time the truck can take the drone. 

Constraint (67) enforces that if a drone will depart from the truck towards customer 

𝑗, its departure must not be later than its latest departure time. Constraint (68) 

guarantees that if a drone will depart from the truck towards customer 𝑗, its departure 

must not be before its earliest departure time. Constraint (69) ensures that all 

departures from the truck must be within the total time prescribed for milk-run 

distribution. Constraint (70) ensures that all arrivals to the truck must be within the 

total time prescribed for milk-run distribution. 

The estimation functions for flight times appear at equations (64), (65), (66), and 

(70) but unlike the function 𝑍𝑑𝑟𝑛 in equation (53), their constant coefficient 𝑎𝑗
𝑎𝑟𝑟 is 

not multiplied with 𝑌𝑑,𝑗
𝐵 . Such a correction is not required for these constraints 

because these constraints all contain Big-M value. Accordingly, even if the flight 

time seems to be the constant value 𝑎𝑗
𝑎𝑟𝑟 due to not multiplying with 𝑌𝑑,𝑗

𝐵 , this 

constant value is much less than Big-M and hence, corresponding constraints still 

work properly. One can state that still multiplying with 𝑌𝑑,𝑗
𝐵  is required due to 

readability or esthetic purposes. However, when multiplied with 𝑌𝑑,𝑗
𝐵 , the code works 

slowly and causes efficiency problems. This problem can be much more serious for 

larger sized problems.   

4.5. Sample Problem-Revisited 

In this part, we elaborate the mathematical programming model on the sample 

problem which we defined previously. The following section is a summary of 

notations and figurative representations that we use in the problem. Next, we present 

a feasible solution to the sample problem using the estimated flight times.  

4.5.1. Quadratic Model of the Sample Problem 

The example’s sets, parameters, and initial status will be explained first and a 

feasible solution for the example will be given later.  
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The figurative representation of the objects and their corresponding sets are given in 

Figure 34. These figures were introduced before in Figure 8. In this figure, 

corresponding sets are added.  

 

 

Figure 34. Representations of the Figures with Corresponding Sets 

 

The sets and definitions for this Sample Problem to be introduced here are given as 

follows. There are 𝐽 = 2 customers and 𝐷 = 5 drones. Initially, the fourth drone is at 

the first customer and the fifth drone is at the second customer. The first three drones 

are at the depot; first and second ones are loaded whereas the third one is empty.   
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depot

d Drones

Empty drone
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Origin of the Circular 
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j : 𝑆𝐿 = {𝑗: 𝑗 = 0,1,2}, 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (0 𝑚𝑒𝑎𝑛𝑠 𝑑𝑒𝑝𝑜𝑡) 

d : 𝑆𝐷 = {𝑑: 𝑑 = 1,2,3,4,5}, 𝐷𝑟𝑜𝑛𝑒𝑠 

𝑆𝑗
𝐷 : 

𝑆1
𝐷 = {𝑑: 𝑑 = 4} 

𝑆2
𝐷 = {𝑑: 𝑑 = 5} 

𝐷𝑟𝑜𝑛𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑒𝑚𝑝𝑡𝑦 𝑖𝑛 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 

𝑆0
𝐷 : 𝑆0

𝐷 = {𝑑: 𝑑 = 1,2,3}, 𝐷𝑟𝑜𝑛𝑒𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑡 

𝑆0
𝐷−𝑒 : 𝑆0

𝐷−𝑒  = {𝑑: 𝑑 = 3}, 𝐷𝑟𝑜𝑛𝑒𝑠 𝑒𝑚𝑝𝑡𝑦 𝑖𝑛 𝑑𝑒𝑝𝑜𝑡 

𝑆0
𝐷−𝑙 : 𝑆0

𝐷−𝑙 = {𝑑: 𝑑 = 1,2}, 𝐷𝑟𝑜𝑛𝑒𝑠 𝑙𝑜𝑎𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑡 

t : 0 ≤ 𝑡 ≤ 60, 𝑇𝑖𝑚𝑒 

(d,j) : 𝑆𝐷𝐽 = {(𝑑, 𝑗): (4,1), (5,2)}, 𝑇ℎ𝑒 𝑑𝑟𝑜𝑛𝑒𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 

 

The parameters of the Sample Problem are given in Table 13. The first row 

introduces the demands of the customers. The example’s two customers have 2 and 1 

demand respectively. The total time of the milk-run is 60 minutes. The third and 

fourth lines give the earliest and latest time a drone can take off from the vehicle, 

whereas the fifth and sixth lines give the earliest and latest times that a drone can 

land on the truck departed from the specified customer. The example’s values are 

given in the right-most column. The seventh and eighth rows are reserved for 

departure and arrival flight times, which are estimated by a second-degree 

polynomial function. The reason for this estimation instead of using the exact values 

directly is for its mathematical tractability. A detailed explanation of this tractability 

and the parameter estimation of the corresponding regression functions will be 

handled in the next section. Set up time of the drone in the example is 3 minutes, as 

given in the last row of Table 13. 
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Table 13. Parameters of the Sample Problem 

Parameter Explanation Values at Sample Problem 

𝑞𝑗 Demand at customer location j 

(in unit size) 
𝑞1 = 2 𝑎𝑛𝑑 𝑞2 = 1 

𝜏 Total time of milk-run 𝜏 = 60 

𝑡𝑗
𝑑𝑒𝑝−𝑒

 The earliest time that a drone 

can take-off from the truck to 

location j 
𝑡1

𝑑𝑒𝑝−𝑒
= 4.83 and 𝑡2

𝑑𝑒𝑝−𝑒
= 32.45 

𝑡𝑗
𝑑𝑒𝑝−𝑙

 The latest time that a drone can 

take-off from the truck to 

location j 
𝑡1

𝑑𝑒𝑝−𝑙
= 12.55 and 𝑡2

𝑑𝑒𝑝−𝑙
= 40.17 

𝑡𝑗
𝑎𝑟𝑟−𝑒 The earliest time that a drone 

can land-on to the truck 

departed from location j 

𝑡1
𝑎𝑟𝑟−𝑒 = 0.01and 𝑡2

𝑎𝑟𝑟−𝑒 = 27.41 

𝑡𝑗
𝑎𝑟𝑟−𝑙 The latest time that a drone can 

land-on to the truck departed 

from location j 
𝑡1

𝑎𝑟𝑟−𝑙 = 17.57and 𝑡2
𝑎𝑟𝑟−𝑙 = 45.22 

𝑓𝑡,𝑗
𝐸𝑠𝑡,𝐷𝑒𝑝

 Flight time of a drone that 

takes-off at time t from the 

truck towards customer location 

j 

𝑓𝑡,1
𝑑𝑒𝑝

= 24.7315 − 4.7598𝑡 +

0.2739𝑡2and  

𝑓𝑡,2
𝑑𝑒𝑝

= 365.2538 − 19.8942𝑡

+ 0.2739𝑡2 

𝑓𝑡,𝑗
𝐸𝑠𝑡,𝐴𝑟𝑟

 Flight time of a drone that 

takes-off at time t from 

customer location j towards the 

truck 

𝑓𝑡,1
𝑎𝑟𝑟 = 16.7090 − 2.6984𝑡 +

0.1550𝑡2and  
𝑓𝑡,2

𝑎𝑟𝑟 = 206.8815 − 11.1193𝑡

+ 0.1531𝑡2 

𝑡𝑠𝑒𝑡𝑢𝑝 Setup time of a drone 𝑡𝑠𝑒𝑡𝑢𝑝 = 3 𝑚𝑖𝑛 

 

The values at the sample problem given in Table 13 are demonstrated in Figure 35. 

The truck will start its tour at time t=0 and the tour will end at t=60. The first 

customer’s demand can be satisfied within the time interval [4.83, 12.55]. On the 

other hand, the fourth drone, which is currently in the first customer can be taken to 

the truck in the time interval [0.01, 17.57]. Likewise, the second customer’s demand 

can be satisfied within the time interval [32.45, 40.17] and the fifth drone, which is 

currently in the second customer can be taken to the truck within the time interval 

[27.41, 45.22]. 
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Figure 35. Initial Conditions of the Sample Problem 

   

4.5.2. A Feasible Solution for the Sample Problem 

The flight times are similar to those in the sample problem introduced in chapter 

3.4.2. However, this time, calculations are performed using quadratic estimation 

functions, given in the 7
th

 and 8
th

 rows of Table 13.  The resulting table is Table 14, 

which is the summary of estimated flight times to be used in the sample problem. 

Table 14. Estimated Flight Times to be used in the Sample Problem 

t: 

Time 
Drone From To 

Flight 

Time 

Arrival 

Time 

1.06 4 Customer 1 Truck 14.01 15.07 

6.53 1 and 2 Truck Customer 1 5.33 11.86 

28.30 5 Customer 2 Truck 14.82 43.12 

33.45 4 Truck Customer 2 6.30 39.75 
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A feasible solution for the problem will be given with explanations step by step and 

with the help of snapshots. A feasible solution for the example is summarized in 

Table 15.  

Table 15. Summary of the Critical Times and Events Using Estimated Flight Times 

Time Event 

0.00 The Departure of the Truck from Depot 

1.06 The Departure of Drone 4 from Customer 1 towards the Truck 

6.53 The Departure of Drone 1 and 2 from the Truck towards Customer 1 

11.86 The Arrival of Drone 1 and 2 to Customer 1 

15.07 The Arrival of Drone 4 to the Truck 

28.30 The Departure of Drone 5 from Customer 2 towards the Truck 

33.45 The Departure of Drone 4 from the Truck towards Customer 2 

39.75 The Arrival of Drone 4 to Customer 2 

43.12 The Arrival of Drone 5 to the Truck 

60.00 The End of the Tour 

 

The explanation of the critical events in chronological order is as follows. At time 

0.0, the truck starts its tour and departs from the depot. Interaction range with the 

first customer starts at time 0.01 and approximately one minute after the range is 

entered, at time 1.06, the fourth drone departs from the first customer towards the 

truck. The flight time of this drone is found to be 14.01 by the 

function 𝑓1
𝐸𝑠𝑡,𝐴𝑟𝑟(1.06). Next, the truck enters loaded drone range at time 4.83 and at 

time 6.53, both of the drones in the truck depart through the first customer so that 

demand of the first customer is fully satisfied. The flight time of these two drones at 

6.53 is found to be 5.33 by the function 𝑓1
𝐸𝑠𝑡,𝐷𝑒𝑝(6.53) and the arrival of these two 

drones to first customer is at 6.53 + 5.33 =  11.86. At time 15.07 (found by 

1.06+14.01=15.07), the fourth drone arrives at the truck. 
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Because of the fact that the two customers in the example are located at the opposite 

quarters, no critical event occurs between 𝑡 = 14.86 and 𝑡 = 28.30.  At 𝑡 = 28.30, 

which is just after the starting time of the second customer’s interaction region, the 

events related to the second customer start, and the first event is the departure of the 

fifth drone from the second customer towards the truck. The flight time of this drone 

is found to be 14.82 by the function 𝑓2
𝐸𝑠𝑡,𝐴𝑟𝑟(28.30) and the arrival of the fifth drone 

to the truck is 28.30 + 14.82 = 43.12. At time 33.45, the fourth drone departs from 

the truck towards the second customer and the corresponding flight time is found to 

be 𝑓2
𝐸𝑠𝑡,𝐷𝑒𝑝(33.45) = 6.30. Accordingly, the arrival of the fourth drone to the 

second customer is at time 33.45 + 6.30 = 39.75. Finally, at 𝑡 = 60.0 the truck 

arrives at the depot and the tour ends. 

Next, the explained events will be given step by step with corresponding snapshots. 

Figure 36 gives the snapshot of the example’s feasible solution at t=0.00. This is the 

time when the truck departs from the depot.  

 

 

Figure 36. Snapshot at t = 0.0 
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Figure 37 gives the snapshot of the example’s feasible solution at t=1.06. This is the 

time when the fourth drone departs from the first customer to the truck.  

 

Figure 37. Snapshot at t = 1.06 

Figure 38 gives the snapshot of the example’s feasible solution at t=6.53. This is the 

time when both drones in the truck departs from the truck to the first customer.  

 

Figure 38. Snapshot at t = 6.53 
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Figure 39 gives the snapshot of the example’s feasible solution at t=11.86. This is the 

time when the first two drones arrive at the first customer.  

 

Figure 39. Snapshot at t = 11.86 

Figure 40 gives the snapshot of the example’s feasible solution at t=15.07. This is the 

time when the fourth drone arrives at the truck.  

 

Figure 40. Snapshot at t = 15.07 
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Figure 41 gives the snapshot of the example’s feasible solution at t=28.30. This is the 

time when the fifth drone departs from the second customer towards the truck. 

 

Figure 41. Snapshot at t = 28.30 

Figure 42 gives the snapshot of the example’s feasible solution at t=33.45. This is the 

time when the fourth drone departs from the truck towards the second customer.  

 

Figure 42. Snapshot at t = 33.45 
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Figure 43 gives the snapshot of the example’s feasible solution at t=39.75. This is the 

time when the fourth drone arrives at the second customer. 

 

Figure 43. Snapshot at t = 39.75 

Figure 44 gives the snapshot of the example’s feasible solution at t=43.12. This is the 

time when the fifth drone arrives at the truck.  

 

Figure 44. Snapshot at t = 43.12 
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Figure 45 gives the snapshot of the example’s feasible solution at t=60. This is the 

time when the tour ends and the truck returns back to the depot.  

 

Figure 45. Snapshot at t = 60.0 

4.5.3. Optimal Solution of the Sample Problem 

We will introduce in this section the optimal solution of the sample problem. The 

problem is modelled and run in GAMS. The GAMS models for the CMR and DMR 

Models are given in Appendix A and Appendix B, respectively. First, we will 

explain the input parameters of the sample problem, and next, we will present the 

corresponding output.  

The input parameters can be explained in three parts. The first part is the input of 

cost parameters, which are given in Table 16.  

Table 16. Cost Input Parameters of the Sample Problem. 

Source of the Cost Unit Cost (in Cents) 

Operating and fuel cost of the truck on the highway 6.51 

Operating and battery usage cost of a drone  0.44 

Operating and fuel cost of the truck in the city 8.39 

Opportunity cost 14.13 
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The second part of the input parameters consists of the demands of the customers, 

given in Table 17. 

Table 17. Demand Input Parameters of the Sample Problem 

Customer: j Demand: q(j) 

1 2 

2 1 

Finally, the third part is related to the flight time coefficients of the customers. The 

earliest and latest interaction times for departure from the truck and arrival to the 

truck are given in the bottom part of Table 18 by 𝑡𝐸 and 𝑡𝐿 respectively. The 

regression coefficients of the quadratic regression function:  𝑓𝑗
𝐸𝑠𝑡(𝑡) = a + b𝑡 + c𝑡2 

are given in a, b, and c column of the same table in the top part.  

Table 18. Flight Time Input Parameters of the Sample Problem.  

 

Initial conditions of the sample problem are given in Figure 46 again so that the 

output is more easily followed.  

 

Figure 46. Initial Condition of the Sample Problem 
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Running the sample problem in GAMS, the objective function value and 

corresponding optimum solution values for the decision variables are given in Table 

19. The minimum cost of the tour is found to be 607.30 cents. First two drones are 

taken from the depot, given by the decision variables 𝑈1
𝐵 = 𝑈2

𝐵 = 1. These drones are 

sent to the first customer, and the fourth drone is sent to the second customer, hence 

𝑋1,1
𝐵 = 𝑋2,1

𝐵 = 𝑋4,2
𝐵 = 1. The corresponding departure times of these drones are                  

𝑋1,1 =  𝑋2,1 = 4.83 𝑎𝑛𝑑 𝑋4,2 = 40.17 respectively. The fourth drone was taken from the 

first customer before it is sent to the second customer, and the fifth drone is taken 

from the second customer, which yields 𝑌4,1
𝐵 = 𝑌5,2

𝐵 = 1. The take-off times of these two 

drones are 𝑌4,1 = 0.01 𝑎𝑛𝑑 𝑌5,2 = 32.24 respectively. 

Table 19. Optimum Solution Output of the Sample Problem 

 

Critical times and the summary of the events for the optimum solution of the sample 

problem are given in Table 20.  

 

Drone Solution

Z* = 607.30 1 1

2 1

3 0

4 0

5 0

XB X

Drone 1 2 Drone 1 2

1 1 0 1 4.83 0

2 1 0 2 4.83 0

3 0 0 3 0 0

4 0 1 4 0 40.17

5 0 0 5 0 0

YB Y

Drone 1 2 Drone 1 2

1 0 0 1 0 0

2 0 0 2 0 0

3 0 0 3 0 0

4 1 0 4 0.01 0

5 0 1 5 0 32.24

UB

Customer Customer

Optimal Solution

Customer Customer
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Table 20. Summary of the Critical Times and Events for the Optimum Solution 

Time Event 

0.00 The Departure of the Truck from Depot 

0.01 The Departure of Drone 4 from Customer 1 towards the Truck 

4.83 The Departure of Drone 1 and 2 from the Truck towards Customer 1 

12.96 The Arrival of Drone 1 and 2 to Customer 1 

16.69 The Arrival of Drone 4 to the Truck 

32.24 The Departure of Drone 5 from Customer 2 towards the Truck 

39.77 The Arrival of Drone 5 to the Truck 

40.17 The Departure of Drone 4 from the Truck towards Customer 2 

48.30 The Arrival of Drone 4 to Customer 2 

60.00 The End of the Tour 
 

Finally, GAMS solution output with respect to the chronological order of the events 

is given again in Table 21. This table gives the same information as Table 20 but 

additionally, the activities of the drones can be separately followed in Table 21.  

Table 21. Chronological Order of the Events and Corresponding Drone Activities 

 

TIME d1 d2 d4 d5

0.00 In truck In truck At customer 1 At customer 2

0.01 ----- -----

Departure 

towards the 

truck

-----

4.83
Departure 

towards 

customer 1

Departure 

towards 

customer 1

----- -----

12.96
Arrival to 

customer 1

Arrival to 

customer 1
----- -----

16.69 ----- -----
Arrival to the 

truck
-----

32.24 ----- ----- -----

Departure 

towards the 

truck

39.77 ----- ----- -----
Arrival to the 

truck

40.17 ----- -----

Departure 

towards 

customer 2

-----

48.30 ----- -----
Arrival to 

customer 2
-----

60.00 At customer 1 At customer 1 At customer 2  In truckEnd of the Tour

Arrival of Drone 5 to the Truck

Departure of Drone 4 from the Truck 

towards Customer 2

Arrival of Drone 4 to Customer 2

Arrival of Drone 1 and 2 to Customer 1

Arrival of Drone 4 to the Truck

Departure of Drone 5 from Customer 2 

towards the Truck

Departure of the Truck from Depot

Departure of Drone 4 from Customer 1 

towards the Truck

Departure of Drone 1 and 2 from the 

Truck towards Customer 1

EVENT

GAMS SOLUTION OUTPUT DRONE



81 

 

 

 

CHAPTER 5 

NUMERICAL STUDY 

5.1. Setup for Numerical Settings 

The numerical settings are simply determinations of several problem parameters with 

respect to the database construction of the numerical study.  The deriving parameters 

of the numerical study are the earliest times  (𝑡𝑗
𝑑𝑒𝑝−𝑒 𝑎𝑛𝑑 𝑡𝑗

𝑎𝑟𝑟−𝑒) and the latest times 

(𝑡𝑗
𝑑𝑒𝑝−𝑙 𝑎𝑛𝑑 𝑡𝑗

𝑎𝑟𝑟−𝑙) that a drone keeps interaction with the truck in both directions: 

from the truck to a customer and vice versa, and the regression estimates of departure 

and arrival times (𝑓𝑡,𝑗
𝑑𝑒𝑝 𝑎𝑛𝑑 𝑓𝑡,𝑗

𝑎𝑟𝑟). The explanations of these parameters were given 

in Table 13 previously.  

The calculation methodology of these parameters was built within this work so far. 

Here, these parameters are separately calculated for each of the customers located in 

the circular route. At first, the logic that customers are located will be explained. 

Next, two of the currently existing drones will be introduced with their necessary 

specifications to be used in the numerical settings. We will use these specifications to 

parametrize some measures so that they will build a bridge between drone 

specifications and model parameters. Finally, we will calculate the model parameters 

with the help of the findings.  

5.1.1. Customer Locations 

As stated earlier, this study will be set up on a numerical study on the service that a 

truck provides to customers placed in a route around which it travels with a speed of 

𝑉𝑇𝑟 = 90𝑘𝑚/ℎ. The radius of the route was calculated to be 𝑟 = 14.3239𝑘𝑚. In 

order to be able to place customers in convenient places in the circular route, we first 

determined the maximum distance from the truck's route at which a customer can be 

placed. We determined this distance to be 6km by evaluating the specifications of the 

drones which will form the basis for the numerical settings of this study. Evaluating 

these ideas, we draw another circle with the same center inside the milk-run tour 
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circle. The customers will be placed between these two circles. The drawing of the 

two circles we mentioned is given in Figure 47. 

 

 

Figure 47. Customer Locations 

 

In order to accommodate customers to suitable places, we draw pixel-like squares 

between these two circles. The outer circle, which is the milk-run tour, has a radius 

of 14.32km. In parallel to this setting, the coordinates are selected in a range of -14 

and 14. We designate one side of these squares at 2km so that two or three customers 

can be located through the common radius of the inner circle and the outer circle. 

Customers will be at the center of gravity of these specified squares. 96 customer 

locations were created that could take place in this way. We have indexed the 

customers from 1 to 96 in order to be able to follow them in the runs of the model 

and to be able to select them randomly. The developed version by customer locations 

of the drawing Figure 47 in the explained manner is shown in Figure 48. 

 

y-axis

13

r out -r in 11

9

7

r out r in
5

3

1 x-axis
-13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13

-1

-3

-5

-7

-9

-11

-13

One of the alternative customer 
locations (specifically #59), 
denoted with its center 
coordinates (11, -3)

rout-rin is at most the minimum 
drone flight range (i.e., a loaded 
drone's flight range) 

depot location 
(coordinates  (-45/π, 0), 
approximately (-14.32, 0))

origin 

rout satisfies that a truck 
with constant speed of 90 
km/hr completes its tour in 



83 

 

 

Figure 48. Exact Locations of the Customers 

 

5.1.2. Drone and Truck Specifications 

The settings for the truck speed of 90km/h and the milk-run time of one hour 

were selected so that this study can be carried out in accordance with real-life 

applications. Specifically, the truck we consider in this study is the Mercedes 

Sprinter Panelvan. This truck has the property of fixing its speed at 90km/h, and its 

fuel consumption is 9.4 liters per 100km in the city and 7.3 l/100km on the highway 

(Mercedes Benz, 2020). We use these parameters in determining the objective 

function and accordingly in the cost analysis. 

Two drones produced by the DJI Company are suitable for this work due to 

their features. With similar concern, these two drones were chosen from the drones 
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currently in use. The basic features of these two drones mentioned are as follows 

(The Drone Pro Shop, 2020) 

1. DJI Matrice 210: maximum speed (without indicating empty or loaded) is 

given as 61.2 km/h in specifications. 

2. DJI Matrice 210 V2: maximum speed (without indicating empty or loaded) is 

given as 61.2 km/h in specifications. We assume this speed for an empty 

drone.  

The features of these two drones are given in Table 22.  

Table 22. Features of the Drones 

M210 

Max Payload 
 

2.3 kg 

Max Flight Time (with TB50 batteries) 
 

13 min (full payload), 27 min (no payload) 

Max Speed 
 

61.2 km/h 

M210 V2 

Max Payload 
 

1.34 kg 

Max Flight Time (with TB55 batteries) 
 

24 min (full payload), 34 min (no payload) 

Max Speed 
 

61.2 km/h 

 

5.1.3. Parametrization of Drone Specifications 

Specific ratio parameters that will be used to determine the database to be used in the 

numerical study part are given in Table 23. 

Table 23. Ratio Parameters 

Ratio 

Parameter 
Explanation Value Range 

𝜷 
Range ratio of a loaded drone to 

an empty drone 
0 < 𝛽 < 1 

𝜹 
Speed ratio of the truck to an 

empty drone 
𝛿 > 1 for DMR, 0 < 𝛿 < 1 for 

CMR 

𝜗 
Speed ratio of the truck on the 

highway to in the city 
𝜗 > 1 
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To determine two setting values for the parameter 𝛽, the following facts are 

considered for the two drones. The flight times of the DJI Matrice 210 drone with 

TB50 batteries are 13 and 27 minutes for loaded and empty cases, respectively. 

Under real-life conditions, these times may not be attended due to battery 

performance, weather conditions, etc. Therefore, we use 15% less of these times and 

we considered the same speed for the empty and loaded drones. Consequently, the 

flight time’s ratio defines the range ratio directly. We round the real ratio of 13/27= 

0.48 to 0.5. Likewise, the flight times with TB55 batteries for the DJI Matrice 210 

V2 are 24 and 34 minutes for loaded and empty cases, respectively. The 

corresponding rounded ratio of the real ratio of 24/34= 0.71 is 0.7. To sum up, two 

settings for the parameter value of 𝛽 are 0.5 and 0.7.  

As for 𝛽, we determined two settings for the parameter value for  

𝛿. The calculations for these values are as follows. The speed of the truck is 90km/h, 

which is the legal maximum speed limit for trucks on highways (General Directorate 

of Highways, 2020). The maximum speed for both of the drones DJI Matrice 210 

and DJI Matrice 210 V2 when they are empty is 61.2 km/h. We rounded this value to 

60km/h. We also assumed the case that under extreme conditions like high wind 

speed, rainy weather, etc., or with a less capacitated drone to be used, the speed of 

60km/h may not be achieved. Accordingly, we have chosen a second setting value of 

45 km/h. Using these two speeds which are 60km/h and 45km/h, the setting values 

for the parameter value of 𝛿 are 90/60 = 1.5 and 90/45 =  2.0.  

To be used in runs of the model, we need to calculate the ranges of the drone when it 

is loaded and when it is empty. Our starting point for performing these calculations is 

the DJI Matrice 210 drone's maximum flight time when it is loaded. This flight time 

is 13 minutes. We have determined two maximum speed values when the DJI 

Matrice 210 drone is empty, which are 60km / h and 45km / h. Considering that the 

maximum time may not be reached in extreme conditions like bad weather 

conditions, we anticipated the case that the flight time may be 15% less. We used the 

values of 𝛽 = 0.7 and 𝛿 = 2  in the first step of our calculations. In the first step, we 

showed the loaded flight time, loaded range, empty drone range, and empty flight 

time values with variables 𝑥1, 𝑥2, 𝑥3, 𝑎𝑛𝑑 𝑥4, respectively in Table 24. 
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Table 24. Parameters for the Drones 

DELTA 2 

Empty Drone Range x3 

BETA 0.7 

Loaded Drone Range x2 

  
Max empty speed 45 

Loaded flight time x1 

Empty flight time x4 

Loaded range x2 

  
Time/Max Time 0.85 

Max Loaded Flight Time 13 

As previously mentioned, 𝑥1 value will be 85% of the max loaded flight time. It 

follows that 𝑥1 = 13 ⋅ 0.85. Based on the equation 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ⋅ 𝑇𝑖𝑚𝑒, 

we calculated the value of 𝑥2 in minutes as 𝑥2 =
45𝑥1

60
. Although the 45km / h drone 

speed given here is the empty drone speed, this calculation is still consistent due to 

the fact that 15% of loss in time is included in the calculation. In addition, we need to 

make such an approximation because we could not access the speed information 

when the drone was loaded. The parameter value β was the ratio of loaded drone 

range to empty drone range. Hence, an empty drone range can be found by dividing 

loaded drone range to β. The corresponding formula is𝑥3 =
𝑥2

β
. Finally, empty flight 

time is found by appealing to the formula 𝑇𝑖𝑚𝑒 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 / 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦, which 

gives 𝑥4 value as 𝑥4 =
𝑥3

45
⋅ 60. 

After using the formulas that we mentioned in the previous paragraph, Table 24 is 

updated and Table 25 is obtained.  

Table 25. Updated Parameters for the Drones  

DELTA 2 

Empty Drone Range 11.84 

BETA 0.7 

Loaded Drone Range 8.29 

  
Max empty speed 45 

Loaded flight time 11.05 

Empty flight time 15.79 

Loaded range 8.29 

  
Time/Max Time 0.85 

Max Loaded Flight Time 13 
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Since the speed value corresponding to 𝛿 = 1.5 value is 60, we calculated the empty 

range for this value by taking the drone speed 60km / h. Like Loaded flight time, we 

have accepted the empty flight time value constant for different speeds. If we 

designate empty drone range at a speed of 60km/h with the variable 𝑥5, the variable 

𝑥5 and the other previously values required for the calculation of 𝑥5 are given in 

Table 26. 

Table 26. Parameters for Empty Drones 

Max empty speed 45 60 

Empty flight time 15.79 15.79 

Empty range 11.84 x5 

 

In order to obtain the formula for 𝑥5, we considered the formula for 𝑥4 which was the 

formula that 𝑥4 =
𝑥3

45
⋅ 60, and replaced the speed value 45 with 60. Accordingly, the 

formula for 𝑥5 is given by: 𝑥5 =
𝑥3

60
⋅ 60. Using this formula, we updated Table 26 as 

given in Table 27. 

Table 27. Updated Parameters for Empty Drones  

Max empty speed 45 60 

Empty flight time 15.79 15.79 

Empty range 11.84 15.79 

 

We have created Table 28 by gathering all our calculations so far. This last table is 

the numerical setting table that we will use in model runs. 

Table 28. Numerical Setting 

DELTA 2 1.5 2 1.5 

D: Empty Drone Range 11.84 15.79 11.84 15.79 

BETA 0.7 0.7 0.5 0.5 

Loaded Drone Range 8.29 11.05 5.92 7.89 
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5.1.4. Determination of Model Parameters 

To start with, we will summarize the leading findings, illustrating the 29
th

 customer, 

which can be found in Figure 48.  As can be followed from Table 29, the 29. 

customer's coordinates are (𝑥, 𝑦)  =  (9,7). For the parameter values of 𝛿 = 2 and 

𝛽 = 0.5, a loaded drone's range is found as 5.92km which is shown in Table 28. The 

center, intersection points, and the earliest and latest times for the 29
th

 customer is 

given in Table 29. All these calculations are also performed for empty drones and are 

used where necessary, but not given here. The parametrization for empty drones is 

used for arrival flight times from the customer to the truck, whereas the 

parametrization for loaded drones is used for departure flight times from the truck to 

the customer in the mixed integer nonlinear programming model of this work.  

Table 29. Intersection Points 

   
Intersection Points 

  

Index xC yC xE yE xL yL tE tL 

29 9 7 6.93 12.53 13.85 3.63 19.82 27.54 

 

Within the range of (𝑡𝐸, 𝑡𝐿), the estimated flight times regression function for the 

29
th

 customer is found as in equation (71) using the methodology of chapter 4.3.1.  

 𝑓j
(𝐸)(𝑡) = 157.8335 − 12.9844𝑡 + 0.2741𝑡2 (71)  

 

The general form of the estimated flight times regression model is: 

 𝑓j
(𝐸)(𝑡) = a + b𝑡 + c𝑡2 (72)  
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We performed the same steps for each of the 96 customers that we applied to the 29
th

 

customer and obtained in following table to be used in model runs: 

Table 30. Parameters of the Customers and Coefficients of Drone Flight Times 

Cust. 

j 
xC yC xE yE xL yL tE tL a b c 

1 -3.00 13.00 -8.69 11.39 2.82 14.04 8.78 16.89 68.0518 -10.2899 0.4009 

2 -1.00 13.00 -6.89 12.55 4.89 13.46 10.21 18.33 79.4558 -10.8184 0.3791 

3 1.00 13.00 -4.89 13.46 6.89 12.55 11.67 19.79 96.1308 -11.9300 0.3791 

4 3.00 13.00 -2.82 14.04 8.69 11.39 13.11 21.22 120.1469 -13.7629 0.4009 

5 -7.00 11.00 
-

11.99 
7.83 -2.02 14.18 5.53 13.65 37.1325 -7.2692 0.3791 

… … … … … … … … … … … … 

29 9.00 7.00 6.93 12.53 13.85 3.63 19.82 27.54 157.8335 -12.9844 0.2741 

… … … … … … … … … … … … 

94 -1.00 -13.00 4.89 -13.46 -6.89 -12.55 41.67 49.80 793.8375 -34.6159 0.3785 

95 1.00 -13.00 6.89 -12.55 -4.89 -13.46 40.20 48.33 743.8781 -33.5057 0.3785 

96 3.00 -13.00 8.69 -11.39 -2.82 -14.04 38.78 46.90 736.8902 -34.3112 0.4005 

5.1.5. Settings for Classical Milk Run 

The classical milk-run model will be the base model to be compared to the milk-run 

model integrated with drones, as is previously mentioned. Hence, in the last part of 

the section, we will introduce the settings for classical milk-run model in this study. 

In order to make the comparison of the classical milk-run model outputs and the 

outputs of the proposed model, we will run the problem instances that we will 

generate using the classical milk-run model and compare our findings. The classical 

milk-run application will be based on the standard traveling salesperson problem 

(TSP). The centers of the 96 possible customers are given in part in Table 31.  

Table 31. Center Locations of Possible Customers 

Index Xc Yc 

1 -3 13 

2 -1 13 

3 1 13 

4 3 13 

5 -7 11 

… … … 

95 1 -13 

96 3 -13 
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To be used in the classical milk-run solution, corresponding TSP optimal solutions 

will be found. For this purpose, paired distances between each of the two customers, 

and their distance to the depot are calculated. A part of the distance matrix is given in 

Table 32. 

Table 32. Distance Matrix 

Euclidean 

Distances 

Index 0 1 2 3 4 5 … 95 96 

Xc 14.32394 -3 -1 1 3 -7 … 1 3 

Index Xc Yc 0 13 13 13 13 11 … -13 -13 

0 14.32394 0 0.00 21.66 20.10 18.62 17.24 23.99 … 18.62 17.24 

1 -3 13 21.66 0.00 2.00 4.00 6.00 4.47 … 26.31 26.68 

2 -1 13 20.10 2.00 0.00 2.00 4.00 6.32 … 26.08 26.31 

3 1 13 18.62 4.00 2.00 0.00 2.00 8.25 … 26.00 26.08 

4 3 13 17.24 6.00 4.00 2.00 0.00 10.20 … 26.08 26.00 

5 -7 11 23.99 4.47 6.32 8.25 10.20 0.00 … 25.30 26.00 

… … … … … … … … … 
 

… … 

95 1 -13 18.62 26.31 26.08 26.00 26.08 25.30 … 0.00 2.00 

96 3 -13 17.24 26.68 26.31 26.08 26.00 26.00 … 2.00 0.00 

 

5.2. Numerical Settings for the Model Runs 

In this section, we will explain the methodology that we take runs of the numerical 

study. First, we mention the setting of the DMR model. As previously mentioned, we 

will use two distinct settings of 𝛿 and 𝛽 values each. 𝛿 is the speed ratio of the truck 

to empty drone with two setting values of 2 and 1.5; and 𝛽 is the range ratio of a 

loaded drone to empty drone with two setting values of 0.7 and 0.5. Two settings for 

the number of customers are 10 customers and 20 customers, which are fixed for 

each run, and their total number of demands are 30 and 60 respectively. The 

customers and their demands are randomized for different instances. Finally, we 

want to see the effect of the case whether the customers initially have drones or not. 

For this parameter, we will use 2 setting values, which are 0xNC and 3xNC. In other 

words, for instance, when the number of customers is 20, the number of empty 

drones at the customers will be 0 and 60. As a result, the total number of cases is 

2 ⋅ 2 ⋅ 2 ⋅ 2 = 16. To create a variability for the possible effects of the parameters, 

we will randomly select 20 instances for each case. Accordingly, the overall number 

of instances makes 16 ⋅ 20 = 320. On the other hand, for the CMR model, the only 

valid setting is the number of customers. Delta, Beta, and empty drone parameters 
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are not applicable for the CMR model. As a result, the CMR model has 2 cases. We 

also take runs for the same random instances for comparison purposes, and the 

overall number of instances makes 2 ⋅ 20 = 40. The information that is given in this 

paragraph and corresponding calculations are summarized in Table 33. 

Table 33. Parameters and Their Settings in the Model Runs 

Parameter 

DMR MODEL CMR MODEL 

Values 

Assumed 

Number of 

Settings 

Values 

Assumed 

Number of 

Settings 

Delta 2.0, 1.5 2 N.A N.A 

Beta 0.7, 0.5 2 N.A N.A 

Number of customers 10, 20 2 10, 20 2 

Empty drone 0NC, 3NC 2 N.A N.A 

Total number of cases 16 2 

Random instance per 

case 

20 20 

Total number of 

instances 

320 40 

 

At this step, the random instance selection mechanism needs an explanation. The 

pixelling mechanism of customer locations was explained before and demonstrated 

in Figure 48. As can be followed from this figure, a total of 96 possible customer 

locations exist.  If the case of interest is, to illustrate, 𝛿 = 2.0, 𝛽 = 0.7, 𝑁𝐶 = 20, 

and the number of empty drones is 3xNC, this specific case must be randomly 

represented by 20 instances. In each of these 20 instances, 20 of 96 customers are 

selected randomly (i.e. each of 𝐶(96,20) has an equal probability of selection), and 

the total demand of 60 items are distributed to 20 customers. The randomization 

process of customer selection and item distribution is performed as follows. There 

are 96 possible customers to be selected. First, 20 random numbers from a discrete 

uniform distribution from 1 to 96 are selected. Repeated numbers are reselected so 

that distinct 20 numbers, which are indices of the customers are obtained. Next, 60 

continuous uniform random numbers between 0 and 1 are generated for the 60 items 

to be distributed among the customers. The cumulative distributions of 20 selected 

customers are formed by 𝐹(𝑗)  =  𝑗/20. Finally, 60 items are distributed to 

customers using the inverse transformation technique. Distribution of drones 

randomly to the customers is performed exactly in the same manner. The number of 
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empty drones has 2 cases, which are 0 and 60 total number empty drones, and these 

drones are distributed to customers randomly. This specific setting is given in Table 

34.  

Table 34. An Instance of a Setting for the Model Runs 

` 

Generator 
 

Fixed 
Drone Cases 

Generator 

i Rand(0,1) Customer Demand i Customer Ranked Case 0 Case 1 

1 0.775588 75 2 1 20 8 0 3 

2 0.837577 81 2 2 66 13 0 3 

3 0.781123 75 2 3 57 15 0 3 

4 0.714461 69 3 4 27 16 0 4 

5 0.853752 82 3 5 84 20 0 3 

6 0.179044 18 3 6 53 27 0 4 

7 0.924222 89 1 7 32 32 0 0 

8 0.626325 61 4 8 85 33 0 3 

9 0.820328 79 3 9 69 40 0 2 

10 0.290711 28 4 10 51 49 0 3 

11 0.099574 10 4 11 15 51 0 2 

12 0.741614 72 4 12 33 53 0 3 

13 0.921622 89 3 13 73 57 0 5 

14 0.932781 90 1 14 40 66 0 5 

15 0.430074 42 3 15 8 69 0 3 

16 0.645275 62 2 16 49 71 0 1 

17 0.949233 92 4 17 13 73 0 6 

18 0.437992 43 7 18 95 84 0 2 

19 0.13056 13 2 19 16 85 0 1 

20 0.729477 71 3 20 71 95 0 4 

  
TOTAL 60 

  
TOTAL 0 60 

 

We will explain the numerical setting of the classical milk-run model formulation 

using the same 20 customers randomly selected. The corresponding distance matrix 

is given in Table 35.  
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Table 35. An Illustrative Distance Matrix 

 

 

5.3. Results 

Two models were introduced in chapter 4, the first of which was the classical milk-

run model (CMR) and the second one was the proposed model: A Milk-Run 

Distribution System Design for Integrating Drones (DMR). These two models are 

run using the settings introduced in this chapter so far. In this section, we will present 

the results we have obtained.  

The results for the test instances for DMR and CMR Models with two different 

settings for the number of drones at the customers: 3 × NC and 0 × NC are given in 

Appendix C and D, respectively. These results are given for the 20 customers case. 

The results for 10 customers case are similarly found.  

5.4. Comparison of Milk-Run Distribution with and without Drones 

The findings are classified with respect to number of drones at the customers and the 

setting for the number of customers. In section 5.4.1, we present our findings for the 

3xNC case, and in section 5.4.2, we present our findings for the 0xNC case. In both 

sections, at first, findings for 20 customers are presented and secondly, findings for 

10 customers are presented.  

5.4.1. Comparison of DMR and CMR Models with 3xNC Drones at 

Customers 

The test instances are generated by a random selection of 20 customers. Each test 

instance is run for four pairs of delta and beta parameters. In each pair, 20 test 

Index 0 8 13 15 16 20 27 32 33 40 49 51 53 57 66 69 71 73 84 85 95

Xc 14.32394 -1 -9 -5 -3 5 5 -9 -7 9 -13 -9 11 -9 11 -7 5 9 9 -7 1

Index Xc Yc 0 11 9 9 9 9 7 5 5 3 -1 -1 -1 -3 -5 -7 -7 -7 -9 -11 -13

0 14.32394 0 0.00 18.86 25.00 21.32 19.52 12.96 11.66 23.85 21.90 6.11 27.34 23.35 3.47 23.52 6.00 22.44 11.66 8.79 10.46 23.99 18.62

8 -1 11 18.86 0.00 8.25 4.47 2.83 6.32 7.21 10.00 8.49 12.81 16.97 14.42 16.97 16.12 20.00 18.97 18.97 20.59 22.36 22.80 24.08

13 -9 9 25.00 8.25 0.00 4.00 6.00 14.00 14.14 4.00 4.47 18.97 10.77 10.00 22.36 12.00 24.41 16.12 21.26 24.08 25.46 20.10 24.17

15 -5 9 21.32 4.47 4.00 0.00 2.00 10.00 10.20 5.66 4.47 15.23 12.81 10.77 18.87 12.65 21.26 16.12 18.87 21.26 22.80 20.10 22.80

16 -3 9 19.52 2.83 6.00 2.00 0.00 8.00 8.25 7.21 5.66 13.42 14.14 11.66 17.20 13.42 19.80 16.49 17.89 20.00 21.63 20.40 22.36

20 5 9 12.96 6.32 14.00 10.00 8.00 0.00 2.00 14.56 12.65 7.21 20.59 17.20 11.66 18.44 15.23 20.00 16.00 16.49 18.44 23.32 22.36

27 5 7 11.66 7.21 14.14 10.20 8.25 2.00 0.00 14.14 12.17 5.66 19.70 16.12 10.00 17.20 13.42 18.44 14.00 14.56 16.49 21.63 20.40

32 -9 5 23.85 10.00 4.00 5.66 7.21 14.56 14.14 0.00 2.00 18.11 7.21 6.00 20.88 8.00 22.36 12.17 18.44 21.63 22.80 16.12 20.59

33 -7 5 21.90 8.49 4.47 4.47 5.66 12.65 12.17 2.00 0.00 16.12 8.49 6.32 18.97 8.25 20.59 12.00 16.97 20.00 21.26 16.00 19.70

40 9 3 6.11 12.81 18.97 15.23 13.42 7.21 5.66 18.11 16.12 0.00 22.36 18.44 4.47 18.97 8.25 18.87 10.77 10.00 12.00 21.26 17.89

49 -13 -1 27.34 16.97 10.77 12.81 14.14 20.59 19.70 7.21 8.49 22.36 0.00 4.00 24.00 4.47 24.33 8.49 18.97 22.80 23.41 11.66 18.44

51 -9 -1 23.35 14.42 10.00 10.77 11.66 17.20 16.12 6.00 6.32 18.44 4.00 0.00 20.00 2.00 20.40 6.32 15.23 18.97 19.70 10.20 15.62

53 11 -1 3.47 16.97 22.36 18.87 17.20 11.66 10.00 20.88 18.97 4.47 24.00 20.00 0.00 20.10 4.00 18.97 8.49 6.32 8.25 20.59 15.62

57 -9 -3 23.52 16.12 12.00 12.65 13.42 18.44 17.20 8.00 8.25 18.97 4.47 2.00 20.10 0.00 20.10 4.47 14.56 18.44 18.97 8.25 14.14

66 11 -5 6.00 20.00 24.41 21.26 19.80 15.23 13.42 22.36 20.59 8.25 24.33 20.40 4.00 20.10 0.00 18.11 6.32 2.83 4.47 18.97 12.81

69 -7 -7 22.44 18.97 16.12 16.12 16.49 20.00 18.44 12.17 12.00 18.87 8.49 6.32 18.97 4.47 18.11 0.00 12.00 16.00 16.12 4.00 10.00

71 5 -7 11.66 18.97 21.26 18.87 17.89 16.00 14.00 18.44 16.97 10.77 18.97 15.23 8.49 14.56 6.32 12.00 0.00 4.00 4.47 12.65 7.21

73 9 -7 8.79 20.59 24.08 21.26 20.00 16.49 14.56 21.63 20.00 10.00 22.80 18.97 6.32 18.44 2.83 16.00 4.00 0.00 2.00 16.49 10.00

84 9 -9 10.46 22.36 25.46 22.80 21.63 18.44 16.49 22.80 21.26 12.00 23.41 19.70 8.25 18.97 4.47 16.12 4.47 2.00 0.00 16.12 8.94

85 -7 -11 23.99 22.80 20.10 20.10 20.40 23.32 21.63 16.12 16.00 21.26 11.66 10.20 20.59 8.25 18.97 4.00 12.65 16.49 16.12 0.00 8.25

95 1 -13 18.62 24.08 24.17 22.80 22.36 22.36 20.40 20.59 19.70 17.89 18.44 15.62 15.62 14.14 12.81 10.00 7.21 10.00 8.94 8.25 0.00

EUCLIDEAN 

DISTANCES
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instances are generated. The mean and standard deviations of the objective function 

values (total costs) of CMR and DMR models are calculated and presented in the 

Table 36.  

Table 36. Mean and Standard Deviation of Models with 3 × 𝑁𝐶 Drones at 

Customers for the Setting of 20 Customers 

Delta Beta 

Zcmr Zdmr 

Mean Stdev 
CoV 

(Stdev/ Mean) 
Mean Stdev 

CoV 

(Stdev/ Mean) 

1.5 0.5 

8101.3 114.6 0.0141 

871.9 14.8 0.0169 

1.5 0.7 873.4 13.2 0.0151 

2 0.5 877.9 14.4 0.0164 

2 0.7 885.7 13.0 0.0147 

 

The average cost of the CMR model is 8101.3 with a standard deviation of 114.6. 

The coefficient of variation for the CMR costs is found to be 0.0141. In other words, 

the standard deviation is only 1.41% of the mean. The variation of cost is low, which 

supports the reliability of our findings. DMR model has slightly different means and 

standard deviations depending on its delta and beta parameters and the overall 

average cost is 877.2. Coefficient of variation values are also low as in the CMR 

case. However, the obtained objective function values are all lower compared to the 

CMR model. When the speed ratio of the truck on the highway and empty drone 

(delta) is held constant, and the range ratio of a loaded drone to an empty drone 

(beta) is increased, there is a slight increase in the total cost. On the other hand, when 

the range ratio of a loaded drone to an empty drone (beta) is held constant and the 

speed ratio of the truck on the highway and empty drone (delta) is increased, then 

total cost also increases.   

Next, we calculated the cost gaps between these two models, whose results for the 

runs are given in Appendix C and D. The cost gap can be defined as a cost benefit in 

percentage in case the proposed model is used instead of the classical model. The gap 

percentages are calculated using equation (73).  

 % 𝐺𝐴𝑃 =
𝑧𝑐𝑚𝑟 − 𝑧𝑑𝑚𝑟

𝑧𝑐𝑚𝑟
𝑥100 (73)  

 

GAP percentages are calculated for each of the (𝐵𝑒𝑡𝑎, 𝐷𝑒𝑙𝑡𝑎) setting pairs for the 

setting of 20 customers, and the results are summarized in Figure 49: 
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Figure 49. Average Gaps of DMR Models with 3 × 𝑁𝐶 Drones at Customers with 

respect to the CMR Model for the Setting of 20 Customers 
 

3xNC – DMR model resulted in lower costs compared to the CMR model and the 

average gap is 89.17 % for the setting of 20 customers.  Slight differences are 

observed between (𝐵𝑒𝑡𝑎, 𝐷𝑒𝑙𝑡𝑎) setting pairs.  These differences can be explained as 

follows. In case customers are allowed to hold 3 drones initially on the average, 

faster drones yield slightly lower costs. In return, faster drones give higher benefits. 

However, the drones with higher interaction ranges yield slightly higher costs and in 

return give lower benefits. 

We repeat the same procedure for the setting of 10 customers. Accordingly, the test 

instances are now generated by a random selection of 10 customers. The mean and 

standard deviations of the objective function values (total costs) of CMR and DMR 

models are calculated and presented in Table 37.  

Table 37. Mean and Standard Deviation of Models with 3xNC Drones at Customers 

for the Setting of 10 Customers 

delta beta 

Zcmr Zdmr 

Mean Stdev 
CoV 

(Stdev/ Mean) 
Mean Stdev 

CoV 

(Stdev/ Mean) 

1.5 0.5 

4703.8 113.1 0.0240 

723.4 10.4 0.0144 

1.5 0.7 732.2 13.2 0.0181 

2 0.5 734.0 9.8 0.0134 

2 0.7 737.7 10.5 0.0142 

 

The average cost of the CMR model is 4703.8 with a standard deviation of 113.1. 

This average value is 58% of the finding for the 20 customers case. Considering the 
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fact that the ratio of the average values is more than a half, we can interpret that 

serving 20 customers is more economical, in per customer sense. The obtained 

standard deviation for the 10 customers case is very close to the 20 customers case. 

Hence, the coefficient of variation for CMR costs increases from 0.0141 to 0.0240. 

In other words, the standard deviation is now 2.40% of the mean. DMR model has 

slightly different means and standard deviations depending on its delta and beta 

parameters and the overall average cost is 731.8. Like in the previous case of 20 

customers, the obtained objective function values are all lower compared to the CMR 

model. However, the average value of DMR costs for the 10 customers case is 83% 

of the average for the 20 customers case. Comparing the differences for CMR and 

DMR findings, although CMR average cost for 10 customers is 42% less than that of 

20 customers’, DMR average cost for 10 customers is only 17% less than that of 20 

customers’. The interpretation of this observation is that the saving for 10 customers 

case is less than the saving for 20 customers. Interpretation of the findings in terms 

of delta and beta parameters is as follows. When the speed ratio of the truck on the 

highway and empty drone (delta) is held constant, and the range ratio of a loaded 

drone to an empty drone (beta) is increased, there is a slight increase in the total cost. 

On the other hand, when the range ratio of a loaded drone to an empty drone (beta) is 

held constant and the speed ratio of the truck on the highway and empty drone (delta) 

is increased, then total cost also increases. Next, we will present our findings 

regarding the GAP measures. The GAP measures of 10 customers are calculated and 

presented in Figure 50.  

 

Figure 50. Average Gaps of DMR Models with 3 × 𝑁𝐶 Drones at Customers with 

respect to the CMR Model for the Setting of 10 Customers 
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3xNC – DMR model resulted in lower costs compared to the CMR model and the 

average GAP is 84.43% for the setting of 10 customers. This average is 4.74% less 

than the GAP obtained for the setting of 20 customers. As stated previously, the 

saving of DMR for 20 customers is higher than that of 10 customers’. Slight 

differences for average GAP values are observed between (𝐵𝑒𝑡𝑎, 𝐷𝑒𝑙𝑡𝑎) setting 

pairs. These differences can be explained as follows. In case customers are allowed 

to hold 3 drones initially on the average, faster drones yield slightly lower costs. In 

return, faster drones give higher benefits. However, the drones with higher 

interaction ranges yield slightly higher costs and in return give lower benefits. 

5.4.2. Comparison of DMR and CMR Models with 0xNC Drones at 

Customers 

Next, we will compare the setting pairs of delta and beta parameters in case no 

drones are allowed initially at the customers. The same 20 test instances with the 

previous case (3xNC drones at customers) are used for comparison purposes. The 

mean and standard deviations of the objective function values (total costs) of CMR 

and DMR models are calculated and presented in Table 38.  

Table 38. Mean and Standard Deviation of Models with 0 × 𝑁𝐶 Drones at 

Customers for the Setting of 20 Customers 

Delta Beta 

Zcmr Zdmr 

Mean Stdev 
CoV 

(Stdev/ Mean) 
Mean Stdev 

CoV 

(Stdev/ Mean) 

1.5 0.5 

8101.3 114.6 0.0141 

795.8 9.5 0.0119 

1.5 0.7 878.6 16.0 0.0182 

2 0.5 795.1 7.3 0.0092 

2 0.7 879.4 13.7 0.0156 

The average cost of the CMR model is 8101.3 with a standard deviation of 114.6 and 

the coefficient of variation for CMR costs is 0.0141. DMR model has different 

means and standard deviations depending on parameters delta and beta, and again 

with low coefficient of variation values. When the speed ratio of the truck on the 

highway and empty drone (delta) is held constant, and the range ratio of a loaded 

drone to an empty drone (beta) is increased, total cost increases. This increase for 

0xNC drones is relatively higher than the previous case with 3xNC drones. On the 

other hand, when the range ratio of a loaded drone to an empty drone (beta) is held 

constant and the speed ratio of the truck on the highway and empty drone (delta) is 

increased, then the total cost remains almost the same. This result is different from 
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the previous case. For the 3xNC model, there was a slight increase in cost as a 

response to increasing delta when beta is held constant.  

The comparison of GAP values of 0xNC-DMR and CMR Models for the setting of 

20 customers is given in Figure 51: 

 

Figure 51. Average Gaps of DMR Models with 0 × 𝑁𝐶 Drones at Customers with 

respect to the CMR Model for the Setting of 20 Customers 

0xNC – DMR model resulted in lower costs compared to the CMR model and the 

average gap is 89.67 %.  As the speed ratio of the truck on the highway to empty 

drone is increased there is almost no change in GAP measures. As the ratio of the 

range of a loaded drone to an empty drone is increased, the GAP between DMR and 

CMR models decreases. 

We will repeat the same procedure for the setting of 10 customers, with 0xNC drones 

initially at the customers. The mean and standard deviation of objective function 

values are given in Table 39. 

Table 39. Mean and Standard Deviation of Models with 0 × 𝑁𝐶 Drones at 

Customers for the Setting of 10 Customers 

delta beta 

Zcmr Zdmr 

Mean Stdev 
CoV 

(Stdev/ Mean) 
Mean Stdev 

CoV 

(Stdev/ Mean) 

1.5 0.5 

4703.8 113.1 0.0240 

692.0 4.2 0.0061 

1.5 0.7 734.5 7.5 0.0102 

2 0.5 691.2 3.3 0.0048 

2 0.7 734.3 6.1 0.0083 
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The average cost of the CMR model is 4703.8 with a standard deviation of 113.1. 

DMR model has slightly different means and standard deviations depending on its 

delta and beta parameters and the overall average cost is 713.0. Like in the previous 

case of 20 customers, the obtained objective function values are all lower compared 

to the CMR model. Interpretation of the findings in terms of delta and beta 

parameters is as follows. When the speed ratio of the truck on the highway and 

empty drone (delta) is held constant, and the range ratio of a loaded drone to an 

empty drone (beta) is increased, total cost increases. This increase is relatively higher 

than the previous case with 3xNC drones. On the other hand, when the range ratio of 

a loaded drone to an empty drone (beta) is held constant and the speed ratio of the 

truck on the highway and empty drone (delta) is increased, then the total cost remains 

almost the same. This result for 0xNC is different from the previous case. For the 

3xNC model, there was a slight increase in cost as a response to increasing delta 

when beta is held constant. Within the 0xNC case, these findings for 10 customers 

case has the same pattern for the 20 customers’ case.  

Next, we will present our findings regarding the GAP measures. The GAP measures 

of 10 customers are calculated and presented in Figure 52.  

 

Figure 52. Average Gaps of DMR Models with 0 × 𝑁𝐶 Drones at Customers with 

respect to the CMR Model for the Setting of 10 Customers  

0xNC – DMR model resulted in lower costs compared to the CMR model and the 

average GAP is 84.83% for the setting of 10 customers. This average is 4.84% less 

than the GAP obtained for the setting of 20 customers. This result is very similar to 
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the result for the case of 3xNC. Slight differences for average GAP values are 

observed between (𝐵𝑒𝑡𝑎, 𝐷𝑒𝑙𝑡𝑎) setting pairs.  The differences between GAP values 

are as follows. As the speed ratio of the truck on the highway to empty drone is 

increased there is almost no change in GAP measures. As the ratio of the range of a 

loaded drone to an empty drone is increased, the GAP between DMR and CMR 

models decreases. 

We think it will be useful to mention some of the arrangements we made in running 

the relevant models while making the comparisons in this chapter. Since the 

proposed DMR model contains too many variables, we could not get the optimum 

solution when we started the model without an initial solution. We think the probable 

reason for this situation is that GAMS is stuck at the local optimum in its solution 

algorithm and reports misleadingly the infeasibility of the problem. To overcome this 

problem, we thought of adding an initial solution to the model and when we added a 

suitable initial solution, GAMS reached the optimum solutions of the model. As an 

initial solution, we equated the 𝑋𝑑,𝑗
𝐵  values to 1 to find a feasible solution so that all 

the demands of the customers can be met, and we equated the 𝑋𝑑,𝑗 values, which are 

the drone flight times, to the midpoints of the relevant range.  

Another problem we had with model runs was that the objective function initially 

gave negative values. In order to solve this problem, we made the following changes 

to the objective function. We originally designed the objective function as the sum of 

three cost figures, which were the highway cost, the drone flight cost, and the 

holding cost of the drones at the customers. After determining that GAMS could not 

minimize the total of these costs, we eliminated the drone flight cost from the 

objective function and run the model again. In this case, GAMS got an optimum 

solution and we checked the consistency of this solution with the initial values. As a 

result, we run the model in a way that minimizes the sum of the two cost figures, and 

separately calculated the third cost figure of the drone flight costs, which created 

problems in the operation of the model.  

Since holding cost, which is one of the cost figures in the model, can be considered 

as a type of opportunity cost, we eliminated this cost from the total cost used for 

comparison of DMR and CMR results. Namely, in the comparisons in this chapter, 

the cost of a DMR tour is designed to be as the sum of two cost figures, which are 
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the drone flight costs and truck highway costs. In the next section, we will discuss 

the findings of this chapter in terms of their current usability and possible future 

usability. In this discussion, we will consider the depreciation cost of the drone by 

calculating the breakeven point of the proposed model. 

5.4.3. Practical Comparison of DMR and CMR Models in the Long Run 

As we mentioned previously, in this section, we will perform a cost analysis that the 

proposed model can be useful in the long run. We make the cost analysis for the case 

which has a higher cost benefit. We found previously that the cost benefit is higher 

for the setting of 20 customers. Average costs per milk-run tour for CMR and DMR 

models are calculated in the previous sections and presented in equations (74) and 

(75). The difference between these two costs is given in equation (76). 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡(𝐶𝑀𝑅) = 8101.3 (74)  

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡(𝐷𝑀𝑅) = 857.2 (75) 

 𝐶𝑜𝑠𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 8101.3 − 857.2 = 7244.1 (76) 

If two milk-run tours are considered to be made in a week, the resulting cost benefit 

is found as 2 ⋅ 7244.1 =  ¢14488.20 (in cents), or equivalently, $144.88. This 

corresponds to 52 ⋅ 144.88 =  $7533.86 per year. If the lifetime of a drone is 

considered to be 5 years, the total cost benefit during the lifetime of a drone is found 

to be 5 ⋅ 7533.86 =  $37669.32. 

When the drones which are used to base the parameters in this study are evaluated, 

the approximate cost of a drone is approximately $6500. Using this cost, the 

breakeven points below have been calculated. 

The break-even point for the number of drones corresponding to the total cost benefit 

is as in equation (77). 

 𝐵𝑟𝑒𝑎𝑘𝐸𝑣𝑒𝑛(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑟𝑜𝑛𝑒𝑠) =
37669.32

6500
= 5.8 (77)  

Since the maximum number of drones (which is the total demand) used in the model 

runs is 60, the currently proposed model can be considered as very costly. In a 
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situation where all demands can be met with 5 or fewer drones, the proposed model 

will be profitable. 

The breakeven point corresponding to the cost of a drone is given in equation (78): 

 𝐵𝑟𝑒𝑎𝑘𝐸𝑣𝑒𝑛(𝐶𝑜𝑠𝑡 𝑜𝑓 𝑎 𝐷𝑟𝑜𝑛𝑒) =
37669.32

60
= 627.82 (78)  

The proposed model will be profitable if the cost of a unit drone is less than $627.82.  

The breakeven point corresponding to the lifetime of a drone is given in equation 

(79):  

 𝐵𝑟𝑒𝑎𝑘𝐸𝑣𝑒𝑛(𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝐷𝑟𝑜𝑛𝑒) =
60 ⋅ 6500

7533.864
= 51.77 (79)  

The proposed model will be profitable if the lifetime of a drone is more than 51.77 

years.   
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

In this study, we have proposed a special type of milk-run distribution model and 

analyzed its possible benefits. The proposed model consists of a milk-run tour in 

which the truck never stops during the tour and all the delivery is performed by the 

drones. The abbreviation for the proposed model is DMR, which stands for Drone 

Milk-Run. The control model, namely the model to which we will compare our 

proposed model, is the Classical Milk-Run (abbr. CMR) model. In the classical milk-

run model, a truck visits the customers through a predetermined route and satisfies 

their demands. 

Having introduced both models, we take runs for both of them on separate numerical 

settings suitably designed for each of the models. For the CMR model, the only 

required setting is customer locations, which have two settings of 10 and 20 

customers. Accordingly, 10 and 20 of 96 customers are randomly selected at each of 

the 20 instances run. Using the same customer locations, the DMR model makes use 

of the additional settings of those parameters which include two drone speeds, two 

flight ranges, and two cases which consists of no drones at the customers before the 

start of the milk-run and an average of 3 drones present at the customers before the 

start of the milk-run.  

The findings are analyzed in two steps. At the first step, a cost gap measure, which is 

defined as “cost benefit in percentage in case the proposed model is used instead of 

classical model” is calculated and interpreted. For the setting of 20 customers, the 

cost savings for different (𝐵𝑒𝑡𝑎, 𝐷𝑒𝑙𝑡𝑎) setting pairs are found to be similar and the 

average gap is found to be 89.67% for no drones case and 89.17% for an average of 3 

drones case. On the other hand, for the setting of 10 customers, the cost savings for 

different (𝐵𝑒𝑡𝑎, 𝐷𝑒𝑙𝑡𝑎) setting pairs are found to be similar and the average gap is 

found to be 84.83% for no drones case and 84.43% for an average of 3 drones case. 
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We observed that the prosed model has a higher cost benefit for the 20 customers 

setting compared to the 10 customers setting.  

It seems from the findings of the GAP measures that a sufficiently high saving is 

achieved but further analysis is required to reach a more concrete result. For this 

purpose, we performed a cost analysis using the higher benefit case, which is the 

setting for 20 customers. Our purpose here is to point out the extent that the proposed 

model can be useful in the long run. Average costs per milk-run tour are calculated 

as ¢8101.3 and ¢857.2 for CMR and DMR models respectively, with a cost 

difference of ¢7244.1.  Considering an average number of milk-runs as 2 per week 

and the average lifetime of a drone to be 5 years, this cost benefit corresponds to 

$37669.32. Taking this benefit as our reference point, we calculated the following 

breakeven points and determined the range that the proposed model is cost efficient.  

The break-even point for the number of drones corresponding to the total cost benefit 

was found to be 5.8 drones. Since the maximum number of drones (which is the total 

demand) used in the model runs is 60, the currently proposed model can be 

considered as very costly. In a situation where all demands can be met with 5 or 

fewer drones, the proposed model will be profitable. 

The breakeven point corresponding to the cost of a drone is found to be $627.82. 

However, the current cost of a drone on which we base our settings is approximately 

$6500. Accordingly, the proposed model is not currently cost efficient and will be 

profitable if the cost of a unit drone becomes less than $627.82 in the future.  

The breakeven point corresponding to the lifetime of a drone is found to be 51.77 

years. This lifetime was assumed to be 5 years for these calculations. Hence, the 

proposed model will be profitable if the lifetime of a drone will increase and become 

more than 51.77 years. 

To sum up, the main finding of this study is that integrating drones in a milk-run 

distribution is beneficial compared to the classical milk-run under any problem 

setting for a single milk-run tour. However, the cost difference between those two 

milk-run types does not seem to be sufficient to invest in integrating drones as we 

propose under current cost figures. This result is also confirmed by several 

practitioners, some of whose opinions are summarized as follows.  
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MediaMarkt Performance and Talent Management Manager Oğuz Dokur stated that 

their branch deliveries are not periodic and that goods are usually delivered to the 

branch warehouse once and collectively. Therefore, he stated that the proposed 

model would not be suitable for MediaMarkt currently (2019). EKOL Logistic 

Research Development Center department’s director Erdem Özsalih stated that the 

delivery by drones for Ekol Logistics' B2B transports would not be suitable at first, 

as the volume and weight of the delivered products will generally be more than the 

carrying capacity of drones. (2019). Cem Oğuz, Planning and Business Development 

Director of KolayGelsin, stated that it is possible to experience problems in terms of 

delivery location in drone transport since the typical target customer is an individual 

customer rather than a corporate customer. On the other hand, if there are separate 

delivery points for this process in workplaces, buildings, or sites, and if the drones 

can leave their delivery products in these areas, there may be an increase in delivery 

in drones at certain points (2019).  DHL Supply Chain Turkey R&D Project 

Engineer Gizem CİDAL mentioned other points in drone delivery. Stating that she 

has doubts about the use of a sufficiently large number of drones in delivery to 

increase efficiency, Cidal said that she thought this scenario would be possible in the 

future and that such a study would be a good academic and visionary work (2019). 

As a result of the cost analysis made, we evaluated that the proposed model will not 

be commercially profitable, at least in the near future. However, we have also shown 

that milk-run distribution integrating drones have a significant time advantage 

compared to the classical milk-run. Therefore, we can interpret that the proposed 

model can have applications in non-profit areas where time gain has great 

importance. Such applications can be found in the healthcare and military sectors. 

An application that can be considered in the health sector is the use of drones in the 

process of organ transplantation. In April 2019, such a transportation is succeeded by 

the University of Maryland. A donor’s kidney is first time transported by a drone to 

the surgeons at the University of Maryland Medical Center (UMMC) in Baltimore. 

This usage of drones supports the fact that drone transportation can present a faster 

and safer delivery in the health-care services sector, compared to the classical 

delivery methods (Clough, 2019).  
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Ergene and others state that drone usage for military logistics has an exponential 

increase in the last decade. They stress the three kinds of missions especially suitable 

for drone transportation: dull, dirty, and dangerous. To illustrate, the transportation of 

items that have biological, nuclear, or chemical characters are better transported by 

drones rather than by military personal because of the potential risks of delivering 

such items (Ergene et al., 2021).  

This study is the first part of the BAP project of Çankaya University. In the latter 

parts of this project or for the investigators that work in this area, the following 

points and ideas can be recommended. First, the factor levels of the settings 

constructed in the work can be enlarged and new parameters such as truck’s speed 

can be added. Secondly, the model constraints can be designed to capture more detail 

about the drone usage such that the maximum number of drones that can be 

simultaneously used or the minimum time required between corresponding 

deliveries. Moreover, instead of a single period optimization, a more complex model 

including a wider time horizon and the response to changing daily demands of 

customers can be studied. Finally, the proposed model in this study can be developed 

by considering hybrid milk-run delivery by using both the truck and drones. 
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APPENDIX A. GAMS CMR MODEL  

Set j/ 

$call =xls2gms r=SETS!b5:b25 

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=set.inc 

$include set.inc 

/; 

 

alias(i,j); 

 

parameter tau/ 

$call=xls2gms r=scalars!b11              

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter nu/ 

$call=xls2gms r=scalars!b5              

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter q(j)/ 

$call=xls2gms r=q(j)!b5:c25              

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter sigma/ 

$call=xls2gms r=scalars!a5              

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter ccty/ 

$call=xls2gms r=scalars!d5                

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter copc/ 

$call=xls2gms r=scalars!h5                

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

 

parameter table lambda(i,j) 

$call=xls2gms r=lambda(ij)!c4:cx103           

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 
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$include par.inc 

; 

 

display lambda; 

 

variable 

Z 

Z_cty 

Z_opc 

; 

 

binary  variable 

V(i,j) ONE if truck goes from location i to j ZERO o.w. 

; 

 

positive variable 

upsilon(i) 

; 

 

equations 

obj 

objcty 

objopc 

cin 

cout 

csub 

; 

 

obj..                Z =E= Z_cty + Z_opc; 

objcty..             Z_cty =E= ccty * 

(sum((i,j),lambda(i,j)*V(i,j) ))  ; 

objopc..             Z_opc =E= copc* (60* 

(sum((i,j),lambda(i,j)*V(i,j) )) / (sigma/nu) + (card(j)-

1)*20  - tau ); 

cin(j)..              sum(i$(ord(i) ne 

ord(j)),V(i,j))=e=1; 

cout(i)..             sum(j$(ord(i) ne 

ord(j)),V(i,j))=e=1; 

csub(i,j)$((ord(i) ne ord(j))and (ord(i) ge 2) and 

(ord(j) ge 2))..           upsilon(i) - upsilon(j) + 

(card(j)-1)* V(i,j) =l= (card(j)-2); 

 

 

Model CMR_210129 /all/; 

option MIP = Cplex; 

$onEcho > Cplex.opt 

tilim 86400 

itlim 1000000 

epgap 0.00001 

$offEcho 

CMR_210129.optfile=1 
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Solve CMR_210129 using MIP minimizing z; 

 

Z.L$(Z.L=0)=eps; 

V.L(i,j)$(V.L(i,j)=0)=eps; 

 

Display Z.L, Z_cty.L, Z_opc.L, V.L; 

 

$onEcho >  ToWriteZ.txt 

epsout=0 

var=Z.L              rng=Z!D4:D4 

$offEcho 

 

$onEcho >  ToWriteZ_cty.txt 

var=Z_cty.L              rng=Z!D6:D6 

$offEcho 

 

$onEcho >  ToWriteZ_opc.txt 

var=Z_opc.L              rng=Z!D7:D7 

$offEcho 

 

$onEcho >  ToWriteV.txt 

epsout=0 

var=V.L              rng=V!D4:Z1000 

$offEcho 

 

execute_unload 

'output_CMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx' 

execute 'gdxxrw 

output_CMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx 

@ToWriteZ.txt ' 

execute 'gdxxrw 

output_CMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx 

@ToWriteZ_cty.txt ' 

execute 'gdxxrw 

output_CMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx 

@ToWriteZ_opc.txt ' 

execute 'gdxxrw 

output_CMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx 

@ToWriteV.txt ' 

; 
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APPENDIX B. GAMS DMR MODEL 

Set j/ 

$call =xls2gms r=SETS!b5:b1000 

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=set.inc 

$include set.inc 

/; 

 

alias(j,jj); 

 

Set d/ 

$call=xls2gms r=SETS!d5:d1000 

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=set.inc 

$include set.inc 

/; 

 

alias(d,dd); 

 

Set SJD(d)/ 

$call=xls2gms r=SETS!e5:e1000 

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=set.inc 

$include set.inc 

/; 

 

Set S0D(d)/ 

$call=xls2gms r=SETS!f5:f1000 

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=set.inc 

$include set.inc 

/; 

 

parameter tau/ 

$call=xls2gms r=scalars!b11              

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

parameter bigM/ 

$call=xls2gms r=scalars!k5              

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

parameter tsetup/ 

$call=xls2gms r=scalars!j5              

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter chld/ 

$call=xls2gms r=scalars!m5              

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 
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/; 

 

parameter NC/ 

$call=xls2gms r=scalars!o5              

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter q(j)/ 

$call=xls2gms r=q(j)!b5:c25              

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter sigma/ 

$call=xls2gms r=scalars!a5              

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter tDepE(j)/ 

$call=xls2gms r=tD(j)!b5:c25             

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter tDepL(j)/ 

$call=xls2gms r=tD(j)!g5:h25       

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter tArrE(j)/ 

$call=xls2gms r=tA(j)!b5:c25             

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter tArrL(j)/ 

$call=xls2gms r=tA(j)!g5:h25       

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter aArr(j)/ 

$call=xls2gms r=regA(j)!b5:c25        

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 
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parameter bArr(j)/ 

$call=xls2gms r=regA(j)!g5:h25  

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter cArr(j)/ 

$call=xls2gms r=regA(j)!j5:k25  

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter aDep(j)/ 

$call=xls2gms r=regD(j)!b5:c25        

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter bDep(j)/ 

$call=xls2gms r=regD(j)!g5:h25  

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter cDep(j)/ 

$call=xls2gms r=regD(j)!j5:k25  

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

parameter chwy/ 

$call=xls2gms r=scalars!c5                

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

parameter cdrn/ 

$call=xls2gms r=scalars!f5                

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

/; 

 

set table dSDJ(d,j) 

$call=xls2gms r=j-SDj!b4:w124           

i=input_D1.5B0.5_Cust20_3NC_inst01.xlsx o=par.inc 

$include par.inc 

; 

 

display 

j,d,SJD,S0D,q,sigma,tdepe,tdepl,tArrE,tArrL,aArr,bArr,cAr

r,aDep,bDep,cDep,chwy,cdrn,chld,dSDJ; 
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variable 

Z 

Z_hwy 

Z_drn 

Z_hld 

; 

 

positive variable 

X(d,j) The take off time of d from the truck to customer 

j 

Y(d,j) The take off time of d from customer j to the 

truck 

 

binary  variable 

XB(d,j) ONE if d serves to customer j and ZERO o.w. 

YB(d,j) ONE if d takes off from customer j and ZERO o.w. 

UB(d)   ONE if d is taken off from the depot and ZERO 

o.w. 

; 

 

equations 

obj 

objhwy 

objdrn 

objhld 

c01 

c02 

c03 

c04 

c05 

c06 

c07 

c08 

c09 

c10 

c11 

c12 

c13 

c14 

c15 

c16 

c17 

; 

 

obj..                 Z =E= Z_hwy + Z_hld; 

objhwy..             Z_hwy =E= chwy * sigma * tau/60; 

objdrn..             Z_drn =E= cdrn *( (sum (d, (sum(j, 

aArr(j)*YB(d,j)+ bArr(j)*Y(d,j)+ cArr(j)*sqr(Y(d,j))))    

)) +  (sum (d, (sum(j, aDep(j)*XB(d,j)+ bDep(j)*X(d,j)+ 

cDep(j)*sqr(X(d,j))))    )) ); 
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objhld..             Z_hld =E= chld *(3*NC + sum((d,j), 

XB(d,j))- sum((d,j), YB(d,j))); 

 

c01(d)$(not S0D(d))..         UB(d) =E= 0; 

c02(d,j)$(not dSDJ(d,j))..    YB(d,j) =E= 0; 

 

c03(d,j)$dSDJ(d,j)..          Y(d,j) =L= bigM*YB(d,j); 

 

c04(d,j,jj)$(dSDJ(d,j) AND ord(jj)<ord(j))..     X(d,jj) 

=E= 0; 

 

c05(d)..                      sum(j,XB(d,j)) =L= 1; 

c06(d,j)..                    X(d,j) =L= bigM*XB(d,j); 

c07(j)..                      sum(d,XB(d,j)) =E= q(j); 

c08(d)$S0D(d)..               sum(j,XB(d,j)) =L= UB(d); 

 

c09(d,j)$dSDJ(d,j)..          sum(jj$(ord(jj) GE ord(j)), 

XB(d,jj)) =L= YB(d,j); 

 

c10(d,j,jj)$(dSDJ(d,j) AND (ord(jj) GE ord(j)))..     

X(d,jj) =L= bigM*YB(d,j); 

 

c11(d,j)$((not S0D(d)) and dSDJ(d,j))..      Y(d,j) + 

(aArr(j) + bArr(j)*Y(d,j) + cArr(j)*sqr(Y(d,j))) + tSetup 

=L= sum(jj$(ord(jj) GE ord(j)),X(d,jj))+bigM*(1-

sum(jj$(ord(jj) GE ord(j)),XB(d,jj))); 

 

c12(d,j)$dSDJ(d,j)..           Y(d,j) + (aArr(j) + 

bArr(j)*Y(d,j) + cArr(j)*sqr(Y(d,j))) =L= 

tArrL(j)+bigM*(1-YB(d,j)); 

 

c13(d,j)$dSDJ(d,j)..          tArrE(j) - bigM*(1-YB(d,j)) 

=L=  Y(d,j) + (aArr(j) + bArr(j)*Y(d,j) + 

cArr(j)*sqr(Y(d,j))); 

 

c14(d,j)..               X(d,j) =L= tDepL(j)*XB(d,j); 

c15(d,j)..               tDepE(j)*XB(d,j) =L= X(d,j); 

c16(d,j)..               X(d,j) =L= tau; 

 

c17(d,j)$dSDJ(d,j)..               Y(d,j) + (aArr(j) + 

bArr(j)*Y(d,j) + cArr(j)*sqr(Y(d,j))) =L= tau + bigM*(1-

YB(d,j)); 

 

 

Model DMR210129 /all/; 

*option MINLP = DICOPT; 

 

$include DMR_210128_1.inc 

 

 

Solve DMR210129 using MINLP minimizing z; 
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Z.L$(Z.L=0)=eps; 

X.L(d,j)$(X.L(d,j)=0)=eps; 

Y.L(d,j)$(Y.L(d,j)=0)=eps; 

XB.L(d,j)$(XB.L(d,j)=0)=eps; 

YB.L(d,j)$(YB.L(d,j)=0)=eps; 

UB.L(d)$(UB.L(d)=0)=eps; 

 

Display Z.L, Z_hwy.L, Z_drn.L, Z_hld.L, UB.L, Y.L, YB.L, 

X.L, XB.L; 

 

parameter Arrflighttime(d,j); 

Arrflighttime(d,j)=(aArr(j)*YB.l(d,j) + bArr(j)*Y.l(d,j) 

+ cArr(j)*sqr(Y.l(d,j))); 

 

parameter Depflighttime(d,j); 

Depflighttime(d,j)=(aDep(j)*XB.l(d,j) + bDep(j)*X.l(d,j) 

+ cDep(j)*sqr(X.l(d,j))); 

 

$onEcho >  ToWriteZ.txt 

epsout=0 

var=Z.L              rng=Z!D4:Z1000 

$offEcho 

 

$onEcho >  ToWriteZ_hwy.txt 

epsout=0 

var=Z_hwy.L              rng=Z!D6:Z1000 

$offEcho 

 

$onEcho >  ToWriteZ_drn.txt 

epsout=0 

var=Z_drn.L              rng=Z!D7:Z1000 

$offEcho 

 

$onEcho >  ToWriteZ_hld.txt 

epsout=0 

var=Z_hld.L              rng=Z!D8:Z1000 

$offEcho 

 

$onEcho >  ToWriteUB.txt 

epsout=0 

var=UB.L              rng=UB!D4:DZ1000 

$offEcho 

 

$onEcho >  ToWriteYB.txt 

epsout=0 

var=YB.L              rng=YB!D4:Z1000 

$offEcho 

 

$onEcho >  ToWriteY.txt 

epsout=0 



121 

 

var=Y.L              rng=Y!D4:Z1000' 

$offEcho 

 

$onEcho >  ToWriteXB.txt 

epsout=0 

var=XB.L              rng=XB!D4:Z1000 

$offEcho 

 

$onEcho >  ToWriteX.txt 

epsout=0 

var=X.L              rng=X!D4:Z1000 

$offEcho 

 

 

execute_unload 

'output_DMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx' 

execute 'gdxxrw 

output_DMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx          

par=Arrflighttime             rng=Arrflighttime!D4:Z1000' 

execute 'gdxxrw 

output_DMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx          

par=Depflighttime             rng=Depflighttime!D4:Z1000' 

execute 'gdxxrw 

output_DMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx 

@ToWriteZ.txt ' 

execute 'gdxxrw 

output_DMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx 

@ToWriteZ_hwy.txt ' 

execute 'gdxxrw 

output_DMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx 

@ToWriteZ_drn.txt ' 

execute 'gdxxrw 

output_DMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx 

@ToWriteZ_hld.txt ' 

execute 'gdxxrw 

output_DMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx 

@ToWriteUB.txt ' 

execute 'gdxxrw 

output_DMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx 

@ToWriteYB.txt ' 

execute 'gdxxrw 

output_DMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx 

@ToWriteY.txt ' 

execute 'gdxxrw 

output_DMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx 

@ToWriteXB.txt ' 

execute 'gdxxrw 

output_DMR_210129_D1.5B0.5_Cust20_3NC_inst01.gdx 

@ToWriteX.txt ';
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APPENDIX C. RESULTS FOR DMR AND CMR MODELS 

Table 40. Results for 20 Customers 3NC DMR and CMR Models 

No Inst delta beta #cust NC Zcty Zopc Zcmr Zhwy Zdrn Zdmr Gap 

1 1 1.5 0.5 20 60 749.3 7328.0 8077.2 585.9 296.0 881.9 89.08% 

2 2 1.5 0.5 20 60 766.4 7385.8 8152.3 585.9 289.6 875.5 89.26% 

3 3 1.5 0.5 20 60 685.0 7111.5 7796.5 585.9 280.1 866.0 88.89% 

4 4 1.5 0.5 20 60 747.7 7322.7 8070.3 585.9 289.8 875.7 89.15% 

5 5 1.5 0.5 20 60 720.0 7229.4 7949.4 585.9 307.7 893.6 88.76% 

6 6 1.5 0.5 20 60 791.4 7469.8 8261.2 585.9 299.7 885.6 89.28% 

7 7 1.5 0.5 20 60 771.0 7401.1 8172.0 585.9 311.2 897.1 89.02% 

8 8 1.5 0.5 20 60 792.1 7472.3 8264.5 585.9 273.5 859.4 89.60% 

9 9 1.5 0.5 20 60 732.7 7272.2 8004.9 585.9 278.1 864.0 89.21% 

10 10 1.5 0.5 20 60 741.7 7302.4 8044.0 585.9 285.7 871.6 89.16% 

11 11 1.5 0.5 20 60 752.1 7337.6 8089.7 585.9 254.5 840.4 89.61% 

12 12 1.5 0.5 20 60 736.7 7285.6 8022.3 585.9 293.0 878.9 89.04% 

13 13 1.5 0.5 20 60 780.9 7434.6 8215.5 585.9 288.0 873.9 89.36% 

14 14 1.5 0.5 20 60 792.0 7472.0 8264.1 585.9 293.7 879.6 89.36% 

15 15 1.5 0.5 20 60 759.9 7363.8 8123.8 585.9 258.0 843.9 89.61% 

16 16 1.5 0.5 20 60 730.0 7262.9 7992.9 585.9 302.6 888.5 88.88% 

17 17 1.5 0.5 20 60 769.4 7395.8 8165.2 585.9 281.3 867.2 89.38% 

18 18 1.5 0.5 20 60 741.8 7302.9 8044.7 585.9 282.1 868.0 89.21% 

19 19 1.5 0.5 20 60 771.9 7404.2 8176.1 585.9 291.1 877.0 89.27% 

20 20 1.5 0.5 20 60 763.7 7376.4 8140.1 585.9 264.3 850.2 89.56% 

21 1 1.5 0.7 20 60 749.3 7328.0 8077.2 585.9 303.5 889.4 88.99% 

22 2 1.5 0.7 20 60 766.4 7385.8 8152.3 585.9 282.7 868.6 89.35% 

23 3 1.5 0.7 20 60 685.0 7111.5 7796.5 585.9 316.2 902.1 88.43% 

24 4 1.5 0.7 20 60 747.7 7322.7 8070.3 585.9 289.3 875.2 89.16% 

25 5 1.5 0.7 20 60 720.0 7229.4 7949.4 585.9 279.8 865.7 89.11% 

26 6 1.5 0.7 20 60 791.4 7469.8 8261.2 585.9 294.3 880.2 89.35% 

27 7 1.5 0.7 20 60 771.0 7401.1 8172.0 585.9 277.6 863.5 89.43% 

28 8 1.5 0.7 20 60 792.1 7472.3 8264.5 585.9 284.3 870.2 89.47% 

29 9 1.5 0.7 20 60 732.7 7272.2 8004.9 585.9 278.6 864.5 89.20% 

30 10 1.5 0.7 20 60 741.7 7302.4 8044.0 585.9 281.5 867.4 89.22% 

31 11 1.5 0.7 20 60 752.1 7337.6 8089.7 585.9 259.1 845.0 89.55% 

32 12 1.5 0.7 20 60 736.7 7285.6 8022.3 585.9 293.5 879.4 89.04% 

33 13 1.5 0.7 20 60 780.9 7434.6 8215.5 585.9 292.3 878.2 89.31% 

34 14 1.5 0.7 20 60 792.0 7472.0 8264.1 585.9 288.7 874.6 89.42% 

35 15 1.5 0.7 20 60 759.9 7363.8 8123.8 585.9 276.9 862.8 89.38% 

36 16 1.5 0.7 20 60 730.0 7262.9 7992.9 585.9 284.5 870.4 89.11% 

37 17 1.5 0.7 20 60 769.4 7395.8 8165.2 585.9 299.1 885.0 89.16% 

38 18 1.5 0.7 20 60 741.8 7302.9 8044.7 585.9 278.4 864.3 89.26% 

39 19 1.5 0.7 20 60 771.9 7404.2 8176.1 585.9 275.2 861.1 89.47% 

40 20 1.5 0.7 20 60 763.7 7376.4 8140.1 585.9 313.6 899.5 88.95% 

41 1 2 0.5 20 60 749.3 7328.0 8077.2 585.9 313.6 899.5 88.86% 

42 2 2 0.5 20 60 766.4 7385.8 8152.3 585.9 283.1 869.0 89.34% 

43 3 2 0.5 20 60 685.0 7111.5 7796.5 585.9 319.3 905.2 88.39% 
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Table 40 (Continued) 

No Inst delta beta #cust NC Zcty Zopc Zcmr Zhwy Zdrn Zdmr Gap 

44 4 2 0.5 20 60 747.7 7322.7 8070.3 585.9 286.1 872.0 89.20% 

45 5 2 0.5 20 60 720.0 7229.4 7949.4 585.9 293.2 879.1 88.94% 

46 6 2 0.5 20 60 791.4 7469.8 8261.2 585.9 318.5 904.4 89.05% 

47 7 2 0.5 20 60 771.0 7401.1 8172.0 585.9 289.6 875.5 89.29% 

48 8 2 0.5 20 60 792.1 7472.3 8264.5 585.9 293.0 878.9 89.37% 

49 9 2 0.5 20 60 732.7 7272.2 8004.9 585.9 300.6 886.5 88.93% 

50 10 2 0.5 20 60 741.7 7302.4 8044.0 585.9 284.0 869.9 89.19% 

51 11 2 0.5 20 60 752.1 7337.6 8089.7 585.9 252.2 838.1 89.64% 

52 12 2 0.5 20 60 736.7 7285.6 8022.3 585.9 289.6 875.5 89.09% 

53 13 2 0.5 20 60 780.9 7434.6 8215.5 585.9 291.9 877.8 89.32% 

54 14 2 0.5 20 60 792.0 7472.0 8264.1 585.9 293.0 878.9 89.36% 

55 15 2 0.5 20 60 759.9 7363.8 8123.8 585.9 281.4 867.3 89.32% 

56 16 2 0.5 20 60 730.0 7262.9 7992.9 585.9 298.6 884.5 88.93% 

57 17 2 0.5 20 60 769.4 7395.8 8165.2 585.9 297.7 883.6 89.18% 

58 18 2 0.5 20 60 741.8 7302.9 8044.7 585.9 282.4 868.3 89.21% 

59 19 2 0.5 20 60 771.9 7404.2 8176.1 585.9 290.0 875.9 89.29% 

60 20 2 0.5 20 60 763.7 7376.4 8140.1 585.9 282.2 868.1 89.34% 

61 1 2 0.7 20 60 749.3 7328.0 8077.2 585.9 324.0 909.9 88.74% 

62 2 2 0.7 20 60 766.4 7385.8 8152.3 585.9 293.8 879.7 89.21% 

63 3 2 0.7 20 60 685.0 7111.5 7796.5 585.9 314.3 900.2 88.45% 

64 4 2 0.7 20 60 747.7 7322.7 8070.3 585.9 296.7 882.6 89.06% 

65 5 2 0.7 20 60 720.0 7229.4 7949.4 585.9 300.1 886.0 88.85% 

66 6 2 0.7 20 60 791.4 7469.8 8261.2 585.9 329.4 915.3 88.92% 

67 7 2 0.7 20 60 771.0 7401.1 8172.0 585.9 286.5 872.4 89.32% 

68 8 2 0.7 20 60 792.1 7472.3 8264.5 585.9 300.9 886.8 89.27% 

69 9 2 0.7 20 60 732.7 7272.2 8004.9 585.9 287.0 872.9 89.10% 

70 10 2 0.7 20 60 741.7 7302.4 8044.0 585.9 292.4 878.3 89.08% 

71 11 2 0.7 20 60 752.1 7337.6 8089.7 585.9 270.0 855.9 89.42% 

72 12 2 0.7 20 60 736.7 7285.6 8022.3 585.9 298.9 884.8 88.97% 

73 13 2 0.7 20 60 780.9 7434.6 8215.5 585.9 304.4 890.3 89.16% 

74 14 2 0.7 20 60 792.0 7472.0 8264.1 585.9 294.9 880.8 89.34% 

75 15 2 0.7 20 60 759.9 7363.8 8123.8 585.9 297.2 883.1 89.13% 

76 16 2 0.7 20 60 730.0 7262.9 7992.9 585.9 314.7 900.6 88.73% 

77 17 2 0.7 20 60 769.4 7395.8 8165.2 585.9 297.9 883.8 89.18% 

78 18 2 0.7 20 60 741.8 7302.9 8044.7 585.9 299.5 885.4 88.99% 

79 19 2 0.7 20 60 771.9 7404.2 8176.1 585.9 304.3 890.2 89.11% 

80 20 2 0.7 20 60 763.7 7376.4 8140.1 585.9 290.0 875.9 89.24% 
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APPENDIX D. RESULTS FOR DMR AND CMR MODELS 

Table 41. Results for 20 Customers 0NC DMR and CMR Models 

No Inst delta beta #cust NC Zcty Zopc Zcmr Zhwy Zdrn Zdmr Gap 

1 1 1.5 0.5 20 0 749.3 7328.0 8077.2 585.9 214.8 800.7 90.09% 

2 2 1.5 0.5 20 0 766.4 7385.8 8152.3 585.9 212.0 797.9 90.21% 

3 3 1.5 0.5 20 0 685.0 7111.5 7796.5 585.9 212.1 798.0 89.77% 

4 4 1.5 0.5 20 0 747.7 7322.7 8070.3 585.9 181.9 767.8 90.49% 

5 5 1.5 0.5 20 0 720.0 7229.4 7949.4 585.9 209.8 795.7 89.99% 

6 6 1.5 0.5 20 0 791.4 7469.8 8261.2 585.9 217.0 802.9 90.28% 

7 7 1.5 0.5 20 0 771.0 7401.1 8172.0 585.9 207.2 793.1 90.30% 

8 8 1.5 0.5 20 0 792.1 7472.3 8264.5 585.9 213.2 799.1 90.33% 

9 9 1.5 0.5 20 0 732.7 7272.2 8004.9 585.9 214.6 800.5 90.00% 

10 10 1.5 0.5 20 0 741.7 7302.4 8044.0 585.9 220.3 806.2 89.98% 

11 11 1.5 0.5 20 0 752.1 7337.6 8089.7 585.9 213.4 799.3 90.12% 

12 12 1.5 0.5 20 0 736.7 7285.6 8022.3 585.9 218.1 804.0 89.98% 

13 13 1.5 0.5 20 0 780.9 7434.6 8215.5 585.9 206.6 792.5 90.35% 

14 14 1.5 0.5 20 0 792.0 7472.0 8264.1 585.9 205.2 791.1 90.43% 

15 15 1.5 0.5 20 0 759.9 7363.8 8123.8 585.9 216.1 802.0 90.13% 

16 16 1.5 0.5 20 0 730.0 7262.9 7992.9 585.9 216.5 802.4 89.96% 

17 17 1.5 0.5 20 0 769.4 7395.8 8165.2 585.9 202.2 788.1 90.35% 

18 18 1.5 0.5 20 0 741.8 7302.9 8044.7 585.9 209.4 795.3 90.11% 

19 19 1.5 0.5 20 0 771.9 7404.2 8176.1 585.9 218.8 804.7 90.16% 

20 20 1.5 0.5 20 0 763.7 7376.4 8140.1 585.9 188.6 774.5 90.48% 

21 1 1.5 0.7 20 0 749.3 7328.0 8077.2 585.9 294.1 880.0 89.10% 

22 2 1.5 0.7 20 0 766.4 7385.8 8152.3 585.9 290.0 875.9 89.26% 

23 3 1.5 0.7 20 0 685.0 7111.5 7796.5 585.9 300.2 886.1 88.63% 

24 4 1.5 0.7 20 0 747.7 7322.7 8070.3 585.9 244.2 830.1 89.71% 

25 5 1.5 0.7 20 0 720.0 7229.4 7949.4 585.9 287.0 872.9 89.02% 

26 6 1.5 0.7 20 0 791.4 7469.8 8261.2 585.9 305.7 891.6 89.21% 

27 7 1.5 0.7 20 0 771.0 7401.1 8172.0 585.9 288.6 874.5 89.30% 

28 8 1.5 0.7 20 0 792.1 7472.3 8264.5 585.9 303.1 889.0 89.24% 

29 9 1.5 0.7 20 0 732.7 7272.2 8004.9 585.9 300.4 886.3 88.93% 

30 10 1.5 0.7 20 0 741.7 7302.4 8044.0 585.9 314.9 900.8 88.80% 

31 11 1.5 0.7 20 0 752.1 7337.6 8089.7 585.9 302.4 888.3 89.02% 

32 12 1.5 0.7 20 0 736.7 7285.6 8022.3 585.9 309.2 895.1 88.84% 

33 13 1.5 0.7 20 0 780.9 7434.6 8215.5 585.9 289.4 875.3 89.35% 

34 14 1.5 0.7 20 0 792.0 7472.0 8264.1 585.9 284.5 870.4 89.47% 

35 15 1.5 0.7 20 0 759.9 7363.8 8123.8 585.9 300.0 885.9 89.09% 

36 16 1.5 0.7 20 0 730.0 7262.9 7992.9 585.9 302.1 888.0 88.89% 

37 17 1.5 0.7 20 0 769.4 7395.8 8165.2 585.9 280.7 866.6 89.39% 

38 18 1.5 0.7 20 0 741.8 7302.9 8044.7 585.9 293.2 879.1 89.07% 

39 19 1.5 0.7 20 0 771.9 7404.2 8176.1 585.9 303.3 889.2 89.12% 

40 20 1.5 0.7 20 0 763.7 7376.4 8140.1 585.9 261.7 847.6 89.59% 

41 1 2 0.5 20 0 749.3 7328.0 8077.2 585.9 212.1 798.0 90.12% 

42 2 2 0.5 20 0 766.4 7385.8 8152.3 585.9 214.0 799.9 90.19% 

43 3 2 0.5 20 0 685.0 7111.5 7796.5 585.9 210.5 796.4 89.79% 
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Table 41 (Continued) 

No Inst delta beta #cust NC Zcty Zopc Zcmr Zhwy Zdrn Zdmr Gap 

44 4 2 0.5 20 0 747.7 7322.7 8070.3 585.9 188.5 774.4 90.40% 

45 5 2 0.5 20 0 720.0 7229.4 7949.4 585.9 210.8 796.7 89.98% 

46 6 2 0.5 20 0 791.4 7469.8 8261.2 585.9 213.7 799.6 90.32% 

47 7 2 0.5 20 0 771.0 7401.1 8172.0 585.9 204.4 790.3 90.33% 

48 8 2 0.5 20 0 792.1 7472.3 8264.5 585.9 210.2 796.1 90.37% 

49 9 2 0.5 20 0 732.7 7272.2 8004.9 585.9 213.9 799.8 90.01% 

50 10 2 0.5 20 0 741.7 7302.4 8044.0 585.9 216.4 802.3 90.03% 

51 11 2 0.5 20 0 752.1 7337.6 8089.7 585.9 211.6 797.5 90.14% 

52 12 2 0.5 20 0 736.7 7285.6 8022.3 585.9 214.6 800.5 90.02% 

53 13 2 0.5 20 0 780.9 7434.6 8215.5 585.9 206.9 792.8 90.35% 

54 14 2 0.5 20 0 792.0 7472.0 8264.1 585.9 206.8 792.7 90.41% 

55 15 2 0.5 20 0 759.9 7363.8 8123.8 585.9 216.5 802.4 90.12% 

56 16 2 0.5 20 0 730.0 7262.9 7992.9 585.9 213.1 799.0 90.00% 

57 17 2 0.5 20 0 769.4 7395.8 8165.2 585.9 204.9 790.8 90.32% 

58 18 2 0.5 20 0 741.8 7302.9 8044.7 585.9 208.1 794.0 90.13% 

59 19 2 0.5 20 0 771.9 7404.2 8176.1 585.9 215.7 801.6 90.20% 

60 20 2 0.5 20 0 763.7 7376.4 8140.1 585.9 191.4 777.3 90.45% 

61 1 2 0.7 20 0 749.3 7328.0 8077.2 585.9 300.2 886.1 89.03% 

62 2 2 0.7 20 0 766.4 7385.8 8152.3 585.9 295.7 881.6 89.19% 

63 3 2 0.7 20 0 685.0 7111.5 7796.5 585.9 297.1 883.0 88.67% 

64 4 2 0.7 20 0 747.7 7322.7 8070.3 585.9 252.6 838.5 89.61% 

65 5 2 0.7 20 0 720.0 7229.4 7949.4 585.9 292.7 878.6 88.95% 

66 6 2 0.7 20 0 791.4 7469.8 8261.2 585.9 304.5 890.4 89.22% 

67 7 2 0.7 20 0 771.0 7401.1 8172.0 585.9 290.0 875.9 89.28% 

68 8 2 0.7 20 0 792.1 7472.3 8264.5 585.9 298.8 884.7 89.29% 

69 9 2 0.7 20 0 732.7 7272.2 8004.9 585.9 300.3 886.2 88.93% 

70 10 2 0.7 20 0 741.7 7302.4 8044.0 585.9 309.0 894.9 88.87% 

71 11 2 0.7 20 0 752.1 7337.6 8089.7 585.9 298.8 884.7 89.06% 

72 12 2 0.7 20 0 736.7 7285.6 8022.3 585.9 305.3 891.2 88.89% 

73 13 2 0.7 20 0 780.9 7434.6 8215.5 585.9 289.1 875.0 89.35% 

74 14 2 0.7 20 0 792.0 7472.0 8264.1 585.9 286.3 872.2 89.45% 

75 15 2 0.7 20 0 759.9 7363.8 8123.8 585.9 301.7 887.6 89.07% 

76 16 2 0.7 20 0 730.0 7262.9 7992.9 585.9 303.8 889.7 88.87% 

77 17 2 0.7 20 0 769.4 7395.8 8165.2 585.9 282.5 868.4 89.37% 

78 18 2 0.7 20 0 741.8 7302.9 8044.7 585.9 292.9 878.8 89.08% 

79 19 2 0.7 20 0 771.9 7404.2 8176.1 585.9 305.5 891.4 89.10% 

80 20 2 0.7 20 0 763.7 7376.4 8140.1 585.9 263.4 849.3 89.57% 
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