

ANALYSIS OF ANSWERING QUESTIONS USING AI BY

CATEGORIZATION METHODS FOR TEXT

KUTLU ERMAN ÖZGİL

NOVEMBER 2021

ÇANKAYA UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF COMPUTER ENGINEERING

 MASTER'S THESIS IN COMPUTER ENGINEERING

ANALYSIS OF ANSWERING QUESTIONS USING AI BY

CATEGORIZATION METHODS FOR TEXT

KUTLU ERMAN ÖZGİL

NOVEMBER 2021

iv

ABSTRACT

ANALYSIS OF ANSWERING QUESTIONS USING AI BY

CATEGORIZATION METHODS FOR TEXT

ÖZGİL, Kutlu Erman

M.Sc. in Computer Engineering

Supervisor: Assist. Prof. Roya Choupani

November 2021, 58 pages

Question Answering (QA) is a Computer Engineering area which consists of

multi-disciplinary fields Artificial Intelligence (AI), Information Retrieval (IR), and

Natural Language Processing (NLP). The main aim of these QA systems is to build

systems that can answer questions asked by humans in a natural language according

to the given passage. This process was challenging for earlier computers because of

the hardware limitations and lack of software models needed to complete the tasks,

which took a very long time to complete. Today, Computer Hardware advancements,

especially in GPU units, made it possible to complete tasks in parallel much faster.

Also, the recent improvements and research in AI models and software made it

possible to use Pre-Trained models to achieve this goal much faster.

In this thesis, one of the most popular models by Google, BERT (Bidirectional

encoder representations from transformers), is Fine-Tuned, and the limitations are

explored. A case study is made to understand how this Fine-Tuned model can help

people in any area given. The results showed that working with large models and data

sets still takes longer times for the training parts, and the Fine-Tuned Bert model

performs better for the specific task it was designed.

Keywords: Question Answering, Natural Language Processing, Information Retrieval

v

ÖZ/ÖZET

METİN İÇİN KATEGORİZASYON YÖNTEMLERİYLE AI KULLANARAK

SORU CEVAPLAMALARININ ANALİZİ

ÖZGİL, Kutlu Erman

Bilgisayar Mühendisliği Yüksek Lisans Tezi

 Danışman: Dr. Öğr. Üyesi Roya CHOUPANII

Kasım 2021, 58 sayfa

Soru Cevaplama (QA); Yapay Zeka (AI), Bilgi Erişimi (IR) ve Doğal Dil

İşleme (NLP) gibi çok disiplinli alanlardan oluşan bir Bilgisayar Mühendisliği

alanıdır. Bu soru cevaplama sistemlerinin temel amacı, insanlar tarafından sorulan

sorulara, verilen pasaja göre doğal bir dilde cevap verebilecek sistemler oluşturmaktır.

Soru Cevaplama, donanım sınırlamaları ve tamamlanması çok uzun zaman alan

görevleri tamamlamak için gereken yazılım modellerinin eksikliği nedeniyle önceki

dönemlerde bilgisayarlar için zor bir görevdi. Günümüzde Bilgisayar Donanımı'nın

hızlanması, özellikle de GPU birimlerindeki gelişmeler, paralel olarak görevleri çok

daha hızlı tamamlamayı mümkün kılmıştır, ayrıca AI modellerinde ve yazılımlarında

son zamanlarda yapılan iyileştirmeler ve araştırmalar, bu hedefe daha hızlı ulaşmak

için önceden eğitimli modellerin kullanılmasını mümkün kılmıştır.

Bu tezde en popüler modellerden biri olan Google’in geliştirdiği BERT’in İnce

Ayarları üzerinde analizler yapılarak sınırları anlamaya çalışıldı ve bu ince ayarlı

modelin insanlara verilen herhangi bir alanda nasıl yardımcı olabileceğini anlamak

için bir vaka çalışması yaptık. Yapılan çalışma sonucunda, eğitim parçaları için büyük

modeller ve veri kümeleriyle çalışmanın hala uzun zaman aldığını ve İnce Ayarlı

BERT modelinin tasarlandığı belirli görev için daha iyi performans gösterdiği

sonucunu edindik.

Anahtar Kelimeler: Soru Cevaplama, Doğal Dil İşleme, Bilgi Erişimi.

vi

ACKNOWLEGEMENT

 I would like to express my sincere gratitude to my father Erol Özgil, my

mother Zeliha Özgil, and my brother Göktuğ Özgil for their support and sacrifice to

me. I would also like to thank my wife Hülya Özgil, for her complete support and my

2,5-year-old daughter İris Özgil for giving me the motivation for my thesis.

Special thanks to my Supervisor, Asst. Prof. Roya Choupani for the excellent

guidance and providing me with an excellent atmosphere to conduct this research and

her husband Asst. Prof. Reza Hassanpour who has always been an inspiring and a good

model teacher for me. My special gratitude goes to the rest of the thesis committee,

Assoc. Prof. Kasım Öztoprak and Asst. Prof. Abdül Kadir Görür for the

encouragement and insightful comments.

I would also like to thank Asst. Prof. Özgün Selvi for the lectures and amazing

ideas he gave me, also his wife Bilge İşlek Selvi and their two sons Özgün Borabey

Selvi, Özgün Göktuğ Selvi for their understandings through this times.

I would also like to thank Okan Yüksel and his wife Elif Yüksel for their

support and great ideas about my thesis subject. Also I would like to thank Leyla Kırlı

and her husband Caner Kırlı and their two sons Ediz Kırlı, Yalın Kırlı for their support

and understanding.

I would also like to thank my colleagues at work Emre Mersin and his wife,

Elif Mersin, Gizem Burcu Kaya, Özge Aktan, and her husband, Fatih Aktan, for their

support and great ideas at work during the hard-working times.

vii

I would also like to thank the people who work in this QA area and gave much

of their time improving these models, explaining them on their blogs, and creating

youtube videos about this topic, trying to teach and share their knowledge with us. I

recommend following Chris McCormick with his tutorials on youtube to clearly

understand the BERT model and reading the visualization of transformers by Jay

Almar to understand the model. I also recommend following the Google development

team for their researches on BERT which they share their usage examples and new

ways to adopt this technology. Without the researchers of these genius minds, this

thesis work could not be completed.

viii

TABLE OF CONTENTS

 STATEMENT OF NONPLAGIARISM .. iii

 ABSTRACT ... iv

 ÖZ/ÖZET v

 ACKNOWLEGEMENT .. vi

 TABLE OF CONTENTS ... viii

 LIST OF TABLES ... xi

 LIST OF FIGURES .. xii

 LIST OF SYMBOLS AND ABBREVIATIONS ... xiii

 INTRODUCTION ... 1

 CHAPTER I .. 3

 GENERAL KNOWLEDGE ... 3

1.1 BACKGROUND .. 3

1.2 HISTORY OF QUESTION ANSWERING ... 4

1.3 TYPES OF QUESTIONS ... 5

1.3.1 Open Domain Questions .. 5

1.3.2 Closed Domain Questions .. 6

1.3.3 Factoid Type Questions.. 6

1.3.4 List Type Questions ... 6

1.3.5 Confirmation Questions ... 7

1.3.6 Complex Questions .. 7

1.4 OBJECTIVES ... 7

1.5 ORGANIZATION OF THE THESIS .. 8

 CHAPTER II ... 9

 AI AND MACHINE LEARNING ... 9

2.1 ARTIFICIAL INTELIGENCE ... 9

2.1.1 Narrow AI .. 10

ix

2.1.2 General AI .. 10

2.2 MACHINE LEARNING .. 11

2.2.1 Supervised Learning... 11

2.2.2 Unsupervised Learning .. 11

2.2.3 Reinforcement Learning... 11

2.3 MACHINE LEARNING MODELS ... 12

2.3.1 Convolutional Neural Network .. 12

2.3.2 Recurrent Neural Network ... 13

2.3.3 Long Short-Term Memory (LSTM)... 13

2.3.4 Transformers .. 13

 CHAPTER III.. 15

 NATURAL LANGUAGE PROCESSING .. 15

3.1 NLP GENERAL KNOWLEDGE .. 15

3.2 BERT .. 15

3.2.1 BERT Word Embeddings .. 16

3.2.2 BERT Pre Training .. 16

3.2.2.1 Masked LM (MLM).. 16

3.2.2.2 Next Sentence Prediction (NSP) ... 16

3.2.3 BERT Architecture... 17

3.2.4 BERT Text Processing ... 17

3.2.5 Fine-Tuning Bert .. 17

 CHAPTER IV .. 19

 DATASET . .. 19

4.1 DATASET .. 19

4.1.1 SQUAD Dataset ... 19

4.1.2 Analyzing Case Study Dataset ... 20

4.1.3 Preparing Case Study Dataset .. 20

4.1.4 Splitting Train, Dev, and Test .. 22

 CHAPTER V ... 25

 QUESTION ANSWERING.. 25

5.1 QUESTION ANSWERING WITH FINE TUNED BERT 25

5.1.1 Advantages of Fine Tuning .. 25

x

5.1.2 Preparing The Environment ... 26

5.1.2.1 Huggin Face Transformer Library .. 26

5.1.2.2 Simple Transformers Library.. 26

5.1.2.3 Loading Dataset .. 27

5.1.2.4 Tokenizing Inputs ... 27

5.1.2.5 Formatting Special Characters .. 28

5.1.2.6 Limitations Explained ... 29

5.1.2.7 Padding ... 29

5.1.2.8 Attention Masks .. 30

5.1.2.9 Training Model ... 30

5.1.2.10 Validating Model .. 34

5.1.2.11 Testing Model on Test Set .. 34

5.1.2.12 Results ... 34

 CONCLUSION .. 39

 REFERENCES .. 41

 CURRICULUM VITEA ... 44

xi

LIST OF TABLES

Table 1 : Number Of Correct, Similar And Incorrect Questions 34

Table 2 : Train Loss And Eval Loss Table During Training 36

Table 3 : Case Study Evaluation Results Without Training 37

Table 4 : Comparison With Other Works On Case Study Covid-19 QA Systems 38

xii

LIST OF FIGURES

Figure 1: Example of Basic Question Answering .. 3

Figure 2: Alan Turing “Immitation Game” Visualization ... 4

Figure 3 : QA Systems Timeline .. 5

Figure 4: Artificial Intelligence, Machine Learning, and Deep Learning Visualized . 9

Figure 5: General AI and Narrow AI Visualization ... 10

Figure 6: Neural Network Visualization .. 12

Figure 7 : The Transformer – Model Architecture from [1] 14

Figure 8 : BERT, GPT and ELMo comparison from [19] ... 16

Figure 9 : Token Embedding, Segment Embedding and Position Embedding

Visualized from [19] .. 17

Figure 10 : Question Answering Task Fine-Tuning form [19] 18

Figure 11 : Showing The Starting Values For Tokens ... 33

Figure 12 : Showing The Ending Values For Tokens .. 33

Figure 13 : Number Of Correct Answers Change During Training........................... 35

Figure 14 : Number Of Similar Answers Change During Training 35

Figure 15 : Evaluation Loss Changes During Training ... 35

Figure 16 : Training Loss Changes During Training ... 36

Figure 17 : The Training Process Output ... 37

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOLS:

MB :Mega Bytes

M :Million

ABBREVIATIONS

AI :Artificial Intelligence

CNN :Convolutional Neural Networks

RNN : Recurrent neural networks

LSTM :Long Short-Term Memory

IR :Information Retrieval

IE :Information Extraction

NLP :Natural Language Extraction

BERT :Bidirectional Encoder Representations from

Transformers

SQuAD :Stanford Question Answering Dataset

EM :Exact Match

ML :Machine Learning

QA :Question Answering

1

INTRODUCTION

Question Answering is the ability of a computer to answer a given question in

a natural human-understandable form. With the recent developments in this field and

new models being introduced by different researchers, AI and Question Answering

(QA) Sytems made considerable advancements in this field of research. With the

introduction of “Attention Is All You Need” by Google [1], which later formed the

basis of Transformers, more researchers started studying this topic. We can observe

that recent studies focused more on this latest state-of-the-art Transformers model and

created BERT-like models to gain advancement and improved scores. If we look at

SQUAD[2] based QA models comparison, we can see that in late 2018 the Exact

Match (EM) scores rose from 74 to 80 with its introduction. Later alternate versions

like SemBERT[3], ROBERTA[4], SpanBERT[5], DistillBERT[6], ALBERT[7] took

the scores higher up to 90’s and still improving. Also with the help of combining

multiple models like SA-Net and ALBERT or Fine-Tuning BERT model helped in

this advancement and their combination with other models.

The research has improved on QA tasks and even surpassed the human scores

in this area, which showed promising results for the future of AI Computers. The

advantage of this QA system is getting a direct answer from the source without the

need to search, which gains time. On the other hand, there are still some disadvantages,

like training these models takes much time and consumes a considerable amount of

energy to achieve this QA Task.

For the future of this research Question Answering, we can see newly proposed

models like T5 [8], which uses Text to Text transforming, eliminating the need for

complex vectorial calculations but still needs more improvement and research. Also,

XLNET [9], a generalized autoregressive pretraining model, was proposed giving

promising results for QA Tasks' future. However, even with these models, we still can

not achieve perfect scores, even on a single task such as Question Answering, and in

2

the future, we dream of seeing Wide AI machines that can perfectly do multiple tasks.

However, there is still a gap that the researchers must fill in before reaching those aims.

In this thesis, I tried to Fine-Tune a BERT model for a Case Study, and I tried

to get better results on this specific area for Question Answering systems. The main

question on my mind was how can we turn these studies into a functional QA System

that can help people, and this brought the Idea of the Covid 19 QA System as a case

study. So I started with gaining the knowledge stated in this thesis and then developing

the QA System for Covid-19 to help people during this Pandemic. I prepared the

dataset using the pre-trained BERT model, I Fine Tuned BERT, and trained on Covid

Dataset to get better results. All the steps are stated in this thesis report with details.

There are also many other researchers trying to create a perfect Codiv QA System.

Also, there is a challenge, “COVID-19 Open Research Dataset Challenge (CORD-

19)” by Kaggle; so many professionals and researchers compete in this area, so even

if I am not competing, my case study can be considered one of them.

After the training with Fine Tuned BERT, we can check our results with

universal metrics, Exact Match (EM), to analyze how well our model performed before

and after the training to see our improvement.

3

CHAPTER I

GENERAL KNOWLEDGE

1.1 BACKGROUND

In general, Question Answering has been part of human interaction for many

years, and it can be considered one of the main ways in human communication. Our

ancestors used to communicate and answer questions with their hands and body. With

the development of vocal cords and languages, modern-day people can use their voices

and talk to answer questions.

The main idea of Question Answering is to get the desired information about

an occasion. For example, a mother can ask her daughter where she was or why she

was late, and her daughter will respond with an answer like I was at school or I was

late because I missed the bus and had to walk home from school.

Figure 1: Example of Basic Question Answering

After the development of Computers, people tried to use this development in

so many ways such as Mathematical computation, Financial computation, Word

editing, and other uses were introduced, which gained popularity very fast. Alan

Turing, mainly referred to as the creator of Modern Computer, had an idea of the first

Question Answering system back in the 1950s and is also considered the basis of

Artificial Intelligence. Turing proposed an “imitation Game” known as the Turing test,

Question

Mother: Where
were you
daughter?

Processing

Scanning the
memory to

locate where she
was?

Question
Answering

Daughter: I was
at School.

4

in which a human communicates with a machine via a teletype interface and asks

questions about it.[10]

The main idea of the test was to put an AI Question Answering Computer and

a Human on one side and make the user ask questions to random one of them and try

to guess whether the answerer was a Computer or a Human being. Alan Turing

believed that most the questions askers wouldn’t be able to distinguish between the

Human answerer and the Computer answerer one day.

Figure 2: Alan Turing “Immitation Game” Visualization

1.2 HISTORY OF QUESTION ANSWERING

A comprehensive set of Question Answering System exists and was tried to

accomplish different tasks in a State-Of-The-Art manner. One of the oldest question

answering systems was BASEBALL[11] which attempted to answer baseball game

questions yearly.

Over time, other QA Systems, such as ELIZA, was introduced in 1964,

considered the first of the Chatbots—created to demonstrate the superficiality of

communication between humans and machines. Eliza simulated conversation using a

"pattern matching" and substitution methodology that gave users an illusion of

understanding on the part of the program but had no built-in framework for

contextualizing events.

Question Asker
Human

Question Answerer
Human

AI Question
Answering Computer

WALL

5

Figure 3 : QA Systems Timeline

There were also other QA Systems SHRDLU (1972), PHLIQA (1976),

LUNAR (1977), GUS (1977), CHATBOT (1994), FAQ Finder (1995), ASK Jeeves

(1996), START (1997), JAVELIN (2002), AnswerBag (2003), A9.com (2003), MIT’s

Jupiter System (2005), Yahoo! Answers (2005), Blurtit (2006), Evi (2007), Wolfram

Alpha (2009), IBM Watson (2010), QUORA (2010), Apple Siri (2011), Google Now

(2012), PARLIO (2014) [10]

With the advancements in technology, later works used Knowledge Bases for

available domains, and Expert Systems started gaining popularity which was also used

as part of some QA Systems.

1.3 TYPES OF QUESTIONS

1.3.1 Open Domain Questions

Open Domain Question Answering Systems are not restricted to any specific

domain and provide a short answer to a question addressed in natural language. [12]

This means that the question can be of any area. Usually, these questions'

answers can be found in broad knowledge areas like Encyclopedias, the web, or

Wikipedia like sites.

An example question can be: Who won the Nobel Prize in Literature 2021?

The answer can be found searching the web in multiple web pages, so one can

see that the winner is Abdulrazak Gurnah.

BASEBALL
(1961)

ELIZA
(1964)

LUNAR
(1977)

CHATBOT
(1994)

IBM
Watson
(2010)

Apple Siri
(2011)

6

1.3.2 Closed Domain Questions

In the Closed domain QA system, there is a restriction of domain based on web,

and questions are related to a specific domain. [12]

This actually means that questions will be from a specific domain like Law,

Medical, Sport, Animals, Plants, or any specific area.

An example question can be of Sport Domain from the BASEBALL QA

System: Where did the Red Sox play on July 7? [11]

Since the domain is specific on an area and the QA Systems only answer the

domain-specific questions, it can be considered a smaller set when compared.

1.3.3 Factoid Type Questions

The factoid type questions commonly begin with wh-word, and examples can

be what, which, when, who, how. [12]

As suggested by [13], these questions each have their question meaning and

answer type accordingly. They shared a table indicating this relationship in their paper,

which would help understand these question types in detail.

On the other hand, these questions usually have specific answers, and the

correctness of the answers can be easily calculated.

This is the most used questioning type in our daily lives, and in this thesis work,

we will be using factoid-type questions to train and evaluate our model with countable

metrics.

1.3.4 List Type Questions

The list-type questions need a list of facts or entities as answers. [13]

These questions usually have many answers with changing dates or

occurrences.

To understand this Question type better, an example would be: What is the

book written by J. R. R. Tolkien?

The answer contains a list of books which all are written by the same writer on

different dates.

7

1.3.5 Confirmation Questions

Confirmation questions need answers in the form of yes or no. [13]

These questions usually reside on the information of the answerer on the asked

question. Usually, the question asker also waits for a detailed response other than the

simple answer given by the questioner.

To understand this type of question, we may have an example: Did you do your

homework today?

The answer can be yes or no, and maybe an explanation will follow to explain

the situation.

1.3.6 Complex Questions

Complex Questions require multiple, different types of information, and giving

answers is complicated. [13]

These questions usually have a deeper understanding, and many answers are

gathered from multiple and changing sources, and the answer can be short or long

depending on the needs.

To understand this kind of question better, an example would be: How can we

solve the world's electricity problem?

The answer can be multiple non-dependent answers, such as We can build

power plants, use solar energy, research outer space for energy, etc.

1.4 OBJECTIVES

The primary objective of this study is to understand how AI-based Question

Answering Systems works, how it is integrated with different fields such as

Information Retrieval (IR), Information Extraction (IE), and Natural Language

Processing (NLP) works in collaboration to achieve State-of-The-Art results. Also,

analyzing the increase in QA Systems performance and accuracy showed that Googles

BERT model had a significant impact on QA tasks to achieve higher accuracy. In this,

we try to learn BERT Fine Tuning and apply it to a case study to see how QA systems

can be helpful to people for tasks.

8

1.5 ORGANIZATION OF THE THESIS

This thesis contains five chapters. All the necessary information about creating

a QA System and Fine-Tuning the BERT Model on a case study is explained with the

results.

Chapter 1 is an introduction to the history of QA Systems and the objectives of

this thesis.

Chapter 2 introduces AI and Machine Learning and will give a basic

understanding of the models used in this thesis.

Chapter 3 is an introduction to NLP and BERT model used in this thesis.

Chapter 4 is an introduction to Datasets and explains how the case study’s

dataset was prepared.

Chapter 5 explains how a Fine-Tuned BERT model can be applied to a case

study and explains the results.

9

CHAPTER II

AI AND MACHINE LEARNING

2.1 ARTIFICIAL INTELIGENCE

Artificial intelligence (AI) can be summarized as the intelligence demonstrated

by machines. The first idea of a clever artificial machine was proposed as Darthmouth

Summer Research Project by John McCarty, and Marvin L. Minsky who were

considered the founders of the Artificial Intelligence field. [14]

Today, with the current research in AI, we can see many areas in which AI is

adapted and used such as Virtual Assitansts like Siri, Visual Image Recognition for

identifying photos, Classification of data, Expert Systems, and so on.

The general term of Artificial Intelligence also covers the main fields of

Machine Learning and Deep Learning, which use different models for more focused

tasks and applications.

Figure 4: Artificial Intelligence, Machine Learning, and Deep Learning Visualized

Artificial
Intelligence

Machine
Learning

Deep
Learning

10

2.1.1 Narrow AI

Narrow AI, sometimes referred to as Weak AI, has been created for specific

tasks. At the same time, Artificial General Intelligence is designed to match human-

level intelligence in terms of its broadness and adaptability.[15]

Because these AI are trained on specific tasks, the applications of these Narrow

AI are limited, and today when we look around, we can see many applications that we

use today with or without knowing.

Such examples are Search Engines, Advertisements specific to users, Google

Translate, Youtube subtitle generation, Self-driving cars as Tesla, Virtual Assistants

like Siri. All are trained to implement a specific AI Task.

2.1.2 General AI

As also stated earlier, Artificial General Intelligence is designed to match

human-level intelligence in its broadness and adaptability.

This type of AI will be closer to humans because it can learn many different

tasks and improve on these to achieve Human success. Since there is no limitation of

the task, this type of AI acts more like a child's brain that can learn anything it is trained

for.

Examples of these systems are not present, and a massive amount of research

needs to be done on this field to create a truly Wide AI, which may take years or

decades to accomplish.

Figure 5: General AI and Narrow AI Visualization

11

2.2 MACHINE LEARNING

The term Machine Learning was introduced in 1959 by Arthur Samuel, an IBM

worker in computer gaming and artificial intelligence. [16]

As a general definition, Machine Learning is the study of computer algorithms

to achieve State-Of-The-Art results involving Neural Networks, Data Mining,

Generalization, and Statistics usage to analyze this data predict future outcomes.

2.2.1 Supervised Learning

In general, supervised learning is a machine learning task which maps inputs

and outputs together. The given inputs and outputs are considered training data for the

model to work according to a mapping function, mainly in a vector to get the desired

outputs.

There are many algorithms used, such as Support-Vector Machines, Linear

Regression, Decision Trees, Neural Networks, etc.

The disadvantage of this model is the amount of time needed to prepare the

dataset as inputs and outputs, which takes much effort.

In this work for the case study of Fine-Tuned BERT model, we will be dealing

with Supervised Learning datasets, which have the Passages, Questions, Answers,

Beginning of the Answer, and Ending of the Answer, which actual Humans prepare.

2.2.2 Unsupervised Learning

On the other hand, Unsupervised Learning consists only of the input data

without the outputs. Hence, the model tries to get the patterns by self-analyzing the

given inputs and getting the desired output using this pattern.

To gain these patterns, models use to analyze similarities through the input data

and group these data.

The obvious advantage of these models is the less effort to prepare the inputs

and outputs given to the model.

2.2.3 Reinforcement Learning

Reinforcement Learning is more like a trial and error case, where the model

makes several attempts to gain better results at a task. Each more correct route is

12

considered an input to the new tryout to achieve the best possible State-Of-The-Art

results.

This model has advantages to improve over time and gets a better

understanding using the given inputs.

2.3 MACHINE LEARNING MODELS

In general, neural networks link nodes with an input layer, some hidden middle

layer, and an output layer. It is considered one of the milestones in AI Systems that

resembles an actual human brain-like structure.

Neural networks are considered to be one of the best-performing machine

learning algorithms. They have brought great success in artificial intelligence, such as

in the field of computer vision, where their task is image processing and pattern

recognition, and, for example, in sound processing and speech recognition. [17]

Figure 6: Neural Network Visualization

2.3.1 Convolutional Neural Network

Convolutional neural networks (CNN) represent a specific type of forwarding

neural network containing a layer of neurons for the convolution operation. [17]

CNN aims to apply a filter as a layer to decrease the number of outputs below

the number of inputs while keeping the number of inputs the same and outputs the

same for every case.

13

The primary usage for CNN is mainly in the visual imagery field, such as Image

recognition.

2.3.2 Recurrent Neural Network

Recurrent neural networks (RNN) contain cyclic connections that make them

a more powerful tool to model such sequence data than feed-forward neural networks,

and RNN’s have demonstrated great success in sequence labeling and prediction tasks

such as handwriting recognition and language modeling. [18]

Because the input resides on the previous information and an auto-correcting

mechanism was added as part of the Neural Network, this was a big step for Natural

Language Processing.

2.3.3 Long Short-Term Memory (LSTM)

LSTM is also a type of RNN. Compared to other neural networks, the LSTM

network does not consist of interconnected neurons but memory blocks connected in

layers. [17]

With this added support of memory block, it quickly became a massive success

in NLP fields such as Question Answering.

The memory blocks contain memory cells with self-connections storing the

temporal state of the network in addition to special multiplicative units called gates to

control the flow of information. [18]

2.3.4 Transformers

RNN and LSTM were considered the State-Of-The-Art approaches until

“Attention” based models like transformers came in. It all started with the paper titled

“Attention Is All You Need,” which became very popular quickly.

Transformer, a model architecture eschewing recurrence and instead relying

entirely on an attention mechanism to draw global dependencies between input and

output, allows for significantly more parallelization and can reach a new state of the

art in translation quality after being trained for as little as twelve hours on eight P100

GPUs. [1]

14

Figure 7 : The Transformer – Model Architecture from [1]

15

CHAPTER III

NATURAL LANGUAGE PROCESSING

3.1 NLP GENERAL KNOWLEDGE

Natural Language Processing (NLP) is how computer and human interaction is

involved around computers trying to understand human language. It is considered to

be part of Computer Engineering and Artificial Intelligence areas.

The main aim of NLP is to create computers capable of understanding and

processing natural language. It is mainly used in solving problems like speech

recognition, question answering, machine translation, and text mining areas, and the

list continues to grow every day with new needs.

3.2 BERT

Bidirectional Encoder Representations from Transformers (BERT) is designed

to pre-train deep bidirectional representations from the unlabeled text by jointly

conditioning both left and proper context in all layers. The pre-trained BERT model

can be fine-tuned with just one additional output layer to create state-of-the-art models

for many tasks, such as question answering and language inference, without substantial

task-specific architecture modifications. [19]

With this explanation from the creators, we can further analyze its structure.

BERT is a pre-trained model trained on the entire Wikipedia, which contained 2,500

million words and a Book Corpus of 800 million words.[19] Rumors indicated that

this training took more than four days to complete, even on modern high-end

computers. By indicating bidirectional, the Bert model captures both sides of the

context to the left and the right. Bert also converts words to vectors to achieve their

vectorial values. This separates the Bert model from its alternatives, such as GPT,

which captures left-to-right, and ELMo, which uses independent left-to-right and

right-to-left LSTMS.

16

Figure 8 : BERT, GPT and ELMo comparison from [19]

3.2.1 BERT Word Embeddings

Bert base has a vocabulary of over 30.000 words and characters from its pre-

trained state.[19] This word consists of whole words, partial words, and single

characters. Also, numbers are present in this vocabulary. When BERT gets a word, it

divides it into smaller pieces in its vocabulary and appended “##” to the middle ones.

An example would be the word jumping, which will be split as “jump” and “##ing”

and so on.

3.2.2 BERT Pre Training

BERTS pretraining consists of two unsupervised tasks, namely Masked LM

and Next Sentence Prediction.

3.2.2.1 Masked LM (MLM)

In order to train a deep bidirectional representation, we simply mask some

percentage of the input tokens at random and then predict those masked tokens.[19]

This means that by masking a word and predicting the masked word, the model

improves its prediction mechanism for finding the right masked words.

3.2.2.2 Next Sentence Prediction (NSP)

In general terms, this training aims to predict the following coming sentence

and try to make a relationship between these two sentences.

Specifically, when choosing the sentences A and B for each pretraining

example, 50% of the time, B is the following actual sentence that follows A (labeled

asIsNext), and 50% of the time, it is a random sentence from the corpus (labeled

asNotNext). [19]

17

3.2.3 BERT Architecture

Bert is a transformer model indicating that it uses many encoding layers on an

input to get the specific output. If we look at the Pre-trained BERT model, we can see

that mainly there are two models stated.

BERT base (L=12, H=768, A=12, Total Parameters=110M) and BERT large

(L=24, H=1024, A=16, Total Parameters=340M). [19]

3.2.4 BERT Text Processing

In order to find the exact locations of the words, BERT uses Position

Embeddings. To separate sentences from each other, BERT uses Segment

Embeddings, and in order to separate words, BERT uses Token Embeddings.

Token Embeddings consists of [CLS], which indicates the beginning of the

sentence and is followed by [SEP] for every separate sentence and ends with [SEP]

token.

Figure 9 : Token Embedding, Segment Embedding and Position Embedding Visualized from

[19]

3.2.5 Fine-Tuning Bert

Bert can be fine-tuned for many tasks according to needs; for this work, we

will be focusing more on the question Answering task fine-tuning.

18

Figure 10 : Question Answering Task Fine-Tuning form [19]

19

CHAPTER IV

DATASET

4.1 DATASET

A dataset indicates a collection of data in the area of research grouped under

labels. Many sites are offering the needed data to researchers, which the main ones are

“datasetsearch.research.google.com” and “https://huggingface.co/docs/datasets/.”

4.1.1 SQUAD Dataset

SQUAD dataset is the one that was used to pre-train the BERT model, so

understanding this data set will help us understand how BERT reacts to asked

questions.

Stanford Question Answering Dataset (SQuAD) is a new reading

comprehension dataset consisting of 100,000+ questions posed by crowd workers on

a set of Wikipedia articles. The answer to each question is a segment of text from the

corresponding reading passage. [2]

The SQUAD dataset can be found at https://rajpurkar.github.io/SQuAD-

explorer/, and it can also be explored using the web browser for passages, questions,

and answers to these questions.

The primary SQUAT Dataset was later renamed SQUAD 1.1, and another set

of questions were added to create the newer version of SQUAD 2.0, which consists of

50.000 more questions that were not answerable from the passage.

Each new State-of-the-Art model has a chance to test itself against these

SQUAD 1.1 and 2.0 models, and the higher Exact Match (EM) and F1 scores are listed

on the leaderboard.

20

4.1.2 Analyzing Case Study Dataset

The dataset we will be using is from deepset.ai, Covid-19 Dataset, which is in

JSON format and can be downloaded from the link: https://github.com/deepset-

ai/COVID-QA/blob/master/data/question-answering/COVID-QA.json

This data has a size of 4.21 MB contains Context, Questions, Answers, and

Starting Index of Questions, and its structure can be found below.

1. {
2. "data": [{
3. "paragraphs": [{
4. "qas": [{
5. "question": "What is the main cause of HIV-1

infection in children?",
6. "id": 262,
7. "answers": [{
8. "text": "Mother-to-child transmission

(MTCT) is the main cause of HIV-1 infection in children worldwide. ",
9. "answer_start": 370
10. }],
11. "is_impossible": false
12. }],
13. "context": "Functional Genetic Variants in DC-SIGNR Are

Associated ",
14. "document_id": 630
15. }]
16. }]
17. }

Moreover, it contains a total of 2014 rows of comparable data used for

training tasks.

4.1.3 Preparing Case Study Dataset

Since the data is in JSON format, we need to load it using the pythons JSON

library, and this gives us 146 columns of data to be processed. Then the data needs to

be read by the program, and to create the Pandas Data frame, and we need to divide it

according to the text labels as below:

21

1. questions = []
2. answers = []
3. context=[]
4. answer_start=[]
5. answer_end=[]
6.
7. for i in range(146):
8. tempvar = train[[i]]
9. temptext = tempvar[i]
10. tempanswer = (temptext[0])
11. tempresult = tempanswer['paragraphs']
12. question=[]
13. answer=[]
14. tempresult=tempresult[0]
15. tempquestion = tempresult['qas']
16. for y in range(len(tempquestion)):
17. context.append(tempresult['context'])
18. tempquestionandanswer = (tempquestion[y])
19. if 'question' in tempquestionandanswer.keys():
20. questions.append(tempquestionandanswer['question'])
21. anslist = tempquestionandanswer['answers']
22. anslist = anslist[0]
23. answers.append(anslist['text'])
24. answer_start.append(anslist['answer_start'])
25. answer_end.append(int(anslist['answer_start'])+len(anslist['text']))

This gives us a series of data needed for our analysis which we can convert to

Pandas Data Frame object.

Since the whole set contains very long Context values and training with those

values takes too much time, I limited the values to 200 characters for context and

another 200 characters for the answers to these questions. Also, working with 2014

rows required too much ram and GPU power, so I also narrowed the dataset to use 300

rows in total for the Case Study.

1. context2 = []
2. answers2 = []
3.
4. for c, s, e, a in zip(context, answer_start, answer_end, answers):
5. context2.append(c[s:s+200])
6. answers2.append(a[:200])
7. data2 = pd.DataFrame(data=list(zip(questions,

answers2,context2,answer_start,answer_end)),
columns=['questions','answers','context','starting_index','ending_index']).head(
300)

We now have the Data Frame with shapes 300,5 containing all the needed

information, so now we are ready to divide the 300 Rows of Data Frame to perform

training operations.

22

4.1.4 Splitting Train, Dev, and Test

Since we now have our data frame, we can divide our set into three sets named

Train, Dev, and Test.

Train : The Train Dataset is used to train the model with the given Question

and Answer sets. This will be the most significant part of the Data Frame.

Dev : The Dev Dataset is used to improve the learning of the model, and for

each training, we can check against the dev set to see the improvements.

Test : The Test Set is used after the full training is completed to test for

predictions of the trained model and see the improvements of training.

In order to split our training sets, we need to use the SKlearns train_test_split

model. This model splits the data frame into 2 random parts, such as train and test data.

So in order to get the 3 splits we need to divide the test part again. I tried a %80 Train,

%10 Dev, and %10 Test parts for this thesis study. To achieve this programmatically,

I first divided the model to %80 Train to %20 Dev, then divided that %20 part to two

%50 part, each corresponding to %10 percent of the entire data frame. To reproduce

the same results, I selected the random state as my birth year. Otherwise, the results

will change for every run.

1. from sklearn.model_selection import train_test_split
2.
3. train_size=0.8
4.
5. X = data2.drop(columns = ['ending_index']).copy()
6. y = data2['answers']
7.
8. X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8,

random_state=1983)
9.
10. test_size = 0.5
11. X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5,

random_state=1983)

Since we used 300 rows and %80 Train set gets 240 rows, %10 Dev gets 30

rows and %10 Test gets 30 rows.

23

1. i = 0
2.
3. string_train_data = "["
4.
5. for index, row in X_train.iterrows():
6. string_train_data += "{ \"context\" : \""
7. string_train_data += row['context']
8. string_train_data += "\", \"qas\" : [{\"id\": \""
9. string_train_data += str("{0:0>5}".format(i))
10. string_train_data += "\", \"is_impossible\": false, \"question\" : \""
11. string_train_data += row['questions']
12. string_train_data += "\", \"answers\" : [{ \"text\" : \""
13. string_train_data += row['answers']
14. string_train_data += "\", \"answer_start\": "
15. string_train_data += str(1)
16. string_train_data += "}]}]},"
17. i += 1
18. string_train_data[:-1]
19. string_train_data += "]"
20.
21. with open('train_data.json', 'w') as f:
22. f.write(string_train_data)

The output of this file is a multiline JSON file. In order to fix it, we need to

remove the last comma, convert it to a single line and add “\” in front of the middle

“”” to make it a valid JSON file. We repeat these steps for Dev and Test to get the

necessary JSON files.

1. i = 0
2.
3. string_eval_data = "["
4.
5. for index, row in X_valid.iterrows():
6. string_eval_data += "{ \"context\" : \""
7. string_eval_data += row['context']
8. string_eval_data += "\", \"qas\" : [{\"id\": \""
9. string_eval_data += str("{0:0>5}".format(i))
10. string_eval_data += "\", \"is_impossible\": false, \"question\" : \""
11. string_eval_data += row['questions']
12. string_eval_data += "\", \"answers\" : [{ \"text\" : \""
13. string_eval_data += row['answers']
14. string_eval_data += "\", \"answer_start\": "
15. string_eval_data += str(1)
16. string_eval_data += "}]}]},"
17. i += 1
18. string_train_data[:-1]
19. string_eval_data += "]"
20.
21. with open('eval_data.json', 'w') as f:
22. f.write(string_eval_data)

We got the Dev set as JSON.

24

1. i = 1
2.
3. string_predict_data = "["
4.
5. for index, row in X_test.iterrows():
6. string_predict_data += "{ \"context\" : \""
7. string_predict_data += row['context']
8. string_predict_data += "\", \"qas\" : [{ "
9. string_predict_data += " \"question\" : \""
10. string_predict_data += row['questions']
11. string_predict_data += "\", \"id\": \""
12. string_predict_data += str("{0:0>5}".format(i))
13. string_predict_data += "\"}]},"
14. i += 1
15. string_predict_data += "]"
16.
17. with open('predict_data.json', 'w') as f:
18. f.write(string_predict_data)

We get the Test set with this command now that our JSON files are ready and

we have all the data needed to Fine-tune our BERT model.

25

CHAPTER V

QUESTION ANSWERING

5.1 QUESTION ANSWERING WITH FINE TUNED BERT

The end of 2018 was a big year for the BERT model because researchers could

work on pre-trained models on certain specific tasks. These tasks include sentence-

level tasks such as natural language inference and paraphrasing, which aim to predict

the relationships between sentences by analyzing them holistically, and token-level

tasks such as named entity recognition and question answering, where models are

required to produce fine-grained output at the token level. [19]

5.1.1 Advantages of Fine Tuning

The main advantages of BERT Model can be summarized from mainly three

perspectives. The first advantage is the ability to quickly develop the fine-tuned model

on a specific task because of the pre-trained data already there. If we tried to build the

model from scratch and train it, even on high-end supercomputers, it takes too much

time to train from scratch.

The second advantage is the need for fewer data to achieve better results.

Because our model is pre-trained any add-on will require a small set of data and will

be time saving since preparing the data takes too much time.

The third advantage is that even with little fine-tuning and minor data given,

the model can perform better or equivalent results to other models, which were

completely developed from scratch.

Also, by fine-tuning BERT on specific domains and tasks, new variant models

are developed, which even outperformed the original BERT implementation discussed

earlier in this thesis.

26

5.1.2 Preparing The Environment

Since AI and Machine Learning (ML) development needs high-end processing

units like GPU and high ram usages, user PCs or laptops are usually not sufficient. For

this reason, google developed its free research platform Colab which can be accessed

through the link : https://colab.research.google.com/

Google Colab offers 12 Gigabyte RAM and CPU, GPU or TPU usage

according to the needs, so to use this platform, we signed in to Colab with our google

account.

Many programming languages can be used for Question Answering tasks, but

because of the many libraries presented, we choose Python as our programming

language. Also, to run our code live on servers, we used Python on Jupyter Notebooks,

which made step-by-step implementation possible.

While running the code implementation, we also imported Tensorflow,

Numpy, Transformers, Simple Transformers, PyTorch, Pandas, Json, Logging

modules.

5.1.2.1 Huggin Face Transformer Library

The Huggin Face library is a library consisting of State of the art Transformers

models such as BERT. It contains support to nearly all Pre-Trained Transformer

Models, and since it is a free library, researchers download and work on different pre-

trained models on different NLP tasks to improve the performance.

Huggin Face Library can be accessed under link https://huggingface.co/, and it

contains Models, Datasets, Resources for different NLP tasks. These tasks include

Question Answering, Summarization, Text Classification, Text Generation, Token

Classification, Translation, Sentence Similarity, Conversational, and Future

Extraction.

5.1.2.2 Simple Transformers Library

The Simple Transformers Library is built on top of Huggin Face Library and

added a much easier interface with additional support for working with NLP models

much faster and easier. We will also be using this library for our training, evaluation,

and testing purposes during this thesis.

27

5.1.2.3 Loading Dataset

Since we already prepared our Train, Dev, and Test files, here we will only be

loading the sets with the help of Pythons Json library.

To load the training Dataset:

1. import JSON
2. with open(r"train_data.json", encoding='utf-8', mode="r") as read_file:
3. train = json.load(read_file)

To load the Evaluation Dataset:

1. with open(r"eval_data.json", "r") as read_file:
2. test = json.load(read_file)

And to load the test Dataset we will be using:

1. with open(r"predict_data.json", "r") as read_file:
2. predict = json.load(read_file)

Now are data sets are loaded for Fine Tuning our BERT model and training.

5.1.2.4 Tokenizing Inputs

BERT Model uses tokenization to convert text values into token id’s which can

be used later in vectorial calculations. In order to do this BERT model separates the

given input into meaningful Word Embedding pieces in its vocabulary of 30,000

words, as stated earlier. It adds “##” sign to the words separated except the first piece

or the word. Below is an example of a tokenized text for Bert. In order to use BERT

tokenizer we have to import the BertTokenizer form the transformers library, as shown

below.

28

1. from transformers import BertTokenizer
2.
3. tokenizer = BertTokenizer.from_pretrained('bert-large-uncased-whole-word-

masking-finetuned-squad')
4. question = "Who is the chairman of Cankaya University?"
5. answer_text = "Çankaya University (Turkish: Çankaya Üniversitesi) is a private

university in Ankara, Turkey. It was established on July 9, 1997 by the Sıtkı
Alp Education Foundation.[1] The university began its teaching in the Fall 1997
semester. Sıtkı Alp is the chairman of the board of trustees. English language
is predominant medium of teaching, learning and research at the Çankaya
University."

6. print(tokenizer.convert_ids_to_tokens(tokenizer.encode(question)))
7. print(tokenizer.encode(question))

The output of running this code gives us this output.

1. ['[CLS]', 'who', 'is', 'the', 'chairman', 'of', 'can', '##kaya', 'university',
'?', '[SEP]']

2. [101, 2040, 2003, 1996, 3472, 1997, 2064, 20718, 2118, 1029, 102]

This example shows how tokenization works for BERT model and gives us an

understanding of the model.

5.1.2.5 Formatting Special Characters

While tokenizing sentences, if you observe, there are unique values like [101]

and [102] which stand out from the rest.

The first token of every sequence is always a unique classification token ([CLS]

or 101). [19]

Sentence pairs are packed together into a single sequence. We differentiate the

sentences in two ways. First, we separate them with a special token ([SEP] or [102]).

Second, we add a learned embed-ding to every token indicating whether it belongs to

sentence A or B. [19]

Also, if we check it in multiple text cases, we can see that all sentences begin

with [CLS], then Sentence A, the [SEP], and the secondSentence B, which also ends

with a [SEP] unique character.

Ther is also a Padding token ([PAD] or [0]) used to make all entries the same

fixed size.

29

1. question = "Example question sentence A?"
2. answer_text = "Example answer text which is long."
3.
4. input_ids = tokenizer.encode(question, answer_text)
5.
6. print(tokenizer.convert_ids_to_tokens(input_ids))
7. print(input_ids)

This Gives us the output as below:

1. ['[CLS]', 'example', 'question', 'sentence', 'a', '?', '[SEP]', 'example',
'answer', 'text', 'which', 'is', 'long', '.', '[SEP]']

2. [101, 2742, 3160, 6251, 1037, 1029, 102, 2742, 3437, 3793, 2029, 2003, 2146,
1012, 102]

5.1.2.6 Limitations Explained

BERT has a limitation of 512 tokens as an input, so in order to do the training

for QA task, the total number of Question plus Context, when divided into Bert tokens

should not pass this 512 token limit. They are sampled such that the combined length

is ≤512 tokens. [19]

Also, BERT expects all the given data to have the same amount of tokens in

trainings, we use Padding to add empty tokens to match the size of the inputs to be the

same for every input.

5.1.2.7 Padding

Since BERT has a limitaion that every input Question and Answer pair should

have the same fixed size, we need to add padding for the short sentences and truncate

the long ones so every entry should have the same amount of tokens, an example of

how padding is made can be found below.

1. from keras.preprocessing.sequence import pad_sequences
2.
3. MAX_LEN = 20
4. input_ids2 = []
5. input_ids2.append(input_ids)
6. input_ids2 = pad_sequences(input_ids2, maxlen=MAX_LEN, dtype="long",
7. value=0, truncating="post", padding="post")
8. print(tokenizer.convert_ids_to_tokens(input_ids2[0]))
9. print(input_ids2[0])

30

The output of this code is :

1. ['[CLS]', 'example', 'question', 'sentence', 'a', '?', '[SEP]', 'example',
'answer', 'text', 'which', 'is', 'long', '.', '[SEP]', '[PAD]', '[PAD]',
'[PAD]', '[PAD]', '[PAD]']

2. [101 2742 3160 6251 1037 1029 102 2742 3437 3793 2029 2003 2146 1012
3. 102 0 0 0 0 0]

5.1.2.8 Attention Masks

Attention masks are masks used to separate the real token values from the

padded values. For every token, BERT uses this Attention Mask in an AND gate

respective, so if the Attentiton Mask value is zero (0) then it does not have a weight,

if it is 1 then it has a weight. A sample of how the Attention mask works can be found

below.

1. attention_mask = []
2.
3. for val in input_ids2:
4. temp_att_mask = [int(token_id > 0) for token_id in val]
5. attention_mask.append(temp_att_mask)
6.
7. print(tokenizer.convert_ids_to_tokens(input_ids2[0]))
8. print(attention_mask[0])

The output of this code is :

1. ['[CLS]', 'example', 'question', 'sentence', 'a', '?', '[SEP]', 'example',
'answer', 'text', 'which', 'is', 'long', '.', '[SEP]', '[PAD]', '[PAD]',
'[PAD]', '[PAD]', '[PAD]']

2. [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]

5.1.2.9 Training Model

To Sum up all until now, we have created our Train, Dev, and Test JSON files,

and showed the internal workings of how BERT prepares the given input for the

training purposes by combining Question and Context Pasages together, Tokenizing

them to its Word Embeddings, Adding Special [CLS] and [SEP] tokens, then adding

31

Padding [PAD] or truncating them to required length and to create the needed

Attention Masks to identify Padding tokens.

So basically, we would use the pre-trained BERT Model and add our Case

Study Covid 19 Dataset to improve its question-answering scores.

We will be using the Simple Transformers Library for this task, which was

introduced before in this thesis.

First, we install the Simple Transformers Library and load the Train, Dev, Test

JSON Files:

1. !pip install simpletransformers
2.
3. import json
4. with open(r"train_data.json", encoding='utf-8', mode="r") as read_file:
5. train = json.load(read_file)
6.
7. with open(r"eval_data.json", "r") as read_file:
8. test = json.load(read_file)
9.
10. with open(r"predict_data.json", "r") as read_file:
11. predict = json.load(read_file)

Next we will be loading BERT model and its pretrained “bert-base-cased”

model and make required configurations:

1. model_type="bert"
2. model_name= "bert-base-cased"
3. model_args = QuestionAnsweringArgs()
4. model_args.train_batch_size = 1
5. model_args.evaluate_during_training = True
6. model_args.n_best_size=3
7. model_args.num_train_epochs=5

Colab platform has a maximum available memory of 12 Gigabyte and if we

select the batch size bigger than 1 then PyTorch will give an error indicating

insufficient GPU Ram memory, so we should keep the batch size value smaller as

PyTorch actually reserves the whole training operations at the beginning of the training

process.

32

And for the detailed configurations, we can use the Training Arguments

parameter. The values I used can be seen in the below code:

1. train_args = {
2. "reprocess_input_data": True,
3. "overwrite_output_dir": True,
4. "use_cached_eval_features": True,
5. "output_dir": f"outputs/{model_type}",
6. "best_model_dir": f"outputs/{model_type}/best_model",
7. "evaluate_during_training": True,
8. "max_seq_length": 128,
9. "num_train_epochs": 5,
10. "evaluate_during_training_steps": 1000,
11. "wandb_project": "Question Answer Application",
12. "wandb_kwargs": {"name": model_name},
13. "save_model_every_epoch": False,
14. "save_eval_checkpoints": False,
15. "n_best_size":3,
16. "train_batch_size": 2,
17. "eval_batch_size": 1,
18. }

Next we create our model,

1. model = QuestionAnsweringModel(
2. model_type,model_name, args=train_args
3.)

And Start the training

1. model.train_model(train, eval_data=test)

The training process takes 3:39 minutes on a Tesla K80 GPU provided by

Google Colab platform. The result of this training will be discussed in detail at the

Results part of this thesis.

Also, to understand how the model predicts where the answer starts and ends,

we can look at the figures below.

33

Figure 11 : Showing The Starting Values For Tokens

Figure 12 : Showing The Ending Values For Tokens

34

5.1.2.10 Validating Model

The Validation process is the process of checking how well the model performs

during or after the training. Since we configured the model to evaluate during training,

after each Epoch of training, the model will be Validated to see the newly trained

model's performance. This process repeats for all 5 epochs which we configured.

In order to evaluate the model, we can use the below command:

1. result, texts = model.eval_model(test)

5.1.2.11 Testing Model on Test Set

After the model completes its training and gets evaluated, we need to check its

performance in the Test JSON file.

In order to test the model we use the below command:

1. answers, probabilities = model.predict(predict)

5.1.2.12 Results

The results of this Fine Tuned Bert training for the Covid-19 Case Study

showed many of the questions were answered as seen at the below table.

Table 1 : Number Of Correct, Similar And Incorrect Questions

QA Labels No. Of

Questions

Epoch 1

No. Of

Questions

Epoch 2

No. Of

Questions

Epoch 3

No. Of

Questions

Epoch 4

No. Of

Questions

Epoch 5

Correct 16 14 16 16 17

Similar 14 16 14 14 13

Incorrect 0 0 0 0 0

During the training we can see that the correct questions mostly have a uprising

graph for correct answers as seen at below figure.

35

Figure 13 : Number Of Correct Answers Change During Training

Figure 14 : Number Of Similar Answers Change During Training

This graph shows that at fifth step the model gets 16 similar answers.

Figure 15 : Evaluation Loss Changes During Training

36

The evaluation loss shows how good the evaluation was during training. For

every correct answer, the evaluation loss is given zero, and when the answer is wrong,

it is given a more significant loss, so the perfect model should have a declining graph

with a zero at the end of training.

Figure 16 : Training Loss Changes During Training

This figure shows a declining graph from the beginning of the training, and

some rising then falling values.

Also the training and evaluation losses can be seen at the below table.

Table 2 : Train Loss And Eval Loss Table During Training

Epochs No Train Loss Eval Loss

Epoch 1 0.19826316833496094 -2.641861979166667

Epoch 2 1.7821340560913086 -3.4935546875

Epoch 3 0.0070018768310546875 -4.463736979166667

Epoch 4 0.00027552247047424316 -4.605794270833333

Epoch 5 0.00014537572860717773 -4.810416666666667

37

Figure 17 : The Training Process Output

Below is a comparison with the model without training. The results are very

low as expected since our model does not know the jargon for Covid 19 and does not

have the relationship among covid related words. The difference between the Covid

19 Dataset trained BERT and untrained base BERT is big.

Table 3 : Case Study Evaluation Results Without Training

 Correct Eval Loss Incorrect Similar

Answers

Through

Model

0 0.017513211568196616 19 11

Since the training, the model tries to find the best possible model. In order to

get the best results, the model needs to be trained for more epochs and find the best

model possible with maximum exact matches.

The exact match scores for this model can be calculated by dividing the number

of exact matches by the number of total cases.

Exact Match = 17 / 30 = 0,56

38

The rest of the answers also match mostly, but they are not exact, and most of

the researchers started using the exact match scores, which gives more accurate data.

When compared with other works in the Case Study of Covid-19 QA System

we can see some better or worse Exact Match scores. Below we can see three examples

with their respectful Exact Match scores next to them.

Table 4 : Comparison With Other Works On Case Study Covid-19 QA Systems

Paper Titles For Three Comparative Work Exact Match

(EM) Score

COBERT: COVID-19 Question Answering System Using BERT (23

Jun 2021)[20]

%80,6

Transformer-Based Models for Question Answering on COVID19 (16

Jan 2021)[21]

%13.04

Developing Answers to Scientific Questions with BERT (2020)[22] %35.89

39

CONCLUSION

This thesis aimed to make a better Question Answering system that can help

people in the area of question answering by fine-tuning a pre-trained model to perform

better results. Based on the literature research and latest state-of-the-art models, it was

hard to understand the benefits of pre-trained models with their limitations and how to

overcome them. Since the introduction of BERT and its variants, the Question

Answering tasks have had a significant improvement in every way, and that is why I

wanted to use this model for my QA tasks.

The most significant limitations I had during this work were the limitations of

Computer hardware needed for the training to perform. Even using Colab Platform’s

12 Gigabayt RAM, I had to limit the batch size to a minimum for the model to work.

Also, another limitation was BERT’s 512 token size limit which forced me to truncate

more extended context to fit in these limitations.

Working on Fine Tuned BERT model showed that the pre-trained BERT model

performs well on general text with its general Vocabulary, but when given a specific

domain like in the Covid-19 Case Study with medical Jargon, big performance drops

can be seen.

Fine Tuning Bert for the Covid-19 Dataset and evaluating on the same Dev set

before and after training showed a huge improvement in accuracy of Exact Matches

even with as little as 5 Epochs.

Working with big datasets, such as the Case Study dataset of 2014 rows took

too much Time, RAM and GPU power and is actually not feasible, so we had to make

our dataset smaller such as 300 rows, to speed up the training.

Limitations such as BERT’s 512 token limit and configuring batch size to

higher values such as 16 or 32 used too much RAM, which crashed the system, so

researchers had to find workarounds, as we had to drop train batch size to 2 so we

could avoid crashing the system.

40

Modern QA Systems are highly accurate and can be fine-tuned according to

needs for the benefits of helping people in many possible areas.

My work on fine-tuned BERT model showed that the pre-trained BERT model

performs well on general text with its general Jargon, but when given a specific domain

like in the Covid-19 Case Study with medical Jargon the performance drops can be

seen. To overcome this problem, we need to train the Fine Tuned BERT on this specific

task, so as expected, the results improved after the training with 5 epochs. Still, to get

much better results and the best performing model, more epochs training are needed.

Since the BERT model trains with different weights and calculates them in parallel

with a random order, the results vary every time the training step is run. However,

these different results enable the model to achieve the best model possible.

For the future of QA Systems, we will probably see new data formats which

will be used as input data, such as Table, Figure, Images, which are currently not

possible with recent models. We will be seeing new ideas and better models such as

the T5, which eliminates the need for Vectoral complex calculations with the basic

Text to Text Transformers ideas. Also, we will be expecting an improvement in

Reasoning and Synthesis for a better understanding of the context and answers for the

given context and question pairs. Retrieving the perfect answer for today's QA Systems

and models is not possible, but in the future will be seeing improved Retrievers, which

will always retrieve the %100 Exact Match with perfect scores. Getting rid of the

context and just asking a question to get an answer will be possible in the future with

enough training and improved QA Systems. With all the development in this specific

QA task, we will be seeing QA Systems as parts of the General AI. We talked about

eralier, machines that could learn and answer questions perfectly just like a human

would be, maybe better in the future.

As machine learning models improve on specific tasks, the gap of a vast AI

machine is closing, but we still have more research to be done. This QA task will

become perfect in the future, and the “Imitation Game” will become a reality. Also,

virtual assistants like Siri will also improve and help people with their daily lives.

All the codes mentioned for this thesis work will be uploaded to :

https://github.com/ErmanOzg/Ermans-Fine-Tuned-BERT-QA-Studies

41

REFERENCES

[1] A. Vaswani et al.(Jun. 2017), “Attention Is All You Need,”, 31st Conference

on Neural Information Processing System [Online].

Available: http://arxiv.org/abs/1706.03762

[2] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang (2016), “SQuAD: 100,000+

Questions for Machine Comprehension of Text.”, Conference on Empirical

Methods in Natural Language Processing, [Online].

Available: https://stanford-qa.com,

[3] Z. Zhang et al.(Sep. 2019), “Semantics-aware BERT for Language

Understanding,”, [Online]. Available: http://arxiv.org/abs/1909.02209

[4] Y. Liu et al.(Jul. 2019), “RoBERTa: A Robustly Optimized BERT Pretraining

Approach,”, [Online]. Available: http://arxiv.org/abs/1907.11692

[5] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy (Jul. 2019),

“SpanBERT: Improving Pre-training by Representing and Predicting Spans,”,

[Online]. Available: http://arxiv.org/abs/1907.10529

[6] V. Sanh, L. Debut, J. Chaumond, and T. Wolf (Oct. 2019), “DistilBERT, a

distilled version of BERT: smaller, faster, cheaper and lighter,”, [Online].

Available: http://arxiv.org/abs/1910.01108

[7] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut (Sep.

2019), “ALBERT: A Lite BERT for Self-supervised Learning of Language

Representations,”, [Online]. Available: http://arxiv.org/abs/1909.11942

[8] C. Raffel et al.(Oct. 2019), “Exploring the Limits of Transfer Learning with a

Unified Text-to-Text Transformer,”, [Online].

Available: http://arxiv.org/abs/1910.10683

[9] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. v. Le (Jun.

2019), “XLNet: Generalized Autoregressive Pretraining for Language

Understanding, ”, [Online]. Available: http://arxiv.org/abs/1906.08237

42

[10] D. Yogish , T. N. Manjunath, and R. S. Hegadi (2017), Survey on Trends and

Methods of an Intelligent Answering System.

[11] B. F. Green JR (1961), “BASEBALL: AN AUTOMATIC QUESTION-

ANSWERER, ” Western Joint IRE-AIEE-ACM Computer Conference, pp. 219–

224.

[12] A. Chandra, O. Reddy, and K. Madhavi (2017), “A Survey on Types of

Question Answering System,” vol. 19, no. 6, pp. 19–23.

doi: 10.9790/0661-1906041923.

[13] S. Singh, N. Das, R. Michael, and P. Tanwar (2016), “The Question Answering

System Using NLP and AI,”. [Online]. Available: http://www.ijser.org

[14] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon (2006), “A

Proposal for the Dartmouth Summer Research Project on Artificial

Intelligence,”.

[15] D. Schlegel and Y. Uenal (2021), “A Perceived Risk Perspective on Narrow

Artificial Intelligence A Perceived Risk Perspective on Narrow Artificial

Intelligence,” PACIS, 2021. [Online]. Available: https://aisel.aisnet.org/pacis

[16] A. L. Samuel (1959), “Some Studies in Machine Learning Using the Game of

Checkers,”.

[17] V. Maslej-Krešňáková, M. Sarnovský, P. Butka, and K. Machová (Dec. 2020),

“Comparison of deep learning models and various text pre-processing

techniques for the toxic comments classification,” Applied Sciences

(Switzerland), vol. 10, no. 23, pp. 1–26, doi: 10.3390/app10238631.

[18] H. H. Sak, A. Senior, and B. Google, “Long Short-Term Memory Recurrent

Neural Network Architectures for Large Scale Acoustic Modeling.”

[19] J. Devlin, M.-W. Chang, K. Lee, K. T. Google, and A. I. Language (May 2019),

“BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding.” [Online].

Available: https://github.com/tensorflow/tensor2tensor

[20] J. A. Alzubi, R. Jain, A. Singh, P. Parwekar, and M. Gupta (Jun. 2021),

“COBERT: COVID-19 Question Answering System Using BERT,” Arabian

Journal for Science and Engineering, doi: 10.1007/s13369-021-05810-5.

43

[21] H. Ngai, Y. Park, J. Chen, and M. Parsapoor (Jan. 2021), “Transformer-Based

Models for Question Answering on COVID19,”, [Online].

Available: http://arxiv.org/abs/2101.11432

[22] S. He and Z. Bakhtiari (2020), “Developing Answers to Scientific Questions

with BERT Category: Natural Language Processing.” [Online]. Available:

https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge

