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ABSTRACT 

 

MACHINE LEARNING OF ACCELEROGRAM DATA FOR ANALYSES, 
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ÇIKIŞ, Melis 

Master of Science in Electrical and Electronics Engineering 

 

Supervisor: Assoc. Prof. Dr. Erdem AKAGÜNDÜZ 

Co-Supervisor: Asst. Prof. Dr. Salih TİLEYLİOĞLU 

September 2022, 89 pages 

 

In this thesis, the earthquake epicenter coordinate prediction is provided by 

processing the accelerometer records recorded from the strong motion station using 

convolutional networks. Spectrogram-based false color representation of earthquake 

accelerometer records is proposed and its application in convolutional networks is 

discussed. Using more than forty-two thousand publicly available earthquake records, 

an epicenter cluster has been made with hundreds of thousands of 5-second false color 

spectrograms, and earthquakes in similar clusters were observed to produce similar 

impressions. With this epicenter clustering, the convolutional network is trained by 

using different records from different years. Using this trained network, it is aimed to 

predict the epicenter and depth information of any earthquake event. As a result of the 

trainings, it has been observed that the spectrograms created with single station 

accelerogram data can be used in convolutional networks and accelerograms have 

potential to detect epicenters.  

 

Keywords: Earthquake Accelerograms, Epicenter Clustering, Convolutional Neural 

Networks, Spectrogram 
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ÖZ 

 

ANALİZLER, MODELLEME VE TAHMİN İÇİN AKSELEROGRAM 

VERİLERİNİN MAKİNE ÖĞRENİMİ 

 

ÇIKIŞ, Melis 

Elektrik-Elektronik Mühendisliği Yüksek Lisans 

 

 Danışman: Doç. Erdem AKAGÜNDÜZ 

Ortak Danışman Dr. Öğretim Üyesi Salih TİLEYLİOĞLU 

Eylül 2022, 89 sayfa 

 

Bu tezde, kuvvetli yer hareketi istasyonundan kaydedilmiş ivmeölçer 

kayıtlarının evrişimsel ağlarda işlenmesi ile merkez üssü konumu tahmini 

sağlanmıştır. Deprem ivmeölçer kayıtlarının spektrogram tabanlı sahte renk gösterimi 

önerilmiş ve bu gösterimin evrişimsel ağlarda uygulanması tartışılmıştır. Kamuya açık 

kırk iki binden fazla deprem kaydı kullanılarak, 5 saniyelik yüzbinlerce sahte renk 

spektrogramı ile bir merkez üssü kümelemesi yapılmış, ve benzer kümelerdeki 

depremlerin benzer gösterimler yarattığı gözlenmiştir. Elde edilen bu merkez üssü 

kümeleme ile farklı yıllara ait farklı kayıtlar kullanılarak evrişimsel ağ eğitilmiştir. 

Eğitilen bu ağ ile herhangi bir deprem olayına ait, merkez üssü ve derinlik bilgilerini 

tahmin etmek amaçlanmıştır. Eğitimler sonucunda, tek istasyondan kaydedilen 

ivmeölçer verileri ile yaratılan spektrogramların evrişimsel ağlarda kullanılabildiği ve 

ivmeölçer verilerinin merkez üssü tespit etmede potansiyeli olduğu gözlemlenmiştir.   

 

Anahtar Kelimeler: Deprem İvmeölçer Kayıtlar, Merkez Üssü Kümeleme, 

Evrişimsel Ağlar, Spektrogram 
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 CHAPTER I 

 

INTRODUCTION 

 

Like other natural disasters, earthquakes create a great danger to the built 

environment and, therefore, to people. Earthquakes occur due to sudden movement 

along faults, and the point where the fault first ruptures is called the focus or the 

hypocenter of the earthquake. Earthquake waves begin to radiate from hypocenter. 

This radiating is shown in Figure 1. 

 

 
Figure 1: Wave propagation from a seismic source. 

 

The focus is below the earth's surface, and its projection on the earth's surface 

is called the epicenter of the earthquake. Strong ground motions caused by earthquakes 

are measured by accelerographs at a station utilizing three perpendicular accelerometer 

devices.
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Seismic waves can be broadly classified as body waves and surface waves. 

Body waves arrive the quickest to the surface and are of two types: Primary (P) and 

Secondary (S) waves. Primary (P) waves are the fastest moving earthquake waves and 

the first to reach the seismograph. Secondary (S) waves are the second fastest moving 

seismic waves. These waves are the second wave after the P waves to reach a 

seismograph from a distant earthquake and have a high destructive effect. Because S-

waves come within the noise of P-waves, it is not always easy to accurately determine 

their arrival time. However, it is possible to observe such waves on seismograms 

recorded with three-component seismometers. The arrival times of the P and S waves 

contain important information such as the onset of the earthquake and the propagation 

of the earthquake signal [1]. An example seismic signal showing P and S waves is 

given in Figure 2. 

 

 
Figure 2: Example seismic P and S wave. 

 

Earthquakes that may cause loss of life and property or in other words that 

affect people and their surroundings are termed as strong ground motion. Strong 

ground motions are measured with accelerographs (accelerometers) and are considered 

to have magnitudes greater than 3.5 [2]. The measured recordings are called the 
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accelerogram [3]. Earthquake magnitude is obtained as a result of calculations using 

the maximum amplitude and period value of earthquake motion recorded with a 

standard seismograph and instrument calibration functions [4]. It is defined as a 

measure of the energy released during an earthquake. 

These data, which are recorded in different channels from the beginning of the 

earthquake to the end, are stored as earthquake accelerometer records. Earthquake 

records contain valuable parameters such as the peak ground acceleration of the 

earthquake at the recorded location, frequency content, and duration of the shaking. 

Earthquake stations and records also play a significant role in determining the 

epicenter of earthquakes. Velocity data obtained from at least three stations and 

measuring weak ground movements are generally used to determine the epicenter of 

earthquakes. In general, the basic parameters of earthquake (magnitude, epicenter 

coordinate etc.) are calculated depending on the amplitude and phase values in the 

velocity records, while acceleration records are mostly used in the preparation of 

intensity maps. In this thesis, it is proposed to calculate the parameters related to the 

earthquake using accelerometer records [5]. 

 

1.1 PROBLEM DEFINITION 

Traditionally, in calculating the epicenter location of the earthquake, first, the 

distance from the seismic phases from the seismograms measuring velocity in at least 

three stations from the place where the time differences coincide best is determined. 

According to these distances, circles with radius equal to the distances determined for 

each station are drawn on a map that includes the stations used. An example illustration 

is given in Figure 1.1. 
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Figure 1.1: A process called triangulation uses seismic data from three locations to identify 

the epicenter of an earthquake. 

 

The drawn circles intersect each other at two points and the earthquake center 

remains within the shaded area in Figure 1.1. In order to find the earthquake epicenter 

in this area, the intersection points of the intersecting circles are combined and the 

intersection point of these drawn lines gives the earthquake epicenter location [6]. As 

the number of stations used in this calculation increases, the amount of error in 

determining the epicenter location decreases. The concept of effective range cannot be 

mentioned for seismic devices. The stations used in this study can record records the 

larger the earthquake, the further away it is, so the range varies according to the 

magnitude of the earthquake.  

In the event of a strong motion earthquake, a velocity sensor which is close to 

the fault cannot record due to its nature [5]. The accelerometer can also receive data. 

In this thesis, it is investigated to contribute to Earthquake Early Warning (EEW) 

systems by determining epicenter coordinate with accelerometer data. Accelerometer 

records are time series recorded mathematically from an inertial sensor [7]. The 

methods used to visualize time series such as sound and vibration and make them 

suitable for human examination may differ depending on the nature of the sensor. 
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Various studies have been carried out on these data using machine learning methods 

[8-11]. 

In this thesis, the accelerometer records of earthquake events recorded in 

different years in Turkey, which we clustered according to the epicenter, were 

converted into spectrogram-based three-channel false-color representation and made 

suitable for human analysis and the use of convolutional neural networks (CNN). In 

this way, RGB has officially become compatible with standard CNN structures with 

the display of earthquakes, and the applicability of convolutional network analysis 

methods used in computer vision to earthquake data has been ensured. As a result, it 

is aimed to predict the epicenter with the proposed spectrograms. 

 

1.2 LITERATURE SURVEY 

It is known that since the formation of the world, ground movements caused by 

earthquakes have occurred sequentially in seismically active regions [12]. When 

understanding seismic signals were essential and computational power was low, 

earthquake detection was done manually by examining waveforms.  

Turkey is located in one of the most active earthquake zones in the world. There 

exists high risk of loss of lives and property in future earthquakes, as Turkey has had 

many destructive earthquakes in the past. Many researchers have studied different 

algorithms based on artificial intelligence techniques to foresee and predict future 

earthquake. The developed algorithms are meant to identify the low-magnitude signals 

that are often difficult to detect, even for humans, as they can be confused with noise. 

In this section, a series of publications dealing with various earthquake 

prediction tasks with artificial intelligence techniques are reviewed. Artificial 

intelligence techniques encountered in the field of seismology are called genetic 

algorithms, artificial neural networks, and machine learning techniques. 

 

1.2.1 Artificial Intelligence Optimization Techniques  

Optimization is choosing the best among the possible alternatives under certain 

conditions in a problem [13]. Many algorithms have been proposed for optimization 

problems. When recent years are examined, artificial intelligence optimization 
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techniques such as Particle Swarm Optimization (PSO) and Artificial Bee Colony 

(ABC) [14] have been encountered in studies with earthquake data. 

In a study published in the World Journal of Modeling and Simulation in 2012, 

the Particle Swarm Optimization (PSO) algorithm was preferred to find the local 

earthquake location, in other words, the epicenter location where the earthquake 

occurred [15]. PSO is based on the movement of animals in search of food. In the 

algorithm, some particles are a swarm and each individual of the swarm. Particles 

adjust their position as the best position in the swarm, drawing on previous experience. 

Other particles update their movements according to the particle currently in the 

swarm's best place. This process is repeated until the goal is reached [16]. The 

proposed study uses longitude, latitude, and depth-based position vectors. It was 

concluded that with the Quadratic and standard PSO models, which are mathematically 

different from each other, PSO could calculate the epicenter location based on the 

inverse problem. Moreover, when comparing the two methods, it has been observed 

that it takes less time for QPSO to converge with better accuracy. 

In a similar study carried out in the same years, Ant Colony Optimization 

(ACO) algorithm was preferred for earthquake prediction. ACO, a probability-based 

approach, provides the least computational overhead to find the optimum path [17]. In 

this study, the preferred ACO was compared with the results of the k-means clustering 

algorithm. Accordingly, it was observed that the ACO algorithm is a more effective 

method for future earthquake prediction studies [18]. 

Genetic Algorithm (GA), which has been applied to seismic data in the past to 

solve NP-hard problems, develops a permutation-based optimization method. It has 

been described in the literature as a powerful evolutionary strategy inspired by the 

fundamental principles of the biological universe [19]. After defining the variable type 

and the problem, the fitness to be optimized is defined. While solving the problem, 

GA is preferred if the number of parameters affecting the problem is high since it does 

not local but global research. On seismic data, GA is selected because it can manage 

uncertain and incomplete information. Today, many simple GA (SGA) variations are 

used in different experiments [20-22]. 
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1.2.2 Artificial Neural Networks 

Artificial Neural Networks (ANN) is the mathematical modeling of the human 

brain's learning process. ANN realizes the biological structure of neural networks in 

the brain, such as learning, creating new information, remembering, and discovering 

[23]. In recent years, different ANN algorithms have been used for various 

seismological tasks such as classifying events such as earthquakes or noise, phase 

selection [24], or time estimation. The methods used to accomplish these tasks range 

from machine learning algorithms [25] to Convolutional Neural Networks (CNN) [24] 

or Recurrent Neural Networks (RNN) [26]. 

Asim et al. implemented the earthquake prediction problem for different 

magnitudes with different machine learning algorithms [27-29]. In their first study 

(2017) [27], the problem was considered a binary classification in the Hindukush 

region. By creating a combination of Pattern Recognition Neural Network (PRNN) 

[30], RNN, Random Forest [31], and Linear Programming Boosting (LPBoost) [32] 

algorithms, earthquakes with earthquake magnitudes greater than 5.5 were predicted 

with seismicity indicators. 

In another study [28], in which Pakistan's earthquake data were used, the 

combination of GP [33] and AdaBoost [34] algorithms were used while predicting 

earthquakes magnitude greater than 5. Before this article, this combination had not 

been used in earthquake prediction problems before. Another innovation of the 

approach is the simultaneous use and calculation method of seismicity indicators, 

based on the idea of gaining maximum information about the geological features of 

the observed regions (rather than selecting parameters separately for each area). 

Another study [29], it was aimed to predict earthquakes with a magnitude of at least 5, 

within the next 15 days, with a combination of different machine learning algorithms. 

In each step, the algorithm uses the information obtained by learning the previous one. 

ANN models have also been used to predict the seismic response of structures 

and to understand damage conditions. In a study [35], ANN model designed to detect 

seismic damage of building structures was first trained with undamaged data, then 

trained with data from the damaged state, and became the reference to measure 
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structural damage with the change in the level of estimation error between the two 

states. 

As the intensity of the earthquake increases, the damage to people and the 

environment increases. Most studies have predicted earthquakes with earthquake 

magnitudes above a particular value (threshold). These studies vary the basis of the 

architectures which they use. For example, which was considered a classification 

problem in [36], seismicity indicators were used as input values and fed into the 

Recursive Neural Network [37]. The proposed methods are used to predict the 

magnitude of the largest earthquake (within 0.5) in a predefined region in the next 

month. Again by Panakkat and Adeli [38], this problem was realized with Probabilistic 

Neural Network (PNN) [39], and it was concluded that RNN is effective in predicting 

large earthquakes and PNN is more effective in small and moderate earthquakes. The 

eight seismicity indicator sets proposed by Panakkat and Adeli have been used in 

various studies by researchers from all over the world. 

In some studies, the magnitude range was determined, and the PNN algorithm 

was used to predict earthquakes in that magnitude range [40]. A probability model for 

future earthquakes is constructed using a PNN approach. Probability is calculated for 

next 5 days for the earthquakes that happen below the threshold value of the magnitude 

and larger earthquakes that happen more than 5 day time in fixed interval [41]. 

Similarly, the ANN structure is used to calculate this in Chile region. Another study 

using artificial neural networks [42] aimed to predict the start times of earthquakes 

with earthquake magnitudes greater than 6. 

In earthquake magnitude estimation studies [27, 43, 44], which are seen as a 

binary classification problem, different inputs and architectures/structures are used. In 

the approaches, we can observe that the input values are mostly seismicity indicators. 

There are also studies where the image (256x256) which the former using 12 physics-

based features, and each geographic cell of a seismicity map is used as the input value 

in the predictions made according to the earthquake magnitude. Larger earthquake 

magnitude can cause thousands of death and economic loss. In the study [43], which 

is proposed to prevent losses and treated as a binary problem, if the magnitude of the 
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largest earthquake in the next 30 days is six or greater, it is marked with "1". Likewise, 

negative samples are marked with "0".  

Another area of study is prediction of aftershocks after an earthquake. 

Aftershock prediction is also considered a binary classification problem [44]. This 

classification was made by determining the probability of containing or not 

aftershocks. Formulated as a large-scale binary classification problem to correctly 

classify every 5 km x 5 km x 5 km grid cell in the volume around each main shock, 

using 75% of the 130,000 data as training and 25% as testing. 

A fault detection study was conducted with 256x256 images solved with U-

Net. Here, fault detection is performed pixel by pixel [45] with the semantic 

segmentation problem [46]. Earthquake prediction, which has not been handled only 

as a classification problem, has been processed with the Generalized Linear Model 

(GLM) algorithm [47] as a regression problem in order to predict the magnitudes of 

earthquake events in the next seven days using seismicity indicators [48]. Similar to 

this thesis, the Supervised Radial Basis Function (RBF) [49] network and the ANFIS 

[50] model, made by Zamani et al. [51] in 2012, were applied because they showed 

effectiveness in classification and prediction problems. The results of this study 

showed that RBF neural networks and ANFIS models could be suitable tools for the 

accurate prediction of the epicentral area as well as for the time of occurrence of strong 

earthquakes in active seismogenic places. 

There are two different output values in the study with RNN in 2009 [52] to 

predict the location and time of medium and large-scale future earthquakes and seismic 

indicators are used as inputs. The first is 1 or 0, indicating that an earthquake of a 

certain threshold magnitude has occurred or not, and the second is a prediction of the 

epicenter location and time of occurrence. In the case of epicenter location prediction, 

the prediction error is calculated as the geographic distance between the recorded 

location and the predicted location of earthquakes in the test dataset. The best result 

was obtained by using recurrent neural network yielded which an error 63 km in 

distance. 

As stated earlier, earthquakes occur due to the energy released by the sudden 

movement along faults. As the faults move, energy is released in the form of heat and 
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seismic. The seismic waves are divided into two: body and surface waves. P (primary) 

and S (secondary) waves, which are body waves, are waves that occur in the earth's 

crust. P waves are the first waves to reach the earthquake stations. S waves arrive later, 

but they are the waves that create a destructive effect (mainshock) [53]. The need for 

accurate earthquake locations to distinguish between different competing physical 

processes in the post-seismic period required even more accurate estimates of the 

arrival time of the seismic phase. In order to increase the accuracy of the earthquake 

location, seismic phase arrival time are marked a part of the study. Also, as the number 

of data increased, manual methods to find P and S waves became insufficient due to 

the required time and resource investment. To overcome this, Woollam et al. [54] 

carried out a study in 2019 in which they predicted P and S waves and noise with 

convolutional neural network [55] architecture. As a result of this study, the P wave 

improved by 0.23 seconds and the S wave by 0.336 seconds compared to manual 

methods. In another study carried out for the prediction of the arrival time of S waves 

[56], 3-channel accelerometer data was used as the input value. Here, a methodology 

is presented with Long Short-Term Memory (LSTM) [57] to classify earthquake 

vibrations from near source or far source within one second of P wave detection. In 

another study, the CNN + RNN structure was used, this time using 3-channel 

accelerometer data from the dataset in which P and S waves were labeled. In this study, 

the detection problem is formulated as a sequence learning where inputs from a time 

series are mapped to a time series probability outputs, and separate predicts are made 

for each sample [58]. 

A different study was carried out to determine whether the recorded from 

smartphone accelerometer signals belong to humans or earthquakes. This study 

considers recognizing human activities and earthquake vibration a time series 

forecasting problem. The smartphone accelerometer records the acceleration caused 

by vibrations in a time series format. The data consists of acceleration value and 

timestamp in three axes (X, Y, and Z). Each set of acceleration values is labeled with 

the vibration source, e.g., standing, walking, running, upstairs, and downstairs. These 

labeled examples are then used as training input for the RNN - LSTM network [59]. 
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1.3 RESEARCH QUESTIONS 

In this thesis, it is aimed to answer the following scientific research questions:  

• Is a spectrogram-based false color representation suitable for 

earthquake signal processing in convolutional networks? 

• Can earthquake epicenter coordinate be found using accelerometer data 

like velocity data? 

• Is it possible to find earthquake epicenter locations using accelerogram 

data recorded from single strong motion station? 
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CHAPTER II 

 

DATA COLLECTION 

 

2.1 ACCELEROGRAM RECORDS 

When an earthquake occurs, seismic waves radiating from the epicenter 

produce vibrations on the ground, bedrock, or soft ground layers at various periods. 

This period varies according to the earthquake's magnitude, location, distance, and site 

properties [60]. It measures the movements in three perpendicular directions, two 

horizontally and one vertically, utilizing a three-axis accelerometer at an earthquake 

station. These movements are recorded from the beginning to the end of the 

earthquake. The most basic method to study strong ground motion is to analyze 

accelerometer records. 

The earthquake accelerometer data used in this study which was recorded in 

Turkey can be accessed publicly on the website of the T.C. Disaster, and Emergency 

Management Presidency Ministry of Internal Affairs (AFAD) [61], Earthquake 

Department, and the server shared on the Boğaziçi University (BOUN) Kandilli 

Observatory and Earthquake Research Institute (KOERI) Regional Earthquake-

Tsunami Monitoring and Evaluation Center (BDTIM) website [62]. In these records, 

it is possible to access all necessary information about the occurrence of an earthquake, 

including the location, time, epicenter coordinate, depth, magnitude, station number 

recording the earthquake, the coordinate of that station, and acceleration records 

recorded in all directions. 

In Table 2.1, the records of a sample earthquake obtained from the AFAD 

website and the information about the station are given. In each record, the size of the 

sampled three-channel accelerometer data differs depending on the time between the 

start and end moments of the respective earthquake event. 
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Table 2.1: Example Earthquake Record from AFAD Dataset 

Place MUGLA MILAS 2 DERINCE DAM 

Earthquake Date 2017/08/14 07:15:07 

Epicenter Coordinates 37.11760N-27.70510E 

Earthquake Depth (km) 6.97 

Earthquake Magnitude 3.1 

Station ID 4822 

Station Coordinates 37.44170N-27.64600E 

Station Altitude (m) 128 

Record Type GeoSig gmsplus 

Record Serial No 101468 

Record Time 14/08/2017 07:15:04.000000 

Number of Data 8490 

Sampling Interval (sec) 0.01 

RAW PGA VALUES (gal) 

(N-S) 0.514297  

(E-W) 0.931399  

(U-D) 1.274957                                           

Accelerogram Records 

(N-S)             (E-W)             (U-D) 

0.001559       0.001819        -0.008576 

…                  …                    … 

 

Figure 2.1 shows the seismic wave state of the accelerometer records of a 

sample earthquake obtained from AFAD dataset. Seismic waves radiate in all 

directions away from the source in different types due to the breaking and faulting that 

creates the earthquake. Body waves, one of the waves released during an earthquake, 

spread from the source to all directions and move within the ground. Body waves, are 

divided into two Pressure (or Primary) and Shear (or Secondary) waves, depending on 

their speed of movement on the ground, their movement waveform and the order in 

which they appear [63]. The section gives more detailed information and analysis of 

the dataset used. 
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Figure 2.1: Arrival times of P and S waves on the east-west component and seismic wave 

representation of sample accelerometer data from the three-component recording made at the 

RBG earthquake recording station of  AFAD of the aftershock of the M=5.5 magnitude 

Manisa earthquake on 20 March 2019. As can be seen from the figure, the P wave is the first 

to arrive at the surface during an earthquake. 

 

2.2 DATASET 

 

2.2.1 AFAD Records 

In the dataset published by AFAD open to the public, there are 42858 text-

formatted records between 1980 and 2018. One of the aims of this thesis is to propose 

a spectrogram-based earthquake signal representation suitable for use in convolutional 

networks. This proposed representation is planned to be used in the estimation of the 

epicenter with accelerometer records obtained from a single station in the continuation 

of this thesis. Therefore, earthquakes with close epicenters were clustered using the K-

medoids clustering method [64]. The clustered form of the station and epicenter 

locations of these records by the K-medoids method is shown on the maps in the Figure 

2.2. 
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Figure 2.2: Turkey earthquake events recorded by AFAD between the years 1980 and 2018 

were clustered in 10 groups using the K-medoids method according to their epicenter 

coordinates and shown on the map, a: 1980-2005 years, b: 2005-2010 years, c: 2010-2015 

years, d: 2015-2018 years. 
 

The fact that two earthquakes are close to each other does not always indicate 

that they are similar in geological terms. However, accelerometer data recorded by a 

station as a result of an earthquake event is undoubtedly highly correlated with the 

earthquake's location [65]. Therefore, the purpose of this statistical clustering is to first 

observe, through examination, that earthquakes with similar epicenters create similar 

signals and then to enable this representation to predict the epicenter from a single 

station via convolutional networks. Thus, instead of approaching the problem with the 

whole dataset, a region-by-region approach was performed. 

At the beginning of the study, earthquakes with relatively close epicenter 

coordinates were clustered with the K-medoids method. 

In K-medoids clustering, which is based on finding k representative objects 

representing various structural features of the data [66], the representative object is 

called the medoid and is the closest point to the center of the cluster. When dividing a 

group of objects into k clusters, the main goal is to find clusters where objects that are 
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very similar to each other coexist and objects from different clusters are unique from 

each other. Kaufman and Rousseeuw developed the most widely used K-medoids 

algorithm in 1987 [67]. The representative object is the most central object of the set, 

which minimizes the average distance from other objects. Therefore, this division 

method is applied based on the logic of reducing the sum of the uniqueness between 

each object and its reference point. 

Since the goal is to find k objects, it is called the K-medoids method. After k 

representative objects are detected, k clusters are created by assigning each object to 

the closest representative. As shown in Figure 2.3, each representative object is 

replaced with a non-representative object in the following steps, shifting until the 

quality of the clustering is improved. This quality is evaluated using the average 

uniqueness cost function between the object and the representative object of the cluster 

it belongs to [68]. 

 

 
Figure 2.3: K-medoids Clustering [69] 

 

Of the 42858 aforementioned records, 28365 records were recorded after 2015. 

In this study, records after 2015 were used because they are the majority of all records 

and because they were recorded in higher quality. For clustering purposes, a 

28365x28365 geographic distance matrix (cost function) was created using the 

geographic locations of the epicenters of the earthquakes that occurred between the 

years 2015 and 2018. This distance matrix was fed into the K-medoids algorithm, and 
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the related earthquakes were divided into ten different clusters. These clusters (as 

numbers) are shown in Figure 2.2 (d). 

 

2.2.2 Kandilli Observatory and Earthquake Research Institute Records 

The proposed trainings were made with the data shared publicly by AFAD. 

After these trainings, the publicly shared data by the Kandilli Observatory were 

considered to increase the amount of the dataset. The data shared with the public by 

AFAD and Kandilli Observatory were recorded by stations in different regions. Both 

institutions have their own strong motion stations. 

In the dataset published by the Kandilli Observatory, there are 36252 

accelerometer records in SAC format between 2011 and 2022. The sample seismic 

wave of these records and the three-component record of the AKS earthquake 

recording station of the M=5.2 magnitude Çanakkale earthquake on February 7, 2017, 

are given in Figure 2.4. 

 

 
Figure 2.4: Three-component recording seismic wave display of the AKS earthquake 

recording station of the M=5.2 magnitude Çanakkale earthquake on 7 February 2017. 

 

The sample seismic wave shown in Figure 2.4 is the arrival times and wave 

appearance properties of P and S waves on the three-component recording of the 

aftershock of the M=5.2 Çanakkale earthquake in 2017 at the AKS earthquake 
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recording station. The S-wave amplitude ratio of the north-south component is two 

times greater than the amplitude in the vertical.  

As applied to the AFAD data set, the accelerometer records of the Kandilli 

Observatory BDTIM, the station, and epicenter positions coordinates by the K-

medoids method are shown on the maps in Figure 2.5. 

 

 
Figure 2.5: Turkey earthquake events recorded between the years 2011 and 2022 belonging 

to the Kandilli Observatory were clustered in 10 groups using the k-medoids method 

according to their epicenters and shown on the map, a: 2011-2016 years, b: 2017-2022 years. 

 

At the beginning of the study, earthquakes with epicenters close to each other 

were clustered with the K-medoids [64] method. 23890 records belong after 2017. 

Recordings after 2017 were used because they were the majority of all records and 

because they were recorded in higher quality. For clustering purposes, a 23890x23890 

geographic distance matrix (cost function) was created using the geographic locations 

of the epicenters of the earthquakes that took place between the years 2017-2022. This 

distance matrix was fed into the K-medoids algorithm, and the related earthquakes 

were divided into ten different clusters. These clusters (as numbers) are shown in 

Figure 2.5. 

In this thesis, a dataset was created from two different databases recorded from 

different stations in Turkey. With these accelerometer data belonging to AFAD and 

Kandilli Observatory, clustering was done according to different years. AFAD dataset 

was used in the mentioned experiments. In the TÜBİTAK project, which is a 

continuation of the study, experiments will also be carried out with Kandilli 

Observatory data. 
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CHAPTER III 

 

METHODOLOGY 

 

3.1 PROBLEM SETTING 

When earthquakes occur, features of that earthquake such as recorded 

accelerometer data, station coordinates, magnitude, and depth are recorded. The 

epicenter coordinate is one of them. The epicenter is the point on the place closest to 

the focus point [70]. The epicenter is also the point where the earthquake is most 

damaged or felt most strongly. This study aims to process epicenters in convolutional 

networks with accelerometer data recorded from a single station according to the 

information obtained from earthquake records. 

In this study, a spectrogram-based false-color representation of the 

accelerometer records was made, and its usability was demonstrated for human 

examination and application in convolutional networks. 

Earthquake records were taken from the public catalogs of AFAD, which 

included 42858 records; these records took place between 1990 and 2018 at the 

beginning of the study. Considering the quality of the records and the number of data 

among these records, a geographic distance matrix of 28365x28365 was created with 

28365 records between the years 2015-2018, and clustering of 10 sets was made using 

the K-medoids clustering method to observe that earthquakes with similar epicenters 

create similar signals. 

As a result of the clustering, the 3-channel accelerometer data of cluster 7, 

which contains 2133 records, was transferred to a two-dimensional time/frequency 

representation. The proposed spectrogram-based false color representation is given in 

Figure 3.1.  
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Figure 3.1: The proposed spectrogram-based false color representation 

 

A spectrogram is a visual representation of the frequency spectrum of a signal 

as it changes with time. The common format of spectrograms is graphics with two 

geometric dimensions, with one axis representing time and the other axis frequency. 

The third axis contains the amplitude of a particular frequency at a specific time. This 

is characterized by the intensity or color of each point in the image [71]. 

The aim is to benefit human review by visualizing the records and primarily 

for feature analysis for deep learning methods. These created spectrograms were fed 

into the proposed CNN + LSTM network. The results demonstrate the efficient and 

reliable performance of the proposed model. 

 

3.2 SUPERVISED LEARNING 

In this case, the epicenter prediction is modeled as a supervised learning 

regression problem that includes earthquake recordings with a time series as input. 

Regression is a familiar supervised learning approach that involves the 

prediction of a continuous label. Supervised learning is used after the model is trained 

to make predictions on test input data that the model has not seen before and without 

target information for test data. These problems can be any data type such as time 

series, image, or have any size and any number of input variables [72]. 

 

3.3 ACCELEROGRAM DATA IN THE SPECTRAL DOMAIN 

Accelerometer records are multidimensional time series signals. Therefore, 

for the representation of such data, it is sufficient to refer to the time signal 

representations in the literature [73]. This study aims to make an epicenter prediction 
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from a single station through convolutional networks with these visuals transferred 

from the 3-channel accelerometer data to be visualized to a two-dimensional 

time/frequency representation. 

It is conceivable that visualizing a signal with a method such as false color 

would be of no benefit other than human examination. Because the data called "signal" 

is just an input for a learning system, it has been seen that the visualizable signal can 

be helpful in both human analysis and feature analysis, which can be applied to some 

deep learning methods [74]. Convolutional encoders are trained to extract features 

from 2D-3D inputs in general. That's why converting the signal obtained from the 

accelerometer to false color spectrogram transfers the problem from time series 

prediction to a 2D regression problem. 2D regression problems are more suitable for 

CNNs than time series prediction. 

The scope of this study is to make the multi-channel accelerometer data 2D 

through spectrograms, to express different channels with false color, to show the parts 

of the signal at different time intervals as fixed 2D, false picture parts, and with these 

images transferred to a two-dimensional time/frequency display. It can be summarized 

as a single-station epicenter prediction via convolutional networks. 

Records from different earthquakes have different durations. For the data 

used in this study, the duration of the earthquakes between 2015 and 2018 observed to 

have durations ranging from 5 seconds to 300 seconds. Therefore, in this thesis, while 

the earthquake signal was converted to a spectrogram, each earthquake signal was 

divided into 5-second segments. 

The Fourier transform was used to create the spectrograms. The Fourier 

transform is conceptually similar to the Taylor Series, which is a set of polynomials 

whose function is added together [75]. 

The Fourier Transform transforms a time function, into a frequency function. 

It uses Discrete Fourier Transform (DFT) to convert from time domain to frequency 

domain: 

 

 𝐹(𝜔) =  ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
+∞

−∞

                                                                                           (3.1)  
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When using the Inverse Fourier Transform for frequency domain to time 

domain conversion: 

 

 𝑓(𝑡) =  
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔 

+∞

−∞

                                                                                          (3.2)  

 

Short-Time Fourier Transform (STFT), often visualized as a spectrogram, 

ensures a level of consistency time domain and frequency domain and is used to 

analyze time-varying signals. As the resolution in the frequency domain increases, the 

resolution in the time domain decreases. 

STFT is repeatedly perform DFT to the overlapping window parts. The 

frequency measurement becomes more precise as the time window size controls the 

relationship between temporal and frequency resolution increases. The smaller the 

time window, the less accurate the frequency measurement. 

STFT is defined as: 

 

     𝐹𝑚(𝜔) =  ∑ 𝑓(𝑛)𝜔(𝑛 − 𝑚)𝑒−𝑗𝜔𝑛 

∞

𝑛=∞

                                                                                 (3.3)  

 

where: 

              𝑓(𝑛) = 𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑛 

              𝜔(𝑛) = 𝑊𝑖𝑛𝑑𝑜𝑤 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

              𝐹𝑚(𝜔) = 𝐷𝑇𝐹𝑇 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 

 

Therefore, each spectrogram is 5 seconds long, but each earthquake consists 

of a different number of 5-second long spectrograms depending on the length of its 

accelerometer data. While applying the Short-Time Fourier Transform, the one-second 

window size and 50% overlap values were used as parameters. This method divides 

each earthquake into equal-length segments and applies the Fourier Transform 

separately. 
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Since the sampling interval of all the data obtained after 2015 in the AFAD 

dataset is 0.01 seconds, one-second windows carry 100 sample numbers. Therefore, 

the highest frequency value that the spectrograms could sample corresponded to 50Hz 

vibrations. 

The suggested earthquake signal representation is given in Figure 3.2. Firstly, 

spectrograms of the records taken from three vertically positioned accelerometers for 

this earthquake event were created separately, using the above parameters. Then, these 

two-dimensional three spectrogram channels (N-S, E-W, U-D, respectively) were 

placed in 3 color channels of an RGB picture, and the representation in Figure 3.2 was 

obtained. Since such an earthquake event lasts longer than 30 seconds, there are six 

pieces of 5 seconds. When these parts are combined, a signal representative of the 

whole earthquake is obtained. 

The illustration in Figure 3.2 facilitates human study and contains invaluable 

clues. For example, the first thing to notice is that in the first seconds of the earthquake, 

there is a movement between 10-20 Hz at right angles to the ground surface (vertical 

axis, blue channel). Then the earthquake intensified in all directions. This denotation 

with false color gives information about the order of the earthquake depending on the 

station coordinate. It, therefore, includes appropriate semantic features for a machine 

learning system. 

 

Figure 3.2: 5-second size fragmented (left) and combined (right) images of the proposed 

spectrogram-based false color representation are shown. 
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For the data set of Kandilli Observatory, when the duration of the earthquakes 

between the years 2017 and 2022 was examined, it was observed that they were 

dispersed in a wide range from 20 seconds to 900 seconds. 

For the data set shared by the Kandilli Observatory, each earthquake signal 

was used in 5-second segments while the earthquake signal was converted into a 

spectrogram. Figure 3.3 shows that three two-dimensional spectrogram channels (N-

S, E-W, and U-D, respectively) are placed in 3 color channels of an RGB image. 

 

 
Figure 3.3: Conversion of Waveform to the proposed spectrogram-based false color 

representation 

 

The earthquake signal representation suggested in Figure 3.3 is given with the 

data set of the Kandilli Observatory. Since this earthquake event lasted more than 300 

seconds, 61 fragments of 5 seconds have occurred. When these parts are combined, a 

signal representative of the whole earthquake is obtained. The false color 

representation applied to the AFAD data was also applied to the Kandilli Observatory 

BDTİM dataset. 

 

3.3.1 Convolutional Neural Network 

Convolutional Neural Network (CNN) is a deep learning algorithm that uses 

images as input but is also successful in long-time series prediction. This algorithm, 

which captures the features in the inputs with different operations, consists of different 

layers. Various processes are applied to the input passing through the convolutional, 

pooling, and fully connected layers, which is made to enter the deep learning model. 
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The convolutional layer considers the spatial correlation between convolution 

filters and input variables. Convolution filters are a set of weight matrices that perform 

the convolution operation shown in equation 3.4 across each pixel in an image. 

 

 𝑦(𝑡) = 𝑥(𝑡)⦻ℎ(𝑡) =  ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏 
+∞

−∞

                                                                       (3.4)  

 

Where 𝑥(𝑡) and ℎ(𝑡) continuous time signals. 

As shared in Equation 3.4, the given filter size is slid over the given image. 

As a result, a new matrix feature map is created. The parameters learned in this 

proposed algorithm are the values in these filters. The model constantly updates these 

values and begins to extract features even better. Apart from this, there are other filters 

used [76]. 

The stride value is determined by how many pixels the filter floating on the 

image will shift on the image. For example, in a convolution operation with a stride 

value of one, this operation is done by skipping only one pixel. As the stride value 

increases, the number of skipped pixels will increase so that the resulting feature map 

will be smaller. 

After applying the filter to the image, the image size becomes smaller than 

the original image size. In the padding process used to prevent this, zeros are added to 

all four sides of the image as a frame around the padding value. The padding value can 

be increased according to the filter size so that the image to be obtained is the desired 

size. 

Activation functions are needed to teach complex world data such as images 

and sounds to artificial neural networks. The activation process is a non-linear 

transformation over the input signal. The output of this transformation is sent as input 

to the next neuron layer. ReLU (Rectified Linear Unit), one of the commonly used 

activation functions, was used in this study. ReLU is a practical function in a multilayer 

neural network so that some neurons in the network are active and activation has a 

sparse load. The equation of ReLU makes the network work faster because it is the 
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simple max function between given input and zero. ReLU activation formula is given 

in 3.5. 

 

 𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥)                                                                                                               (3.5)  

 

Nonlinear functions such as ReLU are preferred to prevent the model from 

learning negative values or not being able to grasp some features due to these negative 

values. 

Another layer used for downsampling, such as the Convolution layer, is the 

pooling layer. In this layer, where no learning process takes place, the aim is to reduce 

the size based on width and height by keeping the number of channels of the input 

matrix constant. This reduces the processing power required and focuses on more 

essential features by ignoring unnecessary features. 

This kernel again slides over the image in the pooling layer, which has a 

kernel (filter) as in the convolutional layer. But instead of the convolutional operation, 

it applies the determined pooling technique this time. MaxPooling layer is preferred in 

this study; a new image matrix with a reduced size is created by choosing the maximum 

value among the pixel values at the point where the filter crosses over the image 

matrix. 

While all the operations have done so far are performed on matrices, single 

plane vectors are given as input to the Fully Connected (FC) layer, where learning 

takes place. Flatten layers are used for single plane vector transformation with the 

matrix. It is given to FCs as input, which becomes a single plane vector, and the 

learning process begins. 

Normalization is a preprocessing technique used to standardize data. Batch 

Normalization, on the other hand, is a normalization operation between the layers of a 

neural network. It normalizes in mini-batches, not the whole data. It facilitates learning 

by allowing to accelerate training and use higher learning rates. It is usually located 

between the convolution layer and the activation layer [77]. 
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The dropout layer is used to prevent the model from being overfitted [78]. It 

allows neurons to be ignored during the training phase of certain randomly selected 

neuron sets. This provides an increase in performance [79]. 

Finally, another layer used in this study, the LSTM (Long Short-Term 

Memory) layer, is a particular type of artificial RNN (Recurrent Neural Network) 

especially suitable for learning long-term dependencies. LSTMs were born as a 

solution to the vanishing gradient problem experienced in RNNs. Vanishing gradient 

is an unavoidable problem for RNN due to its architecture, where weights disappear 

with back-propagation. LSTMs have internal mechanisms called gates that can 

regulate the flow of information.  

As the cell state goes on its journey, information get's added or removed to 

the cell state via gates. This LSTM concept is shown in Figure 3.4. LSTM uses these 

mechanisms to keep or forget information (forget). Instead of hidden states in RNN, 

LSTMs have cell states. Cell states are related to gates in LSTM. Gates and 

information are added or removed as the cell state continues its journey. 

 

 
Figure 3.4: Long-Short Term Memory (LSTM) Architecture [80]. 

 

Cell states work as long-term memory, while hidden states work as short-term 

memory. The tanh and sigmoid functions found in the LSTM gates are, respectively 

equations 3.6 and 3.7: 
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  −1 < 𝑡𝑎𝑛ℎ (𝑥) <  +1                                                                                             (3.6)  

  0 ≤ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) < +1                                                                                            (3.7)  

 

The sigmoid function is used to update or forget. Any number multiplied by 

0 will cause values to be lost or "forgotten" because it is 0. On the other hand, any 

number multiplied by 1 remains the same, or "kept," because it is itself. 

The forget gate decides what information is forgotten or kept. Information 

from the previous hidden state and information from the current input is passed 

through the sigmoid function. The closer the values are to 0, the closer they are to 

forget, and the closer to 1 they are to keep. Gate outputs are vectorial, not scalar. That's 

why cell state updates are element-wise. 

The input gate is used to update the cell state. Passing the previous hidden 

state and current input to the sigmoid function to decide which values to update, the 

input gate also passes the hidden state and current input to the tanh function, which 

does the overwhelming task of arranging the values between -1 and 1 to organize the 

network. 

Then the tanh output is multiplied by the sigmoid output, which decides 

which of the information from the tanh output will be kept in the sigmoid output. 

The cell state forget vector is multiplied pointwise to calculate the cell state. 

If this multiplication is done with values close to 0, it may decrease the values in the 

cell state. Then, pointwise addition is made, which updates the cell state to the new 

values that the neural network finds relevant to the output from the input gate. 

The output gate decides what the next hidden state will be. Hidden states 

containing information about previous inputs are also used for prediction. In the output 

gate, the hidden state and current input first pass through a sigmoid function. Then the 

newly updated cell state passes through the tanh function. The tanh output is multiplied 

by the sigmoid output to decide what information the hidden state should carry. The 

result of this operation gives the new hidden state. The new cell state and the new 

hidden state are moved to the next time step. 

The proposed network within the scope of this study is shared in Figure 3.5. 
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Figure 3.5: Recommended CNN + LSTM Architecture 

 

The spectrogram with the highest energy of the 3-channel accelerometer (N, 

E, Z components) data is fed as input to this network structure. The station coordinate 
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and altitude information added to the formed high-level features are connected with 

fully connected layers. 

The station location is included in the network after the high-level features 

are created. At the same time, the time difference between the marked P and S waves 

is added here as a second input. The P wave is the first wave recorded by the station, 

followed by the S wave.  

After the spectrogram input comes to the convolutional blocks consisting of 

the convolutional layer, the activation layer, and the sampling layer, after the two 

inputs were combined and all the nodes were connected in the fully connected layers, 

the LSTM layer was added to the CNN network, and the learning and sequence data 

modeling was performed. RNN is used in related input sequence problems and can 

take inputs of different lengths. RNNs are designed to process sequential data such as 

seismograms. An earthquake recording is a time series signal. Signal length depends 

on several factors and are not the same for even the same earthquake recorded at 

different stations. High-level features consisting of full link layers are fed to LSTM. 

As the output, the epicenter coordinate and depth of the earthquake event were learned 

with a regression layer. 

 

3.3.2 Neural Network Architecture 

The first input of the neural network is the spectrogram, which represents the 

2-dimensional time-frequency information of the three-channel accelerometer data. 

The waveforms of the three-channel components (N, E, Z) of the accelerometer data 

were converted to spectrograms, as shown in Figure 3.5. Afterward, the station 

information of the related earthquake event, the height, and the time difference 

between the P and S waves were added to the network after the features were created. 

The convolutional network visualized in architectural Figure 3.5 can be divided into 

two parts: the concatenation layer up to the encoder, which extracts relevant 

information known as feature maps, and the full link layers and LSTM layer which 

acts as a regression to identify the event. 

Four convolutional blocks are used to extract features from the two-

dimensional spectrogram data. Spectrograms are fed into convolution layers to 
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generate feature maps. These features were used in the fully connected layer to learn 

only the resulting features before other inputs were added. Station information and 

other inputs, which have more understandable meanings, are fed after the resulting 

attributes. After combining two different inputs, earthquake spectrograms with time 

series problems were provided to the LSTM layer. It is then fed into its fully connected 

layers to perform the learning. While choosing the proposed architecture, the studies 

in the literature were taken as an example [24, 58, 81]. 

A 2d convolutional operation is described by: 

 

    𝑌 = 𝐵 +  ∑(𝑊 + 1)                                                                                              (3.8)  

 

where: 

             𝑌 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑇𝑎𝑟𝑔𝑒𝑡 

             𝐵 = 𝐵𝑖𝑎𝑠 

             𝑊 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 

              𝐼 = 𝐼𝑛𝑝𝑢𝑡 𝐷𝑎𝑡𝑎 

 

The number of tensor output sizes for each layer is given by: 

 

    𝑂 =
𝐼 − 𝐾 + 2𝑃

𝑆
+ 1                                                                                                            (3.9)  

 

where: 

              𝑂 = 𝑆𝑖𝑧𝑒 (𝑤𝑖𝑑𝑡ℎ)𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 

               𝐼 = 𝑆𝑖𝑧𝑒 (𝑤𝑖𝑑𝑡ℎ)𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 

              𝐾 = 𝑆𝑖𝑧𝑒 (𝑤𝑖𝑑𝑡ℎ)𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝐶𝑜𝑛𝑣. 𝐿𝑎𝑦𝑒𝑟 

              𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙𝑠 

              𝑆 = 𝑆𝑡𝑟𝑖𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

              𝑃 = 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 

 

The number of parameters for each conv layer is computed by: 
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     𝑊𝑐 =  𝐾2 ∗ 𝐶 ∗ 𝑁,   𝐵𝑐 = 𝑁,   𝑃𝑐 =  𝑊𝑐 + 𝐵𝑐                                                                       (3.10)  

 

where: 

              𝑊𝑐 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 

              𝐵𝑐 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑎𝑠 

              𝑃𝑐 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

              𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙𝑠 

              𝐾 = 𝑆𝑖𝑧𝑒 (𝑤𝑖𝑑𝑡ℎ)𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙𝑠 

              𝐶 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 

 

The number of tensor output sizes for MaxPool layer is given by: 

 

    𝑂 =
𝐼 − 𝑃𝑠

𝑆
+ 1                                                                                                            (3.11)  

 

where: 

             𝑂 = 𝑆𝑖𝑧𝑒 (𝑤𝑖𝑑𝑡ℎ)𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 

              𝐼 = 𝑆𝑖𝑧𝑒 (𝑤𝑖𝑑𝑡ℎ)𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 

              𝑆 = 𝑆𝑡𝑟𝑖𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

              𝑃𝑠 = Pool size 

 

And the number of parameters of a fully connected layer to another fully 

connected layer is: 

 

     𝑊𝑓𝑓 =  𝐹−1 ∗ 𝐹,   𝐵𝑓𝑓 = 𝐹,   𝑃𝑓𝑓 =  𝑊𝑓𝑓 + 𝐵𝑓𝑓                                                       (3.12)  

 

where: 

              𝑊𝑓𝑓 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 

              𝐵𝑓𝑓 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑎𝑠 

              𝑃𝑓𝑓 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 
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              𝐹 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 

              𝐹−1 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐹𝐶 𝑙𝑎𝑦𝑒𝑟 

 

Rectified Linear Unit (ReLU) activation computes: 

 

     𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥 (0, 𝑥)                                                                                                       (3.13)  

 

The number of parameters of a LSTM layer is: 

 

     𝑊𝑓 =  (4 ∗ 𝐻) ∗ 𝐼−1,   𝑊𝑓 = (4 ∗ 𝐻) ∗ 𝐻,   𝐵𝑟 = (4 ∗ 𝐻)                                               (3.14)  

 

where: 

              𝑊𝑓 = 𝐼𝑛𝑝𝑢𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

              𝐵𝑟 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑎𝑠 

              𝑊𝑟 = 𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

              𝐻 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑢𝑛𝑖𝑡𝑠 

              𝐼−1 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑎𝑦𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 

 

A detailed example of the CNN + LSTM architecture used is given. The 

spectrogram of the 51x9x3 3-channel accelerometer data was converted into a column 

vector. The station coordinate (2x1), altitude, and the time difference between the P 

and S waves, marked in the earthquake records before, were added to the 1377x1x1 

input, respectively. These inputs are split into spectrograms for high-level feature 

extraction and other information added to the input containing more meaningful 

information. The mini-batch size is explained assuming inputs of size 500 and 

1381x1x1: 

1. The first convolution block takes 51x9x3 3-channel spectrograms as input 

and applies 256 filters of 7x3 size to them (stride = 1x1, padding = 3x1). It is followed 

by batch normalization and ReLU layer. The number of outputs for Conv2d is 

51x9x256, and there are 16,384 Conv2d parameters and 512 BatchNorm parameters. 
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2. The other convolution block applies 256 filters of size 7x3 (stride = 1x1, 

padding = 3x1). Next, 256 batch normalizations are applied. Finally, 2d max pooling 

is applied (kernel size = 3x1, stride = 2x1). The number of output for Conv2d is 

51x9x256, followed by MaxPool2d at 25x9x256. There are 1,376,512 Conv2d 

parameters and 512 BatchNorm parameters. 

3. The third convolution block applies 256 filters of size 7x3 (stride = 1x1, 

padding = 3x1). Next comes the ReLU and batch normalization layers. Batch 

normalization is a common normalization procedure for optimizing the performance 

of hidden layers. The Conv2d output is 25x9x256, and there are 1,376,512 Conv2d 

parameters and 512 BatchNorm parameters. 

4. The last convolution block applies 256 filters of size 4x3 (stride = 3x1, 

padding = 0). It is followed by batch normalization and ReLU layer. The Conv2d 

output is 8x7x256, and there are 786,688 parameters for Conv2D and 512 parameters 

for BatchNorm. 

Spectrograms are fed into the convolution block to generate the feature map. 

These high-level features are first provided to the fully connected layer to learn the 

spectrograms within themselves. 

5. The first fully connected layer has 1024 neurons. Dropout, a normalization 

technique, is applied during training. The dropout parameter is set to 50%. The linear 

operation output size is 1x1x1024 with 14,681,088 parameters. 

In the next step, the high-level features from the spectrograms and the station 

coordinate (2x1), altitude, and P-S wave difference inputs of the earthquake were 

combined with the concatenation layer. Before being introduced to the fully connected 

layer, the feature map and split-second inputs are flattened and combined horizontally. 

Before being introduced to fully connected layers, these combined feature maps and 

inputs were fed to the LSTM layer. Epicenter prediction is an RNN problem since each 

earthquake data has a different length and is ultimately a time series signal. 

6. The layer is LSTM layer with 1028 hidden states. There are 4,227,136 input 

and recurrent weights and 4112 biases for the LSTM layer.  

7. The second fully connected layer is connected with 1024 nodes to another 

layer. There are 1,053,696 parameters for a fully connected layer. 
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8. And the last fully connected layer is connected with three nodes. There are 

3,075 parameters for a fully connected layer. 

9. The output layer is a regression layer. As a result of the learning, 2x1 

epicenter values and 1x1 depth values of the earthquake were suggested as the output 

of this layer. 

The best results were obtained with this proposed architecture. In this study, 

different architectures are tested and discussed in the following sections.  

 

3.3.3 Training the Network 

In training a deep learning model, it is necessary to define a set of 

hyperparameters that significantly impact performance. These hyperparameters 

describe how to calculate loss from supervised data, how much this loss should affect 

the weights of the network, and how long the model will be trained. In this section, the 

definitions and justifications of the preferred hyper-parameters in the proposed 

network are discussed in detail. The hyperparameters used are taken as examples from 

the literature [82, 83, 84, 85]. Optimum hyperparameter results were obtained by trying 

different hyperparameters for the architecture and the problem. 

Hyper-parameters define how to calculate the error between the prediction of 

the model and the ground truth. Since the datasets used to train the models are too large 

to be stored in memory, they are divided into smaller groups called mini-batches, and 

the loss is calculated for each. In the proposed network, the mini-batch size was used 

as 500. Various batch sizes ranging from 8 to 1024 were tested within this network. 

Each mini-batch will update the weight values of the network with calculated loss 

values using stochastic gradient descent algorithms. Combining the smaller batch sizes 

with the stochastic gradient descent updates took longer because it couldn't use the 

existing GPU. Larger batch sizes have been found to take advantage of the GPU more 

efficiently and are faster. 

Since the approximation output is scalar values, the back-propagation error is 

calculated using the Root Mean Squared Error (RMSE) to train the model and update 

the weight. The equation of the RMSE function used is shared in 3.15. 
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     𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖)̂

2

𝑁

𝑖=1

                                                                                (3.15)  

 

where: 

              𝑦𝑖 = 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 

              𝑦𝑖̂ = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 

 

Another preferred function as a loss function is F1-score. The main reason for 

using the F1-score value is not to make an incorrect model selection in data sets that 

are not evenly distributed. In addition, F1-score was preferred since a measurement 

metric that would include not only False Negative or False Positive but also all error 

costs was needed. The equation of the F1-score function used is shared in 3.16. 

 

     𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                       (3.16)  

 

After the loss function selection, the optimization algorithm was decided. An 

optimization algorithm helps the neural network learn faster by determining how to 

update the weight of the network and changing the learning rate depending on the 

current state of the network. Some optimization algorithms use a component called 

Momentum to accumulate the computed gradient for past iterations of the network and 

update the weights of the network-based not only on the current loss but also on the 

direction of all previous gradients. 

Many optimization algorithms can be used to update the model state. Analysis 

can be done to select the appropriate optimizer for each model, but since this is a very 

comprehensive study and out of the scope of this study, all models in this project were 

evaluated with the same optimization algorithm, the Stochastic Gradient Descent 

Momentum (SGDM) optimizer. The SGD with momentum algorithm has become one 

of the most common optimizers for [86], where it can be used for various problems. 
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While the model is being trained, not all of the data is trained at the same 

time. As stated earlier, the datasets used to train the model are divided into mini-

batches because they are large. Thanks to these mini-batches, the data is included in 

the training in parts. After the first batch is trained, the model's performance is tested, 

and the weights are updated with back-propagation according to this success. This 

process is repeated at each training step to try to calculate the most appropriate weight 

values for the model. The epoch for each training step is the last parameter to choose. 

The models have been trained for 500 epochs maximum. Various epoch sizes 

from 10 to 2000 have been tested under this model. In addition, if the convergence 

point is reached before 500 epochs, the training process is stopped because it will not 

improve the model's performance much after this point. 

In Table 3.1, the hyperparameters defining the training process of the 

proposed model are summarized. After the training configuration was described, each 

model was analyzed and modified according to its performance results. 

 

Table 3.1: Training hyperparameters configuration 

Loss Function RMSE, F1-score 

Optimizer Sgdm with learning rate 3𝑒−7 

Max. Epoch 500 

 

The deep learning model generalizes any input within the model and can learn 

a number of features that allow it to analyze. In order to evaluate the generalization of 

the developed model, it is necessary to separate the dataset into separate groups with 

a set of examples from which the model will learn and another group with invisible 

examples. The cross-validation preferred in this study is a statistical (resampling) 

method used to evaluate the machine learning model's performance on data that has 

not been seen before, as objectively and accurately as possible and tests the results of 

the analysis on an independent data set. In this method, the dataset is randomly divided 

into three sets: the train set to be used to learn the patterns in the data, the validation 

set containing the samples that are not seen to be evaluated during the training process, 

i.e., for hyperparameter optimization, and the test set, which has the samples not 

included in any of the previous sets, to be used to evaluate the model after training. 
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In this study, a cross-validation algorithm was applied for the selected data 

set in each experiment. The percentage distribution of this method used for each data 

set is shown in Table 3.2. 

 

Table 3.2: Cross-Validation Distribution 

Train Set 70% 

Validation Set 15% 

Test Set 15% 

 

3.3.4 Transfer Learning 

Transfer learning is reusing features, weights, etc., obtained from a pre-

trained neural network model [87]. Normally, independent learning from scratch is 

performed for each problem. However, this method is preferred because it is possible 

and advantageous to use some information learned from some problems in other 

problems. The weights of the trained models contain much information about that 

problem and its solution. Therefore, fine-tuning using this information reduces the 

training time for the new model. 

Transfer learning allows working on smaller data sets. Creating large-scale 

datasets is time-consuming. Fine-tuning pre-trained models with transfer learning 

ensures high performance using fewer data. 

In the proposed CNN + LSTM model, the outputs of the pre-trained neural 

network (feature, weights, etc.) similar to the CNN model are used. Unlike this 

proposed model, this pre-trained model does not include P and S wave inputs. 

However, it had a higher number of data than the proposed model. In the pre-trained 

model, 2133 cluster 7 data shared in the Dataset section were used. In the proposed 

model, less amount of data is used since P and S waves marked in the data set are 

included as input. If transfer learning had not been performed with this pre-trained 

model, which also differs in hyperparameters, it was observed that the performance 

achieved in the proposed model would be much less. These results are shared in detail 

in the Experiments and Results section.
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CHAPTER IV 

 

EXPERIMENTAL RESULTS 

 

4.1 EXPERIMENT SETUP 

Several experiments were conducted with the ultimate goal of creating a 

generalized prediction model. Studies carried out in this context tested the performance 

of the methods proposed in chapter 3. This section presents these studies and reviews 

these results. 

At the beginning of these experiments, the data set publicly published by 

AFAD was used, as mentioned in chapter 2. In this data set, there are 42858 three-

component accelerometer records in text format between the years 1980 and 2018. 

This study aims to predict the epicenter coordinate of the earthquake using 

accelerometer data from earthquake records. To observe the relationship between these 

two components of earthquakes, firstly, K-medoids clustering was applied to all 

dataset according to the epicenter coordinate. Due to a large amount of data, this 

clustering process was updated to be 10 clusters in each clustering process between 

the years 1980-2005, 2005-2010, 2010-2015, and 2015-2018. This clustering process 

is shared in Figure 2.2. 

Since the beginning of the study, this problem has been seen as a time series 

prediction problem. In order to give the current data as an input to a convolutional 

neural network, first of all, time/frequency transformation was performed on these 3-

component accelerometer data, and it was turned into a spectrogram, which is a two-

dimensional false color representation of [65], which was proposed in another study. 

In Figure 4.1, a visualized version of an example accelerometer recording is 

given after spectrogram transformation. While the spectrogram conversion suggested 

in Figure 4.1 was realized, it went through the processes mentioned in section 3.3. 

After these processes, each 3-component accelerometer data had separate 

spectrograms of 5 seconds, equal to the earthquake length. In the visualization in 
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Figure 2.2 (a), each segment will belong to 5 seconds of the accelerometer recording. 

However, there will be a 5-second segment equal to the length of the relevant 

earthquake, and the visualization on the right shows the spectrogram transformation 

of the accelerometer data for the entire sample earthquake. 

 

Figure 4.1: Sample spectrogram display from the data set publicly published by AFAD. In 

the spectrogram-based false color representation of the Adıyaman earthquake with a 

magnitude of M=3.7 that took place on January 3, 2015, it is seen that the earthquake lasted 

longer than one minute. It is observed that the earthquake moves in all three axes after the 

first seconds. (a) 5-second segmental representation of the proposed spectrogram-based false 

color representation, (b) Combined representation of the proposed spectrogram-based false 

color representation. 
 

At this stage, the data were divided into three different groups, as mentioned 

in chapter 3. These are the training set containing 70% of the dataset, the 15% 

validation set, and the remaining 15% test set. 

The dataset created for the training was composed of subsets selected from 

250 to 19855 earthquake data. A series of training were made with the created subsets. 

Because the goal is to create a generalized prediction model, the model that requires 
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the least number of training examples is preferred over other models. Many 

experiments have been done for hyperparameter, architecture, and data preprocessing 

decisions. The best models were selected manually from the experimental results by 

examining different train scenarios for the model trained in each subset. 

 

4.1.1 Computational Setup 

All data collection and data processing processes of AFAD data are written 

in Matlab [88] programming language on a Windows 10 Pro desktop with Intel(R) 

Core(TM) i5-9400F 2.90GHz CPU and GeForce RTX 2060 SUPER GPU. Data 

collection and processing processes of Kandilli data are written in Matlab [88] 

programming language on a Windows 10 Pro desktop with Intel(R) Xeon(R) W-2255 

3.70GHz CPU and two RTX A5000. The training of CNN models, a cluster, and 

testing performance is done using a Windows 10 Pro desktop with Intel(R) Core(TM) 

i5-9400F 2.90GHz CPU. 

 

4.2 ANALYSIS AND DISCUSSION 

 

4.2.1 Relation on a Single Station 

A number of analyses were made in order to see the relationship between the 

data shared by AFAD with the public and the proposed problem. From the shared data, 

it has been observed that some information (altitude, magnitude etc) about the 

earthquake that took place in the records before 2015 is missing. Therefore, these 

analyses were made using data recorded starting from 2015 to 2018, as the recording 

quality was higher. First, it was observed that 28365 data were recorded from 820 

different station numbers. 

Figure 4.2 shows how many earthquake events are recorded in each of these 

820 stations. 

 



 

 
42 

 

 
Figure 4.2: The number of earthquake events in each of 820 different stations, recorded by 

AFAD's publicly released 28365 earthquake data between 2015 and 2018. 

 

In order to observe the relationship of the three-component accelerometer data 

with the epicenter coordinate, it was observed how many different epicenter 

coordinates contained earthquake events at each of the 820 other recording stations. 

There are several aspects to consider when performing this analysis. First of all, more 

than one earthquake event can be recorded at a station, as shown in Figure 4.2. In the 

analysis to be made, it was observed how many different epicenters a station recorded 

earthquakes. 

The clustering method was used to perform this analysis. Instead of the more 

preferred K-means clustering algorithm, the K-medoids algorithm was preferred, as 

mentioned in chapter 2. The reason why the K-means algorithm is not selected is that 

the distances to be used are not Euclidean distances. Instead, the distance between the 

epicenter coordinates of the bilateral earthquake events was calculated for each of the 

28365 data for 2015-2018, which were shared publicly by AFAD and included higher 

recording quality. Thus, a distance matrix of 28365x28365 was obtained, in which 

each earthquake had the epicenter coordinates of each earthquake. The calculated 

distance matrix is given as input to the K-medoids clustering algorithm. As a result, 

earthquake centers in the country were determined as much as the number of clustering 

to be done. Clustered form of 28365 data divided into ten different clusters with the 

K-medoids algorithm applied for this purpose is given in Figure 2.2 (d). 

The first experiments were carried out with 28365 aggregated data. These 

initial experiments were trained on a different network than the neural network model 

proposed in the section. Although there are a few differences between the two models, 

the differences in the model in which the first experiments took place; After the first 
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fully connected layer, there is a ReLU layer, there is no LSTM layer, and there are 

ReLU and dropout layers in the second fully connected layer. 

 

 
Figure 4.3: First Proposed Architecture 

 

Overfitted results were observed in the continuation of the experiments. The 

main reason for validation accuracy decreasing is seen as data, and the data do not 

allow us to generalize the problem sufficiently. In the experiments, 3-component 
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accelerometer data were converted into 2D false color representations, and one-second 

9-step signals starting from the highest energy point of these spectrograms were used. 

The non-overlapping region next to it was also taken to avoid the problem of shifting 

in the signal, but when the results obtained were examined, it was observed that these 

procedures were not sufficient. 

In order to prevent this situation, instead of taking a 9 area starting from the 

peak region of the earthquake, a total of 11 51x9x3 spectrograms were prepared; let's 

call the peak region of the earthquake n, starting from n-5 and fully overlapping up to 

n+5.  

 

 
Figure 4.4: Representation of proposed spectrogram 

 

It was observed that the localization error decreased by 50% when 28365 

earthquake events, which were fully overlapped, were trained with the neural network 

model proposed for the first experiment. Separate experiments were carried out for 

each cluster in parallel with data starting from the highest energy and with data 

augmentation. 

It has been observed that the performance is getting better with fully 

overlapping. According to the results obtained here, the dataset will be continued with 

fully overlapping or with maximum energy. The hyperparameters were updated, and 
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the model results, which were trained with maximum energy spectrograms and 200 

epochs, are given in Figure 4.5. It was observed that the localization error decreased 

by 49%, and the performance can be improved by fine-tuning with babysitting without 

playing with the dataset and without using fully overlapping. 

 

 
Figure 4.5: 200 epoch training results of 28365 data with maximum energy spectrograms. 

 

 
Figure 4.6: The result of 100 epoch training with LR drop rate of 28365 data with maximum 

energy spectrograms. 

 

In the train shared in Figure 4.5, it was seen that learning stopped at ten epochs. 

To change this, training have been made that decreased the LR hyperparameter given 
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at the beginning every five epochs. LR drop rate was applied in 100 epoch training in 

Figure 4.6. Thus, as LR drops, progress will be seen again; it is aimed to solve the 

learning stop problem seen in Figure 4.5. When Figure 4.5 and Figure 4.6 were 

compared, it was seen that the result did not change. In both pieces of training, learning 

work is completed in 10 epochs. The result is that we have data or network capacity-

based walls, not an LR or optimization-based wall, while learning all the data. 

With the decision taken here, no changes were made to the overall data. Figure 

4.8 shows train results of 2495 data belonging to cluster 9 with 2000 epochs. Compared 

to 28365 pieces of data between the years 2015-2018, much less data is encountered. 

However, it took a long time to learn. As mentioned in Figure 4.5 and Figure 4.6, while 

learning with 28365 data was completed in 10 epochs, the cluster-wise analysis 

showed that learning took up to 450 epochs in Figure 4.7. 

 

 
Figure 4.7: Training result of maximum energy spectrograms of 2495 cluster 9 with 2000 

epochs. 

 

In experiments with data from 2015-2018, learning stopped in ten epochs due 

to the complexity of the data and the lack of network capacity. However, cluster-wise 

experiment results were found to be more successful. The problem continued to be 

studied as a cluster problem. To verify this, experiments were repeated by selecting 

only stations close to the epicenter cluster center in cluster. For each cluster, separate 
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experiments were carried out by taking only earthquake events at stations 300 km, 200 

km, and 100 km close to that epicenter cluster center. 

In Figure 2.2 (d), it is observed how many different places each different station 

can sense earthquakes separately. When cluster 1 was examined according to the 

figure, it was revealed that 2023 distant earthquakes were felt at 200 km from the 

station distance to the cluster center belonging to the western region of Turkey. 

Looking at Cluster 3, it has been observed that Turkey mostly includes the northern 

part of Turkey as well as the Central Anatolian region. The desired result here is to 

prepare a database that can sense (record) earthquakes in different locations and 

simultaneously be sufficient for a relatively large number of earthquakes. In the 

epicenter clustering grouped according to the station distance, the best results were 

encountered at a distance of 200 km. The best result was obtained in cluster 7 with a 

localization error of 80 km, with 2133 pieces of data at a 200 km distance to the station. 

More localization error was tried to be reduced by fine-tuning with the 

suggested data. Before the architectural change, the accuracy of the predicted 

coordinate was observed as a result of the trainings made with 2133 cluster 7 data used 

in the analysis. In order to see this, epicenter coordinates, station coordinates, and 

prediction results of 200 km data belonging to cluster 7 are drawn on the Turkey map. 

The maps of the prediction results drawn separately for each earthquake event in 

Figures 4.8, 4.9, and 4.10 are shared below. 
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Figure 4.8: The epicenter coordinates of earthquake events belonging to 2133 cluster 7 

clusters with 200 km station distance. 

 

 
Figure 4.9: Station coordinates of earthquake events belonging to 2133 cluster 7 with 200 

km station distance. 
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Figure 4.10: In the training made with the earthquake events belonging to 2133 cluster 7 

with a distance of 200 km, the sample of the validation set predicted epicenter coordinates 

(PE), real epicenter coordinates (RE) and station coordinates (S). 
 

Figure 4.10 summarizes the prediction results. In the left figure, the distance 

between the ground truth and the predicted epicenter is 47 km, while in the right figure, 

the distance between the ground truth and the predicted epicenter is 141 km. In order 

to find an answer to the question of whether it is related to the depth of the earthquake 
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event between the predicted epicenter distances with ground truth, ground truth, and 

depth histogram analysis were performed with the validation set of 2133 data 

belonging to the proposed cluster 7, this histogram is given in Figure 4.11. 

 

 
Figure 4.11: Earthquake depth relationship between ground truth of validation set and 

predicted epicenter coordinates error in training with 2133 cluster 7 earthquake events with 

200 km station distance. 

 

As shown in Figure 4.11, for earthquakes having a focal depth less than 15000 

km, the epicenter prediction error is lower. There are 427 data in the validation set 

analyzed. There are only 53 data with depths greater than 15000 km in these data. It is 

predicted that removing 53 data from the already small dataset will not change the 

performance. It has been observed that at depths less than 15000 km, the error value 

is up to 100 km. This error value is not sufficient for successful performance, so 

predicting the epicenter coordinate does not have a direct relationship with the depth. 

Experiments made in this section are intended to show that epicenter coordinate 

is related to station distance. In order to reach this conclusion, the experiments carried 

out before and after the earthquake data are explained. It was decided to change the 
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network model with 2133 earthquake events belonging to cluster 7, which includes the 

epicenter at a distance of 200 km from the station. The analysis for the model proposal 

is explained in the next section. 

 

4.2.2 Primary and Secondary Waves with CNN 

While continuing with the maximum spectrogram data of the earthquake event, 

P and S wave markings were made for 325 of 2133 data belonging to cluster 7 at a 200 

km station distance. The time between these marked waves was added after the first 

FC layer with the station coordinate and altitude values as the second split input.  

It is predicted that P and S waves will positively affect performance. In order 

to increase the performance success, instead of taking 5 seconds from the maximum 

energy spectrogram, new spectrograms were created by taking 2 seconds before and 3 

seconds after the marked P wave, and S wave start times. The spectrograms of the S 

wave and the training result with a localization error of 827 km are given in Figure 

4.12, with 148 initially marked data belonging to cluster 7 at a distance of 200 km from 

the station. 

 

 
Figure 4.12: S wave spectrogram training result with 148 P and S wave marked data of 

cluster 7 at 200 km station distance. 

 

Performance could not be improved with fine-tuning processes. The model 

seen in Figure 4.12 is overfitting. This showed that it learned the features in the training 
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set used but could not generalize it to other data. Since the P wave shows the 

earthquake's starting point, it was not used in the experiments, considering that it 

would not provide sufficient interpretation in the prediction of the epicenter 

coordinate. 

 

4.2.3 Partial Transfer Learning 

In addition to the model proposed in the Relation on a Single Station section, 

the time difference of P and S waves mentioned in the P and S waves with the CNN 

section gives information about how far the earthquake is from the epicenter. The aim 

of the architecture proposed here is to find the P and S phase moments of earthquakes. 

Therefore, this architecture will be built on top of the previous model through transfer 

learning. Each architecture to be produced includes structures transferred from the 

previous one. Therefore, each model constitutes a phase of the final, intended model 

described in the next section. 

In addition to the time difference input between the P and S phases proposed in 

the previous section, here, the P and S phase onset moments are also predicted to fuse 

with the maximum energy spectrogram data in the fully connected layer. The raw 

spectrogram data from the model initially proposed in this section, obtained from the 

model trained in the previous stage and transferred to this architecture, is fed to the 

convolutional encoder.  

In order to train this architecture, P and S wave markings are used. Therefore, 

the number of data that this architecture can be trained on is limited. P and S waves 

were marked for 325 out of 2133 pieces of data belonging to cluster 7 at the 

recommended 200 km station distance in the previous stage. In order to overcome this 

data constraint, the transfer learning method was used. The model output to be 

obtained at this stage is still the same. The aim is to predict the epicenter and depth of 

the earthquake event in question (more successfully than in the previous stage). 

Besides this, another objective is to reveal and develop a general encoder structure that 

we train using all available data. This encoder structure will continue to be transferred 

to future models. 
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Before the raw spectrogram data and the second inputs are fused in the fully 

connected layer, transfer learning is suggested with the model calculated with the 

localization error of 80 km, with the best results. In addition, the partial transfer is 

proposed for 1024x1027 weights except for the P and S phase moments added at this 

stage in the second fully connected layer. 

While applying the partial transfer method, attention was paid to training the 

layers without freezing. The layer to be partially transferred was initialized, then the 

columns to be transferred were transferred before training. It has been observed that 

the Matlab [88] platform used in the study, the deep learning toolbox, performs the 

initialize function in the training phase. In order to prevent this, custom weight and 

bias initializer functions have been written for the layer where the partial transfer 

method will be applied. 

The result of the train made with this proposed method is given in Figure 4.13. 

No partial transfer effect was observed in this train, whose localization error was 

calculated as 1141 km. In order to control the partial transfer weights, learnable 

parameters in columns 1028 and 1029 were initialized as 0. However, it was observed 

that the weights changed in the train made. 

 

 
Figure 4.13: Partial transfer learning made training result with 325 P and S wave marked 

data. 

 

Regularization can be done in order to prevent overfitting seen in Figure 4.13. 

However, high weights have been reduced for regularization in the proposed 
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architecture, and dropout layers have been used. Localization error could not be 

reduced by fine-tuning. The performance could not be made more successful with the 

transfer learning effect. However, since the number of data is limited, a different 

architecture proposal was made by continuing with transfer learning. 

 

4.2.4 CNN + LSTM with Spectrogram 

Earthquake events are time series signals with different lengths. In the proposed 

study, the accelerometer data belonging to the earthquakes were transferred to the 

time-frequency representation and turned into a spectrogram. Predicting the intended 

epicenter and depth with accelerometer data is a time series problem. Since 

earthquakes have different lengths from each other, it is a more practical problem for 

RNN. Sufficient improvement could not be made to the architecture proposed in the 

previous section, and a new architectural proposal was made in this section. 

The maximum energy spectrogram data belonging to 325 data and the encoder 

stage fusing with the station coordinate, altitude, and P-S phase difference in the fully 

connected layer, the result of the training carried out with 2133 data belonging to 

Cluster 7 with 200 km station distance, was transferred with the 80 km localization 

error model. After that, P and S phase moments were added next to the Second inputs. 

In the architecture proposed here, six different inputs fused after the formation of high-

level features are fed to LSTM first. 

Localization error approached 72 km in the proposed architecture with 325 

data. The best-performing training result is shared in Figure 4.14. 
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Figure 4.14: CNN + LSTM architecture with 325 data training result. 

 

Very different results were obtained with CNN + LSTM before the partial 

transfer in the epicenter prediction architectural proposal for earthquake events with 

time series problems. In order to verify the problem approach, the station coordinate, 

ground truth, and predicted epicenter values were plotted on the Turkey map for the 

localization error 72 km results with the CNN + LSTM architecture suggested in this 

section. 
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Figure 4.15: CNN + LSTM architect's best training result of the validation set on the map of 

Turkey predicted epicenter (P), ground truth (G) and station coordinates (S) notation. 

 

In Figure 4.15, the verification of the place predicted by the data of 65 

validation sets of training made with 325 data is given. Here, the localization error 

result is 72 km, and the training result seen in Figure 4.14 has answered whether the 

proposed architecture overfits the station coordinate. 
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In order to understand the relationship between ground truth and predicted 

value, station altitude histograms where the difference between ground truth and the 

predicted value is less than or more than 50 km were created. 

 

 
Figure 4.16: The altitude relationship between the ground truth and predicted value of the 

validation set belonging to the best training result of the CNN+ LSTM architect and 

earthquake events where the value is less than or more than 50 km. 

 

As seen in Figure 4.16, there is no distinction between earthquake events where 

the difference between ground truth and the predicted value is less than or greater than 

50 km. Error values are distributed in such a way that they are at each altitude value. 

In order to prevent the overfitting seen in Figure 4.14, the location of the LSTM 

layer in the proposed architecture has been moved to the last fully connected layer. 

The performance of the trains realized here is given in Figure 4.17. 
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Figure 4.17: Training result with LSTM layer attached architecture after fully connected 

layers. 

 

It was deemed appropriate to feed the LSTM layer after all the inputs suggested 

in the model were combined and after gaining meaning. However, the calculated 

localization error value of the training result shared in Figure 4.17 is 5823 km. It has 

been observed that although there is a learning drop rate in training, it does not drop, 

and learning does not occur. Since the intended result was not achieved with this 

proposed architecture, the LSTM layer was pulled back after the first fully connected 

layer, just after the inputs were fused. 

In the proposed new model, analyses were made with transfer learning. While 

the localization error is 80 km, no transfer learning is recommended. When transfer 

learning is not made to convolutional blocks but only to the fully connected layer 

where the inputs are fused, the localization error is calculated as 74 km. However, 

when transfer learning was applied only to the last fully connected layer, the 

localization error encountered was 64 km.  

In the proposed model, the entire earthquake event is used as a sequential input 

instead of the maximum energy spectrogram of the earthquake event. The lengths of 

earthquake events are different from each other. The spectrograms of each earthquake 

event have been adjusted to the same size in order to sequentially turn the input and 

feed it into the proposed model. It was observed that the average duration of 325 

earthquake events in which P and S phases were marked was 14 seconds. The 
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spectrogram lengths of 325 earthquake events were fixed at 16 seconds. While 

stabilizing, earthquakes lasting longer than 16 seconds were cropped, and short-lasting 

earthquakes were zero padded. 

It has been observed that the localization error is 64 km; that is, when the train 

is made with the model parameters that give the best results, an out of GPU memory 

error is received due to the amount of input size. For this reason, the model hyper-

parameters were fine-tuned. As a result of the trainings, it was observed that the lowest 

localization error calculated between the predicted epicenter coordinate and ground 

truth values was 5704 km. 

In summarize, the model structure and the corresponding parameters used in 

the different datasets are provided in Table 5.  

 

Table 5: Details of the prediction models used for different structures. 

Network 

Architecture 

Hyper-

parameters 

RMSE Distance 

(km) 

F1-

Score 

Conv Block 4 

Fc {1024}, 

ReLU           

Cat Layer       

Fc {1024}, 

ReLU             

Fc {3} 

Regression  

(No. of 

Events: 

28360) 

 

Optimizer: 

SGDM 

Learning 

Rate: 4e-07 

Max. 

Epoch: 200 

 

3.60 273 0.511 

Conv Block 4 

Fc {1024}, 

ReLU            

Cat Layer       

Fc {1024}, 

ReLU             

Fc {3} 

Regression  

(No. of  

Events: 2495, 

Cluster 9) 

 

Optimizer: 

SGDM 

Learning 

Rate: 4e-07 

Max. 

Epoch: 2000 

1.17 99.9727 0.65 
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Table 5 Cont. 

Conv Block 4 

Fc {1024}, 

ReLU            

Table 5 Cont. 

Cat Layer       

Fc {1024}, 

ReLU             

Fc {3} 

Regression  

(No. of 

Events: 2133, 

Cluster 7) 

 

Optimizer: 

SGDM 

Learning  

Rate: 4e-07 

Max. Epoch: 

1000 

0.90 80.3699 0.76 

Conv Block 4 

Fc {1024}, 

ReLU           

Cat Layer       

Fc {1024}, 

ReLU             

Fc {3} 

Regression  

(No. of 

Events: 325, 

marked P and 

S waves) + 

Partial 

Transfer 

 

Optimizer: 

SGDM 

Learning 

Rate: 3e-07 

Max. Epoch: 

500 

1848.44 1141.2626 0.62 

Conv Block 4 

Fc {1024},   

Cat Layer  

LSTM 

{1029}          

Fc {1024},     

Fc {3} 

Regression  

(No. of 

Events: 325, 

marked P and 

S waves) + 

Partial 

Transfer 

 

Optimizer: 

SGDM 

Learning 

Rate: 3e-07 

Max. Epoch: 

500 

0.60 63 0.78 

Total run 

time 

2776 GPU 

hours 
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In addition, a total of 686 separate trainings were made in this study with 

different neural networks and different parameters to optimize the results. These 

trainings took a total of 2776 GPU hours. 
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CHAPTER V 

 

CONCLUSIONS 

 

In this thesis, for earthquake epicenter coordinate prediction, first of all, the 

seismic dataset of Turkey, which AFAD publicly publishes, was collected. A 

spectrogram-based false color representation of earthquake accelerometer records has 

been studied. The proposed indication is not only convenient for human analysis but 

also suitable for earthquake signal processing in convolutional networks.  

It has been observed that the accelerometer data of earthquake events that took 

place at close epicenters and recorded at stations close to each other created similar 

two-dimensional false-color pictures in this representation. This is a strong clue that 

this relationship can be learned if earthquake events in the same cluster (in other words, 

belonging to close epicenters) are fed into the convolutional network. 

A convolutional network is trained using hundreds of thousands of 5-second 

false color spectrograms obtained from more than 40 thousand earthquake events in 

the dataset. This professional network is aimed to predict the epicenter and depth 

information of an earthquake event. Experiments have been done on a system that can 

calculate the epicenter of an earthquake using single station data using convolutional 

neural networks, and the results confirming the hypothesis have been observed.  

First, experiments were trained on the network shown in Figure 3.5. Two 

different inputs to this network structure are fed from two different layers. In the first 

layer, the spectrogram data with the highest energy of any earthquake was fed, while 

in the first fully connected layer, the station location, altitude and the arrival time 

difference between the P and S phases were fed. As the output, the epicenter coordinate 

of the earthquake event and the earthquake depth were learned with a regression layer. 

In the experiments, networks were trained separately for each different K-

medoid cluster of 2015. In each experiment, 70% of the selected subset of the dataset 

was reserved for learning, 15% for hyperparameter optimization (validation), and 15% 

for testing. As a result of the cross-validation experiments, it was seen that the 

epicenter coordinate could be calculated with an average error of around 80 km, and 
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the depth with an average error of around 800 m. As it has been observed that the 

spectrogram based false color representation facilitates human examination of 

accelerometer data, it is concluded that this representation is suitable for convolutional 

networks. It has also been observed that accelerometer data is associated with the 

epicenter. Thus, accelerogram records will benefit EEW systems by using it to 

calculate epicenter coordinates. In the continuation of the thesis, the epicenter 

coordinate 64 km localization error was observed as the closest result with the studies 

carried out on the architectures working with holistic earthquake event instead of fixed 

spectrograms using RNN. 

The studies are not sufficient to make sense of the earthquake signal and to 

predict the epicenter location, but they are effective. When the obtained result is 

compared with the studies in the literature, it is seen that the results are approximated 

[52]. There are studies in the literature with better results using similar techniques in 

this study [89]. The attention mechanism will be used in the rest of the study to improve 

the results. 

It has been observed that the inputs in the first steps cannot be adequately 

represented in long sequences with RNN, so using the encoder decoder model of 

LSTM is not very effective. In the continuation of the thesis, it is foreseen to use the 

transformer and attention mechanism, which replaces the recurrence models. Thus, no 

matter how long the number of steps is, all hidden states from the encoder are used 

and the performance of the model increases. It has been observed that the Attention 

mechanism improves the performance on seismic data. With the attention-based 

mechanism, a network is proposed where 8 seismic indicators are used as inputs and 

earthquake or not earthquake information is given as output [90]. When the proposed 

attention-based LSTM network and LSTM network accuracy values are compared, 

Attention-Based LSTM architecture is observed to be 4% more successful. In addition, 

in a study where hypocenter and origin time were calculated as outputs, the attention 

mechanism was again preferred [91]. In the study [92], which also included P phase 

and S phase as output, it was observed that the performance increased by using 

earthquake records with station and epicenter distances up to 300 km and attention 
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mechanism with noises. In the light of similar studies shared, the studies will be 

continued by adding the attention mechanism.
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