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ABSTRACT 

 

ANALYSIS OF ANSWERING QUESTIONS USING AI BY 

CATEGORIZATION METHODS FOR TEXT 

 

ÖZGİL, Kutlu Erman 

M.Sc. in Computer Engineering 

 

Supervisor: Assist. Prof. Roya Choupani 

November 2021, 58 pages 

 

Question Answering (QA) is a Computer Engineering area which consists of 

multi-disciplinary fields Artificial Intelligence (AI), Information Retrieval (IR), and 

Natural Language Processing (NLP). The main aim of these QA systems is to build 

systems that can answer questions asked by humans in a natural language according 

to the given passage. This process was challenging for earlier computers because of 

the hardware limitations and lack of software models needed to complete the tasks, 

which took a very long time to complete. Today, Computer Hardware advancements, 

especially in GPU units, made it possible to complete tasks in parallel much faster. 

Also, the recent improvements and research in AI models and software made it 

possible to use Pre-Trained models to achieve this goal much faster.  

In this thesis, one of the most popular models by Google, BERT (Bidirectional 

encoder representations from transformers), is Fine-Tuned, and the limitations are 

explored. A case study is made to understand how this Fine-Tuned model can help 

people in any area given. The results showed that working with large models and data 

sets still takes longer times for the training parts, and the Fine-Tuned Bert model 

performs better for the specific task it was designed. 

 

Keywords: Question Answering, Natural Language Processing, Information Retrieval  
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ÖZ/ÖZET 

 

METİN İÇİN KATEGORİZASYON YÖNTEMLERİYLE AI KULLANARAK 

SORU CEVAPLAMALARININ ANALİZİ 

ÖZGİL, Kutlu Erman 

Bilgisayar Mühendisliği Yüksek Lisans Tezi 

 

 Danışman: Dr. Öğr. Üyesi Roya CHOUPANII 

Kasım 2021, 58 sayfa 

 

Soru Cevaplama (QA); Yapay Zeka (AI), Bilgi Erişimi (IR) ve Doğal Dil 

İşleme (NLP) gibi çok disiplinli alanlardan oluşan bir Bilgisayar Mühendisliği 

alanıdır. Bu soru cevaplama sistemlerinin temel amacı, insanlar tarafından sorulan 

sorulara, verilen pasaja göre doğal bir dilde cevap verebilecek sistemler oluşturmaktır. 

Soru Cevaplama, donanım sınırlamaları ve tamamlanması çok uzun zaman alan 

görevleri tamamlamak için gereken yazılım modellerinin eksikliği nedeniyle önceki 

dönemlerde bilgisayarlar için zor bir görevdi. Günümüzde Bilgisayar Donanımı'nın 

hızlanması, özellikle de GPU birimlerindeki gelişmeler, paralel olarak görevleri çok 

daha hızlı tamamlamayı mümkün kılmıştır, ayrıca AI modellerinde ve yazılımlarında 

son zamanlarda yapılan iyileştirmeler ve araştırmalar, bu hedefe daha hızlı ulaşmak 

için önceden eğitimli modellerin kullanılmasını mümkün kılmıştır. 

Bu tezde en popüler modellerden biri olan Google’in geliştirdiği BERT’in İnce 

Ayarları üzerinde analizler yapılarak sınırları anlamaya çalışıldı ve bu ince ayarlı 

modelin insanlara verilen herhangi bir alanda nasıl yardımcı olabileceğini anlamak 

için bir vaka çalışması yaptık. Yapılan çalışma sonucunda, eğitim parçaları için büyük 

modeller ve veri kümeleriyle çalışmanın hala uzun zaman aldığını ve İnce Ayarlı 

BERT modelinin tasarlandığı belirli görev için daha iyi performans gösterdiği 

sonucunu edindik. 

 

Anahtar Kelimeler: Soru Cevaplama, Doğal Dil İşleme, Bilgi Erişimi. 
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INTRODUCTION 

 

Question Answering is the ability of a computer to answer a given question in 

a natural human-understandable form. With the recent developments in this field and 

new models being introduced by different researchers,  AI and Question Answering 

(QA) Sytems made considerable advancements in this field of research. With the 

introduction of “Attention Is All You Need” by Google [1], which later formed the 

basis of Transformers, more researchers started studying this topic. We can observe 

that recent studies focused more on this latest state-of-the-art Transformers model and 

created BERT-like models to gain advancement and improved scores. If we look at 

SQUAD[2] based QA models comparison, we can see that in late 2018 the Exact 

Match (EM) scores rose from 74 to 80 with its introduction. Later alternate versions 

like SemBERT[3], ROBERTA[4], SpanBERT[5], DistillBERT[6], ALBERT[7] took 

the scores higher up to 90’s and still improving. Also with the help of combining 

multiple models like SA-Net and ALBERT or Fine-Tuning BERT model helped in 

this advancement and their combination with other models. 

The research has improved on QA tasks and even surpassed the human scores 

in this area, which showed promising results for the future of AI Computers. The 

advantage of this QA system is getting a direct answer from the source without the 

need to search, which gains time. On the other hand, there are still some disadvantages, 

like training these models takes much time and consumes a considerable amount of 

energy to achieve this QA Task. 

For the future of this research Question Answering, we can see newly proposed 

models like T5 [8], which uses Text to Text transforming, eliminating the need for 

complex vectorial calculations but still needs more improvement and research. Also, 

XLNET [9], a generalized autoregressive pretraining model, was proposed giving 

promising results for QA Tasks' future. However, even with these models, we still can 

not achieve perfect scores, even on a single task such as Question Answering, and in 
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the future, we dream of seeing Wide AI machines that can perfectly do multiple tasks. 

However, there is still a gap that the researchers must fill in before reaching those aims. 

In this thesis, I tried to Fine-Tune a BERT model for a Case Study, and I tried 

to get better results on this specific area for Question Answering systems. The main 

question on my mind was how can we turn these studies into a functional QA System 

that can help people, and this brought the Idea of the Covid 19 QA System as a case 

study. So I started with gaining the knowledge stated in this thesis and then developing 

the QA System for Covid-19 to help people during this Pandemic. I prepared the 

dataset using the pre-trained BERT model, I Fine Tuned BERT, and trained on Covid 

Dataset to get better results. All the steps are stated in this thesis report with details. 

There are also many other researchers trying to create a perfect Codiv QA System. 

Also, there is a challenge, “COVID-19 Open Research Dataset Challenge (CORD-

19)” by Kaggle; so many professionals and researchers compete in this area, so even 

if I am not competing, my case study can be considered one of them.  

After the training with Fine Tuned BERT, we can check our results with 

universal metrics, Exact Match (EM), to analyze how well our model performed before 

and after the training to see our improvement. 
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CHAPTER I 

 

GENERAL KNOWLEDGE 

 

1.1  BACKGROUND 

In general, Question Answering has been part of human interaction for many 

years, and it can be considered one of the main ways in human communication. Our 

ancestors used to communicate and answer questions with their hands and body. With 

the development of vocal cords and languages, modern-day people can use their voices 

and talk to answer questions. 

The main idea of Question Answering is to get the desired information about 

an occasion. For example, a mother can ask her daughter where she was or why she 

was late, and her daughter will respond with an answer like I was at school or I was 

late because I missed the bus and had to walk home from school.  

 

 
Figure 1: Example of Basic Question Answering 

 
After the development of Computers, people tried to use this development in 

so many ways such as Mathematical computation, Financial computation, Word 

editing, and other uses were introduced, which gained popularity very fast. Alan 

Turing, mainly referred to as the creator of Modern Computer, had an idea of the first 

Question Answering system back in the 1950s and is also considered the basis of 

Artificial Intelligence. Turing proposed an “imitation Game” known as the Turing test, 

Question

Mother: Where 
were you 
daughter?

Processing

Scanning the 
memory to 

locate where she 
was?

Question 
Answering

Daughter: I was 
at School.
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in which a human communicates with a machine via a teletype interface and asks 

questions about it.[10] 

The main idea of the test was to put an AI Question Answering Computer and 

a Human on one side and make the user ask questions to random one of them and try 

to guess whether the answerer was a Computer or a Human being. Alan Turing 

believed that most the questions askers wouldn’t be able to distinguish between the 

Human answerer and the Computer answerer one day. 

 
Figure 2: Alan Turing “Immitation Game” Visualization 

 
1.2 HISTORY OF QUESTION ANSWERING 

A comprehensive set of Question Answering System exists and was tried to 

accomplish different tasks in a State-Of-The-Art manner. One of the oldest question 

answering systems was BASEBALL[11] which attempted to answer baseball game 

questions yearly. 

Over time, other QA Systems, such as ELIZA, was introduced in 1964, 

considered the first of the Chatbots—created to demonstrate the superficiality of 

communication between humans and machines. Eliza simulated conversation using a 

"pattern matching" and substitution methodology that gave users an illusion of 

understanding on the part of the program but had no built-in framework for 

contextualizing events.  

Question Asker 
Human

Question Answerer 
Human

AI Question 
Answering Computer

WALL 
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Figure 3 : QA Systems Timeline 

 
There were also other QA Systems SHRDLU (1972), PHLIQA (1976), 

LUNAR (1977), GUS (1977), CHATBOT (1994), FAQ Finder (1995), ASK Jeeves 

(1996), START (1997), JAVELIN (2002), AnswerBag (2003), A9.com (2003), MIT’s 

Jupiter System (2005), Yahoo! Answers (2005), Blurtit (2006), Evi (2007), Wolfram 

Alpha (2009), IBM Watson (2010), QUORA (2010), Apple Siri (2011), Google Now 

(2012), PARLIO (2014) [10] 

With the advancements in technology, later works used Knowledge Bases for 

available domains, and Expert Systems started gaining popularity which was also used 

as part of some QA Systems.  

 

1.3 TYPES OF QUESTIONS 

1.3.1 Open Domain Questions 

Open  Domain  Question Answering Systems are not restricted to any specific 

domain and provide a short answer to a question addressed in natural language. [12] 

This means that the question can be of any area. Usually, these questions' 

answers can be found in broad knowledge areas like Encyclopedias, the web, or 

Wikipedia like sites. 

An example question can be: Who won the Nobel Prize in Literature 2021? 

The answer can be found searching the web in multiple web pages, so one can 

see that the winner is Abdulrazak Gurnah. 

 

BASEBALL 
(1961)

ELIZA 
(1964)

LUNAR 
(1977)

CHATBOT 
(1994)

IBM 
Watson 
(2010)

Apple Siri 
(2011)
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1.3.2 Closed Domain Questions 

In the Closed domain QA system, there is a restriction of domain based on web, 

and questions are related to a specific domain. [12] 

This actually means that questions will be from a specific domain like Law, 

Medical, Sport, Animals, Plants, or any specific area.  

An example question can be of Sport Domain from the BASEBALL QA 

System:  Where did the Red Sox play on July 7? [11] 

Since the domain is specific on an area and the QA Systems only answer the 

domain-specific questions, it can be considered a smaller set when compared.  

 

1.3.3 Factoid Type Questions 

The factoid type questions commonly begin with wh-word, and examples can 

be what, which, when, who, how. [12] 

As suggested by [13], these questions each have their question meaning and 

answer type accordingly. They shared a table indicating this relationship in their paper, 

which would help understand these question types in detail. 

On the other hand, these questions usually have specific answers, and the 

correctness of the answers can be easily calculated. 

This is the most used questioning type in our daily lives, and in this thesis work, 

we will be using factoid-type questions to train and evaluate our model with countable 

metrics. 

 

1.3.4 List Type Questions 

The list-type questions need a list of facts or entities as answers. [13] 

These questions usually have many answers with changing dates or 

occurrences. 

To understand this Question type better, an example would be: What is the 

book written by J. R. R. Tolkien? 

The answer contains a list of books which all are written by the same writer on 

different dates. 
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1.3.5 Confirmation Questions 

Confirmation questions need answers in the form of yes or no. [13] 

These questions usually reside on the information of the answerer on the asked 

question. Usually, the question asker also waits for a detailed response other than the 

simple answer given by the questioner. 

To understand this type of question, we may have an example: Did you do your 

homework today? 

The answer can be yes or no, and maybe an explanation will follow to explain 

the situation. 

 

1.3.6 Complex Questions 

Complex Questions require multiple, different types of information, and giving 

answers is complicated. [13] 

These questions usually have a deeper understanding, and many answers are 

gathered from multiple and changing sources, and the answer can be short or long 

depending on the needs. 

To understand this kind of question better, an example would be: How can we 

solve the world's electricity problem? 

The answer can be multiple non-dependent answers, such as We can build 

power plants, use solar energy, research outer space for energy, etc. 

 

1.4 OBJECTIVES 

The primary objective of this study is to understand how AI-based Question 

Answering Systems works, how it is integrated with different fields such as 

Information Retrieval (IR), Information Extraction (IE), and Natural Language 

Processing (NLP) works in collaboration to achieve State-of-The-Art results. Also, 

analyzing the increase in QA Systems performance and accuracy showed that Googles 

BERT model had a significant impact on QA tasks to achieve higher accuracy. In this, 

we try to learn BERT Fine Tuning and apply it to a case study to see how QA systems 

can be helpful to people for tasks. 
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1.5 ORGANIZATION OF THE THESIS 

This thesis contains five chapters. All the necessary information about creating 

a QA System and Fine-Tuning the BERT Model on a case study is explained with the 

results. 

Chapter 1 is an introduction to the history of QA Systems and the objectives of 

this thesis. 

Chapter 2 introduces AI and Machine Learning and will give a basic 

understanding of the models used in this thesis. 

Chapter 3 is an introduction to NLP and BERT model used in this thesis. 

Chapter 4 is an introduction to Datasets and explains how the case study’s 

dataset was prepared. 

Chapter 5 explains how a Fine-Tuned BERT model can be applied to a case 

study and explains the results. 
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CHAPTER II 

 

AI AND MACHINE LEARNING 

 

2.1 ARTIFICIAL INTELIGENCE 

Artificial intelligence (AI) can be summarized as the intelligence demonstrated 

by machines. The first idea of a clever artificial machine was proposed as Darthmouth 

Summer Research Project by John McCarty, and Marvin L. Minsky who were 

considered the founders of the Artificial Intelligence field. [14] 

Today, with the current research in AI, we can see many areas in which AI is 

adapted and used such as Virtual Assitansts like Siri, Visual Image Recognition for 

identifying photos, Classification of data, Expert Systems, and so on. 

The general term of Artificial Intelligence also covers the main fields of 

Machine Learning and Deep Learning, which use different models for more focused 

tasks and applications. 

 
Figure 4: Artificial Intelligence, Machine Learning, and Deep Learning Visualized 

Artificial 
Intelligence

Machine 
Learning

Deep 
Learning
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2.1.1 Narrow AI 

Narrow AI, sometimes referred to as Weak AI, has been created for specific 

tasks. At the same time, Artificial  General Intelligence is designed to match human-

level intelligence in terms of its broadness and adaptability.[15] 

Because these AI are trained on specific tasks, the applications of these Narrow 

AI are limited, and today when we look around, we can see many applications that we 

use today with or without knowing. 

Such examples are Search Engines, Advertisements specific to users, Google 

Translate, Youtube subtitle generation, Self-driving cars as Tesla, Virtual Assistants 

like Siri. All are trained to implement a specific AI Task. 

 

2.1.2 General AI 

As also stated earlier, Artificial General Intelligence is designed to match 

human-level intelligence in its broadness and adaptability. 

This type of AI will be closer to humans because it can learn many different 

tasks and improve on these to achieve Human success. Since there is no limitation of 

the task, this type of AI acts more like a child's brain that can learn anything it is trained 

for. 

Examples of these systems are not present, and a massive amount of research 

needs to be done on this field to create a truly Wide AI, which may take years or 

decades to accomplish. 

 
Figure 5: General AI and Narrow AI Visualization 
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2.2 MACHINE LEARNING 

The term Machine Learning was introduced in 1959 by Arthur Samuel, an IBM 

worker in computer gaming and artificial intelligence. [16] 

As a general definition, Machine Learning is the study of computer algorithms 

to achieve State-Of-The-Art results involving Neural Networks, Data Mining, 

Generalization, and Statistics usage to analyze this data predict future outcomes. 

 

2.2.1 Supervised Learning 

In general, supervised learning is a machine learning task which maps inputs 

and outputs together. The given inputs and outputs are considered training data for the 

model to work according to a mapping function, mainly in a vector to get the desired 

outputs. 

There are many algorithms used, such as Support-Vector Machines, Linear 

Regression, Decision Trees, Neural Networks, etc. 

The disadvantage of this model is the amount of time needed to prepare the 

dataset as inputs and outputs, which takes much effort. 

In this work for the case study of Fine-Tuned BERT model, we will be dealing 

with Supervised Learning datasets, which have the Passages, Questions, Answers, 

Beginning of the Answer, and Ending of the Answer, which actual Humans prepare. 

 

2.2.2 Unsupervised Learning 

On the other hand, Unsupervised Learning consists only of the input data 

without the outputs. Hence, the model tries to get the patterns by self-analyzing the 

given inputs and getting the desired output using this pattern. 

To gain these patterns, models use to analyze similarities through the input data 

and group these data. 

The obvious advantage of these models is the less effort to prepare the inputs 

and outputs given to the model. 

 

2.2.3 Reinforcement Learning 

Reinforcement Learning is more like a trial and error case, where the model 

makes several attempts to gain better results at a task. Each more correct route is 
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considered an input to the new tryout to achieve the best possible State-Of-The-Art 

results. 

This model has advantages to improve over time and gets a better 

understanding using the given inputs. 

 

2.3 MACHINE LEARNING MODELS 

In general, neural networks link nodes with an input layer, some hidden middle 

layer, and an output layer. It is considered one of the milestones in AI Systems that 

resembles an actual human brain-like structure. 

Neural networks are considered to be one of the best-performing machine 

learning algorithms. They have brought great success in artificial intelligence, such as 

in the field of computer vision, where their task is image processing and pattern 

recognition, and, for example, in sound processing and speech recognition. [17] 

 
Figure 6: Neural Network Visualization 

 
2.3.1 Convolutional Neural Network 

Convolutional neural networks (CNN) represent a specific type of forwarding 

neural network containing a layer of neurons for the convolution operation. [17] 

CNN aims to apply a filter as a layer to decrease the number of outputs below 

the number of inputs while keeping the number of inputs the same and outputs the 

same for every case.  
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The primary usage for CNN is mainly in the visual imagery field, such as Image 

recognition. 

 

2.3.2 Recurrent Neural Network 

Recurrent neural networks (RNN) contain cyclic connections that make them 

a more powerful tool to model such sequence data than feed-forward neural networks, 

and RNN’s have demonstrated great success in sequence labeling and prediction tasks 

such as handwriting recognition and language modeling. [18] 

Because the input resides on the previous information and an auto-correcting 

mechanism was added as part of the Neural Network, this was a big step for Natural 

Language Processing. 

 

2.3.3 Long Short-Term Memory (LSTM) 

LSTM is also a type of RNN. Compared to other neural networks, the LSTM 

network does not consist of interconnected neurons but memory blocks connected in 

layers. [17] 

With this added support of memory block, it quickly became a massive success 

in NLP fields such as Question Answering. 

The memory blocks contain memory cells with self-connections storing the 

temporal state of the network in addition to special multiplicative units called gates to 

control the flow of information. [18] 

  

2.3.4 Transformers 

RNN and LSTM were considered the State-Of-The-Art approaches until 

“Attention” based models like transformers came in. It all started with the paper titled 

“Attention Is All You Need,” which became very popular quickly. 

Transformer, a model architecture eschewing recurrence and instead relying 

entirely on an attention mechanism to draw global dependencies between input and 

output, allows for significantly more parallelization and can reach a new state of the 

art in translation quality after being trained for as little as twelve hours on eight P100 

GPUs. [1] 
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Figure 7 : The Transformer – Model Architecture from [1] 
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CHAPTER III 

 

NATURAL LANGUAGE PROCESSING 

 

3.1 NLP GENERAL KNOWLEDGE 

Natural Language Processing (NLP) is how computer and human interaction is 

involved around computers trying to understand human language. It is considered to 

be part of Computer Engineering and Artificial Intelligence areas. 

The main aim of NLP is to create computers capable of understanding and 

processing natural language. It is mainly used in solving problems like speech 

recognition, question answering, machine translation, and text mining areas, and the 

list continues to grow every day with new needs. 

 

3.2 BERT 

Bidirectional Encoder Representations from Transformers (BERT) is designed 

to pre-train deep bidirectional representations from the unlabeled text by jointly 

conditioning both left and proper context in all layers. The pre-trained BERT model 

can be fine-tuned with just one additional output layer to create state-of-the-art models 

for many tasks, such as question answering and language inference, without substantial 

task-specific architecture modifications. [19] 

With this explanation from the creators, we can further analyze its structure. 

BERT is a pre-trained model trained on the entire Wikipedia, which contained 2,500 

million words and a Book Corpus of 800 million words.[19] Rumors indicated that 

this training took more than four days to complete, even on modern high-end 

computers. By indicating bidirectional, the Bert model captures both sides of the 

context to the left and the right. Bert also converts words to vectors to achieve their 

vectorial values. This separates the Bert model from its alternatives, such as GPT, 

which captures left-to-right, and ELMo, which uses independent left-to-right and 

right-to-left LSTMS.
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Figure 8 : BERT, GPT and ELMo comparison from [19] 

 
3.2.1 BERT Word Embeddings  

Bert base has a vocabulary of over 30.000 words and characters from its pre-

trained state.[19] This word consists of whole words, partial words, and single 

characters. Also, numbers are present in this vocabulary. When BERT gets a word, it 

divides it into smaller pieces in its vocabulary and appended “##” to the middle ones. 

An example would be the word jumping, which will be split as “jump” and “##ing” 

and so on. 

 

3.2.2 BERT Pre Training 

BERTS pretraining consists of two unsupervised tasks, namely Masked LM 

and Next Sentence Prediction. 

 

3.2.2.1 Masked LM (MLM) 

In order to train a deep bidirectional representation, we simply mask some 

percentage of the input tokens at random and then predict those masked tokens.[19] 

This means that by masking a word and predicting the masked word, the model 

improves its prediction mechanism for finding the right masked words. 

 

3.2.2.2 Next Sentence Prediction (NSP) 

In general terms, this training aims to predict the following coming sentence 

and try to make a relationship between these two sentences. 

Specifically, when choosing the sentences A and B for each pretraining 

example, 50% of the time, B is the following actual sentence that follows A (labeled 

asIsNext), and 50% of the time, it is a random sentence from the corpus (labeled 

asNotNext). [19]  
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3.2.3 BERT Architecture 

Bert is a transformer model indicating that it uses many encoding layers on an 

input to get the specific output. If we look at the Pre-trained BERT model, we can see 

that mainly there are two models stated. 

BERT base (L=12, H=768, A=12, Total Parameters=110M) and BERT large 

(L=24, H=1024, A=16, Total Parameters=340M). [19] 

 

3.2.4 BERT Text Processing 

In order to find the exact locations of the words, BERT uses Position 

Embeddings. To separate sentences from each other, BERT uses Segment 

Embeddings, and in order to separate words, BERT uses Token Embeddings. 

Token Embeddings consists of [CLS], which indicates the beginning of the 

sentence and is followed by [SEP] for every separate sentence and ends with [SEP] 

token.  

 
Figure 9 : Token Embedding, Segment Embedding and Position Embedding Visualized from 

[19] 

 
3.2.5 Fine-Tuning Bert 

Bert can be fine-tuned for many tasks according to needs; for this work, we 

will be focusing more on the question Answering task fine-tuning. 
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Figure 10 : Question Answering Task Fine-Tuning form [19] 
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CHAPTER IV 

 

DATASET 

 

4.1 DATASET 

A dataset indicates a collection of data in the area of research grouped under 

labels. Many sites are offering the needed data to researchers, which the main ones are 

“datasetsearch.research.google.com” and “https://huggingface.co/docs/datasets/.” 

 

4.1.1 SQUAD Dataset 

SQUAD dataset is the one that was used to pre-train the BERT model, so 

understanding this data set will help us understand how BERT reacts to asked 

questions. 

Stanford Question Answering Dataset (SQuAD) is a new reading 

comprehension dataset consisting of 100,000+ questions posed by crowd workers on 

a set of Wikipedia articles. The answer to each question is a segment of text from the 

corresponding reading passage. [2] 

The SQUAD dataset can be found at https://rajpurkar.github.io/SQuAD-

explorer/, and it can also be explored using the web browser for passages, questions, 

and answers to these questions. 

The primary SQUAT Dataset was later renamed SQUAD 1.1, and another set 

of questions were added to create the newer version of SQUAD 2.0, which consists of 

50.000 more questions that were not answerable from the passage. 

Each new State-of-the-Art model has a chance to test itself against these 

SQUAD 1.1 and 2.0 models, and the higher Exact Match (EM) and F1 scores are listed 

on the leaderboard. 
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4.1.2 Analyzing Case Study Dataset 

The dataset we will be using is from deepset.ai,  Covid-19 Dataset, which is in 

JSON format and can be downloaded from the link: https://github.com/deepset-

ai/COVID-QA/blob/master/data/question-answering/COVID-QA.json 

This data has a size of 4.21 MB contains Context, Questions, Answers, and 

Starting Index of Questions, and its structure can be found below. 

1. { 
2.  "data": [{ 
3.   "paragraphs": [{ 
4.    "qas": [{ 
5.     "question": "What is the main cause of HIV-1 

infection in children?", 
6.     "id": 262, 
7.     "answers": [{ 
8.      "text": "Mother-to-child transmission 

(MTCT) is the main cause of HIV-1 infection in children worldwide. ", 
9.      "answer_start": 370 
10.     }], 
11.     "is_impossible": false 
12.    }], 
13.    "context": "Functional Genetic Variants in DC-SIGNR Are 

Associated ..... ",  
14. "document_id": 630 
15.   }] 
16.  }] 
17. } 

  
Moreover, it contains a total of 2014 rows of comparable data used for 

training tasks.  

 

4.1.3 Preparing Case Study Dataset 

Since the data is in JSON format, we need to load it using the pythons JSON 

library, and this gives us 146 columns of data to be processed. Then the data needs to 

be read by the program, and to create the Pandas Data frame, and we need to divide it 

according to the text labels as below: 
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1. questions = [] 
2. answers = [] 
3. context=[] 
4. answer_start=[] 
5. answer_end=[] 
6.   
7. for i in range(146): 
8.   tempvar = train[[i]] 
9.   temptext = tempvar[i] 
10.   tempanswer = (temptext[0]) 
11.   tempresult = tempanswer['paragraphs'] 
12.   question=[] 
13.   answer=[] 
14.   tempresult=tempresult[0] 
15.   tempquestion = tempresult['qas'] 
16.   for y in range(len(tempquestion)): 
17.     context.append(tempresult['context']) 
18.     tempquestionandanswer = (tempquestion[y]) 
19.     if 'question' in tempquestionandanswer.keys(): 
20.       questions.append(tempquestionandanswer['question']) 
21.       anslist = tempquestionandanswer['answers'] 
22.       anslist = anslist[0] 
23.       answers.append(anslist['text']) 
24.       answer_start.append(anslist['answer_start']) 
25.       answer_end.append(int(anslist['answer_start'])+len(anslist['text'])) 

  
This gives us a series of data needed for our analysis which we can convert to 

Pandas Data Frame object. 

Since the whole set contains very long Context values and training with those 

values takes too much time, I limited the values to 200 characters for context and 

another 200 characters for the answers to these questions. Also, working with 2014 

rows required too much ram and GPU power, so I also narrowed the dataset to use 300 

rows in total for the Case Study. 

1. context2 = [] 
2. answers2 = [] 
3.   
4. for c, s, e, a in zip(context, answer_start, answer_end, answers): 
5.     context2.append(c[s:s+200]) 
6.     answers2.append(a[:200]) 
7. data2 = pd.DataFrame(data=list(zip(questions, 

answers2,context2,answer_start,answer_end)), 
columns=['questions','answers','context','starting_index','ending_index']).head(
300) 

  
We now have the Data Frame with shapes 300,5 containing all the needed 

information, so now we are ready to divide the 300 Rows of Data Frame to perform 

training operations. 
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4.1.4 Splitting Train, Dev, and Test 

Since we now have our data frame, we can divide our set into three sets named 

Train, Dev, and Test. 

Train : The Train Dataset is used to train the model with the given Question 

and Answer sets. This will be the most significant part of the Data Frame. 

Dev : The Dev Dataset is used to improve the learning of the model, and for 

each training, we can check against the dev set to see the improvements. 

Test : The Test Set is used after the full training is completed to test for 

predictions of the trained model and see the improvements of training. 

In order to split our training sets, we need to use the SKlearns train_test_split 

model. This model splits the data frame into 2 random parts, such as train and test data. 

So in order to get the 3 splits we need to divide the test part again. I tried a %80 Train, 

%10 Dev, and %10 Test parts for this thesis study. To achieve this programmatically, 

I first divided the model to %80 Train to %20 Dev, then divided that %20 part to two 

%50 part, each corresponding to %10 percent of the entire data frame. To reproduce 

the same results, I selected the random state as my birth year. Otherwise, the results 

will change for every run. 

1. from sklearn.model_selection import train_test_split 
2.   
3. train_size=0.8 
4.   
5. X = data2.drop(columns = ['ending_index']).copy()  
6. y = data2['answers'] 
7.   
8. X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8, 

random_state=1983) 
9.   
10. test_size = 0.5 
11. X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5, 

random_state=1983) 

  
Since we used 300 rows and %80 Train set gets 240 rows, %10 Dev gets 30 

rows and %10 Test gets 30 rows. 
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1. i = 0 
2.   
3. string_train_data = "[" 
4.   
5. for index, row in X_train.iterrows(): 
6.     string_train_data += "{ \"context\" : \"" 
7.     string_train_data += row['context'] 
8.     string_train_data += "\", \"qas\" : [ {\"id\": \"" 
9.     string_train_data += str("{0:0>5}".format(i)) 
10.     string_train_data += "\", \"is_impossible\": false, \"question\" : \"" 
11.     string_train_data += row['questions'] 
12.     string_train_data += "\", \"answers\" : [{ \"text\" : \"" 
13.     string_train_data += row['answers'] 
14.     string_train_data += "\", \"answer_start\": " 
15.     string_train_data += str(1) 
16.     string_train_data += "}]}]}," 
17.     i += 1 
18. string_train_data[:-1] 
19. string_train_data += "]" 
20.   
21. with open('train_data.json', 'w') as f: 
22.     f.write(string_train_data) 

  
The output of this file is a multiline JSON file. In order to fix it, we need to 

remove the last comma, convert it to a single line and add “\” in front of the middle 

“”” to make it a valid JSON file. We repeat these steps for Dev and Test to get the 

necessary JSON files.  

 

1. i = 0 
2.   
3. string_eval_data = "[" 
4.   
5. for index, row in X_valid.iterrows(): 
6.     string_eval_data += "{ \"context\" : \"" 
7.     string_eval_data += row['context'] 
8.     string_eval_data += "\", \"qas\" : [ {\"id\": \"" 
9.     string_eval_data += str("{0:0>5}".format(i)) 
10.     string_eval_data += "\", \"is_impossible\": false, \"question\" : \"" 
11.     string_eval_data += row['questions'] 
12.     string_eval_data += "\", \"answers\" : [{ \"text\" : \"" 
13.     string_eval_data += row['answers'] 
14.     string_eval_data += "\", \"answer_start\": " 
15.     string_eval_data += str(1) 
16.     string_eval_data += "}]}]}," 
17.     i += 1 
18. string_train_data[:-1] 
19. string_eval_data += "]" 
20.   
21. with open('eval_data.json', 'w') as f: 
22.     f.write(string_eval_data) 

  
We got the Dev set as JSON. 
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1. i = 1 
2.   
3. string_predict_data = "[" 
4.   
5. for index, row in X_test.iterrows(): 
6.     string_predict_data += "{ \"context\" : \"" 
7.     string_predict_data += row['context'] 
8.     string_predict_data += "\", \"qas\" : [ { " 
9.     string_predict_data += " \"question\" : \"" 
10.     string_predict_data += row['questions'] 
11.     string_predict_data += "\", \"id\": \"" 
12.     string_predict_data += str("{0:0>5}".format(i)) 
13.     string_predict_data += "\"}]}," 
14.     i += 1 
15. string_predict_data += "]" 
16.   
17. with open('predict_data.json', 'w') as f: 
18.     f.write(string_predict_data) 

  
We get the Test set with this command now that our JSON files are ready and 

we have all the data needed to Fine-tune our BERT model. 
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CHAPTER V 

 

QUESTION ANSWERING 

 

5.1 QUESTION ANSWERING WITH FINE TUNED BERT 

The end of 2018 was a big year for the BERT model because researchers could 

work on pre-trained models on certain specific tasks. These tasks include sentence-

level tasks such as natural language inference and paraphrasing, which aim to predict 

the relationships between sentences by analyzing them holistically, and token-level 

tasks such as named entity recognition and question answering, where models are 

required to produce fine-grained output at the token level. [19] 

 

5.1.1 Advantages of Fine Tuning 

The main advantages of BERT Model can be summarized from mainly three 

perspectives. The first advantage is the ability to quickly develop the fine-tuned model 

on a specific task because of the pre-trained data already there. If we tried to build the 

model from scratch and train it, even on high-end supercomputers, it takes too much 

time to train from scratch. 

The second advantage is the need for fewer data to achieve better results. 

Because our model is pre-trained any add-on will require a small set of data and will 

be time saving since preparing the data takes too much time. 

The third advantage is that even with little fine-tuning and minor data given, 

the model can perform better or equivalent results to other models, which were 

completely developed from scratch. 

Also, by fine-tuning BERT on specific domains and tasks, new variant models 

are developed, which even outperformed the original BERT implementation discussed 

earlier in this thesis. 

 



 
 

26 
 

5.1.2 Preparing The Environment 

Since AI and Machine Learning (ML) development needs high-end processing 

units like GPU and high ram usages, user PCs or laptops are usually not sufficient. For 

this reason, google developed its free research platform Colab which can be accessed 

through the link : https://colab.research.google.com/ 

Google Colab offers 12 Gigabyte RAM and CPU, GPU or TPU usage 

according to the needs, so to use this platform, we signed in to Colab with our google 

account. 

Many programming languages can be used for Question Answering tasks, but 

because of the many libraries presented, we choose Python as our programming 

language. Also, to run our code live on servers, we used Python on Jupyter Notebooks, 

which made step-by-step implementation possible. 

While running the code implementation, we also imported Tensorflow, 

Numpy, Transformers, Simple Transformers, PyTorch, Pandas, Json, Logging 

modules. 

 

5.1.2.1 Huggin Face Transformer Library 

The Huggin Face library is a library consisting of State of the art Transformers 

models such as BERT. It contains support to nearly all Pre-Trained Transformer 

Models, and since it is a free library, researchers download and work on different pre-

trained models on different NLP tasks to improve the performance. 

Huggin Face Library can be accessed under link https://huggingface.co/, and it 

contains Models, Datasets, Resources for different NLP tasks. These tasks include 

Question Answering, Summarization, Text Classification, Text Generation, Token 

Classification, Translation, Sentence Similarity, Conversational, and Future 

Extraction. 

 

5.1.2.2 Simple Transformers Library 

The Simple Transformers Library is built on top of Huggin Face Library and 

added a much easier interface with additional support for working with NLP models 

much faster and easier. We will also be using this library for our training, evaluation, 

and testing purposes during this thesis. 
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5.1.2.3 Loading Dataset 

Since we already prepared our Train, Dev, and Test files, here we will only be 

loading the sets with the help of Pythons Json library. 

 

To load the training Dataset: 

1. import JSON 
2. with open(r"train_data.json", encoding='utf-8', mode="r") as read_file: 
3.     train = json.load(read_file) 

To load the Evaluation Dataset: 

1. with open(r"eval_data.json", "r") as read_file: 
2.     test = json.load(read_file) 

And to load the test Dataset we will be using: 

1. with open(r"predict_data.json", "r") as read_file: 
2. predict = json.load(read_file) 

Now are data sets are loaded for Fine Tuning our BERT model and training. 

 

5.1.2.4 Tokenizing Inputs 

BERT Model uses tokenization to convert text values into token id’s which can 

be used later in vectorial calculations. In order to do this BERT model separates the 

given input into meaningful Word Embedding pieces in its vocabulary of 30,000 

words, as stated earlier. It adds “##” sign to the words separated except the first piece 

or the word. Below is an example of a tokenized text for Bert. In order to use BERT 

tokenizer we have to import the BertTokenizer form the transformers library, as shown 

below. 
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1. from transformers import BertTokenizer 
2.   
3. tokenizer = BertTokenizer.from_pretrained('bert-large-uncased-whole-word-

masking-finetuned-squad') 
4. question = "Who is the chairman of Cankaya University?" 
5. answer_text = "Çankaya University (Turkish: Çankaya Üniversitesi) is a private 

university in Ankara, Turkey. It was established on July 9, 1997 by the Sıtkı 
Alp Education Foundation.[1] The university began its teaching in the Fall 1997 
semester. Sıtkı Alp is the chairman of the board of trustees. English language 
is predominant medium of teaching, learning and research at the Çankaya 
University." 

6. print(tokenizer.convert_ids_to_tokens(tokenizer.encode(question))) 
7. print(tokenizer.encode(question)) 

  
The output of running this code gives us this output. 

1. ['[CLS]', 'who', 'is', 'the', 'chairman', 'of', 'can', '##kaya', 'university', 
'?', '[SEP]'] 

2. [101, 2040, 2003, 1996, 3472, 1997, 2064, 20718, 2118, 1029, 102] 

  
This example shows how tokenization works for BERT model and gives us an 

understanding of the model. 

 

5.1.2.5 Formatting Special Characters 

While tokenizing sentences, if you observe, there are unique values like [101] 

and [102] which stand out from the rest. 

The first token of every sequence is always a unique classification token ([CLS] 

or 101). [19] 

Sentence pairs are packed together into a single sequence. We differentiate the 

sentences in two ways. First, we separate them with a special token ([SEP] or [102]). 

Second, we add a learned embed-ding to every token indicating whether it belongs to 

sentence A or B. [19] 

Also, if we check it in multiple text cases, we can see that all sentences begin 

with [CLS], then Sentence A, the [SEP], and the secondSentence B, which also ends 

with a [SEP] unique character. 

Ther is also a Padding token ([PAD] or [0]) used to make all entries the same 

fixed size. 
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1. question = "Example question sentence A?" 
2. answer_text = "Example answer text which is long." 
3.   
4. input_ids = tokenizer.encode(question, answer_text) 
5.   
6. print(tokenizer.convert_ids_to_tokens(input_ids)) 
7. print(input_ids) 

  
This Gives us the output as below: 

 

1. ['[CLS]', 'example', 'question', 'sentence', 'a', '?', '[SEP]', 'example', 
'answer', 'text', 'which', 'is', 'long', '.', '[SEP]'] 

2. [101, 2742, 3160, 6251, 1037, 1029, 102, 2742, 3437, 3793, 2029, 2003, 2146, 
1012, 102] 

  

5.1.2.6 Limitations Explained 

BERT has a limitation of 512 tokens as an input, so in order to do the training 

for QA task, the total number of Question plus Context, when divided into Bert tokens 

should not pass this 512 token limit. They are sampled such that the combined length 

is ≤512 tokens. [19] 

Also, BERT expects all the given data to have the same amount of tokens in 

trainings, we use Padding to add empty tokens to match the size of the inputs to be the 

same for every input. 

 

5.1.2.7 Padding 

Since BERT has a limitaion that every input Question and Answer pair should 

have the same fixed size, we need to add padding for the short sentences and truncate 

the long ones so every entry should have the same amount of tokens, an example of 

how padding is made can be found below. 

 

1. from keras.preprocessing.sequence import pad_sequences 
2.   
3. MAX_LEN = 20 
4. input_ids2 = [] 
5. input_ids2.append(input_ids) 
6. input_ids2 = pad_sequences(input_ids2, maxlen=MAX_LEN, dtype="long",  
7.                           value=0, truncating="post", padding="post") 
8. print(tokenizer.convert_ids_to_tokens(input_ids2[0])) 
9. print(input_ids2[0]) 
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The output of this code is : 

1. ['[CLS]', 'example', 'question', 'sentence', 'a', '?', '[SEP]', 'example', 
'answer', 'text', 'which', 'is', 'long', '.', '[SEP]', '[PAD]', '[PAD]', 
'[PAD]', '[PAD]', '[PAD]'] 

2. [ 101 2742 3160 6251 1037 1029  102 2742 3437 3793 2029 2003 2146 1012 
3.   102    0    0    0    0    0] 

  

5.1.2.8 Attention Masks 

Attention masks are masks used to separate the real token values from the 

padded values. For every token, BERT uses this Attention Mask in an AND gate 

respective, so if the Attentiton Mask value is zero (0) then it does not have a weight, 

if it is 1 then it has a weight. A sample of how the Attention mask works can be found 

below. 

 

1. attention_mask = [] 
2.   
3. for val in input_ids2: 
4.     temp_att_mask = [int(token_id > 0) for token_id in val] 
5.     attention_mask.append(temp_att_mask) 
6.   
7.     print(tokenizer.convert_ids_to_tokens(input_ids2[0])) 
8.     print(attention_mask[0]) 

  
The output of this code is : 

 

1. ['[CLS]', 'example', 'question', 'sentence', 'a', '?', '[SEP]', 'example', 
'answer', 'text', 'which', 'is', 'long', '.', '[SEP]', '[PAD]', '[PAD]', 
'[PAD]', '[PAD]', '[PAD]'] 

2. [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0] 

  

5.1.2.9 Training Model 

To Sum up all until now, we have created our Train, Dev, and Test JSON files, 

and showed the internal workings of how BERT prepares the given input for the 

training purposes by combining Question and Context Pasages together, Tokenizing 

them to its Word Embeddings, Adding Special [CLS] and [SEP] tokens, then adding 
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Padding [PAD] or truncating them to required length and to create the needed 

Attention Masks to identify Padding tokens.  

So basically, we would use the pre-trained BERT Model and add our Case 

Study Covid 19 Dataset to improve its question-answering scores.  

We will be using the Simple Transformers Library for this task, which was 

introduced before in this thesis. 

 

First, we install the Simple Transformers Library and load the Train, Dev, Test 

JSON Files: 

 

1. !pip install simpletransformers 
2.   
3. import json 
4. with open(r"train_data.json", encoding='utf-8', mode="r") as read_file: 
5.     train = json.load(read_file) 
6.   
7. with open(r"eval_data.json", "r") as read_file: 
8.     test = json.load(read_file) 
9.   
10. with open(r"predict_data.json", "r") as read_file: 
11.     predict = json.load(read_file) 

  
Next we will be loading BERT model and its pretrained “bert-base-cased” 

model and make required configurations: 

 

1. model_type="bert" 
2. model_name= "bert-base-cased" 
3. model_args = QuestionAnsweringArgs() 
4. model_args.train_batch_size = 1 
5. model_args.evaluate_during_training = True 
6. model_args.n_best_size=3 
7. model_args.num_train_epochs=5 

  
Colab platform has a maximum available memory of 12 Gigabyte and if we 

select the batch size bigger than 1 then PyTorch will give an error indicating 

insufficient GPU Ram memory, so we should keep the batch size value smaller as 

PyTorch actually reserves the whole training operations at the beginning of the training 

process.  
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And for the detailed configurations, we can use the Training Arguments 

parameter. The values I used can be seen in the below code: 

 

1. train_args = { 
2.     "reprocess_input_data": True, 
3.     "overwrite_output_dir": True, 
4.     "use_cached_eval_features": True, 
5.     "output_dir": f"outputs/{model_type}", 
6.     "best_model_dir": f"outputs/{model_type}/best_model", 
7.     "evaluate_during_training": True, 
8.     "max_seq_length": 128, 
9.     "num_train_epochs": 5, 
10.     "evaluate_during_training_steps": 1000, 
11.     "wandb_project": "Question Answer Application", 
12.     "wandb_kwargs": {"name": model_name}, 
13.     "save_model_every_epoch": False, 
14.     "save_eval_checkpoints": False, 
15.     "n_best_size":3, 
16.     "train_batch_size": 2, 
17.     "eval_batch_size": 1, 
18. } 

  
Next we create our model,  

 

1. model = QuestionAnsweringModel( 
2.     model_type,model_name, args=train_args 
3. ) 

  
And Start the training  

 

1. model.train_model(train, eval_data=test) 

  
The training process takes 3:39 minutes on a Tesla K80 GPU provided by 

Google Colab platform. The result of this training will be discussed in detail at the 

Results part of this thesis. 

Also, to understand how the model predicts where the answer starts and ends, 

we can look at the figures below.  
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Figure 11 : Showing The Starting Values For Tokens 

 

 
Figure 12 : Showing The Ending Values For Tokens 
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5.1.2.10 Validating Model 

The Validation process is the process of checking how well the model performs 

during or after the training. Since we configured the model to evaluate during training, 

after each Epoch of training, the model will be Validated to see the newly trained 

model's performance. This process repeats for all 5 epochs which we configured.  

In order to evaluate the model, we can use the below command: 

 

1. result, texts = model.eval_model(test) 

  

5.1.2.11 Testing Model on Test Set 

After the model completes its training and gets evaluated, we need to check its 

performance in the Test JSON file. 

In order to test the model we use the below command: 

 

1. answers, probabilities = model.predict(predict) 

  

5.1.2.12 Results 

The results of this Fine Tuned Bert training for the Covid-19 Case Study 

showed many of the questions were answered as seen at the below table. 

 
Table 1 : Number Of Correct, Similar And Incorrect Questions 

QA Labels No. Of 

Questions 

Epoch 1 

No. Of 

Questions 

Epoch 2 

No. Of 

Questions 

Epoch 3 

No. Of 

Questions 

Epoch 4 

No. Of 

Questions 

Epoch 5 

Correct 16 14 16 16 17 

Similar 14 16 14 14 13 

Incorrect 0 0 0 0 0 

 

During the training we can see that the correct questions mostly have a uprising 

graph for correct answers as seen at below figure. 
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Figure 13 : Number Of Correct Answers Change During Training 

 

 
Figure 14 : Number Of Similar Answers Change During Training 

 
This graph shows that at fifth step the model gets 16 similar answers. 

 

 
Figure 15 : Evaluation Loss Changes During Training 
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The evaluation loss shows how good the evaluation was during training. For 

every correct answer, the evaluation loss is given zero, and when the answer is wrong, 

it is given a more significant loss, so the perfect model should have a declining graph 

with a zero at the end of training. 

 

 
Figure 16 : Training Loss Changes During Training 

 
This figure shows a declining graph from the beginning of the training, and 

some rising then falling values.  

 

Also the training and evaluation losses can be seen at the below table. 

 
Table 2 : Train Loss And Eval Loss Table During Training 

Epochs No Train Loss Eval Loss 

Epoch 1 0.19826316833496094 -2.641861979166667 

Epoch 2 1.7821340560913086 -3.4935546875 

Epoch 3 0.0070018768310546875 -4.463736979166667 

Epoch 4 0.00027552247047424316 -4.605794270833333 

Epoch 5 0.00014537572860717773 -4.810416666666667 
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Figure 17 : The Training Process Output 

 
Below is a comparison with the model without training. The results are very 

low as expected since our model does not know the jargon for Covid 19 and does not 

have the relationship among covid related words. The difference between the Covid 

19 Dataset trained BERT and untrained base BERT is big. 

 
Table 3 : Case Study Evaluation Results Without Training 

 Correct Eval Loss Incorrect Similar 

Answers 

Through 

Model 

0 0.017513211568196616 19 11 

 

Since the training, the model tries to find the best possible model. In order to 

get the best results, the model needs to be trained for more epochs and find the best 

model possible with maximum exact matches. 

The exact match scores for this model can be calculated by dividing the number 

of exact matches by the number of total cases. 

 

Exact Match = 17 / 30 = 0,56 
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The rest of the answers also match mostly, but they are not exact, and most of 

the researchers started using the exact match scores, which gives more accurate data. 

When compared with other works in the Case Study of Covid-19 QA System 

we can see some better or worse Exact Match scores. Below we can see three examples 

with their respectful Exact Match scores next to them. 

 
Table 4 : Comparison With Other Works On Case Study Covid-19 QA Systems 

Paper Titles For Three Comparative Work Exact Match 

(EM) Score 

COBERT: COVID-19 Question Answering System Using BERT (23 

Jun 2021)[20] 

%80,6 

Transformer-Based Models for Question Answering on COVID19 (16 

Jan 2021)[21] 

%13.04 

Developing Answers to Scientific Questions with BERT (2020)[22] %35.89 
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CONCLUSION 

 

This thesis aimed to make a better Question Answering system that can help 

people in the area of question answering by fine-tuning a pre-trained model to perform 

better results. Based on the literature research and latest state-of-the-art models, it was 

hard to understand the benefits of pre-trained models with their limitations and how to 

overcome them. Since the introduction of BERT and its variants, the Question 

Answering tasks have had a significant improvement in every way, and that is why I 

wanted to use this model for my QA tasks. 

The most significant limitations I had during this work were the limitations of 

Computer hardware needed for the training to perform. Even using Colab Platform’s 

12 Gigabayt RAM, I had to limit the batch size to a minimum for the model to work. 

Also, another limitation was BERT’s 512 token size limit which forced me to truncate 

more extended context to fit in these limitations.  

Working on Fine Tuned BERT model showed that the pre-trained BERT model 

performs well on general text with its general Vocabulary, but when given a specific 

domain like in the Covid-19 Case Study with medical Jargon, big performance drops 

can be seen. 

Fine Tuning Bert for the Covid-19 Dataset and evaluating on the same Dev set 

before and after training showed a huge improvement in accuracy of Exact Matches 

even with as little as 5 Epochs. 

Working with big datasets, such as the Case Study dataset of 2014 rows took 

too much Time, RAM and GPU power and is actually not feasible, so we had to make 

our dataset smaller such as 300 rows, to speed up the training. 

Limitations such as BERT’s 512 token limit and configuring batch size to 

higher values such as 16 or 32 used too much RAM, which crashed the system, so 

researchers had to find workarounds, as we had to drop train batch size to 2 so we 

could avoid crashing the system.
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Modern QA Systems are highly accurate and can be fine-tuned according to 

needs for the benefits of helping people in many possible areas. 

My work on fine-tuned BERT model showed that the pre-trained BERT model 

performs well on general text with its general Jargon, but when given a specific domain 

like in the Covid-19 Case Study with medical Jargon the performance drops can be 

seen. To overcome this problem, we need to train the Fine Tuned BERT on this specific 

task, so as expected, the results improved after the training with 5 epochs. Still, to get 

much better results and the best performing model, more epochs training are needed. 

Since the BERT model trains with different weights and calculates them in parallel 

with a random order, the results vary every time the training step is run. However, 

these different results enable the model to achieve the best model possible. 

For the future of  QA Systems, we will probably see new data formats which 

will be used as input data, such as Table, Figure, Images, which are currently not 

possible with recent models. We will be seeing new ideas and better models such as 

the T5, which eliminates the need for Vectoral complex calculations with the basic 

Text to Text Transformers ideas. Also, we will be expecting an improvement in 

Reasoning and Synthesis for a better understanding of the context and answers for the 

given context and question pairs. Retrieving the perfect answer for today's QA Systems 

and models is not possible, but in the future will be seeing improved Retrievers, which 

will always retrieve the %100 Exact Match with perfect scores. Getting rid of the 

context and just asking a question to get an answer will be possible in the future with 

enough training and improved QA Systems. With all the development in this specific 

QA task, we will be seeing QA Systems as parts of the General AI. We talked about 

eralier, machines that could learn and answer questions perfectly just like a human 

would be, maybe better in the future. 

As machine learning models improve on specific tasks, the gap of a vast AI 

machine is closing, but we still have more research to be done. This QA task will 

become perfect in the future, and the “Imitation Game” will become a reality. Also, 

virtual assistants like Siri will also improve and help people with their daily lives. 

All the codes mentioned for this thesis work will be uploaded to : 

https://github.com/ErmanOzg/Ermans-Fine-Tuned-BERT-QA-Studies
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