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ABSTRACT

STABILITY AND OPTIMAL CONTROL OF HYBRID MODELS OF FISHERY

GÖKGÖZ KÜÇÜKSAKALLI, Nurgül
Master of Science in Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Oğuzhan ÇİFDALÖZ
September 2022, 38 pages

All around the world, there is an increasing interest in the renewable resources
which can be mainly listed as fisheries, forests, agricultural lands and freshwater. They
are controlled and managed by some foundations and govenments which are searching
for the methods to determine how to efficiently manage those resources under the effect of
uncertanities caused by social and ecological events such as climate change, adversities
in the application procedure of the strategies, and error in the data. Control systems
methodologies serve an appropriate tool to overcome the difficulties, uncertanities and
errors listed above since the problem can be designed as a mathematical problem. By
this way, sustainability of the resource can be investigated with respect to different
scenarios in a systematic way. Moreover, since the harvesting of the fishery is applied
during only some seasons, the problem has to be modelled by using both discrete and
continuous dynamics which are called as the hybrid dynamical systems in the literature.

In this thesis, we define two new hybrid dynamical models of fishery. One of
the models is one dimensional and the other one is a two dimensional model and they
represent exactly the same sustainable system. We solve the optimal control problem on
the one dimensional one and we check the stability of the two dimensional model. By
doing so, we determine the optimal effort needed for the sustainability of the system
whenever the model is unstable.

Keywords: Stability, Optimal Control, Hybrid Dynamical Systems, Fishery, Bioeco-
nomic Models.
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ÖZ

BALIKÇILIK İÇİN HİBRİT MODELLERİN KARARLILIĞI VE OPTİMAL
KONTROLÜ

GÖKGÖZ KÜÇÜKSAKALLI, Nurgül
Elektrik-Elektronik Mühendisliği Yüksek Lisans

Danışman: Dr. Öğr. Üyesi Oğuzhan ÇİFDALÖZ
Eylül 2022, 38 sayfa

Tüm dünyada, balıkçılık, ormanlar, tarıma elverişli araziler ve temiz su şeklinde
listelenebilecek yenilenebilir kaynaklara artan bir ilgi bulunmaktadır. Bunlar, iklim
değişikliği gibi sosyal ve ekolojik olayların sebep olduğu belirsizliklerin, statejilerin
uygulanmasındaki prosedürlerin zorluğun ve datadaki hataların etkisi altında nasıl etkili
karar vereceğne dair metotlar arayan kurumlar ve hükümetler tarafından kontrol edilmek-
tedir ve yönetilmektedir. Kontrol sistem yöntemleri, problem bir matematiksel problem
olarak tasarlanabildiği için, yukarda listelenen zorlukların, belirsizliklerin ve hataların
üstesinden gelmek için uygun bir yol sunar. Bu sayede, kaynağın sürdürülebilirliği
sistematik bir şekilde farklı senaryolara göre incelenebilir. Dahası, balıkçılık hasatı
sadece bazı mevsimlerde yapıldığı için, problem literatürde hibrit dinamik sistemler
olarak anılan kesikli ve sürekli dinamikler kullanılarak modellenmelidir.

Bu tezde, balıkçılık için iki yeni hibrit model tanımlıyoruz. Modellerden biri
bir boyutlu ve diğeri iki boyutlu ve tamamiyle aynı sistemi gösteriyorlar. Bir boyutlu
olan için optimal kontrol problemini çözdük ve iki boyutlu modelin kararlılığını kontrol
ettik. Böyle yaparak, model kararsız olduğunda, sistemin sürdürülebilirliği için gereken
optimal çabaya karar veriyoruz.

Anahtar Kelimeler: Kararlılık, Optimal Kontrol, Hibrit Dinamik Sistemler, Balıkçılık,
Biyo-ekonomik Modeller.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition
The world population is increasing day by day which is the main reason of the

wars, diseases, famine, climate change etc. The most important question is the sufficiency
of the resources and this makes the sustainability of the renewable resources a hot topic
for foundations and governments. Sustainability basically deals with the transfer of
the renewable resources to the future generations without endangering them. Mostly
considered renewable resources are fisheries, forests, water basins and agricultural lands.
Even though, a great deal of effort has been made on the sustainability, still we face
the endangered resources in some areas of the world. Therefore, a systematic way is
needed to investigate this problem. From a scientist’s point of view, the questions to be
answered are,

• the amount of the resource in question,
• sustainability of the resource,
• economical issues related to the harvesting of the resource,
• the amount and the period of the harvesting.

To make a systematic investigation on this matter, many different researchers from
different research areas have developed mathematical and economical models. Every
model has its own advantages and disadvantages. Actually, the problem has to be
considered by taking into account the three important factors. Economical, environmental
and social factors all have to be considered in order to make an optimum decision. Even
if an analysis is conducted on the model and the amount of the resource is determined,
still, the amount and period of harvesting to be allowed must be determined. At this point,
control engineering techniques enter the picture to understand the system dynamics
and decide the parameters listed above. The methodologies that a control engineer
use already allows one to obtain robust techniques due to the given difficulties and
overcome the complexity of the socio-economical problem one may encounter during
the implementation of the policy.

In this thesis, sustainability of the fishery is considered among those renewable
resources from the perspective of a mathematical point of view. We have equiped
the models with the analysis of stability and optimal control in order to determine the
difficulties one may face.
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1.2 Proposed Models and Analysis of the Models
In the literature of sustainably managed resources, the most attractive models

that are examined are the continous and discrete models. Moreover, economic models
are also considered. Classical supply-demand analysis and game-theoretic models are
used in that case. However, all of those models appear to contain discrete as well as
continuous dynamics if investigated in deep. Since the nature of the problem contains
continuous dynamics as well as discrete state transitions, we use hybrid dynamical
system modeling scheme.

Hybrid dynamical systems has taken attention of vast amount of researchers
from various disciplines. Even though the idea of a combination of discrete and
continuous dynamics is very natural and sounds familiar, the description in the sense
of mathematical modeling has taken a great effort. Impulsive systems, switching
systems, hybrid dynamical systems, sliding mode, hybrid automata, differential algebraic
equations and many others are all distinct mathematical formulations of this phenomena.
Most famous ones are hybrid dynamical systems (combines all of the mentioned models
in one model), switching systems (the theory is very-well developed with respect to the
others) and impulsive systems (again a very-well known approach). Each one of them
has its own pros and cons.

In this work, we use hybrid formulation for the sustainability of fishery. Since the
resource is harvested in some seasons and left for production of fish in the non-harvest
seasons, the revenue will have a hybrid nature. From this idea, we construct and consider
hybrid models. For a depensatory hybrid model, we investigate the Lyapunov stability,
global stability and we solve an optimal control problem. By this way, in a dynamic
way, we find optimal harvesting rate and optimal harvesting time period and whenever
the system is under the effect of an unexpected component we check the stability and
we calculate new optimum harvest rate and time for a new harvesting period.

1.3 Contributions
In the literature, there exist some hybrid models that combine continuous and

discrete dynamics. For example aquaculture models [31, 32] that consider te shrimp
population using an impulsive model, the fishery models with on-off harvesting [5, 6],
or the stochastic hybrid system version of the fishery system [17]. This area can be
developed in various directions. To the best of our knowledge, the unified framework
of hybrid dynamical system approach is not used in this topic. Therefore, we take the
first step in this area which can be developed later on both in the sense of theory and
application.

2



1.4 The Outline of the Thesis
A literature survey and the necessary background on the technical definitions,

methods and fishery models considered previously in the literature are given in chapter
2. The hybrid system formulations of the problem, optimal control and stability are
given in chapter 3. In chapter 4, a summary of the main results, disscussion and future
directions are explained.
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CHAPTER 2

LITERATURE SURVEY AND BACKGROUND

In this chapter, some of the basic mathematical concepts used throughout this
thesis are given. Firstly, we give a collection of related works in the literature. Secondly,
we give a summary of hybrid modeling frameworks that are used or mentioned in the rest
of the thesis. Then, we give optimal control and stability of hyrid systems, respectively.
Finally, we give a review of mathematical models of fishery with different aspects.

2.1 Literature Survey
Sustainability of the renewable resources is getting attention of the foundations

and governments since it has the crucial role in the felicity of the public. The mostly
considered and important resources in the literature are fishery [16, 46], forests [19, 36],
freshwater basins [22, 38] and agricultural lands [41, 42]. Among those resources fish
stocks are facing with the danger of a sudden reduction. Approximately one of four
fisheries collapsed during the last 50 years [37]. Therefore an immediate action must be
taken into account to carry on the well-being of the public and to transfer the resources
to future generations. In order to take an effective act to manage those resources,
the problem should be considered by taking into account economical, ecological and
social aspects. Randomness in any step in the management of the natural resource or
disregarding economical apprehensions of the actors in the market leads to the ineligible
management of the resources [16]. To overcome the complexities in the implementation
process to manage the fishery is the main motivation to use tools and methods from
control systems. First of all, a mathematical model which is identical to the real-world
problem has to be constructed in the simplest way possible. Secondly, the control
system techniques are used to get over the difficulties mentioned above. Mathematical
models of fishery are dating back to population dynamics [12, 14], however they are
reconsidered in the last decades due to the developments in the modeling techniques
[5, 17, 18, 39].

Control of the sustainable resources and their social and political management
issues are rather newly considered aspects of the problem in the literature [13]. Robust
control of a fishery [2, 13], feedback control of a prey-predator system where only the
harvesting of the prey is considered [20], dynamic deterrence problem considering an
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optimal control problem [21] and social-economical viewpoints with respect to public
policies [3, 45] are some basic but powerful steps taken in this direction.

As the improvements in modeling has been mentioned, among them, hybrid
dynamical systems are a challenging one which has taken attention of many researchers
from various disciplines. Even though the idea of combinining discrete and continuous
dynamics may seem easy and reasonable to implement to a real-world problem,
mathematical formulation of the problem was rather challenging and differed among the
researchers choice/need. This type of modeling, despite its rather complex contruction,
is giving us a chance to obtain new directions in the sense of stability [8, 9, 23, 29].

2.2 Hybrid Systems
Hybrid dynamical systems are a combination of continuous and discrete dynamics.

Since real world problems mostly contain and combine discrete and continuous dynamics,
they arise naturally in modeling problems in computer science, control, robotics, etc.
Even though a mixture of continuous and discrete dynamics is a natural way to see a
real world problem, the mathematical formulation of the hybrid systems has taken an
effort and this led to a huge amount of development in various research areas. Since
the beginning of the hybrid dynamical systems research, many different modeling
approaches have been used. Hybrid automata [1, 25, 34], sliding mode control [48],
switching systems [29], set valued analysis [23] frameworks are some of them. Every
model has advantages and disadvantages. Among them, set valued analysis version
captures and unifies all other formulations in one representation [23]. By this way, all
the results from different modeling frameworks can be unified.

Since some of them are used in modeling fishery, they are explained in the
following subsections.

2.2.1 Hybrid Dynamical Systems
Hybrid dynamical systems are described by the following equations,

𝑥 ∈ 𝐶 ¤𝑥 ∈ 𝐹 (𝑥)

𝑥 ∈ 𝐷 𝑥+ ∈ 𝐺 (𝑥)
(2.1)

where 𝐶 and 𝐷 are called the flow set and the jump set, respectively, and 𝐹 and 𝐺 are
called as the flow map and the jump map, respectively.

2.2.2 Hybrid Automata
A finite state machine is a mathematical model with finite set of continuous

functions that are described by a set of ordinary differential equations. Formally those

5



systems are described by [10, 35]

• 𝑄 = 1, ..., 𝑞𝑚𝑎𝑥 is a set of modes,
• 𝐷𝑜𝑚𝑎𝑖𝑛(𝑞) stands for the domain of the continuous variable 𝑥 for each 𝑞,
• 𝑓 is a flow map,
• 𝐸𝑑𝑔𝑒𝑠 stands for a set of edges,
• 𝐺𝑢𝑎𝑟𝑑 (𝑞, 𝑞′) indicates the guard conditions for each edge
• 𝑅𝑒𝑠𝑒𝑡 is the reset map.

2.2.3 Switching Systems
Consider an index set 𝑃 which indicates a family of regular functions 𝑓𝑝 : 𝑝 ∈ 𝑃

and 𝑓𝑝 : R𝑛 → R𝑛. The differential equation stated by this family of functions is [29]

¤𝑥 = 𝑓𝑝 (𝑥). (2.2)

If 𝑝 is taken as 𝜎 : [0,∞] → 𝑃 which is a piecewise constant function then we call 𝜎 a
switching signal and the system is called a switching system.

2.3 Optimal Control and Maximum Principle for Switching Sytems
Consider the following time-invariant control systems [30],

¤𝑥 = 𝑓𝑞 (𝑥, 𝑢), 𝑞 ∈ 𝑄 (2.3)

where 𝑄 is an index set and𝑈 ⊂ R𝑚 is a control set. Moreover, assume that switching
surfaces (i.e. guards) are 𝑆𝑞,𝑞′ ⊂ R2𝑛, for every (𝑞, 𝑞′) ⊂ 𝑄 ×𝑄. Assume that there is a
function 𝑥 : [𝑡0, 𝑡 𝑓 ] → R𝑛 which is a trajectory the given switching system (i.e. hybrid
system) with a control 𝑢 : [𝑡𝑜, 𝑡 𝑓 ] → 𝑈 prrovided that for the following time instants

𝑡0 < 𝑡1 < ... < 𝑡𝑘 < 𝑡𝑘+1 := 𝑡 𝑓

and states 𝑞0, 𝑞1, ..., 𝑞𝑘 ∈ 𝑄 such that 𝑥(·) captures

¤𝑥 = 𝑓𝑞𝑖 (𝑥(𝑡), 𝑢(𝑡)), ∀𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1), 𝑖 = 0, 1, ..., 𝑘 (2.4)

and

©«
𝑥(𝑡−

𝑖
)

𝑥(𝑡+
𝑖
)
ª®¬ ∈ 𝑆𝑞𝑖−1,𝑞𝑖 , 𝑖 = 1, ..., 𝑘 . (2.5)
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where 𝑥(𝑡−
𝑖
) and 𝑥(𝑡+

𝑖
) stands for the values of 𝑥 just before and just after 𝑡𝑖, respectively,

and the value 𝑥(𝑡𝑖) may be equal to right limit or left limit. At every 𝑡𝑖, there exists a
discontinuity which is called a switching event or a discrete transition. Here, 𝑞 is the
discrete state of the hybrid system and 𝑞 : [𝑡0, 𝑡 𝑓 ] → 𝑄 which is given by by 𝑞(𝑡) := 𝑞𝑖
for 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) portrays 𝑞 on the trajectory. The cost functionals for this case are [30]

𝐽 (𝑢, 𝑡𝑖, 𝑞𝑖) := Σ𝑘𝑖=0

∫ 𝑡𝑖+1

𝑡𝑖

𝐿𝑞𝑖 (𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 + Σ𝑘𝑖=0Φ𝑞𝑖−1,𝑞𝑖 (𝑥(𝑡−𝑖 ), 𝑥(𝑡+𝑖 )), (2.6)

where 𝐿𝑞 : R𝑛 ×𝑈 → R is the running cost and Φ𝑞,𝑞
′ : R𝑛 × R𝑛 → R is the switching

cost for ()𝑞, 𝑞′) ∈ 𝑄. The constraint for this optimal control problem is the endpoints
which is given by

©«
𝑥(𝑡0)
𝑥(𝑡 𝑓 )

ª®¬ ∈ 𝐸𝑞0,𝑞𝑘 . (2.7)

So, the switching system (or hybrid system) optimal control problem is to find a control
that minimizes the cost 2.6 subject to the constraint 2.7. Moreover, in this case the
following Hamiltonian is considered.

𝐻𝑞 (𝑥, 𝑢, 𝑝, 𝑝0) = ⟨𝑝, 𝑓𝑞 (𝑥, 𝑢)⟩ + 𝑝0𝐿𝑞 (𝑥, 𝑢), 𝑞 ∈ 𝑄. (2.8)

There is a vast amount of work in the literature related to the optimal control of switching
systems. They find place in the application of the real world problems. For instance,
using the time-scale transformation the optimal control problem of switching systems is
solved in [31, 49]. Then, to decide a feedback optimal control strategy, a neighboring
extremal procedure is used in [28]. A different variation of this optimal control problem
where 𝑥 is constructed as a factor of a variable that are piecewise constant functions is
considered in [7]. For other applications one may see the following and the references
therein [32, 40] and other theoretical approaches please see [4, 9, 24, 44] and cited
papers therein.

2.4 Stability of Hybrid Dynamical Systems and Switching Systems
A basic tool to investigate the local stability of a dynamical system is to use

Lyapunov theorems. For a hybrid dynamical system given with the representation
described in equations 2.1, Lyapunov stability is also investigated. The most important
results and the related references can be found in [23]. Similar results also exist for the
switching system literature (see, for example, [29, 11]) In this section, we mention some
of them that are used in the next chapter. Firstly we give two results due to Liberzon

7



[29]. Then, we give the result due to Goebel, et al [23].

Theorem 1 ([29]). If all subsystems in the following family

¤𝑥 = 𝑓𝑝 𝑝 ∈ P

share a radially unbounded common Lyapunov Function, then the switching system with
a signal, 𝜎,

¤𝑥 = 𝑓𝜎 (𝑥)

is globally uniformly asymptotically stable.

Note: We call 𝑉 a a common Lyapunov function for the switching systems if
there exists a positive definite continuous function𝑊 s.t

𝜕𝑉

𝜕𝑥
𝑓𝑝 (𝑥) ≤ −𝑊 (𝑥), ∀𝑥, ∀𝑝 ∈ P . (2.9)

Theorem 2 (A converse Lyapunov theorem,[29]). Suppose that the switching system

¤𝑥 = 𝑓𝜎 (𝑥)

is globally uniformly asymptotically stable, the set of family of functions { 𝑓𝑝} is bounded
and the function 𝑓𝑝 is locally Lipschitz. Then all systems in the switched system share a
common Lyapunov function.

Combining those two theorems gives us a quick result which is given by the
corollary in [29] and we obtain the following inequality,

𝛼
𝜕𝑉

𝜕𝑥
𝑓𝑝 (𝑥) + (1 − 𝛼) 𝜕𝑉

𝜕𝑥
𝑓𝑞 (𝑥) ≤ −𝑊 (𝑥), ∀𝑥. (2.10)

Theorem 3 (Sufficient Lyapunov conditions,[23]). Let H = (𝐶, 𝐹, 𝐷, 𝐺) be a hybrid
system and let A ⊂ R𝑛 be closed. If 𝑉 is a Lyapunov function candidate for H and
there exist 𝛼1, 𝛼2 ∈ K∞ and a continuous 𝜌 ∈ PD such that

𝛼1( |𝑥 |A) ≤ 𝑉 (𝑥), ∀𝑥 ∈ 𝐶 ∪ 𝐷 ∪ 𝐺 (𝐷) (2.11)

⟨∇𝑉 (𝑥), 𝑓 ⟩ ≤ −𝜌( |𝑥 |A) ∀𝑥 ∈ 𝐶, 𝑓 ∈ 𝐹 (𝑥) (2.12)

𝑉 (𝑔) −𝑉 (𝑥) ≤ −𝜌( |𝑥 |A) ∀𝑥 ∈ 𝐷, 𝑔 ∈ 𝐺 (𝑥) (2.13)

then A is uniformly globally pre-asymptotically stable for H .
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Basically, for a continous-time model we have a potential-like function with
weaker conditions. However, for a hybrid dynamical system (or a switching system)
even though we again have a potential-like function, this time those weaker conditions of
the continuous model may not hold. To see the illustration of the potential-like functions
of the continuous and hybrid cases, please see figure (2.1).

Figure 2.1: Lyapunov function illustration for the continuous and the hybrid cases. The
left one stands for the continuous case, and the left one is for the hybrid case.

2.5 Mathematical Models on Fishery
In the literature, there are different kinds of mathematical models. Just to

mention some of them here: generalized logistic models, economic models, supply and
demand models,models that consider growth and aging, multispecies models are the
mostly used ones among them. Mathematically, each one of them may be continuous,
discrete, stochastic. In this thesis, continuous time general logistic models are used
which is the topic of the next subsection.

2.5.1 Continuous Time Models
Consider the biological model [14]

¤𝑥 = 𝐹 (𝑥) − ℎ(𝑡), (2.14)

where 𝑥(𝑡) is the fish stock or biomass, ℎ(𝑡) is the harvest rate, and 𝐹 (𝑥) stands for
the is the net natural growth rate. Assume that we define a function 𝐺 (𝑥) such that

𝐺 (𝑥) = 𝐹 (𝑥)
𝑥

. This is the common way to analyze population dynamics models since by

9



this way we obtain 𝐺 (𝑥) which is a density function or in other words 𝐺 (𝑥) defines the
per capita growth rate. One of the mostly considered models is, obviously, the logistic
model where 𝐺 (𝑥) = 𝑟 (1 − 𝑥/𝑘). Other important models that has been considered in
the literature are,

• Gompertz’s model in 1825 where 𝐺 (𝑥) = 𝑟 log
𝐾

𝑥

• F. Smith’s model in 1963 where 𝐺 (𝑥) = 𝑟 𝑟 (𝐾 − 𝑥)
𝐾 + 𝑎𝑥

• Ayala, et al.’s model in 1973 where 𝐺 (𝑥) = 𝑟 (1 − ( 𝑥
𝐾
)\

• Nisbet and Gurney’s model in 1982 where 𝐺 (𝑥) = 𝑟𝑒1−𝑥/𝐾 − 𝑑.

Next, we give a classification of the logistic models depending on different
expressions of ℎ(𝑡). As a first case, assume ℎ(𝑡) = 0 which means no harvesting and
our equation is ¤𝑥 = 𝑥𝐺 (𝑥) and assume that there is a stable equilibrium at 𝑥 = 𝑘 . In the
literature, the curves of this equation is called as the depensation curve.
Case I : ℎ = 0 (For detailed description, see [12].)

• If the density function 𝐺 (𝑥) is greater than 0 and decreasing for 0 ≤ 𝑥 ≤ 𝑘 then it
is called as the compensation model.

• If 𝐺 (𝑥) is increasing for small 𝑥, the model is called as the depensation model.
• If 𝐺 (𝑥) is smaller than 0 for small 𝑥, then the model is called as the critical

depensation model.

The main difference between a compensation model and a depensation model is that if
fishing stops, the fish population will catch up with its old values no matter how low
the population becomes in a compensation model [14, 27]. Those models can be seen
in figures 2.2 and 2.3. In figures 2.2 and 2.3, the value 𝑘𝑐 is also called as minimum
viable population level. If the population level tends toward below this value then the
extinction of the population cannot be reversed. This is called as Allee effect in the
literature. The density function, 𝐺 (𝑥), versus 𝑥 graph can be seen on figure 2.3.
Case II : ℎ ≠ 0.

• If ℎ(𝑥, 𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, then the model is called as constant-yield harvesting.
• If ℎ(𝑥, 𝑡) = 𝐸𝑥(𝑡), then the model is called as constant-effort harvesting. In this

expression, 𝐸 stands for the effort spent in fishing 𝑥(𝑡) amount of fish.
• If ℎ(𝑥, 𝑡) = 𝑞𝐸𝑥(𝑡), then the model assumes that catch-per-unit-effort is propor-

tional to the fish stock. Here 𝑞 stands for the catchability coefficient.Then the
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Figure 2.2: Graphs of compensation, depensation and critical depensation models. The
vertical axes correspond to ¤𝑥 = 𝐹 (𝑥) and the horizantal axes correspond to 𝑥.

Figure 2.3: Graphs of compensation, depensation and critical depensation models. The
vertical axes correspond to 𝐺 (𝑥) and the horizantal axes correspond to 𝑥.
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model takes the form,
¤𝑥 = 𝑥𝐺 (𝑥) − 𝑞𝐸𝑥

and if 𝐺 (𝑥) is chosen as 𝐺 (𝑥) = 𝑟 (1 − 𝑥/𝐾), it is called as the Schafer model.

Consider the following model used in [13],

¤𝑥 = 𝑟𝑥2(1 − 𝑥

𝑘
) − 𝑞𝑢𝑥. (2.15)

In that case, effort given by 𝐸 is replaced by a control variable 𝑢 and an optimal control
problem is constructed and solved using the bioeconomic model[15],

𝑅 = 𝑝𝑞𝑢𝑥 − 𝑐𝑢 (2.16)

where 𝑅 is the revenue, 𝑝 is the price of the resource, and 𝑐 is the opportunity cost of
harvesting. To avoid the confusion of parameters of sustainable fishery models we give
a table of parameters in table 2.1.
Since the sustainability of the fish stock is also very related to economic parameters,

Table 2.1: Model parameters and their units.

.

Parameter Explanation Unit
𝑥 biomass KT (kilotons)
𝑝 price Million dollars/KT
𝐸 effort -
𝑞 technology 1/year
𝑐 cost of fishing Million dollars/year
𝑟 intrinsic growth rate 1/year
𝑘𝑐 minimum viable population level KT

in the literature there exist bioeconomic (or bionomic) models that combine the just
mentioned models with economic values. Smith’s economic model [47]

𝑑𝐸

𝑑𝑡
= 𝑘 (𝑝𝑞𝑥𝐸 − 𝑐𝐸) (2.17)

combined with [14]
𝑑𝑥

𝑑𝑡
= 𝑥𝐺 (𝑥) − 𝑞𝐸𝑥 (2.18)

give a two dimensional dynamical system. Investigating the stability of this system, the
bionomic equilibrium is unstable since eigenvalues of the system gives 𝑅𝑒 _𝑖 > 0 [14].

12



2.5.2 Optimal Control of a Fishery Model
Consider the equation

𝑑𝑥

𝑑𝑡
= 𝐹 (𝑥) − ℎ(𝑡) (2.19)

with initial condition 𝑥(0) = 𝑥0 and terminal condition 𝑥(𝑇) = 𝑥𝑇 . Assume that we have
calculated revenue and obtained a smooth, convex and nonnegative function, 𝑅. The
objective functional is defined as [14]

𝐽 (ℎ) =
∫ ∞

0
𝑒−𝛿𝑡𝑅(ℎ)𝑑𝑡 (2.20)

where ℎ ≥ 0. The Hamiltonian is defined for this case as [14]

H = 𝑒−𝛿𝑡𝑅(ℎ) + _{𝐹 (𝑥) − ℎ}. (2.21)

Using the maximum principle and the adjoint equation, we obtain

𝑑ℎ

𝑑𝑡
=
𝑅

′ (ℎ)
𝑅

′′ (ℎ) [𝛿 − 𝐹
′ (𝑥)] . (2.22)

Considering this equation together with equation 2.19 we get an autonomous system
of differential equations. By considering the isoclines ¤𝑥 = 0 and ¤ℎ = 0, we get the
equilibrium point (𝑥∗, ℎ∗).

2.5.3 Dynamical Systems Approach for Fishery Models
Now, turn back to the equations 2.17 and 2.18

𝑑𝑥

𝑑𝑡
= 𝑟𝑥(1 − 𝑥

𝐾
) − 𝑞𝐸𝑥 (2.23)

𝑑𝐸

𝑑𝑡
= 𝑘𝐸 (𝑝𝑞𝑥 − 𝑐) (2.24)

where instead of equation 2.18 the Schafer model is used. The equilibrium and the
eigenvalues of this system respectively given as [14],

𝑥∞ =
𝑐

𝑝𝑞
, 𝐸∞ =

𝑟

𝑞
(1 − 𝑥∞

𝐾
) (2.25)

_𝑖 = −𝑟𝑥∞
2𝐾

±

√︄
𝑟2𝑥2

∞
4𝐾2 − 4𝑘 𝑝𝑞2𝑥∞𝐸∞}. (2.26)

Then 𝑅𝑒 _𝑖 < 0 which means the equilibrium point is stable. However, if instead of
Schafer model a depensation model is used in equation 2.18 then the eigenvalues of the
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system are calculated at (𝑥𝑖𝑛 𝑓 𝑡𝑦, 𝐸∞) as [14]

_𝑖 =
1
2
{[𝐹 (𝑥∞) − 𝑞𝐸∞] ±

√︃
[𝐹 (𝑥∞) − 𝑞𝐸∞]2 − 4𝑘 𝑝𝑞2𝑥∞𝐸∞} (2.27)

which indicates that the equilibrium is unstable. If it is the case of a noncritical
depensation then a trajectory near (𝐾, 0) must exhibit a limit cycle. In other words, the
fish stock 𝑥 and effort 𝐸 must oscillate.

In the literature, there are stability analysis that consider threshold harvesting [43].
This system produces a hybrid system with different continuous dynamics. Moreover,
to consider the dynamics of fisherey discrete-time models are also considered. They
exhibit similar methodologies with respect to their continuous counterparts. However, to
check the stability of the system, the iteration of the model is taken into account. These
methodologies requires some different procedures other than the very weell-known
Lyapunov methods. In those models, again threshold harvesting is considered and
investigated. For example, one may see [26, 33]. Obviously, in those cases, threshold is
also a parameter to be determined as well as the harvesting quota.

14



CHAPTER 3

PROPOSED MATHEMATICAL MODELS AND ANALYSIS

In this section, we give two different hybrid models. As a first case, a one
dimensional hybrid system is constructed using the equaion (3.1). Then a hybrid optimal
control problem is solved. Secondly, a two dimensional model for the same model is
constructed and an analysis of the model from the perspective of dynamical systems is
given.

3.1 Depensation Model of Fishery with Control

Consider again the fishery model in[13],

¤𝑥 = 𝑟𝑥2(1 − 𝑥

𝑘
) − 𝑞𝑢𝑥, 𝑥(0) = 𝑥0. (3.1)

Moreover, an optimal control law is obtained by solving an optimal control problem as
[13]

𝑢(𝑡) =


0 𝐺 (𝑥, 𝑡) < 0,

𝑢𝑚𝑎𝑥 𝐺 (𝑥, 𝑡) > 0.
(3.2)

where 𝐺 (𝑥, 𝑡) = 𝑒−𝛿𝑡 (𝑝𝑞𝑥 − 𝑐) − _𝑞𝑥. It is obtained by rearranging and solving the
Hamiltonian. This problem can be considered as a hybrid dynamical system which is
the topic of the next section.

3.2 One Dimensional Hybrid Model and Optimal Control
For the one dimensional case, we consider hybrid automata representation.

Consider the states 𝑄 = 1, 2 and the flows of those states are 𝑓 (1, 𝑥) = 𝐹 (𝑥) and
𝑓 (2, 𝑥) = 𝐹 (𝑥) − 𝑞𝑢𝑚𝑎𝑥𝑥. Edges are 𝐸𝑑𝑔𝑒𝑠 = (1, 2), (2, 1). Guard conditions are
𝐺𝑢𝑎𝑟𝑑 (1, 2) = (𝑐,∞) and 𝐺𝑢𝑎𝑟𝑑 (2, 1) = (−∞, 𝑐]. Hybrid automata of this system
can be seen in figure 3.1. An optimal control is applied to this hybrid model. By
applying a hybrid formulation to the system, we only find the trajectories that switch
along the way. And find the optimum among them.
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ẋ = F (x)

x ∈ Dom(1)

ẋ = F (x)− h

x ∈ Dom(2)

Figure 3.1: Fishery hybrid automata representation.

3.2.1 Problem Statement for the Optimal Control
Assume that 𝜓𝑖 denote the fraction of fish stock subtracted from the ecosystem

at 𝑖th harvest. Actually, this corresponds to the 𝑞𝑢 expression in the equation 3.1.
Therefore, the control variable 𝑢 can be restated as 𝑢𝑖 = 𝜓𝑖

𝑞
. Let 𝜏𝑖 stand for the 𝑖th

harvest time. Then the decision variables 𝜏𝑖, 𝑖 = 1, ..., 𝑚 and 𝜓𝑖, 𝑖 = 1, ..., 𝑚 captivate
the conditions

0 ≤ 𝜏1 ≤ 𝜏2 ≤ ... ≤ 𝜏𝑚 (3.3)

and
0 ≤ 𝜓𝑖 ≤ 1, 𝑖 = 1, ..., 𝑚. (3.4)

Then the total revenue obtained within the time period [0, 𝜏𝑚] is given by

𝑅 =

𝑚∑︁
𝑖=1

{𝑝𝜓𝑖𝑥(𝜏−𝑖 ) − 𝐻} (3.5)

where 𝑝 is the price and 𝐻 (or 𝑐𝑢) is the fixed cost of a single harvest. The problem is to
select the optimal harvest times 𝜏𝑖 𝑖 = 1, ..., 𝑚 and the optimal harvest rate 𝜓𝑖, 𝑖 = 1, ...𝑚
to maximize the total revenue subject to the costraints 3.4 and 3.5 the dynamic system

¤𝑥 = 𝐹 (𝑥) − 𝑞𝑢𝑥
𝑥(0) = 𝑥0

where 𝑥0 is a given constant and

𝑥(𝜏+𝑖 ) = 𝑥(𝜏−𝑖 ) − 𝜓𝑖𝑥(𝜏−𝑖 ), 𝑖 = 1, ..., 𝑝. (3.6)

This problem is equivalent to the following equivalent optimal control problem [31].
Problem: Find a pair (\∗, b∗) ∈ Θ ×𝑊 such that

𝐽 = 𝑖𝑛 𝑓
(\,b)∈Θ×𝑊

𝐽 (\, b) (3.7)
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For the rest of the problem, optimal values of harvesting time and harvesting rate by
using the procedure given in [31]. In this case, the Hamiltonian is

𝐻 = ⟨𝑝, 𝐹 (𝑥) − 𝑞𝑢𝑖𝑥⟩ + 𝑝0. (3.8)

For this fishery problem, optimal value of the fish stock is taken as 𝑥0 = 72.549. This
value is calculated due to the results of [13] by simplifying the functional with inflation
rate equal to 0, ignoring measurement noise, etc. Then, by taking 𝑐 = 45.23 and initial
fish stock 𝑥0 = 55 where 𝑥0 < 𝑥𝑜𝑝𝑡 . One may see the results listed in Table (3.1). We

Table 3.1: Periodicities and the corresponding total revenue for 𝑥0 = 55.
𝑥0 Harvesting Periodicity Total Revenue

1 day 1628.691
3 days 1627.924

55 12 days 1628.926
1 month 1630.164
2 months 1647.470
6 months 1665.567

calculate the revenue with respect to the periodicities: 1 day, 3 days, 12 days, 1 month, 2
months and 6 months. With the same manner we choose 𝑥0 = 90, i.e. 𝑥0 > 𝑥𝑜𝑝𝑡 and we
calculate the revenue with respect to the same periodicities. The results are given in the
Table (3.2). Those values are just taken to represent the result that optimal periodicity

Table 3.2: Periodicities and the corresponding total revenue for 𝑥0 = 90.
𝑥0 Harvesting Periodicity Total Revenue

1 day 1911.800
3 days 1913.436

90 12 days 1911.623
1 month 1912.917
2 months 1902.134
6 months 1866.425

for the case 𝑥0 > 𝑥𝑜𝑝𝑡 and 𝑥0 < 𝑥𝑜𝑝𝑡 totally differs from each other. For the given values
of 𝑥0 and 𝑥𝑜𝑝𝑡 we observe that, if 𝑥0 < 𝑥𝑜𝑝𝑡 then then 6 months gives the best choice for
periodicity of the harvesting. On the other hand, if 𝑥0 > 𝑥𝑜𝑝𝑡 then 3 days show the best
harvesting periodicity. This is a result of the fact that if 𝑥0 < 𝑥𝑜𝑝𝑡 the population has to
increase first of all and then the harvesting starts. For the case 𝑥0 < 𝑥𝑜𝑝𝑡 , there is no
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need to wait for the population to increase and the harvesting should start immediately.
As an illustration of those two cases that gives the most profitable choices, one may see
the figures.

Figure 3.2: Graph of fish stock with 𝑥0 = 55 and 6 months of harvesting periodicity.

Figure 3.3: Graph of fish stock with 𝑥0 = 90 and 3 days of harvesting periodicity.

3.3 Stability Analysis of One Dimensional Hybrid Model
For the hybrid model described by the hybrid automata in figure 3.1, we have

two different flows described by

𝑑𝑥

𝑑𝑡
= 𝐹 (𝑥) − 𝑞𝑢𝑖𝑥 (3.9)
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where 𝑖 ∈ {0, 1} and moreover assume that 𝑢0 = 0 and 𝑢1 = 𝑢𝑚𝑎𝑥 . This indicates that
the system switches between two flows,

𝑑𝑥

𝑑𝑡
= 𝐹 (𝑥) − 𝑞𝑢𝑚𝑎𝑥𝑥 or (3.10)

𝑑𝑥

𝑑𝑡
= 𝐹 (𝑥). (3.11)

Using the theorem from section 2, we choose Lyapunov function as 𝑉 (𝑥) = 𝑥2

2
. Then

𝜕𝑉

𝜕𝑥
𝑓𝑖 (𝑥) = 𝑥(𝐹 (𝑥) − 𝑞𝑢𝑖𝑥) = 𝑥𝐹 (𝑥) − 𝑞𝑢𝑖𝑥2.

For 𝐹 (𝑥) = 𝑟𝑥(1 − 𝑥

𝐾
), we obtain,

𝜕𝑉

𝜕𝑥
𝑓𝑖 (𝑥) = 𝑥𝑟𝑥(1 − 𝑥

𝐾
) − 𝑞𝑢𝑖𝑥2

= 𝑟𝑥2 − 𝑟𝑥
3

𝐾
− 𝑞𝑢𝑖𝑥2

= 𝑥2(𝑟 − 𝑟𝑥
𝐾

− 𝑞𝑢𝑖).

Then it is stable, if
𝑟 − 𝑟𝑥

𝐾
− 𝑞𝑢𝑖 ≤ −𝑊 (𝑥), (3.12)

where𝑊 (𝑥) : R𝑛 → R is a positive definite continuous function. This condition gives
us some conditions on the parameter values.

3.4 Two Dimensional Hybrid Model and Stability Analysis
Consider the following model

𝑑𝑥

𝑑𝑡
= 𝐹 (𝑥) − 𝑞𝑢𝑖𝑥 (3.13)

𝑑𝑢

𝑑𝑡
= 𝑢𝑖 (𝑝𝑞𝑥 − 𝑐) (3.14)

which is the same system of equations given by the equations 2.17 and 2.18 except 𝑢
in equation 3.13 is replaced by 𝑢𝑖. This effect creates a switching system that will be
examined in terms of the global stability analysis. Choose 𝐹 (𝑥) = 𝑟𝑥( 𝑥

𝑘𝑐
− 1) (1 − 𝑥

𝑘
)

and calculate the binomic equilibrium ( ¤𝑥 = ¤𝑢𝑖 = 0). A straightforward calculation gives
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the equilibrium points

𝑥∗ =
𝑐

𝑝𝑞
(3.15)

𝑢∗𝑖 =
𝑟 (𝑥𝑘 − 𝑘𝑘𝑐 − 𝑥2 + 𝑥𝑘𝑐)

𝑞𝑘𝑘𝑐
. (3.16)

which is a unique equilibrium point. Since 𝐹 (𝑥) is a depensation model, the equilibrium
point is unstable as described in the previous chapter.
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CHAPTER 4

CONCLUSION AND FUTURE DIRECTIONS

In this thesis, hybrid dynamical system formulation for the fishery problem is
considered. Firstly, an optimal control of the one dimensional case is solved. Then,
two dimensional version of the same model is obtained and the stability analysis is
investigated. Due to the results, we are able to obtain an optimal contol and obtain
the region of stability due to this optimal control. When the system is unstable, a new
optimal control is obtained and the same stability analysis is done. This area of research
is a newly developed one and therefore open to new applications. The system is very
open to randomness. Therefore, a meaningful first step will be to construct stochastic
counterparts of those models, investigate stability analysis and obtaining optimal control
solutions.

Delay can be added to the system since the whole population is not able to
reproduce. This leads us to age-structured models and the simplest way to represent
this is to use delay hybrid system models. Like in the stochastic case, again stability
and optimal control problems will be solved. Moreover, more complex models such
as multispecies models can be considered. Real world measurements will allow us to
calculate the system parameters in a reasonable way.

At this point classical methods like data fitting can be used or machine learning
techniques can be considered which are highly in fashion during the last decades.
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