

STATISTICAL BASED DETECTION OF DOS

(DENIAL OF SERVICE) ATTACKS

TARIQ. ABED. MOHAMAD

SEPTEMBER, 2012

�

���
� �

ABSTRACT

STATISTICAL BASED DETECTION OF DOS

(DENIAL OF SERVICE) ATTACKS

Tariq. Abed. Mohamad

M.Sc., Department of Mathematics and Computer Science

Supervisor: Asst. Prof. Dr. Abdul Kadir GORUR

September 2012, 112 Pages

Automated detection of anomalies in network traffic is an important and challenging

task. Anomalies and intrusion are the main factors the affects the network

performance. Detecting intruders that are aiming in degrading and preventing access

to certain web pages or network address is the aim of many research works. In this

work we propose an automated system to detect Denial of Service (DoS) attacks by

using statistical methods. Related research work in this field will be surveyed and

the aim will be the design of an enhanced method. Visual Basic .Net will used in

designing the programs.The proposed program will be tested on real environment

and its effectiveness will be verified.

Keywords: Statistical base. Denial of Service (DoS), (DDoS), IP Address, network

traffic, IP information.

�

��
� �

ÖZET

DOS İSTATİSTİKSEL TABANLI TESPİTİ

(Denial of Service) SALDIRILAR

Tariq. Abed. Mohamad

Yuksek Lisans, Matematik - Bilgisayar Bolumu

Danışman: Asst. Prof. Dr. Abdul Kadir GORUR

Eylül 2012, 112 Sayfa

Ağ trafiğindeki anomalilerin otomasyonlu tespiti önemli ve zorlayıcı bir görevdir.

Ağın performansını etkileyen ana etkenler anomaliler ve izinsiz girişlerdir. Belirli

internet sayfalarına ve ağ adreslerine erişimi azaltmayı ve engellemeyi amaçlayan

izinsiz giriş yapanların tespiti birçok araştırma çalışmasının amacı olmuştur. Bu

çalışmada, istatistiksel yöntemler kullanarak Hizmet Engelleme (DoS) saldırılarını

tespit etmeye yönelik otomasyonlu bir sistem önermekteyiz. Bu alandaki ilgili

araştırma çalışmaları gözden geçirilecektir ve amaç gelişmiş bir yöntemi

tasarlamaktır. Programların tasarımında Visual Basic .Net kullanılacaktır. Önerilen

program gerçek ortamda test edilecektir ve etkinliği doğrulanacaktır..

Anahtar Kelimeler: İstatistiksel taban. Hizmet Engelleme (DoS), (DDoS), IP

Adresi, ağ trafiği, IP bilgileri.

�

���
� �

ACKNOWLEDGEMENTS

Firstly the author wishes to express his deepest gratitude to my thesis supervisor

Asst. Prof. Dr. Abdul Kadir GORUR and without his guidance and helps this thesis

would not have been completed.

I would like to express my gratitude and appreciation to my Thesis Co-supervisor

supervisor Asst. Prof. Dr. Reza Hassan pour for wisdom, foresight and the guidance

he provided throughout the thesis completion process.

And, I would like to extend my thank to my special gratitude is to my (Mother) for

their eternal love, support and trust in me. Without them I would never come up to

this stage.

Finally, I offer my sincere thanks to my family and special my wife for their

understanding and Support they provided during this study.

�

����
� �

TABLE OF CONTENTS

STATISTICAL BASED DETECTION OF DOS ATTACKS….…..……..……….. iii

ABSTRACT …………………………………………………………….…............ vii

ÖZET …………………………………………………………….……….……..…...v

ACKNOWLEDGEMENTS ………….……………………………...…….....……..vi

TABLE OF CONTENTS ………………………….………….……………...…….vii

LIST OF TABLES………………….…………………..…………………….......….x

LIST OF FIGURES…………………..………………………………………..........xi

LIST OF SYMBOLS / ABBREVIATIONS……………………………………......xii

CHAPTERS:

1.1. Introduction……………………………………………….....……………...…....1

1.2. Definition of a Denial of Service Attack………………………………….…..…2

1.3. What are the sorts of DOS attacks ………………….…………..……...………..4

 1.3.1. Apache 2 Attack……………..……………………………………......….4

 1.3.2. Back Attack ………………………..………….………….....……….…..4

 1.3.3. Dosnuke Attack ………………………..……….…………….…………..4

 1.3.4. Land Attack: ………………………………..……..………..………….…5

 1.3.5. Mail bomb Attack………………………………..…..…………………...5

 1.3.6. Neptune (SYN-Flood) Attack……………………..…..………………....5

 1.3.7. Ping of Dead Attack……………………………………..…………..…...6

 1.3.8. Process Table Attack……………………………………...………..……..7

 1.3.9. Smurf Attack………………………………………………...…………....7

 1.3.10. Syslogd Attack………………………………………………...………...7

 1.3.11. Tcpreset Attack…………………………………………………..…..….8

 1.3.12. Teardrop Attack…………………………..…………………………..…8

1.3.13.UdpstormAtta……...………….……………………………………………….8

1.3.14. Unintentional denial of service ………………………………….…….…..…9

�

�����
� �

1.4 Why should we care………………………………………………...…………...10

1.5. Some Fast facts …………………………….……….………………..…….…..10

1.6. DoS Shortfalls …………………………….………………………………....…11

2. Introduction………………………………………………………………….…....14

 2.1. Background…………………..…………………….……………………...…14

 2.2. Denial-of-Service Level II………………………………………………..…17

 2.3Incidents and historical …………………………………………...…………..17

 2.4. Previous works and researches conducted on DOS similar methods and

available solutions……………………………..…………………………………….21

 2.5. Dos attacks: detection and prevention ………………………………………32

 2.5.1. DoS Attacks…………………………….…………………..................33

 2.5.2. Detection Approaches……………………………….……………........35

 5.2.1. ICMP Traceback………………………………………….……..36

 5.2.2.Packet Marking…………………….……………………............37

 2.5.3. Prevention Approaches…………………………………………….......39

 5.3.1. Ingress Filtering………………………………………………....39

 5.3.2. Route-based Filtering……………………………………………40

 2.6. IP Addressing Scheme …………………………………………………....41

 2.7. Parts of an IP Address ……………………...……………………………..41

 2.7.1. Network Part………………………….……………………....…….42

 2.7.2. Host Part………………………………………………............,....…42

 2.7.3. Subnet Number (optional)…….…………………….………...,..........42

 2.8. Network Classes ………………………………………...…………...........43

 2.8.1. Class A Network Numbers……………………………..……..…….43

 2.8.2. Class B Network Numbers………………………….…………...…44

 2.8.3. Class C Network Numbers…………………………………....…….44

 2.9. Administering Network Numbers ………………………….………...…….45

 2.10. Designing You IP Addressing Scheme …………………………….…......45

 2.11. How IP Addresses Apply to Network Interfaces …………….…….……..47

 2.12. Internet Protocol (IP) …………………..…….………….……….……….47

�

���
� �

 2.13. IPv6………………………………….………………………….………....49

 2.14. Private IP Addresses…………………….…..……………………….…....51

 2.15. Subnet Masks…………….…………….………………………………….54

3. The laws and theory are used…………….………………..……………………...55

 3.1. Introduction …………………………………………………………………55

 3.2. The theory of the user in the system. ………………………………….....…58

 3.2.1. Theory I………………………………………………………………58

 3.2.2. Theory II………………………………………………………..….…61

 3.2.3. Theory III………………………………………..………………...…63

 3.2.4. Theory V ……………………………………..….…….….……….…63

 3.3. Definitions………………………………………………..….………………65

 3.3.1. Classes…………………………….……..…………..…………….…65

 3.3.2. Subnet mask default………………….……..……….………….……66

 3.3.3. Broadcast address of this subnet…………………….……….…....…66

 3.4. Explain Planned IP information…………………………….…,……..…..…67

4. Results, Applications And Software Code Application of program statistics of base

attacks detection……………………………………………………………………..69

 4.1. INTRODACTION TO PROGRAM …………………………….…………..69

 4.2. STATISTICAL BASED DETECTION OF DOS ATTACKS……………... .72

 4.2.1. Check IP-Address………………………………………….………...…73

 4.2.2. View IP –Address Attack ……………………………………..……..…84

 4.2.3. Search Valid IP – Address …………………………………..…….....…87

 4.2.4. View Valid IP –Address………………………………………….......…90

 4.2.5. Network Information………………………..……………………...…...92

5. CONCLUSIONS AND FUTURE WORK…………………………………...…108

 5.1. CONCLUSIONS……………..………………………...……………..…108

 5.2. FUTURE WORK …….…………………………………………………109

REFERENCES ………...……………………………..…………...………………110

APPENDIX ………………………………………………………………………..112

�

��
� �

LIST OF TABLES

Table 1 Classification of DoS Attacks.. 12

Table 2 Countermeasures for DoS Attacks... 13

Table 3 IPv6 Packet Header Forma...50

Table 4 Default Subnet Mas …...……………………..…………………................ 54

Table 5 Class A network ………...……………………..…...……………….......... 65

�

���
� �

LIST OF FIGURES

Figure 1 DoS attack graphlets...,,....... 22

Figure 2 The framework of our Intrusion Detection System……………...……….23

Figure 3 AIDS system architecture... 25

Figure 4 AIDS system architecture Simulation model in ns-2…..…………........... 27

Figure 5 Illustration of SIP signaling…………………...…...……………....28

Figure 6 UMTS Network Architecture……………………………........................ 30

Figure 7 our experimental network environment for data collection….……………31

Figure 8 Different scenarios for DoS attacks. Attacker A1 launches an attack on the

victim V. A1 spoofs IP address of host H5 from domain D5. Another attacker A3

uses host H3 as a reflector to attack V………... 34

Figure 9 IP headers... 48

 Figure 10 Design of System Public... 57

Figure 11 Design of IP CHIK ……………...……………………….….……..……60

Figure 12 Design of IP Time…………………………………………………..…... 62

Figure 13 Design of system STATISTICAL BASED daily..................................... 63

Figure 14 Design of system IP information ... 64

Figure 15 login the security a window... 69

Figure 16 used a window adjustment..70

Figure 17 The Main Window Program... 72

Figure 18 Check IP _Address... 74

Figure 19 Views IP –Address Attack.. 85

Figure 20 IP ADDRESS CHART.. 87

Figure 21 Searches Valid IP – Address.. 88

Figure 22 View Table Valid IP –Address.. 90

Figure 23 Network Information Attack IP.. 92

Figure 24 Network Information Valid IP………………………………................ 100

�

����
� �

LIST OF SYMBOLS / ABBREVIATIONS

3G Third Generation

ACK Acknowledgment

ARP Address Resolution Protocol

CPU Central Processing Unit

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

FP False-Positive

FTP File Transfer Protocol

HIDS Host Based Intrusion Detection System

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IOS Internet Operating System

IP Internet Protocol

LAN Local Area Network

MAC Media Access Control address

NAT Network Address Translation

NGMN Next Generation Mobile Network

NIDS Network Based Intrusion Detection System

NIC Network interface card

OS Operating System

POD Ping Of Death

PPM Probabilistic Packet Marking

RST Reset Packet

SIP Session Initiation Protocol

�

�����
� �

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Manageabumadament Protocol

SPIE Source Path Isolation Engine

SYN Synchronize

TCP Transmission Control Protocol

TELNET Teletype Network

TF True Positive

TTL Time-to-Live

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

�

����
� �

�

1�
�

CHAPTER I

1.1. INTRODUCTION

Nothing is more hindering your business than a network outage, and no one is

protected to them. They lead to practical obstacles, and it takes time to deal with

them. Thousands of dollars are lost every second your services are unavailable to

your customers. You may have invested in the personnel or infrastructure to respond

to an equipment failure, but what do you do when you see yourself a victim of a

Denial of Service (DoS) or a Distributed DoS (DDoS) attack? Can you afford to be

paralyzed by hackers? DoS and DDoS attacks deny legal users access to critical

network services. Hackers conduct this by launching attacks that consume extreme

network bandwidth, host processing cycles, or other network infrastructure

resources. DoS attacks have resulted some of the world .s biggest companies to fail

customers and investors as their Web sites became inaccessible to customers,

partners, and users sometimes for up to twenty-four hours. For the victim, the

influence can be comprehensive. Tools that empower DoS attacks are maturing to the

point that even uncomplicated intruders could make risky damage. [4]

Instead, they merely use a massive amount of Internet resources, i.e., compromised

hosts located between themselves and the victim (or victims), to send out a huge

amount of useless packets toward the victim (or victims) simultaneously. The

magnitude of the combined traffic is commonly sufficiently huge to jam, or even

crash, the victim (system resource exhaustion), or its Internet links (bandwidth

exhaustion), or both, then taking the victim off the Internet Often hackers of DoS

attacks spoofed their attack packets’ source addresses, and in DDoS attacks, each

one sends a specific amount of packets to a victim or victims. Both make it very

complicated to trace to the factual attackers. Based on a 2007 CSI Computer Crime

and Security Survey, DoS attacks were in the top 5 amongst all attack kinds. 25

percent of respondents’ computers had recognized DoS attacks. many companies’

�

2�
�

loss were caused by DoS is $2,888,600 which were ranked the top 7 among all attack

categories. These show the severity of information security. [2]

1.2. DEFINITION OF A DENIAL OF SERVICE ATTACK:

Denial of service attacks is not modern, but the network made it lethal. The rudiment

of this approach is not complicated and the attacker got rid of the devices with a

stream of requests and orders that exceed the ability of the device provided on the

treatment. It can be precise and uncomplicated examples of this approach when we

continue to press the ENTER button on the input terminal (Terminal) have not yet

logged on to the Network Log In, but linked to a specific type of hardware or

workstations. The reason is that this method can be categorized into methods of

denial of service attacks that the input button is in most circumstances; the start

routine is to recognize the tool within the operating system, usually the routine

implementation of high priority. And continued pressure on this button creates a high

demand for the treatment process which is needed to identify the tool (keyboard of

this case), leading to consumption of 100% of processor power and make it unable to

receive requests for additional treatment. This drives to paralysis in the operating

system, which usually does not have the intelligence to recognize between legitimate

requests for access, and entry of harmful applications. In this situation there is no

mechanism can correspond to this attack. And other approaches for this type of

attack are to target resources in other fixed infrastructure, and examples of attacks

that dump SYN. Within the meetings of the network (the Internet), the usual process

like a handshake between systems, where the systems are to issue a demand to

connect to another system using the package SYN (SYNchronization).

The host system in this case by issuing a package SYN-ACK, can respond to the

demand coming from a particular IP address, and log this address in a particular

table, and identify a specific period to disconnect if no response to this package

occurs, and this must be in the formation of packet ACK issued by the first

system. In the attacks of dumping, the attacker sends the biggest possible amount of

packets SYN using IP addresses, fake, and the host system log responses to the

packages SYN-ACK in the table, which remains there because the attacker does not

�

3�
�

send packets ACK required, leading to full scale applications and its inability to

receive any new connection requests.

 Despite the damage that can inflict this kind of attack, the remedy can be

implemented in two steps; first is to enlarge the size of the table that receives

connection requests, and the second - a step is inherent to the first - to decreased the

time required to respond to connection requests in order to omit the input is used

more quickly. There is another kind of denial of service attacks, where the attacker

uses a program to go into the test user accounts within a specific service through the

experience of all user names, passwords and the wrong or deliberate use.

When using this software, some servers, if there is a specific delay between trials to

enter, you prevent legitimate users to access the system. There is also another

method of attack is called "packets watery Teardrop" where the attacker sends an

assertive distorted order that leads to collapse of the processing of IP addresses on

the device supplier. Similarly, there is a method of dumping the treatment process

itself in the operating system by sending commands handling or the introduction of

long (much longer than it is permitted by the operating system or application) Buffer

Overflow, not the processing of inputs within the operating system Besdha (a

loophole exploited by the authors of virus code Red Code Red in the Microsoft

servers and operating systems) lead to the collapse of the system. [12]

 Denial of service (DoS) is a type of attack in which a hacker issues a big amount of

packets to freeze specific servers’ services, consequently blocking legal users from

normal access to the services. Distributed DoS (DDoS) attacks are another forms of

DoS attacks in which a host or hosts complain from receiving a huge amount of

packets issued by zombies. DDoS attacks often do not depend on particular network

protocols or system weaknesses [2]

�

4�
�

1.3. WHAT ARE THE SORTS OF DOS ATTACKS?

1.3.1. Apache2 Attack:

The apache2 attack is a denial of service attack against an apache web server. In this
attack, plenty of http requests with http headers are sent to the web server. Since the
server receives many of these http requests, it slows down, and in the long run it
might crash a typical http request involves twenty or fewer headers. However, every
http request which is submitted as part of this exploit involves many http headers.
 despite the exact number and value of these headers can be varied between attack

instances, commonly the number of headers is 500 times greater than the number of

headers in a normal request. Moreover, the real component of the header is not

important for the exploit, the exploit only depends on the fact that http request

consists of many headers [8-16]

1.3.2. Back Attack:

Back attack is a denial of service attack against the apache web server. This attack

Makes malformed web requests to port 80 with the payload, “\Get //// ...” followed

by many slashes Since the server tries to process these requests, it will slow down

and becomes unable to process other requests. An intrusion detection system can

detect back any attack by checking the payloads of network packets. hence, the

requests which are carrying more number of front slashes in payload should be

considered an attack [8-16].

1.3.3. DoSnuke Attack:

DoSnuke is a denial service attack against NetBIOS. In this attack, “out-of-band”

 the (MSG_OOB) data that is delivered with higher priority than ordinary data is

sent to NetBIOS port of the victim machine. These packets which are being sent by

the attacking machines are flagged "urg". When a Windows system receives a packet

with the "urg" flag set, it expects the data that will follow that flag. The exploit

consists of setting the flag"urg", but not does not follow it with data. It can be

detected by searching the sniffed data for a NetBIOS handshake followed by

NetBIOS packets with the "urg" flag set. [8-19]

�

5�
�

1.3.4. Land Attack:

The Land attack is a denial of service attack that is effective against some older

TCP/IP implementations. The Land attack takes place when an attacker sends a

spoofed TCP SYN packet that contains same IP address as the source and the

destination addresses Such a packet locks the victim system completely. However, it

is quite noticeable, because IP packets with identical source and destination

addresses should never exist on a properly working network. [8-16].

1.3.5. Mail bomb Attack:

Mail bomb is an attack in where the attacker sends many messages to a server,

overflowing that server’s mail queue and might possibly causing system failure.An

intrusion detection system that is looking for a mail bomb attack can look for

thousands of mail messages coming from or sent to a particular user within a short

period of time. However, the aim of this type of attack is not to generate a high

traffic volume, but to create a large size of messages in the server's queue. Therefore,

via looking only at the IP header, a normal host might exhibit behavior similar to that

of an attacker since it could send mail with large attachments to the SMTP server [8-

16].

1.3.6. Neptune (SYN-Flood) Attack:

In order to establish a TCP connection between a client and server systems, a set

sequenced of messages is required to be exchanged. Firstly, the client system sends a

SYN message to the server to request a TCP connection. The server then

acknowledges the SYN message by sending SYN-ACK message to the client. The

client then completes establishing the connection by responding with an ACK

message. The connection between the client and the server at that time is open, and

the service-specific data can be exchanged between the client and the server the

potential for abuse arises at the point where the server system has sent an

�

6�
�

acknowledgment (SYN-ACK) back to client but has not received the ACK message

yet. This is what we mean by half-open connection.

 A SYN Flood is a denial of service attack to which every TCP/IP implementation is

vulnerable (to some degree). Each half-open TCP connection made to a machine

leads to the “tcpd” server to add a record to the data structure that saves information

describing all pending connections. This data structure has finite size, and it can be

made to overflow by intentionally creating too many partially-open connections. The

half-open connections data structure on the victim server system will ultimately fill

and the system will be incapable of accepting any new incoming connections until

the table is emptied out. Normally there is a timeout associated with a pending

connection, so the half-open connections will eventually expire and the victim server

system will recover. However, the attacking system can simply continue sending IP-

spoofed packets requesting new connections faster where the victim system can

expire the pending connections. In some cases, the system may exhaust memory,

crash, or be rendered otherwise inoperative

A Neptune attack can be distinguished from normal network traffic by looking

seeking high number of simultaneous SYN packets determined for a particular

machine that are coming from an unreachable host [8-23-16].

1.3.7. Ping Of Dead Attack:

A ping of death (abbreviated "POD") is a denial service attack, in which attacker

sends a malformed or a malicious ping to a victim system. A ping is normally 64

bytes in size and carried by the ICMP protocol. Many computer systems do not have

the ability to handle a ping larger than the maximum IP packet size, namely 65,535

bytes. Sending a 65,536 byte ping packet is illegitimate according to networking

protocol, but a packet of such a size can be sent if it is fragmented; when the target

computer recollects the packet, a buffer overflow can take place. Possible reactions

include crashing, freezing, and rebooting . An attempted ping of death can be

�

7�
�

identified by examining the size of all ICMP packets and flagging those that are

longer than 64000 bytes [8-20-16].

1.3.8. Process Table Attack:

Process table attack is a type of DoS attack, which exploits the feature of some

network services to generate a new process each time a new TCP/IP connection is set

installed. The attacker attempts to make as many as possible uncompleted

connections to the victim in order to oblige the victim’s system to generate ample

processes. Hence, because the number of processes that are running on the system

cannot be unlimitedly large, the attack renders the victim would be unable to serve

any other request An intrusion detection system that is trying to detect a process table

attack will need to use somewhat subjective criteria for identifying the attack, since

this attack comprises of abuse of a perfectly legal action [8-19-16].

1.3.9. Smurf Attack:

Smurf attack is a denial-of-service attack, in which ICMP echo request packets are

exploited. The attacker sends ICMP echo request packets to the broadcast address of

many subnets with the source address spoofed to the intended victim. Any machines

that are listening to these subnets will respond by sending ICMP “echo reply”

packets to the victim. So, this attack results in a large ongoing flow of “ECHO”

replies that flood the victim. The surf attack can be identified by checking if there is

alarge number of “echo replies” being sent to a particular victim machine from many

various places, but no “echo requests” originating from the victim machine [8-16].

1.3.10. Syslogd Attack:

The Syslogd exploit is a denial-of-service attack that lets an attacker remotely

Eliminate the sys-logged service on a Solaris server. Under Solaris, if syslogd

receives a packet Containing an irresolvable IP address, it will crash with a

�

8�
�

segmentation fault This attack can be recognized with a network-monitoring

intrusion detection system, Which examines packets destined for the sys-log port

whether the source address is Irresolvable or not, in the fact, it may not be authentic

for an intrusion detection system to check every packet destined for the syslog[8-16].

1.3.11. Tcpreset Attack:

Tcpreset attack is a denial-of-service attack, in which the attacker intends to eradicate

all TCP connections to a host. The network is monitored for TCP connection

requests to the victim. As soon as such a request is discovered, the malevolent

attacker sends a spoofed TCP RESET packet to the victim and forces it to terminate

the TCP connection [8].

In order to detect this attack, TCP session/takedown rate can be checked and then

especially concentrated on cases in which RESET packets appear to come from the

machine that had initially attempted to start the connection [8-19].

1.3.12. Teardrop Attack:

In this attack, IP fragments with overlapping and oversized payloads are sent to the

target machine. A bug in the TCP/IP fragmentation re-assembly code of various

operating systems led to the fragments to be inappropriately controlled, crashing

them as a result of this [8-21].

1.3.13. Udpstorm Attack:

An Udpstorm attack is a denial of service attack exploits two victim machines that

Unconsciously attack each other. Firstly, the attacker forges a single packet that has

been spoofed to seem that it is coming from the echo port on the first victim

machine and sends it to the second victim. The echo service aimlessly responds to

any request it receives by simply echoing the data of the request back to the machine

and port that sent the echo request, so when the victim receives this spoofed packet it

sends a response to the echo port of the second victim. This second victim responds

�

9�
�

identically, and the loop of traffic persists. therefore, network congestion and

slowdown occur. Once the loop of network traffic is initiated, an intrusion detection

system that can notice network traffic on the inside of the network can note that

traffic is being sent from the chargen or echo port of one machine to the chargen or

echo port of another [8-16].

 1.3.14. Unintentional Denial Of Service:

This describes a situation where a website ends up denied, not due to a deliberate

attack by a single individual or group of individuals, but simply due to a sudden

enormous spike in popularity. This can take place when an extremely popular

website posts a prominent link to a second, less well-prepared site, for instance, as

part of a news story. The upshot is that a significant proportion of the primary site's

regular users — potentially hundreds of thousands of people — click that link in the

space of a few hours, having the same impact on the target website as a DDoS

attack. A VIPDoS is the same, but specifically when the link was posted by a

celebrity.

An example of this occurred when Michael Jackson died in 2009. Websites such as

Google and Twitter slowed down or even crashed.] Many sites' servers thought the

requests were from a virus or spyware attempting to cause a Denial of Service

attack, warning users that their queries looked like "automated requests from

a computer virus or spyware application". [22]

�

10�
�

1.4.WHY SHOULD WE CARE?

 As per 2006 CSI/FBI Computer Crime and Security Survey

• 25% of respondents faced some form of DoS attacks in previous 12

months. This value varied from 25% to 40% over the course of time.

• DoS attacks are the 5th most costly form of attacks A DoS attack is

not just missing out on the latest sports scores or Tweets or weather

reports Internet is now a critical resource whose disruption has

financial implications, or even dire consequences on human safety.

• Cybercrime and cyber warfare might use of DoS or DDoS as a

potential weapon to disrupt or degrade critical infrastructure.

• DDoS attacks are major threats to the firmness of the Internet. [5]

1.5.SOME FAST FACTS ?

• In Feb 2000, series of massive DoS attacks incapacitated several high-

visibility Internet e-commerce sites, including Yahoo, EBay and E*TRADE.

• In Jan 2001, Microsoft’s name severs infrastructure disabled 98% and the

legitimate users could not get access any Microsoft’s servers.

• In Sept 2001, an attack by a UK-based teenager on the port of Houston’s Web

server, made weather and scheduling information unavailable, as a result No

ships could dock at the world’s 8th busiest maritime facility due to lack of

weather and scheduling information Entire network performance was

affected.

• In Oct 2002, all Domain Name System servers were attacked, and the Attack

lasted only an hour 9 of the 13 servers were seriously affected.

• In Aug 2009, the attack on Twitter and Facebook. [5]

�

11�
�

1.6.DOS SHORTFALLS:

• DoS attacks are unable to attack large bandwidth websites – one upstream

client cannot produce enough bandwidth to cripple major megabit websites.

• New distributed server architecture makes it more 11ifficult for one DoS to

take down an entire site.

• New software protections neutralize existing DoS attacks quickly

• Service Providers know how to avoid these attacks from effecting their

networks.

• “Old” Internet Technology – something new needs to take it’s place (Hackers

want the challenge of a new technology). [10]

�

12�
�

Table 1 Classification of DoS Attacks [10][14]

Attack Affected
Area

Example Description

Network
Level
Device

Routers, IP
Switches,
Firewalls

Ascend Kill II,

“Christmas Tree
Packets”

Attack tries to exhaust
hardware resources
using multiple
duplicate packets or a
software bug.

OS Level Equipment
Vendor OS,
End-User
Equipment.

Ping of Death,

ICMP Echo
Attacks,

Teardrop

Attack takes advantage
of the way operating
systems implement
protocols.

Applicati
on Level
Attacks

Finger
Bomb

Finger Bomb,

Windows NT
RealServer G2
6.0

Attack a service or
machine by using an
application attack to
exhaust resources.

Data
Flood
(Amplific
ation,
Oscillatio
n, Simple
Flooding)

Host
computer or
network

Smurf Attack
(amplifier attack)

UDP Echo
(oscillation
attack)

Attack in which
massive quantities of
data are sent to a target
with the determination
of using up
bandwidth/processing
resources.

Protocol
Feature
Attacks

Servers,
Client PC,
DNS Servers

SYN (connection
depletion)

Attack in which “bugs”
in protocol are utilized
to take down network
resources. Methods of
attack include: IP
address spoofing, and
corrupting DNS server
cache.

�

13�
�

Table 2 Countermeasures for DoS Attacks[10][14]

Attack Countermeasu
re

Options

Example Description

Network
Level
Device

Software
patches, packet
filtering

Ingress and
Egress
Filtering

Software upgrades can
repair known bugs and
packet filtering can avoid
attacking traffic from
entering a network.

OS Level SYN Cookies,
drop backlog
connections,
shorten timeout
of the time

SYN
Cookies

Shortening the backlog time
and dropping backlog
connections will free up
resources. SYN cookies
proactively prevent attacks.

Application
Level
Attacks

Intrusion
Detection
System

GuardDog,
other
vendors.

Software used to detect illicit
activity.

Data Flood
(Amplificati
on,
Oscillation,
Simple
Flooding)

Replication and
Load Balancing

Akami/Digit
al Island
provide
content
distribution.

Extend the volume of
content under attack makes it
more complex and more
difficult for attackers to
identify services to attack
and accomplish attacks
completely.

Protocol
Feature
Attacks

Extend
protocols to
support
security.

ITEF
standard for
itrace,
DNSSEC

Trace source/destination
packets by means other than
the IP address (blocks
against IP address spoofing).
DNSSEC would provide
authorization and
authentication on DNS
information.

�

14�
�

CHAPTER II

2. INTRODUCTION

2.1. BACKGROUND

Feinstein et al. [14] used chi-square formula to detect DoS attacks.The authors

classify network connections into six groups, called previous groups, according to

packets’ receiving frequencies, and calculate the total frequency of normal

connections for each group. When detecting attacks, the detector again classifies

frequencies of current connections, and classify then into six groups, called current

groups. It then compares the frequency of previous group i and that of current group

I with chi-square statistic method to see whether or not the difference is significant.

If so, we can suspect that there is a DoS or DDoS attack. However, several problems

exist in this system. The first is that there are only six groups. For a huge institute or

organization, the number should be increased. Otherwise, too many IPs are in a

group, resulting higher false positives. The second, there is no way to identify who

the backers are once a DoS/DDoS is discovered. To solve this problem, we create a

mechanism to do this. The third, if hackers issue a DoS/DDoS attack with a specific

protocol, e.g., ICMP flooding, due to only occupying a portion of total packets, the

attack is hard to be detected. The fourth is before calculating chi-square statistics, the

authors grouped IPs based on their current connection frequencies rather than

following the classification of previous groups. That is, a packet which is classified

into previous group i may be classified into current group j,1≤ i, j ≤ 6,i ≠ j , again

resulting in the fact that we only know that there is a DoS/DDoS attack, but do not

know who is issuing the attack. The final problem is the authors failed to considered

�

15�
�

network consumption attacks. They only considered resource consumption attack. In

fact, network consumption attack can be detected by the same method. [2]

Modern DoS attacks employ many advanced and sophisticated techniques to amplify

the damage and elude detections or mitigations of countermeasures. IP spoofing is

widely adopted by hackers to mask the real source of attacks, or launch reflective

DoS attacks; Distributed DoS is used to initiate attacks from multi-source; low-rate

pulsing method is utilized to reduce average packet rate and evade network monitors.

Based on a header analysis, frequency domain characteristics are studied to improve

the IDS performance [12][19], a ramp-up behavior is also considered as a way to

distinguish between single- or multi-source attacks. In [20][22], authors propose to

take a spectral analysis to detect shrew attacks which consist of short time bursts

repeating at a maliciously chosen low frequency. This kind of low-rate attack sends

out packets at certain fixed intervals, to intentionally reduce the average packet rate,

rendering the IDS unable to discover undergoing attacks. To defend against IP

spoofings, various off-line IP trace-back techniques are proposed to pinpoint the real

origin of DoS attack [7][17], some on-line countermeasures are also developed to

filter out thos spoofed packets, help sustain service availability during attacks [23]

presents a Hop-Count Filtering scheme to utilize the Time-to-Live(TTL) value in the

IP header to filter out spoofed IP packets. Recent work on intrusion countermeasures

include machine learning IDS techniques, alert correlation, alert fusion and feature

analysis. Machine learning techniques, such as decision tree, neural network,

Bayesian network, are applied to detect network intrusions. Alert correlation

attempts to correlate IDS alerts based on the similarity between alert attributes,

previously known attack scenarios, or prerequisites and consequences of known

attacks [13].

Alert fusion combines detection outputs of the same attack from different

independent detectors. Feature Analysis tries to optimize the information gained

from multiple dimensional features through feature bagging, relevance and

redundancy analysis, and feature weight classification [5][14][1][3].

In the HIDS literature, various techniques utilizing system call tracking and auditing

trails are proposed. System call arguments are integrated to capture data-flow

�

16�
�

behaviors of programs, and improve attack detections in HIDS [2]. A policy-driven

solution is presented in [4] to define and enforce process behavior rules controlling

processes’ access to system resources. All system behaviors are monitored in real-

time by a modified kernel. Basically, research works investigating DoS attack utilize

sniffer-based methodologies. They only rely on analyzing network traffic

information at the application level.

These network-based schemes suffer from fast traffic, switched network, information

encryption, and most importantly, they have little knowledge of what is really going

on in the victim machine. Significant useful information on the victim host is

neglected. HIDS against DoS attacks are not widely researched since it is difficult to

find a generic and low-cost way to defend against such attacks. We propose to utilize

the strong correlation of architectural behaviors with DoS attacks, and employ multi-

layer features to construct an IDS model. Close to our work, Woo and Lee [11] have

observed performance degradation of multi-threaded workload under architectural

DoS attacks. However, they do not further study the correlation of architectural

behavior and DoS attacks and apply into an IDS in identifying and preventing such

attacks. In our work, we are exploring architecture features to enrich the existing

feature set used for intrusion detection research and demonstrate its effectiveness in a

systematic approach.[1] The “Session-Expires” extension header is proposed in RFC

4028 [2] as a keep-alive mechanism for SIP. In the “security considerations” section

of the RFC, only attacks through setting very small session timers are addressed,

where an attacker may force compliant user agents to frequently send session

refreshes at a rapid rate. The RFC proposed a 422 (Session Interval Too Small)

response to reject the attacker’s request if the timer is smaller than the value

specified in the “Min-SE” header. However, there is no enforcement of how large the

session timer can be and we identify a novel resource drained attack by utilizing this

fact.

Also, the victim of our identified attack is the SIP proxy server rather than the user

agents as considered in the RFC. Surveys of the DoS attacks in VoIP can be found in

[19]–[20]. The SIP flooding attack is one of the major threats because it is easy to

�

17�
�

launch and capable of quickly overloading both the network and nodes. However,

existing work such as [21], [22] can efficiently detect the attack.

The attack utilizing the open-ended implementation of SIP is another major problem

on VoIP networks [20]. Attackers modify SIP header values and excessively

consume processing capability of SIP nodes. The attack identified in this paper

belongs to this category. We propose a detection scheme based on the statistical

Anderson-Darling test to deal with the attack.[6]

2.2.DENIAL-OF-SERVICE LEVEL II

The goal of DoS L2 (possibly DDoS) attack is to cause a launching of a defense

mechanism which blocks the network segment from which the attack originated. In

case of distributed attack or IP header modification (that depends on the kind of

security behavior) it will fully block the attacked network from Internet, but without

system crash.

2.3.INCIDENTS AND HISTORICAL

■ The first major attack involving DNS servers as reflectors occurred in January

2001. The target was Register.com.[9] This attack, which forged requests for the MX

records of AOL.com (to amplify the attack) lasted about a week before it could be

traced back to all attacking hosts and shut off. It used a list of tens of thousands of

DNS records that were a year old at the time of the attack.

■ In February 2001, the Irish Government's Department of Finance server was hit by

a denial of service attack carried out as part of a student campaign from NUI

Maynooth. The Department officially complained to the University authorities and a

number of students were disciplined.

■ In July 2002, the Honeynet Project Reverse Challenge was issued. The binary that

was analyzed turned out to be yet another DDoS agent, which implemented several

DNS related attacks, including an optimized form of a reflection attack.

■ On two occasions to date, attackers have performed DNS Backbone DDoS Attacks

on the DNS root servers. Since these machines are intended to provide service to all

�

18�
�

Internet users, these two denial of service attacks might be classified as attempts to

take down the entire Internet, though it is unclear what the attackers' true motivations

were. The first occurred in October 2002 and disrupted service at 9 of the 13 root

servers. The second occurred in February 2007 and caused disruptions at two of the

root servers.

■ In February 2007, more than 10,000 online game servers in games such as Return

to Castle Wolfenstein, Halo, Counter-Strike and many others were attacked by the

hacker group RUS. The DDoS attack was made from more than a thousand computer

units located in the republics of the former Soviet Union, mostly from Russia,

Uzbekistan and Belarus. Minor attacks are still continuing to be made today.

[citation needed]

■ In the weeks leading up to the five-day 2008 South Ossetia war, a DDoS attack

directed at Georgian government sites containing the message: "win+love+in+Rusia"

effectively overloaded and shut down multiple Georgian servers. Websites targeted

included the Web site of the Georgian president, Mikhail Saakashvili, rendered

inoperable for 24 hours, and the National Bank of Georgia. While heavy suspicion

was placed on Russia for orchestrating the attack through a proxy, the St. Petersburg-

based criminal gang known as the Russian Business Network, or R.B.N, the Russian

government denied the allegations, stating that it was possible that individuals in

Russia or elsewhere had taken it upon themselves to start the attacks.

■ During the 2009 Iranian election protests, foreign activists seeking to help the

opposition engaged in DDoS attacks against Iran's government. The official website

of the Iranian government (ahmedinejad.ir (http://www.ahmadinejad.ir/)) was

rendered inaccessible on several occasions. Critics claimed that the DDoS attacks

also cut off internet access for protesters inside Iran; activists countered that, while

this may have been true, the attacks still hindered President Mahmoud

Ahmadinejad's government enough to aid the opposition.

■ On June 25, 2009, the day Michael Jackson died, the spike in searches related to

Michael Jackson was so big that Google News initially mistook it for an automated

attack. As a result, for about 25 minutes, when some people searched Google News

they saw a "We're sorry" page before finding the articles they were looking for.

�

19�
�

■ June 2009 the P2P site The Pirate Bay was rendered inaccessible due to a DDoS

attack. This was most likely provoked by the recent sellout to Global Gaming

Factory X AB, which was seen as a "take the money and run" solution to the

website's legal issues.[30] In the end, due to the buyers' financial troubles, the site

was not sold.

■ Multiple waves of July 2009 cyber-attacks targeted a number of major websites in

South Korea and the United States. The attacker used botnet and file update through

internet is known to assist its spread. As it turns out, a computer trojan was coded to

scan for existing My Doom bots. My Doom was a worm in 2004, and in July around

20,000-50,000 were present. My Doom has a backdoor, which the DDoS bot could

exploit. Since then, the DDoS bot removed itself, and completely formatted the hard

drives. Most of the bots originated from China, and North Korea.

■ On August 6, 2009 several social networking sites, including Twitter, Facebook,

Livejournal, and Google blogging pages were hit by DDoS attacks, apparently aimed

at Georgian blogger "Cyxymu". Although Google came through with only minor set-

backs, these attacks left Twitter crippled for hours and Facebook did eventually

restore service although some users still experienced trouble. Twitter's Site latency

has continued to improve, however some web requests continue to fail.

■ In July and August 2010, the Irish Central Applications Office server was hit by a

denial of service attack on four separate occasions, causing difficulties for thousands

of Second Level students who are required to use the CAO to apply for University

and College places. The attack is currently subject to a Garda investigation.

■ On November 28, 2010, whistle blower site wikileaks.org experienced a DDoS

attack. This was presumably related to the pending release of many thousands of

secret diplomatic cables.

■ On December 8, 2010, a group calling themselves "Anonymous" launched

orchestrated DDoS attacks on organizations such as Mastercard.com, PayPal,

Visa.com and PostFinance; as part of the ongoing "Operation Payback" campaign,

which originally targeted anti-piracy organisations, in support of the Whistleblowing

site Wikileaks and its founder, Julian Assange. The attack brought down the

Mastercard, PostFinance, and Visa websites successfully. PostFinance, the bank that

�

20�
�

had frozen Julian Assange’s account, was brought down for more than 16 hours due

to the attacks. However, in denial of the fact that it was taken down by a bunch of

notorious internet users, the bank issued a statement that the outage was caused by an

overload of inquiries: "Access to www.postfinance.ch and thus also e-finance is

currently overloaded owing to a multitude of online enquiries. The security of

customer data is not affected.[13]

�

21�
�

2.4. PREVIOUS WORKS AND RESEARCHES CONDUCTED ON DOS

SIMILAR METHODS AND AVAILABLE SOLUTIONS :

Based on the study and search I conducted on DOS, I have quoted some ideas belong

to some researchers worked in this regard and made similar experiments on DOS.

The following includes some quotations with their explanations:

1- Denials of service (DoS) attacks have become ongoing to evolve and

influence availability of the internet infrastructure. a large number of the

researchers in the field of network security and system survivability have

been installing mechanisms to find DoS attacks. by conducting such action

they hope to maximize precise detections (true-positive) and minimize non-

justified detections (false-positive). this research suggests a lightweight

approach to recognize DoS attacks by analyzing host behaviors. our approach

relies on the term of blind classification or blink: no access to packet payload,

no information of port numbers, and no extra information other than what

current flow collectors supply. rather than using pre-identified signatures or

rudiments as in typical intrusion detection systems, blank maps flows into

graph lets of each attack sample. in this work we produce three types of graph

lets for the following DoS attack patterns: SYN flood, ICMP flood, and host

scan. Upshots suggest that our methodology can introduce all events and all

hosts associated accompanied by attack activities, with a low percentage of

false positive

�

22�
�

Figure 1 DoS attack graphlets

We propose a lightweight approach to recognize DoS attacks and their onsets.

Our approach can identify SYN flood, ICMP flood, port scan, and host scan,

according to the concept of BLINC’s host behavior analysis. The procedure

consists of two phases. First we produce attack graph-lets by checking unique

flow behaviors. Secondly, we identify an attack flow by comparing flow records

with the previously defined graph-lets. The advantage of our approach is that it

is able to identify all events and all hosts linked with attack activities without

depending on packet payload, packet inter-arrival time, or size of individual

packets. Moreover, it can significantly detect anomalous behaviors in the

network if the flow behaviors which are similar to DoS attacks. moreover

addition, our approach can perform near real-time detection, within one minute

interval, with low possibility of false alarms.[17]

�

23�
�

 2. Application features such as port numbers are Utilized by Network-based

Intrusion Detection Systems (NIDSs) to Find attacks flowing from networks. System

calls and the operating System relevant information are used by Host-based Intrusion

Detection Systems (HIDSs) to detect intrusions towards a host. However, the

connection between hardware Architecture occurrences and Denial-of-Service (DoS)

attacks has not been well expressed. When increasingly complicated intrusions

emerge, some attacks will be able to bypass both the application and the operating

system level feature monitors. hence, more influential solution is needed to support

existing HIDSs. In this paper, we identify the following hardware architecture

aspects: Instruction Count, Cache Miss, Bus Traffic and merge them into an HIDS

framework based on a contemporary statistical Gradient supporting model. Through

the integration of application, operating system and architecture level aspects, our

proposed HIDS shows a significant improvement of the detection rate in terms of

sophisticated DoS intrusions

Figure 2 The framework of our Intrusion Detection System

We have made many experiments to show that an only IDS using application

features didn’t succeed to detect complicated DoS attacks because these attacks

demonstrate normally if their behaviors are only watched by the application feature

�

24�
�

set. In order to detect the missed DoS attacks, we use a combination of application

and architecture feature set. The upshots of our experiments showed improved IDS

performance. In brief, we propose the concept that if crackers use complicated

systems to evade defense, the architectural level behavior gives us valuable

information to develop the IDS against such DoS attacks. [1]

3-These days, users can easily access and download network attack tools, which

often provide friendly relationship and easily operated features, from the Internet.

Therefore, even a non-skilled hacker can also launch a large scale DoS or DDoS

attack to hinder a system, i.e., the victim, from accessing Internet services.

 In this part, we suggest an agent based intrusion detection architecture, which is a

sprat detection system, to detect DoS/DDoS attacks by a protest of statistic approach

that compares source IP addresses’ normal and current packet statistics to

discriminate whether there is a DoS/DDoS attack. It first gathers all resource IPs’

packet stats so as to make their normal packet distribution. When some IPs’ current

packet distribution abruptly changes, this can be an attack. Experimental upshots

show that this method is able to effectively detect DoS/DDoS attacks .

�

25�
�

Figure 3 AIDS system architecture

we proposed distributed detection architecture Known as agent based intrusion

detection system (AIDS), which uses Quality of fit test of chi-square test to detect

DoS/DDoS attacks. It analyzes amount and variation of source address that send

packets to us, and statistics of IP address distribution. If hackers utilize attack tools,

for example, “Stacheldraht” to generate a big amount of packets of random source IP

addresses.We check to see whether its chi-square value exceed threshold.

Experimental results show that this method can influentially detect DoS/DDoS

attacks.[2]

�

26�
�

 4 -confirming security of the infrastructure against outer attacks across network

borders constitutes one of the main attributes as well as defiances of the next

generation mobile network (NGMN). To alleviate the possibility of such attacks

emancipating the NGMN architecture, it is required to identify the attack categories.

However, detection of the attack types from different traffic flows (as is the case in

network links) and their subsequent classification can be a very complicated task,

particularly when both the attack and the legitimate traffic demonstrate similar

statistical properties (such as denial-of-service (DoS) and distributed DoS (DDoS)).

Furthermore, the attacker’s capacity to spoof and forge the packet header information

(including IP address) makes the detection process even more compound.

Conventional anomaly based attack detection mechanisms have been found wanting

in such cases.

 detection algorithm that recognizes and characterizes network traffic by seeking the

frequency spectrum distribution. The Lomb period gram is used to specify the power

spectrum of the monitored traffic whereupon two deviation score parameters are

employed to disconnect the anomaly traffic flows from legitimate ones in a two-step

method. For simple purposes, the efficiency of such classification effort is

demonstrated for DoS and DDoS attacks only (for their statistical similarity to

normal traffic).

�

27�
�

Figure 4 AIDS system architecture Simulation model in ns-2

One of the main goals of NGMN architecture is to avoid spoofed sources from

attacking the infrastructure and individual nodes (in the form of DoS and DDoS), as

well as to prevent attack migration across heterogeneous network borders. Since

conventional anomaly based detection mechanism (using packet-level analysis) are

unable of addressing such security cases in expanded networks, in this paper we

proposed an NGMN detection mechanism that can precisely classify traffic into

normal, DoS and DDoS. We used frequency domain analysis to specify the power

spectrum of network traffic. Two deviation score parameters were identified for

network anomaly detection and their subsequent classification. The initiative

simulation results indicate that the frequency domain analysis is active and has the

ability to detect and characterize attacks through different conditions. With such

promising results, determining a generic expression that can identify the threshold

values, as well as raise the level the segregation of different attack traffic such as

worms and flash crowd events will form the future direction of our research.[24]

�

28�
�

5- The Session Initiation Protocol (SIP) has been generally used in VoIP for session

control and management. As the basic SIP specifications do not need the proxy

servers to trace the states of founded sessions, an extension header field “Session-

Expires” has been suggested for SIP to permit the proxy server to hold resources for

established sessions just within the determined intervals. In this paper, we identify a

denial of service (DoS) attack utilizing this SIP extension to exhaust resources of the

proxy servers in wireless VoIP. In particular, by planned setting a large value of the

“Session-Expires” header and then physically disconnecting from the wireless

network, attackers can frequently hold resources of the proxy server as long as they

are willing to do so. Also, the low-volume nature of the attack permits it to prevent

being detected by existing volume-based intrusion detection systems. As a counter-

measure, we propose a concrete detection scheme based on the statistical Anderson-

Darling test. The key insight that leads to the scheme is the changed statistical

property of the header values caused by the attack .We check the performance

through computer simulation. The scheme shows its capacity to detect the attack and

is even more effective when used against the distributed denial of service (DDoS)

attack.

Figure 5 Illustration of SIP signaling

�

29�
�

we identify a novel resource-drained denial Of service attack which is directed to

SIP-based wireless VoIP networks. The attack works by using vulnerabilities of one

SIP protocol extension and wireless networks. The “Session- Expires” header, or the

session timer, is basically suggested as a keep-alive mechanism for SIP. However, it

provides attackers with chances to reserve resources on the SIP proxy servers as long

as they want. Also, wireless networks let attackers to easily disconnect from the

network and the disconnection does not release the resources on the proxy servers

until the session timer expires. Attackers can carry multiple resources through

repeating reservations and disconnections, and bigger damages can be resulted if

cooperating attacks are initiated from distributed attackers. Moreover, the low-

volume nature of the attack permits it to prevent from being detected by existing

volume-based intrusion detection systems. As a counter-measure, we propose a

robust

detection scheme for the resource-drained attack based on the statistical Anderson-

Darling test through investigating the characteristics of both the normal and attack

behaviors. The scheme utilizes the changed statistical property of the session timers

induced by the attack as the key insight that leads to detection. Through computer

simulation, we show that besides the capability to detect the basic one attacker

resource-drained attack, the scheme is even more effective when dealing with the

DDoS attack. As future work, we will investigate and quantify the damage level

caused by the attack through measures such as call dropping rate and SIP proxy

server overload. Also, better statistical measures will be identified to more accurately

and realistically model the distribution of the session timer values. [6]

6 - Third Generation (3G) wireless networks based on the CDMA2000 and UMTS

standards are now increasingly being deployed throughout the world. Because of

their complex signaling and relatively limited bandwidth, these 3G networks are

generally more vulnerable than their wire line counterparts, thus making them fertile

ground for new attacks. In this paper, we identify and study a novel Denial of Service

�

30�
�

(DoS) attack, called signaling attack, that exploits the unique vulnerabilities of the

signaling/control plane in 3G wireless networks. Using simulations driven by real

traces, we are able to demonstrate the impact of a signaling attack. Specifically, we

show how a well-timed low-volume signaling attack can potentially overload the

control plane and detrimentally affect the key elements in a 3G wireless

infrastructure. The low-volume nature of the signaling attack allows it to avoid

detection by existing intrusion detection algorithms, which are often signature or

volume-based. As a counter-measure, we present and evaluate an online early

detection algorithm based on the statistical CUSUM method. Through the use of

extensive trace-driven simulations, we demonstrate that the algorithm is robust and

can identify an attack in its inception, before significant damage is done.

Figure 6 UMTS Network Architecture

We have demonstrated a new DoS attack, known as signaling attack, which targets

3G wireless networks. This attack works by using the heavy-weight nature of

signaling in 3G wireless networks. We have demonstrated via trace-driven

simulation that the signaling attack can substantially burden a wireless infrastructure

using only minimal traffic. Because Due to its low-rate, low-volume property, the

signaling attack can evade the detection of traditional counter-DoS systems. In view

�

31�
�

of in this regard, we have proposed a statistical CUSUM-based detection mechanism

to defend against the signaling attack. Using real-world tracks, we have shown that

our detection mechanism can recognize the source of a signaling attack in a timely

manner before the damage becomes aggravated, while producing very few false

positives. In addition, our detection mechanism is strong as it relies solely on the

extra signaling load and based on any assumed attack strategy. [18]

7 - DoS (Denial of Service) attacks, an access filtering mechanism is used in the

firewall. The difficulty to define the filtering rules lies where ordinary and anomaly

packets have to be different in the incoming packets. The objective behind our

research is to explore the early detective approach for anomaly accesses based on

statistical analysis. In this paper, we defined the chi-square method, and then

conducted analyses the all amount of incoming packets to our College. As the results,

we debriefed the following aspects. Firstly, the chi-square analysis based on the

destination port number is more sensitive to the DDoS attacks and IP scan than that

based on the destination IP address. Secondly, DoS attacks lift up the chi-square

value up based on the analysis of the destination IP address. Finally, the multiplexing

DoS attacks tend to decrease the chi-square values in both analyses.

Figure 7 Our experimental network environment for data collection

�

32�
�

We watched all amount of incoming packets, and conducted analyses based

according to both the source IP address and the destination port number. As a result,

we extracted the following aspects. Firstly, the chi-square analysis based on the

destination port number is more sensitive to the DDoS attacks and IP scan than that

based on the destination IP address. Secondly, DoS attacks raise the chi-square value

up based on the analysis of the destination IP address. Finally,

The multiplexing DoS attacks tend to reduce the chi-square values in both analyses.

In the future, analysis based on the number of bytes of received packets and the

duration of packet receiving are to be planned. Combined analysis will create the

new features Of different of attacks. [11]

2.5. DOS ATTACKS: DETECTION AND PREVENTION

In the literature, there are several approaches to deal with denial of service (DoS)

attacks. In this section, we provide an approximate taxonomy of these approaches. In

Addition, we briefly describe the main features of each approach and highlight the

strengths and weaknesses of it. We divide the approaches for dealing with DoS

attacks into two main categories: detection and prevention approaches. The detection

approaches capitalize on the fact that appropriately punishing wrong doers

(attackers) will deter them from re-attacking again, and will scare others to do similar

acts. The detection process has two phases:

Detecting the attack and identifying the attacker. To identify an attacker,

several trace back methods can be used, as explained later in this section.

The obvious way to detect an attack is just waiting till the system

performance decreases sharply or even the whole system collapses. We

propose a more effective method for detecting attacks before they severely

harm the system. We propose to use monitoring for early detection of DoS

attacks. The details are given in Section 3. The prevention approaches, on

the other hand, try to thwart attacks before they harm the system. Filtering is

the main strategy used in the prevention approaches. To clarify the

presentation, we use the hypothetical network topology shown in Figure 8 to

demonstrate several scenarios for DoS attacks and how the different

�

33�
�

approaches react to them. The figure shows several hosts (denoted by Hs)

connected to four domains1 D1 ;D2 ;D3; and D4; which are interconnected

through the Internet cloud. In the figure, Ai represents an attacker i while V

represents a victim.[7]

2.5.1. DoS Attacks

The aim of a DoS attack is to consume the resources of a victim or the

resources on the way to communicate with a victim. By wasting the victim’s

resources, the attacker disallows it from serving legitimate customers. A

victim can be a host, server, router, or any computing entity connected to the

network. Inevitable human errors during software development,

configuration, and installation open several unseen doors for these type of

attacks. Several DoS attacks are known and documented in the literature,

 Flooding a victim with an overwhelming amount of traffic is the most

common. This unusual traffic clogs the communication links and thwarts all

connections among the legitimate users, which may result in shutting down

an entire site or a branch of the network. This happened in February of 2000

for the popular web sites Yahoo, E*trade, EBay, and CNN for several hours.

 TCP SYN flooding is an instance of the flooding attacks, Under this attack,

the victim is a host and usually runs a Web server. A regular client opens a

connection with the server by sending a TCP SYN segment. The server

allocates buffer for the expected connection and replies with a TCP ACK

segment. The connection remains half-open (backlogged) till the client

acknowledges the ACK of the server and moves the connection to the

established state. If the client does not send the ACK, the buffer will be deal

located after an expiration of a timer. The server can only have a specific

number of half-open connections after which all requests will be refused.

The attacker sends a TCP SYN segment pretending a desire to establish a

connection and making the server reserves buffer for it. The attacker does

not complete the connection. Instead, it issues more TCP SYNs, which lead

�

34�
�

the server to waste its memory and reach its limit for the backlogged

connections. Sending such SYN requests with a high rate keeps the server

unable to satisfy connection requests from legitimate users. Scuba et al.

developed a tool to alleviate the SYN flooding attack. The tool watches for

SYN segments coming from spoofed IP addresses and sends TCP RST

segments to the server. The RST segments terminate the half-open

connections and free their associated buffers. Other types of flooding attacks

include TCP ACK and RST flooding, ICMP and UDP echo-request

flooding, and DNS request flooding.[7]

Figure 8 Different scenarios for DoS attacks. Attacker A1 launches an attack on the
victim V . A1 spoofs IP address of host H5 from domain D5. Another attackerA3
uses host H3 as a reflector to attack V. [7]

�

35�
�

This list is by no means exhaustive. A DoS attack can be more severe when

an attacker uses multiple hosts over the Internet to storm a victim. To

achieve this, the attacker compromises many hosts and deploys attacking

agents on them. The attacker signals all agents to simultaneously launch an

attack on a victim. Barros shows that DDoS attack can reach a high level of

sophistication by using reflectors. A reflector is like a mirror that reflects

light. In the Internet, many hosts such as Web servers, DNS servers, and

routers can be used as reflectors because they always reply to (or reflect)

specific type of packets. Web servers reply to SYN requests, DNS servers

reply to queries, and routers send ICMP packets (time exceeded or host

unreachable) in response to particular IP packets. The attackers can abuse

these reflectors to launch DDoS attacks. For example, an attacking agent

sends a SYN request to a reflector specifying the victim’s IP address as the

source address of the agent. The reflector will send a SYN ACK to the

victim. There are millions of reflectors in the Internet and the attacker can

use these reflectors to flood the victim’s network by sending a large amount

of packets. Paxson analyzes several Internet protocols and applications and

concludes that DNS servers, Gnutella servers, and TCP-based servers are

potential reflectors.[7]

2.5.2. Detection Approaches

The detection approaches rely on finding the malicious party who launched

a DoS attack and consequently hold him liable for the damage he has

caused. However, pinning the real attacker down is not a straightforward

task. One reason is that the attacker spoofs the source IP address of the

attacking packets. Another reason is that the Internet is stateless, which

means, whenever a packet passes through a router, the router does not store

any information (or traces) about that packet. Therefore, mechanisms such

as ICMP trace back and packet marking is devised to figure out the real

�

36�
�

attacker. In this subsection, we describe several techniques to identify the

attacker after the attack took place. We defer the issue of early detection of

an attack till Section 3. [7]

5.2.1. ICMP Traceback :

Bellovin proposes the idea of ICMP traceback messages, where every router

samples the forwarded packets with a very low probability (e.g., 1 out of

20,000) and sends an ICMP Traceback message to the destination. An ICMP

Traceback message contains the previous and next hop addresses of the

router, timestamp, portion of the traced packet, and authentication

information. In Figure 8, while packets are traversing the network path from

the attacker A1 to the victim V; the intermediate routers (R1;R2;R3;R4;R5;

and R6) sample some of these packets and send ICMP Traceback messages

to the destination V:With enough messages, the victim can trace the network

path A1 ! V: The pitfall of this approach is that the attacker can send many

false ICMP Traceback messages to confuse the victim. To address

Distributed DoS (DDoS) attacks by reflectors, Barros proposes a

modification to the ICMP Traceback messages. In his refinement, routers

sometimes send ICMP Traceback messages to the source. In Figure 8, A3

launches a DDoS attack by sending TCP SYN segments to the reflector H3

specifying V as the source address. H3, in turn, sends SYN ACK segments

to the victim V: According to the modification, routers on thepath A3 ! H3

will send ICMP messages to the source, i.e., to V: This reverse trace enables

the victim to identify the attacking agent from these trace packets. The

reverse trace mechanism depends only on the number of attacking agents,

and not on the number of reflectors. This achieves scalability because the

number of available reflectors is much higher than the number of attacking

agents on the Internet. Snoeren et al. propose an attractive hashed-based

system that can trace the origin of a single IP packet delivered by a network

in the recent past. The system is called source path isolation engine (SPIE).

The SPIE uses an efficient method to store information about packets

�

37�
�

traversing through a particular router.The method uses n bits of the hashed

value of the packet to set an index of a 2n-bit digest table. When a victim

detects an attack, a query is sent to SPIE, which queries routers for packet

digests of the relevant time periods. Topology information is then used to

construct the attack graph from which the source of the attack is determined.

[7]

5.2.2. Packet Marking:

Instead of having routers send separate messages for the sampled packets,

Burch and Cheswick propose to inscribe some path information into the

header of the packets themselves. This marking can be deterministic or

probabilistic. In the deterministic marking, every router marks all packets.

The obvious drawback of the deterministic packet marking is that the packet

header grows as the number of hops increases on the path. Moreover,

significant overhead will be imposed on routers to mark every packet.

The probabilistic packet marking (PPM) encodes the path information into a

small fraction of the packets. The assumption is that during a flooding

attack, a huge amount of traffic travels towards the victim. Therefore, there

is a great chance that many of these packets will be marked at routers

throughout their journey from the source to the victim. It is likely that the

marked packets will give enough information to trace the network path from

the victim to the source of the attack. Savage et al. describe efficient

mechanisms to encode the path information into packets. This information

contains the XOR (exclusive OR) of two IP addresses and a distance metric.

The two IP addresses are for the start and the end routers of the link. The

distance metric represents the number of hops between the attacker and the

victim. To illustrate the idea, consider the attacker A1 and the victim V in

Figure 8. Assume there is only one hop between routers R3 and R4: If

Router R1 marks a packet, it will encode the XOR of R1 and R2 addresses

into the packet and sets the distance metric to zero, that is, it will encode the

tuple < R1 _ R2; 0 >. Other routers on the path just increase the distance

�

38�
�

metric of this packet, if they don’t decide to mark it again. When this packet

reaches the victim, it provides the tuple <R1_R2; 5>. Similarly, some

packets may get marked at routers R2;R3;R4;R5; and R6 and they will

provide the tuples <R2 _ R3; 4 >;< R3 _ R4; 3 >; < R4 _ R5; 2 >; < R5 _

R6; 1 >;<R6; 0 >; respectively, when they reach the victim. The victim can

retrieve all routers on the path by XORing the collected messages sorted by

distance. (Recall that Rx _ Ry _ Rx = Ry.) This approach can reconstruct

most network paths with 95% certainty if there are about 2,000 marked

packets available and even the longest path can be resolved with 4,000

packets. For DoS attacks, this amount of packets is clearly obtainable

because the attacker needs to flood the network to cause a DoS attack.

(Moore et al. report that some severe DoS attacks had a rate of thousands of

packets per second.) The authors describe ways to reduce the required space

and suggest to use the identification field (currently used for IP

fragmentation) of IP header to store the encoding of the path information.

They also propose solutions to handle the co-existence of marking and

fragmentation of IP packets. The main limitation of the PPM approaches

stems from the fact that, nothing prevents the attacker from marking packets.

If a packet marked by the attacker does not get re-marked by any

intermediate router, it will confuse the victim and make it harder to trace the

real attacker. Park and Lee show that for single-source DoS attacks, PPM

can identify a small set of sources as potential candidates for a DoS attack.

For DDoS attacks, however, the attacker can increase the uncertainty in

localizing the attacker. Therefore, PPM is vulnerable to distributed DoS

attacks [7].

�

39�
�

2.5.3. Prevention Approaches:

Preventiveapproaches try to stop a DoS attack by identifying the attack

packets and discarding them before reaching the victim. We summarize

several packet filtering techniques that achieve this goal. [7]

5.3.1. Ingress Filtering:

Incoming packets to a network domain can be filtered by ingress routers.

These filters verify the identity of packets entering into the domain, like an

immigration security system at the airport. Ingress filtering, proposed by

Ferguson and Senile, is a restrictive mechanism that drops traffic with IP

address that does not match a domain prefix connected to the ingress router.

As an example, in Figure 8, the attacker A1 resides in domain D1 with the

network prefix a.b.c.0/24. The attacker wants to launch a DoS attack to the

victim V that is connected to domainD4. If the attacker spoofs the IP address

of host H5 in domain D5, which has the network prefix x.y.z.0/24, an input

traffic filter on the ingress link of R1 will thwart this spoofing. R1 only

allows traffic originating from source addresses within the a.b.c.0/24 prefix.

Thus, the filter prohibits an attacker from using spoofed source addresses

from outside of the prefix range. Similarly, filtering foils DDoS attacks that

employ reflectors. In Figure 8 , ingress filter of D2 will discard packets

destined to the reflector H3 and specifying V 0s address in the source

address field. Thus, these packets will not be able to reach the reflector.

Ingress filtering can drastically reduce the DoS attack by IP spoofing if all

domains use it. It is hard, though, to deploy ingress filters in all Internet

domains. If there are some unchecked points, it is possible to launch DoS

attacks from that points. Unlike ingress filters, egress filters reside at the exit

points of a network domain and checks whether the source address of exiting

packets belong to this domain. Aside from the placement issue, both ingress

and egress filters have similar behavior. [7]

�

40�
�

5.3.2. Route-Based Filtering:

Park and Lee propose route-based distributed packet filtering, which rely on

route information to filter out spoofed IP packets. For instance, suppose that

A1 belongs to domain D1 and is attempting a DoS attack on V that belongs

to domain D4. If A1 uses the spoofed address H5 that belongs to domain

D5, the filter at domain D1 would recognize that a packet originated from

domain D5 and destined to V should not travel through domain D1. Then,

the filter at D1 will discard the packet. Routebased filters do not use/store

individual host addresses for filtering, rather, they use the topology

information of Autonomous Systems (ASes). The authors of show that with

partial deployment of route-based filters, about 20% in the Internet AS

topologies, it is possible to achieve a good filtering effect that prevents

spoofed IP flows reaching other ASes. These filters need to build route

information by consulting BGP routers of different ASes. Since routes on

the Internet change with time, it is a challenge for route-based filters to be

updated in real time. Finally, all filters proposed in the literature so far fall

short to detect IP address spoofing from the domain in which the attacker

resides.

For example, in Figure8, if A1 uses some unused IP addresses of domain D1; the

filters will not be able to stop such forged packets to reach the victim V. [7]

�

41�
�

2.6.IP ADDRESSING SCHEME

. OVERVIEW :

The number of machines in your network and need to support, will affect several

decisions you will need to make. Some organizations require only a small network of

serveral dozen standalone machines located on one floor of a single building. In

other organizations, you may need to set up a network with more than 1000 hosts

spanning several buildings. In cases where you will need to support a large number

of hosts, it may require you to further divide your network into subdivisions called

subnets.[3] The size of your prospective network will affect the:

• Network class you apply for

• Network number you receive

• IP addressing scheme you use for your network

2.7.PARTS OF AN IP ADDRESS :

Any TCP/IP network will require a unique network number and every host on a

TCP/IP network will require a unique IP address. Before registering your networking

and obtaining a network number, it is critical that you understand how IP address are

constructured.

An IP address is a 32-bit number that uniquely identifies a network interface on a

machine. IP addresses are typically written in decimal digits, formatted as four 8-bit

fields separated by periods. Each 8-bit field represents a byte of the IP address. This

form of representing the bytes of an IP address is often referred to as the dotted-

decimal format.

�

42�
�

The bytes of an IP address can be further classified into two parts: the network part

and the host part. [3] The example below shows the components of the Class B

network 192.168.1.100.

192.168.1.100

------- -----

 | |___ (host part)

 |

 |____ (network part)

2.7.1. Network Part

This part specifies the unique number assigned to your particular network. It it also

the part that identifies the class of network assigned. In the above example, the

network part takes up two bytes of the IP address, namely 192.168. [3]

2.7.2. Host Part

This is the part of the IP address that you assign to each host, and uniquely identifies

each host on your network. Note that for each host on your network, the network part

of the address will be the same, but the host part must be different. [3]

2.7.3. Subnet Number Optional

Many local area networks (LANs) will a large number of hosts will be divided into

subnets. If you choose to divide your network into subnets, you need to assign a

�

43�
�

subnet number for the subnet. You can maximize the efficiency of IP address space

by using some of the bits from the host number part of the IP address as a network

identifier. When used as a network identifier, the specified part of the address

becomes the subnet number. You create a subnet number usinbg a subnet mask,

which is a bit mask that selects the network and subnet parts of an IP address. [3]

2.8. NETWORK CLASSES:

The first step in planning for IP addressing on your network is to determine which network

class is appropriate for your network. After you have dont this, you can trake the critical

second step - obtaining the network number from the inter NIC addressing authority.

Currently, there are three classes of TCP/IP networks. Each class uses the 32-bit IP

address space differently, providing more or fewer bits for the network part of the

address. These classes are Class A, B and Class C. [3]

2.8.1. Class A Network Numbers:

A Class A network number uses the first 8 bits of the IP address as its "network

part". The remaining 24 bits comprise the host part of the IP address. (See below)

bits 0 7-8 15-16 23-24 31

 +------------+------------+------------+------------+
 | Network | Host |
 | Part | Part |
 +------------+------------+------------+------------+

The values are assigned to the first byte of Class A network numbers fall within the

range 0-127. Consider for example the IP address 68.8.1.100. The value 68 in the

first byte indicates that the host is on a Class A network. The Inter NIC assigns only

the first byte of a Class A number. Use of the remaining three bytes is left to the

discretion of the owner of network number. Only 127 Class A networks can exist.

Each one of these numbers can accomodate up to 16,777,214 hosts. [3]

�

44�
�

2.8.2. Class B Network Numbers :

A Class B network number consists of the first 16 bits for the network number and

16 bits for host numbers. The first byte of a Class B network number is in the range

128-191. Take for example the IP address 132.168.1.100, the first two bytes,

132.168, are assigned by the Inter NIC, and comprise the network address. The last

two bytes, 1.100, make up the host part of the address, and is assigned at the

discretion of the owner of the network number. (See below)

bits 0 7-8 15-16 23-24 31
 +------------+------------+------------+------------+
 | Network | Host |
 | Part | Part |
 +------------+------------+------------+------------+

Class B is typically assigned to organizations with many hosts on their network.[3]

2.8.3. Class C Network Numbers:

A Class C network uses 24 bits for the network part and 8 bits for the host part. Class
C network numbers are appropriate for networks with few hosts - the maximum
being 254. A Class C network number occupies the first three bytes of an IP address.
Only the fourth byte is assigned at the discretion of the network number owner. (See
below)

bits 0 7-8 15-16 23-24 31
 +------------+------------+------------+------------+
 | Network | Host |
 | Part | Part |
 +------------+------------+------------+------------+

�

45�
�

The first bytes of a class C network number covers the range 192-223. The second

and third each cover the range 1-255. A typical Class C address might be

192.98.1.100. The first three bytes, 192.98.1, form the network number. The final

byte in this example, 100, is the host number. [3]

2.9. ADMINISTERING NETWORK NUMBERS :

If you organization has been assigned more than on network number, or uses,

subnets, appoint a centralized authority within your organization to assign network

numbers. That authority should maintain control of a pool of assigned network

numbers, assigning network, subnet, and host numbers as required. To prevent

problems, make sure that duplicates or random network numbers do not exist in your

organization.[3]

2.10. DESIGNING YOU IP ADDRESSING SCHEME :

After receiving your network number, you can then start planning how you will

assign the host parts of the IP address. The table below (Division of IP Address

Space) shows the division of the IP address space into network and host address

spaces. For each Class, "range" specifies the range of decimal values for the first byte

of the network number. "Network Address" indicates the number of bytes of the IP

address that are dedicated to the network part of the address, with each byte

represented by xxx. "Host Address" indicates the number of bytes dedicated to the

host part of the address. For example, in a Class A network address, the first byte is

dedicated to the network, and the last three are dedicated to the host. The opposite is

true for a Class C network. [3]

�

46�
�

Division of IP Address Space
+--+
Class Range Network Address Host Address
A 0-127 xxx xxx.xxx.xxx
B 128-191 xxx.xxx xxx.xxx
C 192-223 xxx.xxx.xxx xxx
+--

The numbers in the first byte of the IP address define whether the network is Class

A, B, or C and are always assigned by the Inter NIC. The remaining three byes have

a range from 0-255. The numbers 0 and 255 are reserved; you can assign the

numbers 1-254 to each byte depending on the network number assigned to you. The

following table shows which bytes of the IP address are assigned to you and the

range of numbers within each byte that are available for you to assign to your hosts.

Range of Available Numbers
+---+
Class Byte 1 Range Byte 2 Range Byte 3 Range Byte 4 Range
A 0-127 1-254 1-254 1-254
B 128-191 Pre-assigned 1-254 1-254
by Internet
C 192-223 Pre-assigned Pre-assigned 1-254
by Internet by Internet
+--

�

47�
�

2.11. How IP Addresses Apply to Network Interfaces :

Before connecting a host to the network, a computer must have at least one network

interface. Each network interface must have its own IP address. The IP address that

you give to a host is assigned to its network interface, sometimes referred to as the

primary network interface. If you add a second network interface to the machine, it

must have its own unique IP address. Adding a second network interface changes the

function of a machine from a host to a router. If you add a second network interface

to a host and disable routing, the host is then considered a multihomed host. Each

network interface has a device name, device driver, and associated device file in the

/devices directory. The network interface might have a device name such as le0 or

smc0, device names for two commonly used Ethernet interfaces [3]

Internet Protocol (IP)

Internet Protocol (IP) essentially is the Internet layer. The other protocols found here

merely exist to support it. IP holds the big picture and could be said to “see all,” in

that it’s aware of all the interconnected networks. It can do this because all the

machines on the network have a software, or logical, address called an IP address,

which I’ll cover more thoroughly later in this chapter. IP looks at each packet’s

address. Then, using a routing table, it decides where a packet is to be sent next,

choosing the best path. The protocols of the Network Access layer at the bottom of

the DoD model don’t possess IP’s enlightened scope of the entire network; they deal

only with physical links (local networks). Identifying devices on networks requires

answering these two questions: Which network is it on? And what is its ID on that

network? The first answer is the software address, or logical address (the correct

street). The second answer is the hardware address (the correct mailbox). All hosts

on a network have a logical ID called an IP address. This is the software, or logical,

address and contains valuable encoded information, greatly simplifying the complex

�

48�
�

task of routing. (IP is discussed in RFC 791.) IP receives segments from the Host-to-

Host layer and fragments them into datagrams (packets) if necessary. IP then

reassembles datagrams back into segments on the receiving side. Each datagram is

assigned the IP address of the sender and of the recipient. Each router (layer 3

device) that receives a datagram makes routing decisions based on the packet’s

destination IP address. Figure 2.6 shows an IP header. This will give you an idea of

what the IP protocol has to go through every time user data is sent from the upper

layers and is to be sent to a remote network.[3]

Figure 9 IP header [3]

�

49�
�

2.12. IPV6 :

One of the newest major standards on the horizon is IPv6. Although IPv6 has not

officially become a standard, it is worth some overview. It is very possible that this

information will change as we move closer to IPv6 as a standard, so you should use

this as a guide into IPv6, not the definitive information.

A number of books are now being published that cover in detail this emerging

standard; if you are looking for more details you should refer to these books. All the

RFCs available on the Internet have the raw details on how this standard is

developing. However, these documents are difficult to interpret at first glance and

require some commitment to going through any number of RFCs pertaining to many

subjects all related to IPv6 development.

Internet Protocol Version 4 is the most popular protocol in use today (see Chapter 31,

“Internet Protocols”), although there are some questions about its capability to serve

the Internet community much longer. IPv4 was finished in the 1970s and has started

to show its age. The main issue surrounding IPv6 is addressing—or, the lack of

addressing—because many experts believe that we are nearly out of the four billion

addresses available in IPv4. Although this seems like a very large number of

addresses, multiple large blocks are given to government agencies and large

organizations. IPv6 could be the solution to many problems, but it is still not fully

developed and is not a standard—yet! Many of the finest developers and engineering

minds have been working on IPv6 since the early 1990s.

Hundreds of RFCs have been written and have detailed some major areas, including

expanded addressing, simplified header format, flow labeling, authentication, and

privacy. Expanded addressing moves us from 32-bit address to a 128-bit addressing

method. It also provides newer unicast and broadcasting methods, injects

hexadecimal into the IP address, and moves from using “.” to using “:” as

delimiters.[3]

�

50�
�

Table 3 IPv6 Packet Header Format

4 bits 4 bits 24 bits

 Version version Flow label

Some of the benefits of IPv6 seem obvious: greater addressing space, built-in QoS,

and better routing performance and services. However, a number of barriers must be

overcome before the implementation of IPv6. The biggest question for most of us

will be what the business need is for moving from current IPv4 to IPv6. The killer

app has not appeared yet, but it may be closer than we think. The second

consideration is the cost—it may not have much to do with hardware replacement

cost. All the larger routers have upgradable OSs IOS; the only necessity is the

commitment to upgrading IOS. More likely to do with training and support of minor

IP devices such as printers and network faxes, they will support the new address

space. IPv6 has schemes to support old and new, however, so this may not even be a

barrier. The last issue to consider is training: This will need to happen sooner or later

because we all need to start thinking about 128-bit addressing based on MAC

addresses in HEX. This involves all new ways of addressing and will be an

uncomfortable change for many people.

This conclusion may seem negative, but the greater good will overpower all the up-

front issues. The issue is not whether you will have to move to IPv6, but when! We

all need IPv6; the increased address space is needed for the growth of IP appliances

that we are starting to hear about weekly. IP-ready cars are already shipping today.

This requires mobility, which is addressed in IPv6.

Of course, a number of very important features have not been discussed in this

section, including QoS, mobile IP, autoconfiguration, and security. All these areas

are extremely important, and until IPv6 is finished, you should keep referring to the

IETF Web site for the most current information. Several new books on IPv6 also are

�

51�
�

starting to show up on bookstore shelves and should provide the deeper technical

detail on address headers and full packet details.[3]

2.14.Private IP Addresses :

The people who created the IP addressing scheme also created what we call private

IP addresses .These addresses can be used on a private network, but they’re not

routable through the Internet. This is designed for the purpose of creating a measure

of well-needed security, but it also conveniently saves valuable IP address space. If

every host on every network had to have real routable IP addresses, we would have

run out of IP addresses to hand out years ago. But by using private IP addresses,

ISPs, corporations, and home users only need a relatively tiny group of bona fide IP

addresses to connect their networks to the Internet. This is economical because they

can use private IP addresses on their inside networks and get along just fine. To

accomplish this task, the ISP and the corporation—the end user, no matter who they

are—need to use something called Network Address Translation (NAT), which

basically takes a private IP address and converts it for use on the Internet. (NAT is

covered in Chapter 10, “Network Address Translation.”) Many people can use the

same real IP address to transmit out onto the Internet. Doing things this way saves

megatons of address space—good for us all! Broadcast Addresses Most people use

the term broadcast as a generic term, and most of the time, we understand what they

mean. But not always. For example, you might say, “The host broadcasted through a

router to a DHCP server,” but, well, it’s pretty unlikely that this would ever really

happen. What you probably mean—using the correct technical jargon—is, “The host

broadcasted for an IP address; a router then forwarded this as a unicast packet to the

DHCP server.” Oh, and remember that with IPv4, broadcasts are pretty important,

but with IPv6, there aren’t any broadcasts sent at all—now there’s something to get

you excited about when you get to Chapter 13! Okay, I’ve referred to broadcast

addresses throughout Chapters 1 and 2, and even showed you some examples. But I

really haven’t gone into the different terms and uses associated with them yet, and

it’s about time I did. So here are the four different broadcast (generic term broadcast)

types that I’d like to define for you:

�

52�
�

Layer 2 broadcasts These are sent to all nodes on a LAN. Broadcasts (layer 3) These

are sent to all nodes on the network. Unicast These are sent to a single destination

host. Multicast These are packets sent from a single source and transmitted to many

devices on different networks. First, understand that layer 2 broadcasts are also

known as hardware broadcasts—they only go out on a LAN, and they don’t go past

the LAN boundary (router). The typical hardware address is 6 bytes (48 bits) and

looks something like 0c.43.a4.f3.12.c2. The broadcast would be all 1s in binary,

which would be all Fs in hexadecimal, as in FF.FF.FF.FF.FF.FF. Then there’s the

plain old broadcast addresses at layer 3. Broadcast messages are meant to reach all

hosts on a broadcast domain. These are the network broadcasts that have all host bits

on. Here’s an example that you’re already familiar with: The network address of

172.16.0.0 255.255.0.0 would have a broadcast address of 172.16.255.255—all host

bits on. Broadcasts can also be “all networks and all hosts,” as indicated by

255.255.255.255. A good example of a broadcast message is an Address Resolution

Protocol (ARP) request. When a host has a packet, it knows the logical address (IP)

of the destination. To get the packet to the destination, the host needs to forward the

packet to a default gateway if the destination resides on a different IP network. If the

destination is on the local network, the source will forward the packet directly to the

destination. Because the source doesn’t have the MAC address to which it needs to

forward the frame, it sends out a broadcast, something that every device in the local

broadcast domain will listen to. This broadcast says, in essence, “If you are the

owner of IP address 192.168.2.3, please forward your MAC address to me,” with the

source giving the appropriate information.[3]

A unicast is different because it’s a broadcast packet that goes from 255.255.255.255

to an actual destination IP address—in other words, it’s directed to a specific host. A

DHCP client request is a good example of how a unicast works. Here’s an example:

Your host on a LAN sends out an FF.FF.FF.FF.FF.FF layer 2 broadcast and

255.255.255.255 layer 3 destination broadcast looking for a DHCP server on the

LAN. The router will see that this is a broadcast

meant for the DHCP server because it has a destination port number of 67 (BootP

server) an will forward the request to the IP address of the DHCP server on another

�

53�
�

LAN. So, basically، if your DHCP server IP address is 172.16.10.1, your host just

sends out a 255.255.255.255 DHCP client broadcast request, and the router changes

that broadcast to the specific destination address of 172.16.10.1. (In order for the

router to provide this service, you need to configure the interfaces with the ip helper-

address command—this is not a default service(. Multicast is a different beast

entirely. At first glance, it appears to be a hybrid of unicast and broadcast

communication, but that isn’t quite the case. Multicast does allow point-to multipoint

communication,

which is similar to broadcasts, but it happens in a different manner. The crux of

multicast is that it enables multiple recipients to receive messages without flooding

the messages to all hosts on a broadcast domain. Multicast works by sending

messages or data to IP multicast group addresses. Routers then forward copies

(unlike broadcasts, which are not forwarded) of the packet out every interface that

has hosts subscribed to that group address. This is where multicast differs from

broadcast messages—with multicast communication, copies of packets, in theory, are

sent only to subscribed hosts. When I say in theory, this means that the hosts will

receive, for example, a multicast packet destined for 224.0.0.9 (this is an EIGRP

packet and only a router running the EIGRP protocol will read these).

All hosts on the broadcast LAN (Ethernet is a broadcast multi-access LAN

technology) will pick up the frame, read the destination address, and immediately

discard the frame, unless they are in the multicast group. This saves PC processing,

not LAN bandwidth. Multicasting can cause severe LAN congestion, in some

instances, if not implemented carefully.

There are several different groups that users or applications can subscribe to. The

range of multicast addresses starts with 224.0.0.0 and goes through 239.255.255.255.

As you can see، this range of addresses falls within IP Class D address space based

on classful IP assignment.[3]

�

54�
�

2.15. SUBNET MASKS

For the subnet address scheme to work, every machine on the network must know

which part of the host address will be used as the subnet address. This is

accomplished by assigning a subnet mask to each machine. A subnet mask is a 32-bit

value that allows the recipient of IP packets to distinguish the network ID portion of

the IP address from the host ID portion of the IP address. The network administrator

creates a 32-bit subnet mask composed of 1s and 0s.

The 1s in the subnet mask represent the positions that refer to the network or subnet

addresses. Not all networks need subnets, meaning they use the default subnet mask.

This is basically the same as saying that a network doesn’t have a subnet address.

Table 4 shows the default subnet masks for Classes A, B, and C.

These default masks cannot change. In other words, you can’t make a Class B subnet

mask read 255.0.0.0. If you try, the host will read that address as invalid and usually

won’t even let you type it in. For a Class A network, you can’t change the first byte

in a subnet mask; it must read 255.0.0.0 at a minimum. Similarly, you cannot assign

255.255.255.255, as this is all 1s—a broadcast address. A Class B address must start

with 255.255.0.0, and a Class C has to start with 255.255.255.0. [3]

Table 4 Default Subnet Mask [3]

�

55�
�

CHAPTER III

3. THE LAWS AND THEORY ARE USED

3.1. INTRODUCTION:

In this section I will fully explain the main objective of my project research about

statistic base DOS. First of all, I established a multi-programs system (visual basic

edition 6, fox-pro and Microsoft access) and gathered them to be unified program

and to be set up on Windows XP system regardless the edition of XP. This system

creates a multi-task server and this program has such a characteristic that ebnable us

to reach the basic information of every IP that enters the server and via this

information we can recognize the positive and negative IPs in addition to the time

(i.e. hour, minute and second) and the time of entering this IP also the basic

information of the IP as follows:

• Classes

• Subnet mask default

• Subnet address of this subnet or wire

• The number of subnet

• The maximum number of subnet

• Ordinal number

• Range form first host to lost host

• Broadcast address of this subnet

�

56�
�

Moreover, we can get the database of the system, the diagram, search engine and use

it practically through setting it up on the main network or the computer of main

server and then controlling the strange IPs. We can also operate this program in

private sector companies or institutions at the medium level. By using this program

we can control even partially the daily coming attacks on the main services and it is

worth to be mentioned that they can deprive many users to enter the websites in

minutes.

 hence, I will try to explain all the program steps in addition to the theories I relied on

to recognize these facts about daily statistic databases and the saved in databases of

the system in addition to all the types of IPs. We will provide the structure of the

program. I would like to confirm that this was an overview about the program

generally and section 3 particularly . first of all we will explain the diagram of the

structure in figure 10.

�

57�
�

Figure 10 Design of System Public

�

58�
�

3.2. THE THEORY OF THE USER IN THE SYSTEM.

3.2.1.Theory I

The relationship between the known and anonymous IPs

We know that here is something is called IP which represents everything in the

computer except visual things. This can be specified through the way of dividing the

information into smaller parts called packets. The sender sends packets to another

device (i.e. router) on the network which uses the same protocol. The second device

sends the packets to another device in the same way. This procedure is possible to be

repeated until the packets reaches the to receiver which the packets sent to.

This edition that the world deals with. This consists of 32 bits and it can distribute

296.967.294.4 IPs in the world. But as long as this 4 billions will not be sufficient in

the future due to the rapid increase of the computer users, for this reason the six

edition of IPV6 has been developed which can distribute 6 trillion IPs in the world.

The huge difference between two editions of IP structure can be expressed that the

sixth edition consists of 128 bits and six decimal numbers instead of the numbers

which are existed in the fourth edition.

�

59�
�

An example of IP is as follows.

� 10.0.0.0/8

� 14.0.0.0/8

� 127.0.0.0/8

� 128.0.0.0/16

� 169.254.0.0/16

� 172.16.0.0/12

� 191.255.0.0/16

� 192.0.0.0/24

� 192.0.2.0/24

� 192.88.99.0/24

� 192.168.0.0/16

� 198.18.0.0/15

� 223.255.255.0/24

� 224.0.0.0/4

� 240.0.0.0/4

� 255.255.255.255

This license which is provided to all the communication network users particularly in

the internet. The data and the information which is sent from a person to anther

would be missing or random if the IP is not exited. Initially when this program is set

up and when an IP is entered, this program checks the IP directly and this check will

be recorded in the database. Then there will be confirmation of this IP and

automatically imposes the second term and condition of the process that consider the

time theory of entering this.

In case the IP is unrecorded in the database, the system puts a sign indicates that this

IP is odd and unrecorded. The unrecorded one will be able to enter the system but

�

60�
�

will be moved to the second phase (time theory) which accounts the last time that it

entered the system. See Figure 11.

Figure 11 Design of IP CHIK

�

61�
�

3.2.2. Theory II

Relationship between the IP and time:

In this method, we will conduct the theoretical timing procedure of the IP regardless

whether it the IP is positive or negative. Within 4 seconds it checks all the entering

IP into the system. This is the main goal of the program because the time protects the

program and the users from deprivation.

Based on this, if the IP entry occurs for the second time is less than 4 seconds then

this IP will be hindered to enter the system, otherwise, it can enter if the time elapses

within more than 4 seconds.

There are two conditions for the IP to enter the system if it is not according to the

specified time:

� If the IP is positive and recorded in the database, it will be stopped for 5

minutes, and in case the IP tries to enter the system in less than the specified

time 4 seconds and within 5 minutes, then it will be blocked and a message

will be sent to in not to make the third trial because it is going to be blocked

temporarily for 24 hours. If the trail is wrongly continues then the same

process will be repeated. This is called friendly attacks.

� If it is not in accordance with the timing condition and the IP is not recorded

in the databases (i.e. ordinary customer) then it will be blocked and not

permitted to enter the system for 24 hours. The procedure will be repeated if

there is another trial after 24 hours and details of the IP to be sent to the

database. If it happens for the third time the IP will be blocked for ever . Refer

to the coming Figure 12.

�

62�
�

Figure 12 Design of IP Time

If IP friendly
in put after
five minute
Else
Input IP in
black last 24
hour

�

63�
�

3.2.3. Theory III

The rule of accounting the attacks on the system for 24 hours.

This is a statistical system condition for the details of gathering information which

enters the system which we can have a special database used to reach any negative

IP. This daily statistical system can be considered different from the other systems

because it forms daily regular statistical database for unlimited period as explained in

the statistical table (3-4).

Figure 13 Design of system STATISTICAL BASED daily

3.2.4. Theory V

Information bases on IP :

In this phase, we prepare the important information which the system needs

automatically in order to obtain more knowledge about these types of IPs and this

important information feeds databases in the system about the entering IPs regardless

whether it was positive or negative.

algorithms about the IP information will be setup and benefits to be obtained

regarding the identification of positive and negative attacks and this can be a special

characteristic of this system. We relied on resources including (the book of Sykes)

from Cisco company for communication and network technology. We have quoted

�

64�
�

the most important mathematical rules which enabled us to conclude these laws and

bases. The most important information which we can recognize when an IP enters is

through the explanation of the content of the next informational system. At the

beginning we show the next diagram (3-5) and then we provide explanation of some

theories and rules.

Figure 14 Design of system IP information

�

65�
�

3.3.DEFINITIONS :

3.3.1.Classes :

The designers of the Internet determined to create sorts of networks relying on

network size. For the small number of networks possessing a very huge number of

nodes, they produced the rank Class A network. At the other extreme is the Class C

network, which is reserved for the ample networks with a small number of nodes.

The class distinction for networks between very large and very small is expectedly

known as the Class B network.

Class A: network Part of the Internet Protocol hierarchical addressing scheme. Class

A networks have only 8 bits for defining networks and 24 bits for defining hosts and

subnets on each network.

Class B: network Part of the Internet Protocol hierarchical addressing scheme. Class

B networks have 16 bits for defining networks and 16 bits for defining hosts and

subnets on each network.

Class C: network Part of the Internet Protocol hierarchical addressing scheme. Class

C

networks have 24 bits for defining networks and only 8 bits for defining hosts and

subnets on each network.[3]

Table 5 Class A network [3]

A network. host. host . host 255.0.0.0

B network. network. host host 255.255.0.0

C network. network. network. host 255.255.255.0

�

66�
�

3.3.2. Subnet mask default:

In order the subnet address scheme to work, every machine on the network must

have an idea which part of the host address will be utilized as the subnet address.

This is done by supporting a Subnet mask to each machine. A subnet mask is a 32-bit

value that permits the recipient of IP packets to distinguish the network ID portion of

the IP address from the host ID portion of the IP address. The network administrator

produces a 32-bit subnet mask composed involves 1s and 0s. The 1s in the subnet

mask represent the positions that point to the network or subnet addresses. Not all

networks need subnets, this mean that they use the default subnet mask. This is

basically the same as stating that a network lacks a subnet address. [3]

3.3.3. Broadcast address of this subnet:

Most the majority of people use the term broadcast as a generic term, and most of

the time, we understand what they mean. But not always. For example, you might

say, “The host broadcasted through a router to a DHCP server,” but, well, it’s pretty

unlikely that this would ever really happen. What you probably mean—using the

correct technical jargon—is, “The host broadcasted for an IP address; a router then

forwarded this as a unicast packet to the DHCP server.” Oh, and don’t forget that

with IPv4, broadcasts are very important, but with IPv6, there aren’t any broadcasts

sent at all—now there’s something to get you excited about when you get to Chapter

13! Okay, I’ve referred to broadcast addresses throughout Chapters 1 and 2, and even

showed you some examples. But I really haven’t gone into the different terms and

�

67�
�

uses associated with them yet, and it’s about time I did. So here are the four different

broadcasts (generic term broadcast) types that I’d like to define introduce to you:

Layer 2 broadcasts These are sent to all nodes on a LAN.

Broadcasts (layer 3) These are sent to all nodes on the network.

Unicast These are sent to a single destination host.

Multicast These are packets sent from a single source and transmitted to many

devices on different networks.[3]

3.4 EXPLAIN PLANNED IP INFORMATION :

At this in this regard, it’s important that you both understood and memorized your

powers of 2. Please refer to the sidebar “Understanding the Powers of 2” earlier in

this chapter if you need some support. Here’s how you get the answers to those five

big questions:

_ How many subnets?

 2x = number of subnets. x is the number of masked bits, or the 1s. For example, in
11000000, the number of 1s gives us 22 subnets. In this example, there are 4 subnets.

_ How many hosts per subnet?

 2y – 2 = number of hosts per subnet. y is the number of unmasked bits, or the 0s.

For example, in 11000000, the number of 0s gives us 26 – 2 hosts. In this example,

there are 62 hosts per subnet. You need to subtract 2 for the subnet address and the

broadcast address, which are not valid hosts.

_ What are the valid subnets?

 256 – subnet mask = block size, or increment number. An example would be 256 –

192 = 64. The block size of a 192 mask is always 64. Start counting at zero in blocks

�

68�
�

of 64 until you reach the subnet mask value and these are your subnets. 0, 64, 128,

192. Easy, huh?

_ What’s the broadcast address for each subnet? Now here’s the really easy part.

Since we counted our subnets in the last section as 0, 64, 128, and 192, the broadcast

address is always the number right before the next subnet. For example, the 0 subnet

has a broadcast address of 63 because the next subnet is 64. The 64 subnet has a

broadcast address of 127 because the next subnet is 128. And so on. And remember,

the broadcast address of the last subnet is mostly 255.

_ What are the valid hosts?

 Valid hosts are the numbers between the subnets, deleting the all 0s and all 1s. For

example, if 64 is the subnet number and 127 is the broadcast address, then 65–126 is

the valid host range—it’s always the numbers between the subnet address and the

broadcast address. [3]

�

69�
�

CHAPTER IV

3. RESULTS, APPLICATIONS AND SOFTWARE CODE APPLICATION
OF PROGRAM STATISTICS OF BASE ATTACKS DETECTION

4.1. INTRODACTION TO PROGRAM

Design and programming of the system base statistics of detecting attacks

program in Microsoft Visual Basic 6.0, for ease of use for everyone, as well

as a universal language with a good level in the application and

implementation.

We ordered at the beginning and at the entrance to the Execution of the

program window where it appears to us first, as in Figure (15), a security

system if the window is the application user name and password so as to

protect software from unauthorized use of this system.And In this

window, is an edit and delete users and add both cases and new to

the program.

 Figure 15 login the security a window

�

70�
�

In this window, as in Figure (16) is an edit and delete users and add both cases and
new to the program�

Figure 16 used a window adjustments

In this step we are no special Login code security programmatic for the program, as
follows:

Private Sub Command1_Click()
Data1.Recordset.AddNew
Data1.Recordset.Fields(0) = t1.Text
Data1.Recordset.Fields(1) = t2.Text

End Sub
Private Sub Command2_Click()
n = MsgBox("are you sure you want to delete this record", vbOKCancel)
If n = vbOK Then
Data1.Recordset.Delete
End If
End Sub

Private Sub Command3_Click()
Dim x, n As String
x = InputBox("Enter user name")
n = "nnn1 like'" & x & "'"
Data1.Recordset.FindFirst n
 t1.Text = Data1.Recordset.Fields(0)
 t2.Text = Data1.Recordset.Fields(1)

If Data1.Recordset.NoMatch Then
MsgBox "the record not found", vbOKOnly + vbCritical, "the user name search"
End If

End Sub

Private Sub Command4_Click()
Data1.RecordSource = ("select * from tab2 where nnn1 = '" & t1.Text & "' and nnn2 ='" & t2.Text & "'")
Data1.Refresh

�

71�
�

 If Data1.Recordset.RecordCount = 0 Then

 MsgBox ("Invalid uaername or passward")
 Else
Command1.Enabled = True
Command2.Enabled = True
Command3.Enabled = True
Command6.Enabled = True
Command7.Enabled = True
 End If
t1.Text = ""
t2.Text = ""
End Sub

Private Sub Command5_Click()
End
End Sub

Private Sub Command6_Click()
Data1.Recordset.Fields(0) = t1.Text
Data1.Recordset.Fields(1) = t2.Text

Data1.Recordset.Update
Data1.Refresh
MsgBox ("the new data is saved")
Data1.Refresh
End Sub

Private Sub Command7_Click()
Data1.Recordset.Edit
Data1.Recordset.Fields(0) = t1.Text
Data1.Recordset.Fields(1) = t2.Text
Data1.Recordset.Update
MsgBox ("data is saved")
End Sub

Private Sub Data1_Validate(Action As Integer, Save As Integer)

End Sub

Private Sub Form_Load()
Data1.DatabaseName = App.Path & "\valip.mdb"
Data1.RecordSource = "tab2"
End Sub

�

72�
�

4.2. STATISTICAL BASED DETECTION OF DOS ATTACKS :

Having been to enter the program seems to us the main window of the program

through which applications are identified on the programming of the system and also

in the following figure (17) .

Figure 17 The Main Window Program

�

73�
�

Options of this display in the main window as shown above. These are :

• Check IP _Address .

• View IP –Address Attack .

• Valid IP – Address .

• View Valid IP –Address .

• Network Information .

• End Program .

 4.2.1. Check IP _Address:

In this window to As in Figure (18) has a program button on enter IP and time

and history bound with the current time of the calculator and check and test the

IP and know what type of IP is home of the IP friend or enemy, is enter the

values IP and find out the results in the same window or in the Applied

window for the table .

�

74�
�

Figure 18 Check IP _Address

In this step, we write your code programmatic (Check IP _Address) and as follows:

Public Function Valid_IP(IP As String) As Boolean
 Dim i As Integer
 Dim n1 As Integer
 Dim n2 As String
 Dim n3
 IP = Trim$(IP)
 If Len(IP) < 4 Then
 Valid_IP = False

�

75�
�

 MsgBox IP & " IS INVALID", , "IP Validator"
 Text1.Text = ""
 Exit Function
 End If
 i = 1
 n1 = 0
 For i = 1 To Len(IP)
 If Mid$(IP, i, 1) = "." Then
 n1 = n1 + 1
 n2 = ""
 If i = Len(IP) Then
 Valid_IP = False
 MsgBox IP & " IS INVALID", , "IP Validator"
 Text1.Text = ""
 Exit Function
 End If
 Else
 n2 = n2 & Mid$(IP, i, 1)
 On Error Resume Next
 n3 = CByte(n2)
 If (Err) Then
 Valid_IP = False
 MsgBox IP & " IS INVALID", , "IP Validator"
 Text1.Text = ""
 Exit Function
 End If
 End If
 Next i
 If n1 <> 3 Then
 Valid_IP = False
 MsgBox IP & " IS INVALID", , "IP Validator"
 Text1.Text = ""
 Exit Function
 End If
 Valid_IP = True
 MsgBox IP & " is Valid", , "IP Validator"
End Function
Private Sub Command3_Click()
 If Len(Text1) = 0 Then
 MsgBox "Please type an IP Address in the textbox.", , "IP Validator"
 Else
 Valid_IP Text1
 End If
End Sub
Private Sub Data1_Validate(Action As Integer, Save As Integer)
End Sub
Private Sub Form_Load()
Label6.Caption = Date
Text2.Text = Hour(Time)
Text3.Text = Minute(Now)
Text4.Text = Second(Now)
Data2.DatabaseName = App.Path & "\attack.mdb"
Data2.RecordSource = "tab1"
Data1.DatabaseName = App.Path & "\valip.mdb"

�

76�
�

Data1.RecordSource = "tab1"
End Sub
Private Sub Command1_Click()
Label6.Caption = Date
 If Len(Text1) = 0 Then
 MsgBox "Please type an IP Address in the textbox.", , "IP Validator"
 Else
 Valid_IP Text1
 End If
nv = 0: v = 0: f = 0: nvno = 0
Data1.Recordset.MoveFirst
Do While Data1.Recordset.EOF = False
 x = Data1.Recordset.Fields("IP").Value
 If x = Text1.Text Then
 h1 = Data1.Recordset.Fields("hour").Value
 m1 = Data1.Recordset.Fields("minute").Value
 s1 = Data1.Recordset.Fields("second").Value
 If h1 = Text2 And m1 = Text3 And (Text4 - s1) <= 4 Then
 nv = 1: nvno = Data1.Recordset.Fields("count").Value
 Else
 v = 1
 a1 = Data1.Recordset.Fields("count").Value + 1
 Data1.Recordset.Edit
 Data1.Recordset!Count = a1
 Data1.Recordset!Hour = Text2
 Data1.Recordset!Minute = Text3
 Data1.Recordset!Second = Text4
 Data1.Recordset.Update
 End If
 End If
 Data1.Recordset.MoveNext
Loop
Data1.Recordset.MoveFirst
'---
If v = 0 Then
On Error Resume Next
Data2.Recordset.MoveFirst
Do While Data2.Recordset.EOF = False
 x = Data2.Recordset.Fields("IP").Value
 If x = Text1 Then
 f = 1
 h2 = Text2
 Select Case h2
 Case 1
 Y = Data2.Recordset.Fields("t1").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t1 = Y
 Data2.Recordset.Fields("subnetmask").Value = "255.255.255.255"
 Data2.Recordset.Update
 Case 2
 Y = Data2.Recordset.Fields("t2").Value
 Y = Y + 1
 Data2.Recordset.Edit

�

77�
�

 Data2.Recordset!t2 = Y
Data2.Recordset!subnetmask = "255.255.255.255"
 Data2.Recordset.Update
 Case 3
 Y = Data2.Recordset.Fields("t3").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t3 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 4
 Y = Data2.Recordset.Fields("t4").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t4 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 5
 Y = Data2.Recordset.Fields("t5").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t5 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 6
 Y = Data2.Recordset.Fields("t6").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t6 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 7
 Y = Data2.Recordset.Fields("t7").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t7 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 8
 Y = Data2.Recordset.Fields("t8").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t8 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 9
 Y = Data2.Recordset.Fields("t9").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t9 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 10
 Y = Data2.Recordset.Fields("t10").Value

�

78�
�

 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t10 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 11
 Y = Data2.Recordset.Fields("t11").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t11 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 12
 Y = Data2.Recordset.Fields("t12").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t12 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 13
 Y = Data2.Recordset.Fields("t13").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t13 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 14
 Y = Data2.Recordset.Fields("t14").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t14 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 15
 Y = Data2.Recordset.Fields("t15").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t15 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 16
 Y = Data2.Recordset.Fields("t16").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t16 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 17
 Y = Data2.Recordset.Fields("t17").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t17 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update

�

79�
�

 Case 18
 Y = Data2.Recordset.Fields("t18").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t18 = Y
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 19
 Y = Data2.Recordset.Fields("t19").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t19 = Y
Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 20
 Y = Data2.Recordset.Fields("t20").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t20 = Y
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 21
 Y = Data2.Recordset.Fields("t21").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t21 = Y
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 22
 Y = Data2.Recordset.Fields("t22").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t22 = Y
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 23
 Y = Data2.Recordset.Fields("t23").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t23 = Y
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 24
 Y = Data2.Recordset.Fields("t24").Value
 Y = Y + 1
 Data2.Recordset.Edit
 Data2.Recordset!t24 = Y
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 End Select
 '--
 Data2.Recordset!Date = Text7.Text
 s1 = Data2.Recordset.Fields("t1").Value + Data2.Recordset.Fields("t2").Value +
Data2.Recordset.Fields("t3").Value

�

80�
�

 s2 = Data2.Recordset.Fields("t4").Value + Data2.Recordset.Fields("t5").Value +
Data2.Recordset.Fields("t6").Value
 s3 = Data2.Recordset.Fields("t7").Value + Data2.Recordset.Fields("t8").Value +
Data2.Recordset.Fields("t9").Value
 s4 = Data2.Recordset.Fields("t10").Value + Data2.Recordset.Fields("t11").Value +
Data2.Recordset.Fields("t12").Value
 s5 = Data2.Recordset.Fields("t13").Value + Data2.Recordset.Fields("t14").Value +
Data2.Recordset.Fields("t15").Value
 s6 = Data2.Recordset.Fields("t16").Value + Data2.Recordset.Fields("t17").Value +
Data2.Recordset.Fields("t18").Value
 s7 = Data2.Recordset.Fields("t19").Value + Data2.Recordset.Fields("t20").Value +
Data2.Recordset.Fields("t21").Value
 s8 = Data2.Recordset.Fields("t22").Value + Data2.Recordset.Fields("t23").Value +
Data2.Recordset.Fields("t24").Value
 Sum = s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8
 Data2.Recordset.Edit
 Data2.Recordset!sum24err = Sum
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 If nv = 1 Then
 Data2.Recordset.Edit
 Data2.Recordset!valid = "yes"
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Else
 Data2.Recordset.Edit
 Data2.Recordset!valid = "no"
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 End If
 Normal1 = nvno * 100 / (nvno + Sum)
 Err1 = Sum * 100 / (nvno + Sum)
 Data2.Recordset.Edit
 Data2.Recordset!Normal = Normal1
 Data2.Recordset!Err = Err1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 End If
 Data2.Recordset.MoveNext
Loop
If f = 0 Then
Data2.Recordset.MoveLast
Text5.Text = Text1.Text
Text7.Text = Label6.Caption
Data2.Recordset.AddNew
Data2.Recordset.Fields(30) = "255.255.255.255"
Data2.Recordset.Update
Data2.Refresh
Data2.Recordset.MoveFirst
Do While Data2.Recordset.EOF = False
 x = Data1.Recordset.Fields("IP").Value
 If x = Text1.Text Then
 Select Case h2
 Case 1

�

81�
�

 Data2.Recordset.Edit
 Data2.Recordset!t1 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 2
 Data2.Recordset.Edit
 Data2.Recordset!t2 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 3
 Data2.Recordset.Edit
 Data2.Recordset!t3 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 4
 Data2.Recordset.Edit
 Data2.Recordset!t4 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 5
 Data2.Recordset.Edit
 Data2.Recordset!t5 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 6
 Data2.Recordset.Edit
 Data2.Recordset!t6 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 7
 Data2.Recordset.Edit
 Data2.Recordset!t7 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 8
 Data2.Recordset.Edit
 Data2.Recordset!t8 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 9
 Data2.Recordset.Edit
 Data2.Recordset!t9 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 10
 Data2.Recordset.Edit
 Data2.Recordset!t10 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 11
 Data2.Recordset.Edit
 Data2.Recordset!t11 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update

�

82�
�

 Case 12
 Data2.Recordset.Edit
 Data2.Recordset!t12 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 13
 Data2.Recordset.Edit
 Data2.Recordset!t13 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 14
 Data2.Recordset.Edit
 Data2.Recordset!t14 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 15
 Data2.Recordset.Edit
 Data2.Recordset!t15 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 16
 Data2.Recordset.Edit
 Data2.Recordset!t16 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 17
 Data2.Recordset.Edit
 Data2.Recordset!t17 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 18
 Data2.Recordset.Edit
 Data2.Recordset!t18 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 19
 Data2.Recordset.Edit
 Data2.Recordset!t19 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 20
 Data2.Recordset.Edit
 Data2.Recordset!t20 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 21
 Data2.Recordset.Edit
 Data2.Recordset!t21 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 22
 Data2.Recordset.Edit
 Data2.Recordset!t22 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"

�

83�
�

 Data2.Recordset.Update
 Case 23
 Data2.Recordset.Edit
 Data2.Recordset!t23 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 Case 24
 Data2.Recordset.Edit
 Data2.Recordset!t24 = 1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 End Select
 '--
 s1 = Data2.Recordset.Fields("t1").Value + Data2.Recordset.Fields("t2").Value +
Data2.Recordset.Fields("t3").Value
 s2 = Data2.Recordset.Fields("t4").Value + Data2.Recordset.Fields("t5").Value +
Data2.Recordset.Fields("t6").Value
 s3 = Data2.Recordset.Fields("t7").Value + Data2.Recordset.Fields("t8").Value +
Data2.Recordset.Fields("t9").Value
 s4 = Data2.Recordset.Fields("t10").Value + Data2.Recordset.Fields("t11").Value +
Data2.Recordset.Fields("t12").Value
 s5 = Data2.Recordset.Fields("t13").Value + Data2.Recordset.Fields("t14").Value +
Data2.Recordset.Fields("t15").Value
 s6 = Data2.Recordset.Fields("t16").Value + Data2.Recordset.Fields("t17").Value +
Data2.Recordset.Fields("t18").Value
 s7 = Data2.Recordset.Fields("t19").Value + Data2.Recordset.Fields("t20").Value +
Data2.Recordset.Fields("t21").Value
 s8 = Data2.Recordset.Fields("t22").Value + Data2.Recordset.Fields("t23").Value +
Data2.Recordset.Fields("t24").Value
 Sum = s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8
 Data2.Recordset.Edit
 Data2.Recordset!sum24err = Sum
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 If nv = 1 Then
 Data2.Recordset.Edit
 Data2.Recordset!valid = "yes"
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 End If
 Normal1 = nvno * 100 / (nvno + Sum)
 Err1 = Sum * 100 / (nvno + Sum)
 Data2.Recordset.Edit
 Data2.Recordset!Normal = Normal1
 Data2.Recordset!Err = Err1
 Data2.Recordset.Fields(30) = "255.255.255.255"
 Data2.Recordset.Update
 End If
 Data2.Recordset.MoveNext
Loop
'-------------------
End If
End If
End Sub

�

84�
�

Private Sub Command2_Click()
Form1.Hide
End Sub

4.2.2. View IP –Address Attack:

In this window applied in Figure (19) have been clarified details of the rule

STATISTICS daily for 24 continuous hours on the results of entering the ip

to the system and periodically if it is to know login ip to the system at any

time of the day as well as at any date and know what type of ip and the total

entry and the number of errors that were committed as well as knowledge

and data, including:

• Classes
• Subnet mask default
• Subnet address of this subnet or wire
• The number of subnet
• The maximum number of subnet
• Ordinal number
• Range from first host to lost host
• Broadcast address of this subnet

�

85�
�

Figure 19 View IP –Address Attack

In this step, we write your code programmatic (View IP-Address Attack) and as
follows:

Private Sub Data1_Validate(Action As Integer, Save As Integer)

End Sub

Private Sub Form_Load()
Data1.DatabaseName = App.Path & "\attack.mdb"
Data1.RecordSource = "tab1"
MSFlexGrid1.ColWidth(0) = 200
MSFlexGrid1.ColWidth(1) = 1300
MSFlexGrid1.ColWidth(2) = 400
MSFlexGrid1.ColWidth(3) = 400
MSFlexGrid1.ColWidth(4) = 400
MSFlexGrid1.ColWidth(5) = 400
MSFlexGrid1.ColWidth(6) = 400
MSFlexGrid1.ColWidth(7) = 400
MSFlexGrid1.ColWidth(8) = 400
MSFlexGrid1.ColWidth(9) = 400
MSFlexGrid1.ColWidth(10) = 400
MSFlexGrid1.ColWidth(11) = 400

�

86�
�

MSFlexGrid1.ColWidth(12) = 400
MSFlexGrid1.ColWidth(13) = 400
MSFlexGrid1.ColWidth(14) = 400
MSFlexGrid1.ColWidth(15) = 400
MSFlexGrid1.ColWidth(16) = 400
MSFlexGrid1.ColWidth(17) = 400
MSFlexGrid1.ColWidth(18) = 400
MSFlexGrid1.ColWidth(19) = 400
MSFlexGrid1.ColWidth(20) = 500
MSFlexGrid1.ColWidth(21) = 400
MSFlexGrid1.ColWidth(22) = 400
MSFlexGrid1.ColWidth(23) = 400
MSFlexGrid1.ColWidth(24) = 400
MSFlexGrid1.ColWidth(25) = 400
MSFlexGrid1.ColWidth(26) = 400
MSFlexGrid1.ColWidth(27) = 700
MSFlexGrid1.ColWidth(28) = 700
MSFlexGrid1.ColWidth(29) = 700
MSFlexGrid1.ColWidth(30) = 400

MSFlexGrid1.ColWidth(7) = 500
MSFlexGrid1.ColWidth(2) = 500
MSFlexGrid1.ColWidth(3) = 500
MSFlexGrid1.ColWidth(4) = 500
MSFlexGrid1.ColWidth(5) = 500
MSFlexGrid1.ColWidth(6) = 500
MSFlexGrid1.ColWidth(7) = 500
MSFlexGrid1.CellAlignment = vbCenter

MSFlexGrid1.RowHeight(0) = 400

End Sub

In the following window is identified on the illustrative scheme for IP ADDRESS
CHART As in Figure (20) Shown in each of :

• SUM 24 ERR

• SUM 24 VAL
• NORMAL

• ERR

�

87�
�

 Figure 20 IP ADDRESS CHART

4.2.3. Search Valid IP – Address :

In this window, as in Figure (21) we will conduct the search for a specific IP and

specific friend and knowledge at the base of data on the time history of entry and the

number of times access to the system since the first recorded in the system and can

also be an amendment to the IP through the addition or delete

�

88�
�

Figure 21 Search Valid IP – Address

�

89�
�

In this step, we write your code programmatic (Search Valid IP – Address) and as
follows:

Private Sub Command10_Click()
Dim x, n As String
x = InputBox(" Enter IP ADDRESS ")
n = "IP like'" & x & "'"
Data1.Recordset.FindFirst n
If Data1.Recordset.NoMatch Then
MsgBox "Record not found ", vbOKOnly + vbCritical, "Find Record"
End If
End Sub
Private Sub Command13_Click()
Unload Me
End Sub
Private Sub Command5_Click()
Data1.Recordset.AddNew
End Sub
Private Sub Command6_Click()
x = MsgBox("åá ÊÑíÏ ÍÐÝ ÇáÓÌá", vbOKCancel)
If x = vbOK Then
Data1.Recordset.Delete
End If
End Sub
Private Sub Command7_Click()
Data1.Recordset.Update
MsgBox ("Êã ÍÝÙ ÇáÈíÇäÇÊ")
End Sub
Private Sub Data1_Validate(Action As Integer, Save As Integer)
End Sub
Private Sub Form_Load()
Data1.DatabaseName = App.Path & "\valip.mdb"
Data1.RecordSource = "tab1"
End Sub
Private Sub Text1_Change()
End Sub
Private Sub Text7_Change()
End Sub

�

90�
�

4.2.4. View Valid IP –Address :

In the following window as in Figure (22) is where the supply of all information on

IP knowledge by the time the hour, minute and second and the total entry of the IP

and known for Classes, Subnet mask default, Subnet address, The number of subnet,

The maximum number of subnet, Ordinal number, Range from first host to lost host,

Broadcast address of this subnet .

Figure 22 View Table Valid IP –Address

�

91�
�

In this step, we write your code programmatic (View Table Valid IP –Address) and
as follows:

Dim DB As ADODB.Connection

Dim RS As ADODB.Recordset
Private Sub Adodc1_WillMove(ByVal adReason As ADODB.EventReasonEnum, adStatus As
ADODB.EventStatusEnum, ByVal pRecordset As ADODB.Recordset)
End Sub
Private Sub Combo1_click()
On Error Resume Next
On Error Resume Next
'Adodc1.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;data source=" & App.Path &
"\valip.mdb;persist security info=false"
'Adodc1.RecordSource = "select * from tab1"
'Adodc1.CommandType = adCmdText
'Adodc1.Refresh
If Combo1.Text = "by hour only" Then
Adodc1.RecordSource = "select * from tab1 where (hour like '%" & Text2.Text & "%') "
Adodc1.CommandType = adCmdText
Adodc1.Refresh
ElseIf Combo1.Text = "by hour & minute only" Then
Adodc1.RecordSource = "select * from tab1 where (hour like '%" & Text2.Text & "%') and (minute like '%" &
Text2.Text & "%') "
Adodc1.CommandType = adCmdText
Adodc1.Refresh
ElseIf Combo1.Text = "by hour & minute & second" Then
Adodc1.RecordSource = "select * from tab1 where (hour like '%" & Text2.Text & "%') and (minute like '%" &
Text3.Text & "%')and (second like '%" & Text4.Text & "%') "
Adodc1.CommandType = adCmdText
Adodc1.Refresh
Else
Adodc1.RecordSource = "select * from tab1 "
Adodc1.CommandType = adCmdText
Adodc1.Refresh
End If
Adodc1.Refresh
Adodc1.Recordset.Update
End Sub
Private Sub Form_Load()
Adodc1.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;data source=" & App.Path &
"\valip.mdb;persist security info=false"
Adodc1.CommandType = adCmdTable
Adodc1.RecordSource = "tab1"
Adodc1.Refresh
MSHFlexGrid1.ColWidth(0) = 200
MSHFlexGrid1.ColWidth(1) = 1700
MSHFlexGrid1.ColWidth(2) = 1400
MSHFlexGrid1.ColWidth(3) = 1400
MSHFlexGrid1.ColWidth(4) = 1700
MSHFlexGrid1.ColWidth(5) = 1700
MSHFlexGrid1.ColWidth(6) = 1700
MSHFlexGrid1.ColWidth(7) = 1300
MSHFlexGrid1.RowHeight(0) = 400
End Sub

�

92�
�

4.2.5. Network Information :

In this phase we will conduct two operations and two to find information on IP in
detail and every individual, as follows:

1 - we will find information on the process of Attack IP of others known and if
the enemy is the introduction of IP are obtained information about it in detail, as
in Figure (23).

2 - We will find information on the process of Valid IP-known and friendly if it
is the introduction of IP are obtained information about it in detail, as in Figure
(24).

Figure 23 Network Information Attack IP

�

93�
�

In this step, we write your code programmatic (Network Information Attack IP) and
as follows :

Private Sub Command3_Click()
Dim x11 As String
Dim x12 As String
Dim x13 As String
x12 = "find IP"
x13 = InputBox("Enter the attack IP")
qry = "ip='" & x13 & "'"
Data2.Recordset.FindFirst qry
If Data2.Recordset.NoMatch Then
MsgBox "the IP attack not found", vbOKOnly + vbCritical, " the attack IP search"
End If
' attack ip address
Dim str As String
Dim nad11() As String
Dim str1 As String
Dim nad10() As String
str = Text45.Text
nad11() = Split(str, ".")
Text1.Text = nad11(0)
Text2.Text = nad11(1)
Text3.Text = nad11(2)
Text4.Text = nad11(3)
'subnet mask
str1 = Text44.Text
nad10() = Split(str1, ".")
Text10.Text = nad10(0)
Text11.Text = nad10(1)
Text12.Text = nad10(2)
Text13.Text = nad10(3)
Dim msg As String
Dim i As Double
'Dim x As Integer, y As Integer, z As Integer
i = Text1.Text
h = Text2.Text
o = Text3.Text
c = Text4.Text
d = Text10.Text
e = Text11.Text
f = Text12.Text
g = Text13.Text
Dim no1 As Byte, no2 As Byte, no3 As Byte, no4 As Byte, no5 As Byte, no6 As Byte, no7 As Byte, no8 As Byte
If ((i >= 1 And i <= 127) And (h >= 0 And h <= 255) And (o >= 0 And o <= 255) And (c >= 0 And c <= 255)
And (d >= 0 And d <= 255) And (e >= 0 And e <= 255) And (f >= 0 And f <= 255) And (g >= 0 And g <= 255))
Then
Text9.Text = "A"
Text5.Text = 255
Text6.Text = 0
Text7.Text = 0

�

94�
�

Text8.Text = 0
no1 = Text10.Text
no2 = Text5.Text
no3 = Text11.Text
no4 = Text6.Text
no5 = Text12.Text
no6 = Text7.Text
no7 = Text13.Text
no8 = Text8.Text
Text14.Text = no1 Xor no2
Text15.Text = no3 Xor no4
Text16.Text = no5 Xor no6
Text17.Text = no7 Xor no8
Text18.Text = Text1.Text And Text10.Text
Text19.Text = Text2.Text And Text11.Text
Text20.Text = Text3.Text And Text12.Text
Text21.Text = Text4.Text And Text13.Text
Text24.Text = Text18.Text
Text25.Text = Text19.Text
Text26.Text = Text20.Text
Text27.Text = Text21.Text + 1
w = 0
w = w + Val(Text14.Text) \ 256
w = w + (Val(Text14.Text) Mod 256) \ 128
w = w + (Val(Text14.Text) Mod 256 Mod 128) \ 64
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64) \ 32
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
w = w + Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
n = 0
n = n + Val(Text15.Text) \ 256
n = n + (Val(Text15.Text) Mod 256) \ 128
n = n + (Val(Text15.Text) Mod 256 Mod 128) \ 64
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64) \ 32
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2 Mod 2
n = n + Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
m = m + Val(Text16.Text) \ 256
m = m + (Val(Text16.Text) Mod 256) \ 128
m = m + (Val(Text16.Text) Mod 256 Mod 128) \ 64
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64) \ 32
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
m = m + Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
b = b + Val(Text17.Text) \ 256
b = b + (Val(Text17.Text) Mod 256) \ 128
b = b + (Val(Text17.Text) Mod 256 Mod 128) \ 64
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64) \ 32

�

95�
�

b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
b = b + Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
Text22.Text = n + w + m + b
Text23.Text = (2 ^ Text22.Text) - 2
If b = 0 And m <> 0 Then
ord = (Text20.Text * 256) \ (2 ^ (24 - (b + m + n)))
ord = ord + (Text19.Text * (2 ^ m))
Text32.Text = ord
ElseIf m = 0 And b = 0 Then
ord = Text19.Text \ (2 ^ (24 - (b + m + n)))
ord = ord + (Text19.Text * (2 ^ (m + b)))
Text32.Text = ord
ElseIf b <> 0 And m <> 0 Then
ord = Text21.Text \ (2 ^ (24 - (b + m + n)))
ord = ord + (Text20.Text * (2 ^ m))
ord = ord + (Text19.Text * (2 ^ (m + b)))
Text32.Text = ord
End If
Text30.Text = ((2 ^ (16 - Text22.Text)) - 1) + Text20.Text
Text31.Text = 254
Text28.Text = Text18.Text
Text29.Text = Text19.Text
Text33.Text = Text28.Text
Text34.Text = Text29.Text
Text35.Text = Text30.Text
Text36.Text = Text31.Text + 1
ElseIf ((i >= 128 And i <= 191) And (h >= 0 And h <= 255) And (o >= 0 And o <= 255) And (c >= 0 And c <=
255) And (d >= 0 And d <= 255) And (e >= 0 And e <= 255) And (f >= 0 And f <= 255) And (g >= 0 And g <=
255)) Then
Text9.Text = "B"
Text5.Text = 255
Text6.Text = 255
Text7.Text = 0
Text8.Text = 0
no1 = Text10.Text
no2 = Text5.Text
no3 = Text11.Text
no4 = Text6.Text
no5 = Text12.Text
no6 = Text7.Text
no7 = Text13.Text
no8 = Text8.Text
Text14.Text = no1 Xor no2
Text15.Text = no3 Xor no4
Text16.Text = no5 Xor no6
Text17.Text = no7 Xor no8
Text18.Text = Text1.Text And Text10.Text
Text19.Text = Text2.Text And Text11.Text
Text20.Text = Text3.Text And Text12.Text
Text21.Text = Text4.Text And Text13.Text
Text24.Text = Text18.Text

�

96�
�

Text25.Text = Text19.Text
Text26.Text = Text20.Text
Text27.Text = Text21.Text + 1
'b = 0
b = b + Val(Text17.Text) \ 256
b = b + (Val(Text17.Text) Mod 256) \ 128
b = b + (Val(Text17.Text) Mod 256 Mod 128) \ 64
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
b = b + Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
'x = b
'MsgBox x
'm = 0
m = m + Val(Text16.Text) \ 256
m = m + (Val(Text16.Text) Mod 256) \ 128
m = m + (Val(Text16.Text) Mod 256 Mod 128) \ 64
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64) \ 32
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
m = m + Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
n = n + Val(Text15.Text) \ 256
n = n + (Val(Text15.Text) Mod 256) \ 128
n = n + (Val(Text15.Text) Mod 256 Mod 128) \ 64
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64) \ 32
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
n = n + Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 \ 2
n = n + Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
w = w + Val(Text14.Text) \ 256
w = w + (Val(Text14.Text) Mod 256) \ 128
w = w + (Val(Text14.Text) Mod 256 Mod 128) \ 64
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64) \ 32
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
w = w + Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
Text22.Text = n + w + m + b
Text23.Text = (2 ^ Text22.Text) - 2
If b <> 0 And m <> 0 Then
ord = Text21.Text \ 2 ^ (16 - (b + m))
ord = ord + ((Text20.Text) * 2 ^ b)
Text32.Text = ord
ElseIf b = 0 And m <> 0 Then
ord = Text20.Text \ (2 ^ (8 - (b + m)))
Text32.Text = ord
End If
xxx = (2 ^ (16 - Text22.Text)) - 2 + Text21.Text
yyy = (xxx / 255)

�

97�
�

yy = Int(yyy)
If xxx < 255 Then
Text30.Text = Text20.Text
Text31.Text = xxx
Text28.Text = Text18.Text
Text29.Text = Text19.Text
Text33.Text = Text28.Text
Text34.Text = Text29.Text
Text35.Text = Text30.Text
Text36.Text = Text31.Text + 1
Else
'xxx > 255 Then
Text30.Text = yy + Text20.Text - 1
Text31.Text = 254
Text29.Text = Text19.Text
Text28.Text = Text18.Text
Text33.Text = Text28.Text
Text34.Text = Text29.Text
Text35.Text = Text30.Text
Text36.Text = Text31.Text + 1
End If
ElseIf ((i >= 192 And i <= 255) And (h >= 0 And h <= 255) And (o >= 0 And o <= 255) And (c >= 0 And c <=
255) And (d >= 0 And d <= 255) And (e >= 0 And e <= 255) And (f >= 0 And f <= 255) And (g >= 0 And g <=
255)) Then
Text9.Text = "C"
Text5.Text = 255
Text6.Text = 255
Text7.Text = 255
Text8.Text = 0
no1 = Text10.Text
no2 = Text5.Text
no3 = Text11.Text
no4 = Text6.Text
no5 = Text12.Text
no6 = Text7.Text
no7 = Text13.Text
no8 = Text8.Text
Text14.Text = no1 Xor no2
Text15.Text = no3 Xor no4
Text16.Text = no5 Xor no6
Text17.Text = no7 Xor no8
Text18.Text = Text1.Text And Text10.Text
Text19.Text = Text2.Text And Text11.Text
Text20.Text = Text3.Text And Text12.Text
Text21.Text = Text4.Text And Text13.Text
Text24.Text = Text18.Text
Text25.Text = Text19.Text
Text26.Text = Text20.Text
Text27.Text = Text21.Text + 1
w = 0
w = w + Val(Text14.Text) \ 256
w = w + (Val(Text14.Text) Mod 256) \ 128
w = w + (Val(Text14.Text) Mod 256 Mod 128) \ 64
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64) \ 32

�

98�
�

w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
w = w + Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
n = 0
n = n + Val(Text15.Text) \ 256
n = n + (Val(Text15.Text) Mod 256) \ 128
n = n + (Val(Text15.Text) Mod 256 Mod 128) \ 64
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64) \ 32
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
n = n + Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2

m = m + Val(Text16.Text) \ 256
m = m + (Val(Text16.Text) Mod 256) \ 128
m = m + (Val(Text16.Text) Mod 256 Mod 128) \ 64
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64) \ 32
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
m = m + Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
b = b + Val(Text17.Text) \ 256
b = b + (Val(Text17.Text) Mod 256) \ 128
b = b + (Val(Text17.Text) Mod 256 Mod 128) \ 64
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64) \ 32
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
b = b + Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
Text22.Text = n + w + m + b
Text23.Text = (2 ^ Text22.Text) - 2
'If b <> 0 Then
ord = Text21.Text \ (2 ^ (8 - (b)))
Text32.Text = ord
'End If
Text31.Text = ((2 ^ (8 - Val(Text22.Text))) - 2) + Text21.Text
Text28.Text = Text18.Text
Text29.Text = Text19.Text
Text30.Text = Text20.Text
Text33.Text = Text28.Text
Text34.Text = Text29.Text
Text35.Text = Text30.Text
Text36.Text = Text31.Text + 1
Else:
msg = MsgBox("the number is error", vbCritical, "wrong")
Text9.Text = " "
Text5.Text = " "
Text6.Text = " "
Text7.Text = " "

�

99�
�

Text8.Text = " "
Text18.Text = " "
Text19.Text = " "
Text20.Text = " "
Text21.Text = " "
Text22.Text = " "
Text23.Text = " "
Text24.Text = " "
Text25.Text = " "
Text26.Text = " "
Text27.Text = " "
Text28.Text = " "
Text29.Text = " "
Text30.Text = " "
Text31.Text = " "
Text32.Text = " "
Text33.Text = " "
Text34.Text = " "
Text35.Text = " "
Text36.Text = " "
End If
Text47.Text = Text18.Text & "." & Text19.Text & "." & Text20.Text & "." & Text21.Text
Text46.Text = Text5.Text & "." & Text6.Text & "." & Text7.Text & "." & Text8.Text
Text48.Text = Text24.Text & "." & Text25.Text & "." & Text26.Text & "." & Text27.Text
Text49.Text = Text28.Text & "." & Text29.Text & "." & Text30.Text & "." & Text31.Text
Text50.Text = Text33.Text & "." & Text34.Text & "." & Text35.Text & "." & Text36.Text
Text52.Text = Text9.Text
Text54.Text = Text22.Text
Text55.Text = Text23.Text
Text57.Text = Text32.Text
Data2.Refresh
End Sub

�

100�
�

Figure 24 Network Information Valid IP

�

101�
�

In this step, we write your code programmatic (Network Information Valid IP) and
as follows :

 :

Private Sub Command2_Click()
Dim x11 As String
Dim x12 As String
Dim x13 As String
x12 = "ÈÍË Úä ip"
x13 = InputBox("Enter the Valid IP")
qry = "ip='" & x13 & "'"
Data1.Recordset.FindFirst qry
If Data1.Recordset.NoMatch Then
MsgBox "the IP attack not found", vbOKOnly + vbCritical, "the Valid IP search"
End If
' valid ip address
Dim str As String
Dim nad11() As String
Dim str1 As String
Dim nad10() As String
str = Text37.Text
nad11() = Split(str, ".")
Text1.Text = nad11(0)
Text2.Text = nad11(1)
Text3.Text = nad11(2)
Text4.Text = nad11(3)
'subnet mask
str1 = Text38.Text
nad10() = Split(str1, ".")
Text10.Text = nad10(0)
Text11.Text = nad10(1)
Text12.Text = nad10(2)
Text13.Text = nad10(3)
Dim msg As String
Dim i As Double
'Dim x As Integer, y As Integer, z As Integer
i = Text1.Text
h = Text2.Text
o = Text3.Text
c = Text4.Text
d = Text10.Text
e = Text11.Text
f = Text12.Text
g = Text13.Text
Dim no1 As Byte, no2 As Byte, no3 As Byte, no4 As Byte, no5 As Byte, no6 As Byte, no7 As Byte, no8 As Byte
If ((i >= 1 And i <= 127) And (h >= 0 And h <= 255) And (o >= 0 And o <= 255) And (c >= 0 And c <= 255)
And (d >= 0 And d <= 255) And (e >= 0 And e <= 255) And (f >= 0 And f <= 255) And (g >= 0 And g <= 255))
Then
Text9.Text = "A"
Text5.Text = 255
Text6.Text = 0

�

102�
�

Text7.Text = 0
Text8.Text = 0
no1 = Text10.Text
no2 = Text5.Text
no3 = Text11.Text
no4 = Text6.Text
no5 = Text12.Text
no6 = Text7.Text
no7 = Text13.Text
no8 = Text8.Text
Text14.Text = no1 Xor no2
Text15.Text = no3 Xor no4
Text16.Text = no5 Xor no6
Text17.Text = no7 Xor no8
Text18.Text = Text1.Text And Text10.Text
Text19.Text = Text2.Text And Text11.Text
Text20.Text = Text3.Text And Text12.Text
Text21.Text = Text4.Text And Text13.Text
Text24.Text = Text18.Text
Text25.Text = Text19.Text
Text26.Text = Text20.Text
Text27.Text = Text21.Text + 1
w = 0
w = w + Val(Text14.Text) \ 256
w = w + (Val(Text14.Text) Mod 256) \ 128
w = w + (Val(Text14.Text) Mod 256 Mod 128) \ 64
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64) \ 32
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
w = w + Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
n = 0
n = n + Val(Text15.Text) \ 256
n = n + (Val(Text15.Text) Mod 256) \ 128
n = n + (Val(Text15.Text) Mod 256 Mod 128) \ 64
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64) \ 32
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2 Mod 2
n = n + Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
m = m + Val(Text16.Text) \ 256
m = m + (Val(Text16.Text) Mod 256) \ 128
m = m + (Val(Text16.Text) Mod 256 Mod 128) \ 64
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64) \ 32
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
m = m + Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2

b = b + Val(Text17.Text) \ 256
b = b + (Val(Text17.Text) Mod 256) \ 128

�

103�
�

b = b + (Val(Text17.Text) Mod 256 Mod 128) \ 64
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64) \ 32
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
b = b + Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
Text22.Text = n + w + m + b
Text23.Text = (2 ^ Text22.Text) - 2
If b = 0 And m <> 0 Then
ord = (Text20.Text * 256) \ (2 ^ (24 - (b + m + n)))
ord = ord + (Text19.Text * (2 ^ m))
Text32.Text = ord
ElseIf m = 0 And b = 0 Then
ord = Text19.Text \ (2 ^ (24 - (b + m + n)))
ord = ord + (Text19.Text * (2 ^ (m + b)))
Text32.Text = ord
ElseIf b <> 0 And m <> 0 Then
ord = Text21.Text \ (2 ^ (24 - (b + m + n)))
ord = ord + (Text20.Text * (2 ^ m))
ord = ord + (Text19.Text * (2 ^ (m + b)))
Text32.Text = ord
End If
Text30.Text = ((2 ^ (16 - Text22.Text)) - 1) + Text20.Text
Text31.Text = 254
Text28.Text = Text18.Text
Text29.Text = Text19.Text
Text33.Text = Text28.Text
Text34.Text = Text29.Text
Text35.Text = Text30.Text
Text36.Text = Text31.Text + 1
ElseIf ((i >= 128 And i <= 191) And (h >= 0 And h <= 255) And (o >= 0 And o <= 255) And (c >= 0 And c <=
255) And (d >= 0 And d <= 255) And (e >= 0 And e <= 255) And (f >= 0 And f <= 255) And (g >= 0 And g <=
255)) Then
Text9.Text = "B"
Text5.Text = 255
Text6.Text = 255
Text7.Text = 0
Text8.Text = 0
no1 = Text10.Text
no2 = Text5.Text
no3 = Text11.Text
no4 = Text6.Text
no5 = Text12.Text
no6 = Text7.Text
no7 = Text13.Text
no8 = Text8.Text
Text14.Text = no1 Xor no2
Text15.Text = no3 Xor no4
Text16.Text = no5 Xor no6
Text17.Text = no7 Xor no8
Text18.Text = Text1.Text And Text10.Text
Text19.Text = Text2.Text And Text11.Text
Text20.Text = Text3.Text And Text12.Text

�

104�
�

Text21.Text = Text4.Text And Text13.Text
Text24.Text = Text18.Text
Text25.Text = Text19.Text
Text26.Text = Text20.Text
Text27.Text = Text21.Text + 1
'b = 0
b = b + Val(Text17.Text) \ 256
b = b + (Val(Text17.Text) Mod 256) \ 128
b = b + (Val(Text17.Text) Mod 256 Mod 128) \ 64
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
b = b + Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
'x = b
'MsgBox x
'm = 0
m = m + Val(Text16.Text) \ 256
m = m + (Val(Text16.Text) Mod 256) \ 128
m = m + (Val(Text16.Text) Mod 256 Mod 128) \ 64
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64) \ 32
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
m = m + Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2

n = n + Val(Text15.Text) \ 256
n = n + (Val(Text15.Text) Mod 256) \ 128
n = n + (Val(Text15.Text) Mod 256 Mod 128) \ 64
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64) \ 32
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
n = n + Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 \ 2
n = n + Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
w = w + Val(Text14.Text) \ 256
w = w + (Val(Text14.Text) Mod 256) \ 128
w = w + (Val(Text14.Text) Mod 256 Mod 128) \ 64
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64) \ 32
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
w = w + Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
Text22.Text = n + w + m + b
Text23.Text = (2 ^ Text22.Text) - 2
If b <> 0 And m <> 0 Then
ord = Text21.Text \ 2 ^ (16 - (b + m))
ord = ord + ((Text20.Text) * 2 ^ b)
Text32.Text = ord
ElseIf b = 0 And m <> 0 Then
ord = Text20.Text \ (2 ^ (8 - (b + m)))
Text32.Text = ord

�

105�
�

End If
xxx = (2 ^ (16 - Text22.Text)) - 2 + Text21.Text
yyy = (xxx / 255)
yy = Int(yyy)
If xxx < 255 Then
Text30.Text = Text20.Text
Text31.Text = xxx
Text28.Text = Text18.Text
Text29.Text = Text19.Text
Text33.Text = Text28.Text
Text34.Text = Text29.Text
Text35.Text = Text30.Text
Text36.Text = Text31.Text + 1
Else
'xxx > 255 Then
Text30.Text = yy + Text20.Text - 1
Text31.Text = 254
Text29.Text = Text19.Text
Text28.Text = Text18.Text
Text33.Text = Text28.Text
Text34.Text = Text29.Text
Text35.Text = Text30.Text
Text36.Text = Text31.Text + 1
End If
ElseIf ((i >= 192 And i <= 255) And (h >= 0 And h <= 255) And (o >= 0 And o <= 255) And (c >= 0 And c <=
255) And (d >= 0 And d <= 255) And (e >= 0 And e <= 255) And (f >= 0 And f <= 255) And (g >= 0 And g <=
255)) Then
Text9.Text = "C"
Text5.Text = 255
Text6.Text = 255
Text7.Text = 255
Text8.Text = 0
no1 = Text10.Text
no2 = Text5.Text
no3 = Text11.Text
no4 = Text6.Text
no5 = Text12.Text
no6 = Text7.Text
no7 = Text13.Text
no8 = Text8.Text
Text14.Text = no1 Xor no2
Text15.Text = no3 Xor no4
Text16.Text = no5 Xor no6
Text17.Text = no7 Xor no8
Text18.Text = Text1.Text And Text10.Text
Text19.Text = Text2.Text And Text11.Text
Text20.Text = Text3.Text And Text12.Text
Text21.Text = Text4.Text And Text13.Text
Text24.Text = Text18.Text
Text25.Text = Text19.Text
Text26.Text = Text20.Text
Text27.Text = Text21.Text + 1
w = 0
w = w + Val(Text14.Text) \ 256

�

106�
�

w = w + (Val(Text14.Text) Mod 256) \ 128
w = w + (Val(Text14.Text) Mod 256 Mod 128) \ 64
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64) \ 32
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
w = w + (Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
w = w + Val(Text14.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
n = 0
n = n + Val(Text15.Text) \ 256
n = n + (Val(Text15.Text) Mod 256) \ 128
n = n + (Val(Text15.Text) Mod 256 Mod 128) \ 64
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64) \ 32
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
n = n + (Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
n = n + Val(Text15.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2

m = m + Val(Text16.Text) \ 256
m = m + (Val(Text16.Text) Mod 256) \ 128
m = m + (Val(Text16.Text) Mod 256 Mod 128) \ 64
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64) \ 32
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
m = m + (Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
m = m + Val(Text16.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
b = b + Val(Text17.Text) \ 256
b = b + (Val(Text17.Text) Mod 256) \ 128
b = b + (Val(Text17.Text) Mod 256 Mod 128) \ 64
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64) \ 32
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32) \ 16
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16) \ 8
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8) \ 4
b = b + (Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4) \ 2
b = b + Val(Text17.Text) Mod 256 Mod 128 Mod 64 Mod 32 Mod 16 Mod 8 Mod 4 Mod 2
Text22.Text = n + w + m + b
Text23.Text = (2 ^ Text22.Text) - 2
'If b <> 0 Then
ord = Text21.Text \ (2 ^ (8 - (b)))
Text32.Text = ord
'End If
Text31.Text = ((2 ^ (8 - Val(Text22.Text))) - 2) + Text21.Text
Text28.Text = Text18.Text
Text29.Text = Text19.Text
Text30.Text = Text20.Text
Text33.Text = Text28.Text
Text34.Text = Text29.Text
Text35.Text = Text30.Text
Text36.Text = Text31.Text + 1
Else:
msg = MsgBox("the number is error", vbCritical, "wrong")
Text9.Text = " "

�

107�
�

Text5.Text = " "
Text6.Text = " "
Text7.Text = " "
Text8.Text = " "
Text18.Text = " "
Text19.Text = " "
Text20.Text = " "
Text21.Text = " "
Text22.Text = " "
Text23.Text = " "
Text24.Text = " "
Text25.Text = " "
Text26.Text = " "
Text27.Text = " "
Text28.Text = " "
Text29.Text = " "
Text30.Text = " "
Text31.Text = " "
Text32.Text = " "
Text33.Text = " "
Text34.Text = " "
Text35.Text = " "
Text36.Text = " "
End If
Text39.Text = Text18.Text & "." & Text19.Text & "." & Text20.Text & "." & Text21.Text
Text40.Text = Text5.Text & "." & Text6.Text & "." & Text7.Text & "." & Text8.Text
Text41.Text = Text24.Text & "." & Text25.Text & "." & Text26.Text & "." & Text27.Text
Text42.Text = Text28.Text & "." & Text29.Text & "." & Text30.Text & "." & Text31.Text
Text43.Text = Text33.Text & "." & Text34.Text & "." & Text35.Text & "." & Text36.Text
Text51.Text = Text9.Text
Text53.Text = Text22.Text
Text56.Text = Text23.Text
Text58.Text = Text32.Text
Data1.Refresh
End Sub

�

108�
�

CHAPTER V

5.CONCLUSIONS AND FUTURE WORK

5.1. Conclusions:

Based on the thesis which I presented on statistic bases of detecting DOS attacks

by using IPS and the specific time, we classified the interfering IPS to the system

into negative and positive and this was conducted through specific detection

protocol. We also set up the Algorithm of intervention time to the IP in a specific

time which is 4 seconds. Through this algorithm we reduced the possibilities of

exposing networks to piracy attacks, in addition, through this process and in

order to deprive some people of reaching any informational services, we could

through this process prevent the people who use the websites of companies to

abuse the regulations. We also stopped some people who are members in some

websites to misuse the rules and conditions. We were able to reach information

on negative or positive IPS as follows:

• Classes

• Subnet mask default

• Subnet address of this subnet or wire

• The number of subnet

• The maximum number of subnet

• Ordinal number

• Range form first host to lost host

• Broadcast address of this subnet

�

109�
�

And identify the Number and time of interfering the IPS (hour/minute/second

rate) and the exceptional statistic IP base which is required to be researched

promptly in the database and diagram to discover the statistic of the attacks in

form of diagram. in addition, this will be applied in the practical field so that the

agents can get the information and prevent from any simple illegal penetration .

5.2. Future Work:

Through the work which I have conducted and the statistic base of negative and

positive IPs and through my research on DOS, I recommend to set up DDOS statistic

base and change the time of IP entry and make some improvements on the program

through linking it with WIN and adding special codes for entering the system or to

link between DOS and DDOS with each other via statistic base which can involve

both of them and this will prevent the existence of (dual attacks) in the form of (one

attack) based on previous concepts from the presented project.

�

110�
�

REFERENCES

[1] A Case Study: Using Architectural Features To Improve Sophisticated Denial-
Of-Service Attack Detections Ran Tao1, Li Yang2, Lu Peng1, Bin Li3, Alma
Cemerlic2 1Department Of Electrical And Computer Engineering, Louisiana State
University.

[2] ADoS/DDoS Attack Detection System Using Chi-Square Statistic
Approach*Fang-Yieleu*Department Of Computer Science, Tunghai University
R.K.C. Chang .

[3] CCNA Cisco Certified Network Associate Study Guide Sixth Edition Todd
Lammle Wiley Publishing, Inc 2007.

[4] Deciphering Detection Techniques: Part III Denial Of Service Detection By Dr.
Fengmin Gong, Chief Scientist, Mcafee Network Security Technologies Group
January 2003.

[5] Denial of Service Attack [Neeharika Buddha Graduate Student, University Of
Kansas]2009.

[6] Detection Of Resource-Drained Attacks On SIP-Based Wireless Voip Networks
Jin Tang, Yong Hao, Yu Cheng And Chi Zhou Department Of Electrical And
Computer Engineering Illinois Institute Of Technology, Chicago, IL, USA 60616.

[7] Detecting Service Violations And DoS Attacks Ahsan Habib, Mohamed M.
Hefeeda, And Bharat K. Bhargava CERIAS And Department Of Computer Sciences
Purdue University, West Lafayette, IN 47907 Fhabib, Mhefeeda,
Bbg@Cs.Purdue.Edu

[8] Didem Çakırtaş DETECTING DENIAL OF SERVICE ATTACKS IN
NETWORK TRAFFIC WITH MAXIMUM ENTROPY AND HYPOTHESIS
TESTING TECHNIQUES Master of Science Istanbul Technical University, 2004

[9] Denial of service attacks, CERT. http://cert.org/tech_tips/denial_of_service.html .

 [10] Distributed Denial Of Service Attacks/ Princeton University Electrical
Engineering Department/September 23, 2002/Prepared For: Prof. Ruby Lee ELE 572

�

111�
�

[11] DoS/DDoS Detection Scheme Using Statistical Method Based On The
Destination Port Number Shunsuke Oshima Graduate School Of Science And
Technology Kumamoto University

[12] Http://Ar.Wikipedia.Org/Wiki/DoS.

[13] Http://En.Wikipedia.Org/Wiki/Denial-Of-Service_Attack D1enial-Of-Service
Attack - Wikipedia, The Free Encyclopedia .

[14] Karig, David And Ruby Lee. Remote Denial Of Service Attacks And
Countermeasures, Princeton University Department Of Electrical Engineering
Technical Report CE-L2001-002, October 2001.

[15] Kelly, C., D. Spears, C. Karlsson, P. Polyakov, An Ensemble Of Anomay
Classifiers For Identifying Cyber Attacks,
Http://Www.Cs.Uwyo.Edu/~Dspears/Papers/Ensemble . Pdf, 2005.

[16] Kendall, K., A Database Of Computer Attacks For The Evaluation
Of Intrusion Detection Systems, M.S. Thesis, Massachusetts Institute Of
Technology, 1999.

[17] Lightweight Detection Of DoS Attacks Sirikarn Pukkawanna*, Vasaka
Visoottiviseth*, Panita Pongpaibool† *Department Of Computer Science, Mahidol
University, Rama 6 Rd., Bangkok 10400, THAILAND

 [18]- On The Detection Of Signaling DoS Attacks On 3G Wireless Networks
Patrick P. C. Lee, Tian Bu, And Thomas Woo.

[19] Patrikakis C., M. Masikos, O. Zouraraki, “Distributed Denial Of Service
Attacks”, Internet Protocol Journal, Vol. 7 Issue 4, Pp.13-35, 2004.

[20] “Ping Of Death Attack”, Http://En.Wikipedia.Org/Wiki/Ping_Of_Death .

[21]TeardropAttack,Http://En.Wikipedia.Org/Wiki/Denial-Of-Service_Attack#
Teardrop Attack.

[22] "Unintentional Denial Of Service" Http://En.Wikipedia.Org/Wiki/Denial-Of-
Service_Attack#Denial-Of-Service_Level_II

[23] U.S. Department Of Energy, “G-48: TCP SYN Flooding And IP Spoofing
Attacks”, Computer Incident Advisory Capability (CIAC) Information Bulletin,
September 20, 1996.

[24] Using Frequency Domain Analysis Fazirulhisyam Hashim The University Of
Sydney .

�

112�
�

APPENDIX

PERSONAL INFORMATION

Surname, Name: Tariq .Abed. Mohamad

Nationality: IRAQ (IR)

Date and Place of Birth: 17 /05 /1983 , IRAQ / KIRKUK

Marital Status: Married

Phone: +90 539 24 87 390

Fax :+90 534 720 85 58

Email: tariq.atar@gmail.com

EDUCATION

Degree Institution
Year Of

Graduation

MS Cankaya Univ . Mathematics Computer Seince 2012

Bs Kirkuk Univ.Computer Seince 2007

High School Al.Hakema -Kirkuk 2003

WORK EXPERIENCE

YEAR PLACE Enrollment

2003 Salemana center for internet and communication Networking

2005 Turkish company in the Iraq Supervisor

2007 Anbal Al Arabya Bank Chief programmer

2009 North Oil Company -Kirkuk Programmer

Foreign languages : Arabic , English Turkish , Kurdish .

	1.pdf
	2.pdf
	3.pdf
	4.pdf

