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ABSTRACT 

 

 

NUMERICAL SOLUTIONS OF NON-LINEAR VOLTERRA INTEGRAL 

EQUATIONS OF THE SECOND KIND 

 

Merewan Abdel SALEH 

M.Sc., Department of Mathematics and Computer Science 

Supervisor: Prof. Dr. Kenan TAŞ 

Co- Supervisor: Assist. Prof. Dr. Borhan F. Juma 

August 2015, 82 pages 

 

In this thesis it will be shown how one can solve one of the types of integral 

equation, non-linear Volterra Integral Equations (VIEs) of the second kind, by 

certain methods: numerical integration (Trapezoidal rule and Simpson’s rule), 

Runge-Kutta methods (classic third-order, optimal third-order, fourth-order, and 

classic fourth-order), classic spline functions (quadratic and cubic classic spline 

functions), and B-spline functions (first-order, second-order, third-order, and fourth-

order). It will also be shown how one can convert one of the methods to another one. 

 

These methods exist and are easy to use to solve differential equations and 

integration problems, but it is difficult to apply them to integral equations, especially 

non-linear integral equations, because the known function occurs into kernel of the 

integral. Therefore it is needed to modify these methods and techniques to apply 

them to non-linear integral equations. 

 

Keywords: Non-Linear Equations, Second Kind Volterra Integral Equations, Runge-

Kutta methods, B-spline functions. 



v 

 

ÖZ 

 

LINEER-OLMAYAN İKİNCİ ÇEŞİT 

VOLTERRA INTEGRAL DENKLEMLERİNİN NÜMERİK ÇÖZÜMLERİ 

 

Merewan Abdel SALEH 

Yüksek Lisans, Matematik ve Bilgisayar Bilimleri Bölümü  

Tez Yöneticisi: Prof. Dr. Kenan TAŞ 

Eş Danışman: Yrd. Doç. Dr. Borhan F. Juma 

Ağustos 2015, 82 sayfa 

 

Bu tezde lineer-olmayan ikinci çeşit Volterra integral denklemlerinin nümerik 

integrasyon (Ikizkenar kuralı and Simpson kuralı), Runge-Kutta metodu (klasik 

üçüncü-derece, optimal üçüncü-derece, dördüncü-derece ve klasik dördüncü-derece), 

klasik şerit fonksiyonları (kuadratik ve kübik klasik şerit fonksiyonları) ve B-şerit 

fonksiyonları (birinci-derece, ikinci-derece, üçüncü-derece ve dördüncü-derece) 

yardımıyla nasıl çözülebileceği gösterilmiştir. Ayrıca methotlardan birinin diğerine 

nasıl çevrileceği de incelenmektedir. 

 

Bu methotlar varlığı ve diferensiyel denklemler ile integral problemlerinin 

çözülmesinde kolaylıkla kullanılmakta olduğu bilinmektedir, ancak özellikle lineer-

olmayan integral denklemlere uygulamasında çeşitli zorluklar ortaya çıkmaktadır, 

çünkü lineer olmayan terimler integralin çekirdeğinde mevcuttur. Bu nedenle söz 

konusu methotların ve teknikler üzerinde, lineer-olmayan integral denklemlere de 

uygulanabilecek biçimde, bazı düzenlemeler yapılma ihtiyacı olduğu görülmüştür. 

 

Anahtar Kelimeler: Lineer-Olmayan Denklemler, İkinci Çeşit Volterra Integral 

Denklemleri, Runge-Kutta methotları, B-şerit fonksiyonları. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

The mechanics problem of calculating the time a particle takes to slide under gravity 

down a given smooth curve from any point on the curve to its lower end leads to an 

exercise in integration. The time, 𝑓(X) say, for the particle to descend from the 

height X is given by an expression of the form: 

 𝑓(X) = ∫
g(𝑥)

(X − 𝑥)1/2

𝑥

0

𝑑𝑥         (0 ≤ X ≤ 𝑏) (1.1) 

where g(𝑥) embodies the slope of the given curve. The converse problem is that in 

which the time of descent from height X is given. The particular curve that produces 

this time is less straightforward to find. It entails the determination of the function g 

from (1.1), 𝑓(X) now being assigned for 0 ≤ X ≤ 𝑏. From this point of view, (1.1) is 

called an integral equation, this description expressing the fact that the function to be 

determined appears under an integral sign.  

The equation (1.1) is of historical importance, and is attributed to Abel. 

Let us start with Abel in the 1820s. His work on analysis is of continuing interest in 

integral equations. The names of many modem mathematicians, for example Cauchy, 

Fredholm, Hubert, Volterra, etc. are linked with this subject [1]. In 1913, Volterra’s 

book “Leçons sur les équations intégral et intégro-différentielles” appeared. Since 

that date, an enormous amount of literature on the theory and on its applications, 

which include elasticity, semi-conductors, scattering theory, metallurgy, seismology, 

heat condition, fluid flow, population dynamics, chemical reactions, etc., has 

appeared [2].  

There are two main reasons for this degree of attention. The first, and perhaps the 

most common, reason is that integral operators, conversions, and equations are 

suitable tools for studying differential equations. As a result, integral equation 
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techniques are better known to classical analysts, and important and elegant results 

were developed by them. The second, which is seen in the work of Abel on 

tautochrone curves, is that integral equations are used for natural mathematical 

models that include physically attractive cases [1]. 

Many readers will already have encountered integral equations, but perhaps only in a 

context where this terminology is not used. For example, the pair of equations: 

 

1

√2𝜋
∫ 𝑒𝑖𝑥𝑡

∞

−∞

 g(𝑡)𝑑𝑡 = 𝑓(𝑥)          − ∞ < 𝑥 < ∞,

 
1

√2𝜋
∫ 𝑒−𝑖𝑥𝑡

∞

−∞

 g(𝑡)𝑑𝑡 = 𝑓(𝑥)        − ∞ < 𝑥 < ∞,
}
 
 

 
 

 (1.2) 

which define the Fourier transform and its inverse, may be viewed as an integral 

equation and its solution. If  𝑓(𝑥) is regarded as known for  −∞ < 𝑥 < ∞   in the 

first equation, then the second equation provides the solution for g(𝑥), also for−∞ <

𝑥 < ∞. 

The name “integral equation” first appeared in 1888 in a paper on elliptic partial 

differential equations by the German scientist Paul du Bois-Riemann. The name 

“Volterra integral equation” was first coined by the Romanian mathematician Traian 

Lalesco in 1908, seemingly following a suggestion from his teacher, the French 

mathematician Emile Picard. The terminology “integral equation of the (first, second, 

third) kind” was first used by the German mathematician David Hilbert in connection 

with his study of Fredholm integral equations [3]. 

Integral equations are encountered in different fields of science, and they have 

applications in, for example, flexibility, plasticity, approximation theory, heat and 

mass transfer, fluid dynamics, biomechanics, filtration theory, electrostatics, 

electrodynamics, game theory, control theory, queuing theory, electrical engineering, 

medicine, and economics. Exact (closed-form) solutions of integral equations play an 

important role in the proper understanding of the qualitative features of various 

phenomena and processes in different areas of natural science [4]. 

Newton-Cotes formulae (quadrature methods) are the most common tools used by 

engineers and many scientists to get approximate solutions for definite integrals 

when there is no way of solving these analytically. These procedures are based on the 

strategy of substituting a complicated function or scheduled data with an 

approximating function that it is not difficult to integrate [5-6]. 
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The Runge-Kutta methods, because of their self-starting property, have a unique 

place amongst the classical types of method. They use only the information from the 

last step computed, and are therefore called single-step methods. 

Spline functions were introduced in the 1940s in the context of approximation 

theory. Schoenberg introduced the name spline function in 1946. These functions 

have been used in geometric modeling since the 1970s, and in about 1974 the 

concept of spline basis functions was introduced. This enabled piecewise 

descriptions to be made with automatic retention of the continuity of derivatives. The 

piecewise descriptions that are enabled are made with automatic retention of the 

continuity of derivatives. The price paid for this is that there are surfaces defined by 

control points through which the surfaces do not pass. 

There are many types of spline, such as classic splines, B-splines, Bezier splines, 

cardinal splines, Catmull-Rom or Overhauser splines, and uniform rational B-splines 

(NURBS). They are all based on different mathematical concepts, but they have one 

thing in common: the control points, or anchor points, are modifiable [7]. 

Splines provide an important category of functions for approximation in areas such 

as finite element methods with suitable numerical data, and the numerical solution of 

ordinary and partial differential equations. 

A spline function is a function that consists of polynomial pieces joined with certain 

smoothness condition; it is used for data interpolation and can be used for finding the 

derivatives and integrals of functions [8]. 

Splines can be of any degree. Linear splines are simple straight line segments 

connecting two points. The linear splines co-yield (first-order) approximating 

polynomials. The slopes (first derivatives) and the curvature (second derivatives) are 

discontinuous at every data point. Quadratic splines yield (second-order) 

approximating polynomials. Quadratic splines mean that the slopes can be forced to 

be continuous at each data point, but the curvatures are still discontinuous. Cubic 

splines yield a (third degree) polynomial joining each pair of data points. The slopes 

and curvatures of cubic splines can be forced to be continuous at each data point [9]. 

Spline functions belong to the category of piecewise polynomial functions, satisfying 

continuity characteristics only slightly less severe than those of polynomials, and 

thus they are a normal generalization of polynomials. They are found to have very 

desirable properties such as “approximating, interpolating, and curve-fitting 
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functions”[10]. Because of their smoothing and interpolating properties, spline 

functions are gaining popularity in many fields such as engineering sciences, image 

processing and restoration [10], and data interpolation [11-12]. 

Saeed presented some computational methods for solving a system of linear Volterra 

integral and integro-differential equations [13]. Mahmoudi used the wavelet Galerkin 

method to solve non-linear integral equations [14]. Wazwaz used a modified 

decomposition method for the analytic treatment of non-linear integral equations and 

systems of non-linear integral equations [15]. Mustafa used spline functions to solve 

a system of Volterra integral equations [16], and Al-Nasir in 1999 used quadrature 

methods to solve Volterra integral equations of the second kind [17]. Al-Rawi also 

applied quadrature methods to solve the first kind of integral equation of the 

convolution type [18]. Saadati and colleagues used the trapezoidal rule to solve linear 

integro-differential equations [19]. Moreover, Al-Timeme in 2003 used quadrature 

rules to find the numerical solutions of the initial value problems to Volterra integro-

differential equations of the second kind [20]. Al-Dahan solved a VIE using 

quadrature [21], and Al-Jawary also applied quadrature to solve a system of VIEs 

[22]. 

A large number of researchers and scientists have published books that are entirely 

devoted to non-linear integral equation methods and their applications [23-24]. 

Sastry employed spline functions and trapezoidal and Chebyshev series methods in 

1973 to find the numerical solution of a linear Fredholm integral equation of the 

second kind [25]. In 2007 Saberi-Nadjaf and Heidari applied a modified trapezoidal 

quadrature method to find the numerical solution of linear Fredholm integral 

equations of the second kind [26]. Nik, Eshkuvatov, Yaghobifar and Hasan used the 

degenerate kernel method in 2008 to find the exact solution of singular Fredholm 

integral equations of the second kind. Moreover, they applied the Galerkin method 

with a Laguerre polynomial to get an approximate solution of a singular Fredholm 

integral equation of the second kind [27]. Rahbar and Hashemizadeh in 2008 applied 

a quadrature method to find the numerical solution of a linear Fredholm integral 

equation of the second kind [28]. Hacia and Kaczmarek have presented the 

conditions for the bounds of the solution to a system of linear Volterra integral 

equations [29]. Chen, Li and Ou studied the classification of the solutions to a system 

of integral equations [30]. Baker and Miller presented a spline collocation method for 
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the numerical solution of the system of integral equations on a polygon in R2 [31]. 

Biazar, Babolian, and Islam considered linear and non-linear systems of Volterra 

integral equations of the first kind [32], and used the Adomian decomposition 

method to solve them. Babolian, Biazar and Vahidi studied the application of the 

Adomian decomposition method to a system of linear Volterra integral equations of 

the second kind [33]. 

In 2004, Maleknejad and Shahrezaee used the Runge-Kutta method for the numerical 

solution of a system of Volterra integral equations [34]. Runge-Kutta methods are 

used to find numerical solutions of initial problems [35-36], and a second-order 

Runge-Kutta method can be used to treat linear Volterra integral equations of the 

second kind [37-38]. 

Many people have used spline functions to approximate the numerical solution to 

integral equations. For example, Al-Kahachi used linear, quadratic and cubic classic 

spline functions to treat linear Volterra integral equations of the first kind [39]. Al-

salhi used classic spline functions (linear, quadratic and cubic) to find the numerical 

solution of non-linear Volterra integra1 equations of the second kind [40]. Al-Asadi 

used three types of classic spline functions for solving non-linear Volterra integral 

equations of the first kind [41]. Abdul Hameed used three different types of classic 

spline and B-spline functions to treat different orders of linear Fredholm integral 

equations [42]. Juma used a different type of classic spline function and B-spline 

function and a new type of spline function, called Catmull-Rom or Overhauser 

splines, to find the approximate numerical solution to a system of non-linear Volterra 

integral equations of the second kind [43]. Salam and Huda introduced numerical 

methods for solving linear Fredholm-Volterra integral equations of the second kind 

[44]. Malindzisa and Khumalo considered numerical solutions of a class of non-

linear (non-standard) Volterra integral equations [45]. Netravali used a cubic spline 

approximation in C2 to construct the solution of a general Volterra integral equation 

of the second kind [46]. Al-Faour, Kadhim and Jaber presented algorithms, with the 

aid of the MATLAB language, for solving, numerically, a Hammerstein Volterra 

integral equation of the second kind of convolution type using linear, quadratic and 

cubic spline functions [47]. 

In this thesis, we shall investigate an approximation solution to non-linear VIEs of 

the second kind, because integral equations, especially non-linear integral equations, 
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are usually difficult to solve analytically. This follows work that has recently been 

done by different authors on non-linear integral equations. 

 

1.2 Objectives 

 

In general, this work focuses on the numerical or approximate solutions of non-linear 

VIEs of the second kind. 

Therefore, we study and modify some of these numerical and approximate methods 

to treat non-linear VIEs. In this work the methods that are used to solve these 

equations are: 

Numerical integration (trapezoidal rule and Simpson’s rule). 

Runge-Kutta methods (classic third-order, optimal third-order, fourth-order, and 

classic fourth-order). 

Classic spline functions (quadratic and cubic classic spline functions). 

B-spline functions (first-order, second-order, third-order, and fourth-order). 

These methods exist and are easy to use to solve differential equations and 

integration, but it is difficult to apply them to integral equations, especially non-

linear integral equations, because the known function into another function (kernel 

function) into integral. We therefore need to modify these methods and techniques so 

that they can be applied to non-linear integral equations. 

A comparison between the exact solution and the approximate solution for all the 

methods is made, using least square errors. 

All methods are illustrated by a written algorithm, and the accuracy of these methods 

is proved by showing how they solve some illustrative examples with excellent 

results. 

Finally, we wrote the general computer programs for the examples presented using 

the MATLAB program, Version 7.0. 

 

1.3 Organization of the Thesis 

 

The work in this thesis is divided into five chapters: 

Chapter 1 is an introduction to the history of numerical analysis and the objectives of 

this thesis. 

Chapter 2 presents the classification of the non-linear integral equation. 
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In Chapter 3, multistep methods including the trapezoidal rule and Simpson’s rule 

are used to solve non-linear VIEs of the second kind. 

Chapter 4 develops the methods and applies the third-order Runge-Kutta method 

(RK3 Optimal and RK3 Kutta’s) and the fourth-order Runge-Kutta method 

(RK4_Classic and RK4_Kutta’s) to solve non-linear VIEs of the second kind. 

Chapter 5 contains two sections. The first one covers quadratic and cubic classic 

spline functions. The second one covers B-spline functions (first-order, second-order, 

third-order, and fourth-order), which have been used to find the approximate solution 

to non-linear VIEs of the second kind. The required integrals in this method are 

calculated using the trapezoidal rule and the Runge-Kutta method, with initial values 

generated using Day’s starting procedure. 

Chapter 6 contains conclusions and gives the results, from all the chapters, that have 

been obtained by following all the methods presented. 
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CHAPTER 2  

 

PRELIMINARY CONCEPTS 

 

2.1 Classification of Integral Equations 

 

We are concerned with integral equations in which the integration is with respect to 

the single real variable. The extension of the terminology and methods to higher 

order integral equations, where these appear, is straightforward. 

The notation adopted in this section is as follows: the unknown function will be 

denoted by Φ or Φ(𝑥). Every integral equation contains a function obtained from Φ 

by integration that is of the form ∫ 𝑘(𝑥, 𝑡, Φ(𝑡))𝑑𝑡,
𝑏

𝑎
 where 𝑘 is called the “kernel”. 

For example, in the integral equation 

 Φ(𝑥) = ∫|𝑥 − 𝑡|Φ(𝑡)𝑑𝑡 + 𝑓(𝑥)

1

0

        (0 ≤ 𝑥 ≤ 1). (2.1) 

𝑘(𝑥, 𝑡) = |𝑥 − 𝑡| is the kernel, and the function  𝑓, called the “free term”, is also 

assumed to be known. The free term and the kernel will in general be complex-

valued functions of real variables. A condition such as (0 ≤ 𝑥 ≤ 1) following an 

equation indicates that the equation holds for all values of 𝑥 in the given interval, or 

“for all 𝑥 ∈ [0,1]”. We seek a solution Φ(𝑥) satisfying the equation for all 𝑥 ∈ [0,1], 

for the integral equation mentioned above [48-49]. 

The classification of integral equations centers on three essential characteristics that 

together describe their overall structure, and it is useful to set these down briefly 

before giving greater detail. 

i. The “kind” of an equation refers to the location of the unknown function. 

Equations of the first kind have the unknown function present only under the integral 

sign; equations of the “second” and “third” kind also have the unknown function 

outside the integral. 
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ii. The historical descriptions “Fredholm” and “Volterra” are concerned with the 

integration interval. In a Fredholm equation the integration is over a finite interval 

with fixed end-points; in a Volterra equation the integral is indefinite. 

iii. The adjective “singular” is sometimes used when the integration is improper, 

either because the interval is infinite or because the integrand is unbounded within 

the given interval. Obviously an integral equation can be singular on both counts. 

 

The general forms of integral equation of the Volterra, Fredholm, first, second, third, 

linear, non-linear, homogenous, Hammerstein, convolution and symmetric kinds are 

as follows [50-51]: 

 

 ℎ(𝑥)Φ(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡,Φ(𝑡))𝑑𝑡
𝑏(𝑥)

𝑎

        𝑥 ∈ [𝑎, 𝑏] (2.2) 

 

Definition 2.1: 

The integral equation (2.2) is said to be a Volterra integral equation (VIE) if 

𝑏(𝑥) = 𝑥. 

 

Definition 2.2: 

The integral equation (2.2) said to be a Fredholm integral equation if  𝑏(𝑥) = 𝑏. 

 

Definition 2.3: 

The integral equation (2.2) said to be a linear integral equation if 𝑘(𝑥, 𝑡,Φ(𝑡)) =

𝑘(𝑥, 𝑡) Φ(𝑡); otherwise, the equation is a non-linear integral equation. 

 

Definition 2.4: 

The integral equation (2.2) is called an integral equation of the first kind if ℎ(𝑥) = 0. 

 

Definition 2.5: 

The integral equation (2.2) is called an integral equation of the second kind if 

 ℎ(𝑥) = 1. 
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Definition 2.6: 

The integral equation (2.2) is called an integral equation of the third kind if  ℎ(𝑥) is 

an assigned function. 

 

Definition 2.7: 

The integral equation (2.2) is called a homogenous integral equation of the second 

kind if ℎ(𝑥) = 1 and  𝑓(𝑥) = 0. 

 

Definition 2.8: 

The integral equation (2.2) is called a Hammerstein type of integral equation if 

𝑘(𝑥, 𝑡, Φ(𝑡)) = 𝑘(𝑥, 𝑡) 𝐻(𝑡,Φ(𝑡)). 

 

Definition 2.9: 

The integral equation (2.2) is called a convolution type of integral equation if the 

kernel depends only on the difference  (𝑥 − 𝑡), i.e. if 𝑘(𝑥, 𝑡, Φ(𝑡)) = 𝑘(𝑥 − 𝑡, Φ(𝑡)). 

 

Definition 2.10: 

The integral equation (2.2) is called a symmetric type of integral equation if the 

kernel satisfies 𝑘(𝑥, 𝑡) = 𝑘(𝑡, 𝑥). 

 

Definition 2.11: 

The kernel of the integral equation (2.2) is called a degenerate kernel for the integral 

equation if it can be written in the form: 

∫ 𝑓(𝑥)𝑑𝑥 =
ℎ

2

𝑏

𝑎

𝑘(𝑥, 𝑡) = ∑𝑎𝑘(𝑥)𝑏𝑘

𝑛

𝑘=1

(𝑡). 

 

2.2 The Connection Between Differential and Integral Equations 

 

The initial value problem is equivalent to a VIE, and the boundary value problem is 

equivalent to a Fredholm integral equation. 

Sometimes the solutions to initial value and boundary value problems are not very 

simple, but if we reduce this problem to the integral equation we can solve them 

directly. 
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2.3 Initial Value Problems Reduced to VIEs 

 

Suppose that  Φ satisfies 

 
Φ′(𝑥) = 𝑘(𝑥, Φ(𝑥))         (0 < 𝑥 < 1)

Φ(0) = Φ0                                              
} (2.3) 

where the function 𝑘 and the number  Φ0 are given. We assume that Φ is continuous 

in the closed interval [0,1] which, in particular, allows the initial condition to be 

interpreted sensibly. Integrating Eq. (2.3), gives 

 Φ(𝑥) = ∫𝑘(𝑡, Φ(𝑡))𝑑𝑡 + Φ0

𝑥

0

         (0 ≤ 𝑥 ≤ 1). (2.4) 

Conversely, if Φ is continuous function satisfying Eq. (2.4) then Φ(0) = Φ0 and 

theintegral may be differentiated to give Eq. (2.3). 

We can proceed in the same way for the second-order initial value problem: 

 
Φ′′(𝑥) = 𝑘(𝑥, Φ(𝑥))              (0 < 𝑥 < 1),

Φ(0) = Φ0,      Φ
′(0) = Φ0

′ ,                    
} (2.5) 

where the number Φ0
′  is additionally assigned. Again we must make a stipulation 

regarding continuity, and to avoid the need to raise this issue repeatedly we adopt the 

convention that, unless otherwise indicated, in a problem such as Eq. (2.5) Φ and its 

derivatives up to the highest order specified are extended at the end points of the 

interval to continuous functions on the closed interval. 

One-time integration of Eq. (2.5) gives: 

 Φ′(𝑥) = ∫𝑘(𝑡,Φ(𝑡))𝑑𝑡 + Φ0
′

𝑥

0

            (0 ≤ 𝑥 ≤ 1), 
 

Satisfying Φ′(0) = Φ0
′  and a second integration produces: 

 Φ(𝑥) = ∬ 𝑘(𝑡, Φ(𝑡))𝑑𝑡 + Φ0
′

𝑥  𝑥

0 0

𝑥 +Φ0        (0 ≤ 𝑥 ≤ 1), (2.6) 

The further constant of integration is chosen so that Φ(0) = Φ0. 

Suppose: 

 𝐻(𝑠) = ∫𝑘(𝑡, Φ(𝑡))𝑑𝑡 ,

𝑠

0

 
 

Then 
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 Φ(𝑥) = ∫𝐻(𝑠)𝑑𝑠 + Φ0
′

𝑥

0

𝑥 + Φ0 (2.7) 

Using integration methods on Eq. (2.7) we obtain 

 

Φ(𝑥) = [𝑠 𝐻(𝑠)]0
𝑥  − ∫𝑠 𝐻′

𝑥

0

(𝑠)𝑑𝑠 + Φ0
′ 𝑥 +Φ0                             

          = ∫(𝑥 − 𝑡)𝑘(𝑡, Φ(𝑡))𝑑𝑡 + Φ0
′

𝑥

0

𝑥 + Φ0         (0 ≤ 𝑥 ≤ 1) 

 

 

 

(2.8) 

Then Eq. (2.8) is the integral equation corresponding to Eq. (2.5). If Φ  is a 

continuous solution of Eq. (2.8) then differentiation under the integral sign shows 

that  Φ also satisfies Eq. (2.5) also, so the two problems for  Φ correspond [13-16]. 

 

Example 2.1: 

Reduce the initial value problem to a VIE in the following:  

 

i. 
Φ′(𝑥) = 𝑥2 + Φ2(𝑥)

Φ(0) = 0                  
}        (0 < 𝑥 < 1) (2.9) 

 

ii. 
Φ′′(𝑥) = 𝑥Φ(𝑥)               
Φ(0) = 1,  Φ′(𝑥) = 0

}       (0 < 𝑥 < 1) (2.10) 

 

Solution: 

Applying Eq. (2.4) to Eq. (2.9) we get 

Φ(𝑥) = ∫(𝑡2 + Φ2(𝑡))𝑑𝑡 , (0 ≤ 𝑥 ≤ 1).

𝑥

0

 

Applying Eq. (2.8) to Eq. (2.10) we get: 

Φ(𝑥) = ∫(𝑥 − 𝑡)𝑡 Φ(𝑡)𝑑𝑡 + 1 , (0 ≤ 𝑥 ≤ 1).

𝑥

0

 

 

2.4 Picard’s Method of Successive Approximations 

 

Consider the initial value problem given by the first-order non-linear differential 

equation  
𝑑Φ

𝑑𝑥
= 𝑓(𝑥,Φ(𝑥)) with the initial condition Φ(𝑎) = 𝑏 at 𝑥 = 𝑎. This initial 
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value problem can be transformed into a non-linear integral equation and is written 

as: 

Φ(𝑥) = 𝑏 +∫𝑓(𝑥,Φ(𝑥))𝑑𝑥.

𝑥

𝑎

 

For a first approximation, we replace the Φ(𝑥) in 𝑓(𝑥,Φ(𝑥)) by 𝑏, for a second 

approximation, we replace it by the first approximation, for the third by the second, 

and so on. We demonstrate this method below with examples [52]. 

 

Example 2.2: 

Consider the first-order non-linear differential equation 
𝑑Φ

𝑑𝑥
= 𝑥 +Φ2, where 

Φ(0) = 0 when 𝑥 = 0. Determine the approximate analytical solution using Picard’s 

method. 

 

Solution 

The given differential equation can be written in integral equation form as 

Φ(𝑥) = ∫(𝑥 +Φ2(𝑥))𝑑𝑥.

𝑥

0

 

The zero’th approximation is Φ(𝑥) = 0. 

First approximation: Put Φ(𝑥) = 0 in 𝑥 + Φ2(𝑥), yielding 

Φ(𝑥) = ∫𝑥𝑑𝑥 =
1

2

𝑥

0

𝑥2. 

Second approximation: Put Φ(𝑥) =
𝑥2

2
 in 𝑥 + 𝑢2, yielding 

Φ(𝑥) = ∫(𝑥 +
𝑥2

4
)𝑑𝑥 =

𝑥2

2

𝑥

0

+
𝑥5

20
. 

Third approximation: Put Φ =
𝑥2

2
+

𝑥5

20
 in 𝑥 + Φ2, giving 

Φ(𝑥) = ∫ {𝑥 + (
𝑥2

2
+
𝑥5

20
)

2

} 𝑑𝑥

𝑥

0

 

                   = ∫(𝑥 +
𝑥4

4
+
𝑥7

20
+
𝑥10

400
)𝑑𝑥

𝑥

0
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            =
𝑥2

2
+
𝑥5

20
+
𝑥8

160
+
𝑥11

4400
. 

Proceeding in this manner, the fourth approximation can be written, after a rigorous 

algebraic manipulation, as 

Fourth approximation: 

Φ(𝑥) =
𝑥2

2
+
𝑥5

20
+
𝑥8

160
+
7𝑥11

8800
+
3𝑥14

49280
+

87𝑥17

23936000
+

𝑥20

7040000
+

𝑥23

445280000
, 

And so on. This is the solution of the problem in series form, and the series seems 

from its appearance to be convergent [52]. 

 

2.5 Existence of a Solution for Non-Linear VIEs 

 

In this section, we will show an existence theorem for the solution of non-linear 

VIEs. Also, in what follows, we give a brief summary of the conditions under which 

a solution exists for this equation. 

We will start by rewriting the non-linear VIE of the second kind as: 

 Φ(𝑥) = 𝑓(𝑥) + ∫𝑘(𝑥, 𝑡, Φ(t))𝑑𝑡.

𝑥

0

 (2.11) 

It appears that the specific conditions under which a solution exists for the non-linear 

VIE are: 

(i) The function 𝑓(𝑥) is integrable and bounded in 𝑎 ≤ 𝑥 ≤ 𝑏. 

(ii) The function 𝑓(𝑥) satisfies the Lipschitz condition in the interval (𝑎, 𝑏). 

This means that 

 |𝑓(𝑥) − 𝑓(𝑦)| < 𝐿|𝑥 − 𝑦|. (2.12) 

(iii) The function 𝑘(𝑥, 𝑡, Φ(𝑡)) is integrable and bounded |𝑘(𝑥, 𝑡, Φ(𝑡))| < 𝐾 

in 𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏. 

(iv) The function 𝑘(𝑥, 𝑡, Φ(𝑡)) satisfies the Lipschitz condition  

 |𝑘(𝑥, 𝑡, 𝑧) − 𝑘(𝑥, 𝑡, 𝑧′)| < 𝑀|𝑧 − 𝑧′|. (2.13) 

In this chapter, the focus will be on solving non-linear VIEs rather than proving 

theoretical concepts of convergence and existence. The theorems of uniqueness, 

existence, and convergence are important and necessary, and can be found in the 

literature. This text will concentrate on the determination of the solution Φ(𝑥) of a 

non-linear VIE of the first and the second kind [53]. 
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2.6 Some Fundamental Concepts 

 

In this section, we consider some important theorems and concepts that are used in 

this thesis. 

 

Theorem 2.1:  

Suppose: 

i.   every component is continuous when 𝑓(𝑥) is continuous. 

ii.  𝑘(𝑥, 𝑡, Φ(𝑡)) is a continuous function for 𝑡, 𝑥 ∈ [𝑎, 𝑏] and −∞ < ‖Φ‖ < ∞ , and 

iii. the kernel satisfies the Lipschitz condition 

 ‖𝑘(𝑥, 𝑡,Φ(𝑡)) − 𝑘(𝑥, 𝑡, Ψ(𝑡))‖ ≤ 𝑎‖Φ(𝑡) − Ψ(𝑡)‖, 
 

where 𝑎 is Lipschitz constant and  

‖𝑘(𝑥, 𝑡, Φ)‖ = max
1≤𝑖≤𝑚

|𝑘𝑖(𝑥, 𝑡,Φ)|. 

Then Eq. (2.2) has a unique continuous solution in [𝑎, 𝑏] [54-55]. 

We also need the following theorems in the sequel: 

 

Theorem 2.2:  

Suppose 𝑥0, 𝑥1, … , 𝑥𝑛 are distinct numbers in the interval [𝑎, 𝑏] and 𝑓 ∈ 𝐶𝑛+1[𝑎, 𝑏]. 

Then, for each 𝑥 in [𝑎, 𝑏], a number 𝜀(𝑥) in (𝑎, 𝑏) exists with 

 𝑓(𝑥) = 𝑃(𝑥) +
𝑓𝑛+1(𝜀(𝑥))

(𝑛 + 1)!
(𝑥 − 𝑥0)(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛), 

 

where 𝑃(𝑥) is the interpolating polynomial given by Lagrange interpolation [56]. 

 

Theorem 2.3 (Weighted mean value theorem for integrals) [56]:  

Suppose 𝑓 ∈ 𝐶[𝑎, 𝑏], the Riemann integral of g exists on the interval [𝑎, 𝑏], and g(𝑥) 

keeps the same sign on [𝑎, 𝑏]. Then there exists a number 𝑐 in (𝑎, 𝑏) with: 

 ∫𝑓(𝑥)g(𝑥)𝑑𝑥 = 𝑓(𝑐)∫ g(𝑥)𝑑𝑥.

𝑏

𝑎

𝑏

𝑎

 
 

 

Theorem 2.4 (Intermediate value theorem) [56]:  

If 𝑓 ∈ 𝐶[𝑎, 𝑏] and 𝐾 is any number between 𝑓(𝑎) and 𝑓(𝑏), then there exists a 

number 𝑐 in (𝑎, 𝑏) for which (𝑐) = 𝐾 . 
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Test Example 1: 

Consider the non-linear VIE: 

 Φ(𝑥) = 1 + 𝑥2 − 𝑥𝑒𝑥
2
+∫𝑒𝑥

2−𝑡2−1

𝑥

0

𝑒Φ(𝑡)𝑑𝑡 
 

with exact solution [53]: 

 

 Φ(𝑥) = 1 + 𝑥2 
 

 

Test Example 2: 

Consider the non-linear VIE: 

 Φ(𝑥) = cos(𝑥) − sin(𝑥) −
1

4
sin(2𝑥) +

1

2
𝑥 −

1

2
𝑥2 +∫(𝑥 − 𝑡)Φ2(𝑡)𝑑𝑡

𝑥

0

 
 

with exact solution [53]: 

 Φ(𝑥) = cos(𝑥) − sin(𝑥) 
 

 

Test Example 3: 

Consider the non-linear VIE: 

 Φ(𝑥) = 𝑒𝑥 −
1

9
𝑒3𝑥 +

1

9
+
1

3
𝑥 +∫(𝑥 − 𝑡)Φ3(𝑡)𝑑𝑡

𝑥

0

 
 

 

with exact solution [53]: 

 Φ(𝑥) = 𝑒𝑥 
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CHAPTER 3 

 

QUADRATURE METHODS 

 

 

3.1 Numerical Integration 

 

The need often arises to evaluate the definite integral of a function that has no 

explicit antiderivative or whose antiderivative is difficult to obtain. The basic method 

involved in approximating ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is called numerical quadrature and it uses a 

sum ∑ 𝑓(𝑥𝑖
𝑛
𝑖=0 )𝐿𝑖(𝑥) to approximate ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
. 

In this section, the methods of quadrature are built on the interpolation polynomials. 

The basic idea is to select a set of distinct nodes {𝑥0, … , 𝑥𝑛} from the interval [𝑎, 𝑏]. 

Then integrate the Lagrange interpolating polynomial: 

 𝑃𝑛(𝑥) =∑𝑓(𝑥𝑖

𝑛

𝑖=0

)𝐿𝑖(𝑥) (3.1) 

and its truncation error term over [𝑎, 𝑏] to obtain 

∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= ∫∑𝑓(𝑥𝑖

𝑛

𝑖=0

)𝐿𝑖(𝑥)

𝑏

𝑎

𝑑𝑥 + ∫∏(𝑥 − 𝑥𝑖

𝑛

𝑖=0

𝑏

𝑎

)
𝑓(𝑛+1)(𝜉(𝑥))

(𝑛 + 1)!
𝑑𝑥 

                    = ∑𝑎𝑖𝑓(𝑥𝑖)

𝑛

𝑖=0

+
1

(𝑛 + 1)!
∫∏(𝑥 − 𝑥𝑖

𝑛

𝑖=0

𝑏

𝑎

)𝑓(𝑛+1)(𝜉(𝑥))𝑑𝑥, 

where 𝜉(𝑥) is in [𝑎, 𝑏] for each 𝑥 and 𝑎𝑖 = ∫ 𝐿𝑖(𝑥)
𝑏

𝑎
𝑑𝑥, for each 𝑖 = 0,1,… , 𝑛. 

The quadrature formula is, therefore, 

∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≈∑𝑎𝑖𝑓(𝑥𝑖)

𝑛

𝑖=0

, 

with the error given by 
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 𝐸(𝑓) =
1

(𝑛 + 1)!
∫∏(𝑥 − 𝑥𝑖

𝑛

𝑖=0

𝑏

𝑎

)𝑓(𝑛+1)(𝜉(𝑥))𝑑𝑥. (3.2) 

The procedures that give us the trapezoidal rule and Simpson’s rule are produced by 

using first and second Lagrange polynomials with equally-spaced nodes. These two 

rules are presented in calculus courses [57]. 

 

3.2 Quadrature Rule 

  

The quadrature rule uses a weighted sum of a finite number of sample values of the 

integrand function. Let 𝑓(𝑥) be a real-valued function of a real variable, defined on a 

finite interval 𝑎 ≤ 𝑥 ≤ 𝑏. We can seek to compute the value of the integral 

∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥, thus  

 ∫𝑓(𝑥)

𝑏

𝑎

𝑑𝑥 =∑𝑤𝑗

𝑁

𝑗=1

𝑓(𝑥𝑗) + 𝑅[𝑓] (3.3) 

𝑅[𝑓] is the remainder (which is usually not known exactly), the quadrature rule 

{𝑤𝑗 , 𝑥𝑗}𝑗=1
𝑁  exists in tabulated form and the real numbers 𝑥𝑗 are the integration nodes 

that lie in the bounded interval and are constants called quadrature weights [22-58]. 

We seek to generate the quadrature rule that is defined by the number of nodes and 

the weight function, through the two algorithms presented here. 

 

3.2.1 Trapezoidal Rule 

 

To derive the trapezoidal rule for approximating ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥, let 𝑥0 = 𝑎, 𝑥1 = 𝑏,  

ℎ = 𝑏 − 𝑎 and use the linear Lagrange polynomial: 

 𝑃1(𝑥) =
(𝑥 − 𝑥1)

(𝑥0 − 𝑥1)
𝑓(𝑥0) +

(𝑥 − 𝑥0)

(𝑥1 − 𝑥0)
𝑓(𝑥1). (3.4) 

Then:  

 

∫𝑓(𝑥)

𝑏

𝑎

𝑑𝑥 = ∫ [
(𝑥 − 𝑥1)

(𝑥0 − 𝑥1)
𝑓(𝑥0) +

(𝑥 − 𝑥0)

(𝑥1 − 𝑥0)
𝑓(𝑥1)] 𝑑𝑥

𝑥1

𝑥0

   

          +
1

2
∫ 𝑓′′

𝑥1

𝑥0

(𝜉(𝑥))(𝑥 − 𝑥0)(𝑥 − 𝑥1)𝑑𝑥. 

 

 

 

(3.5) 
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The product (𝑥 − 𝑥0)(𝑥 − 𝑥1) keeps the same sign on [𝑥0, 𝑥1], so the weighted mean 

value theorem (Theorem 2.3) for integrals can be applied to the error term to give, 

for some 𝜉 in (𝑥0 − 𝑥1), 

∫ 𝑓′′(𝜉(𝑥))(𝑥 − 𝑥0)(𝑥 − 𝑥1)𝑑𝑥

𝑥1

𝑥0

= 𝑓′′(𝜉) ∫ (𝑥 − 𝑥0)(𝑥 − 𝑥1)𝑑𝑥

𝑥1

𝑥0

 

= 𝑓′′(𝜉) [
𝑥3

3
−
(𝑥1+𝑥0)

2
𝑥2 + 𝑥0𝑥1𝑥]

𝑥0

𝑥1

     

                               = −
ℎ3

6
𝑓′′(𝜉).   

Consequently, Eq. (3.5) implies that 

 

∫𝑓(𝑥)

𝑏

𝑎

𝑑𝑥 = [
(𝑥 − 𝑥1)

2

2(𝑥0 − 𝑥1)
𝑓(𝑥0) +

(𝑥 − 𝑥0)
2

2(𝑥1 − 𝑥0)
𝑓(𝑥1)]

𝑥0

𝑥1

−
ℎ3

12
𝑓′′(𝜉) 

=
(𝑥1 − 𝑥0)

2
[𝑓(𝑥0) + 𝑓(𝑥1)] −

ℎ3

12
𝑓′′(𝜉).         

 

 

 

(3.6) 

Using the notation ℎ = 𝑥1 − 𝑥0 gives the following rule: 

Trapezoidal Rule: 

 ∫𝑓(𝑥)

𝑏

𝑎

𝑑𝑥 =
ℎ

2
[𝑓(𝑥0) + 𝑓(𝑥1)] −

ℎ3

12
𝑓′′(𝜉). (3.7) 

This Eq. (3.7) is called the trapezoidal rule because when 𝑓 is a function with non-

negative values, ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 is approximated by the area of a trapezoid, as described 

in Fig. 1. 

 

Figure 1 Trapezoidal rule [57] 
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The error term for the trapezoidal rule includes 𝑓′′, so the trapezoidal rule when 

applied to any function gives the exact result if 𝑓′′ is identical to 0, which means that 

f is any polynomial of degree one or less [57]. 

 

Theorem 3.1: (Composite trapezoidal rule) 

Let 𝑓 ∈ 𝐶2[𝑎, 𝑏], ℎ = (𝑏 − 𝑎)/𝑛, and 𝑥𝑗 = 𝑎 + 𝑗ℎ,  for each 𝑗 = 0,1,… , 𝑛. There 

exists a 𝜇 ∈ (𝑎, 𝑏) for which the composite trapezoidal rule for 𝑛 subintervals can be 

written, together with its error term, as follows [57]: 

 ∫𝑓(𝑥)𝑑𝑥 =
ℎ

2

𝑏

𝑎

[𝑓(𝑎) + 2∑𝑓(𝑥𝑗) + 𝑓(𝑏)

𝑛−1

𝑗=1

] −
𝑏 − 𝑎

12
ℎ2𝑓′′(𝜇). (3.8) 

 

Theorem 3.2 (Trapezoidal rule error estimate, single subinterval): 

Let 𝑓 ∈ 𝐶2([𝑎, 𝑏]) and let 𝑝1 interpolate 𝑓 at 𝑎 and 𝑏. Define 𝑇1(𝑓) = 𝐼(𝑝1). Then 

[59] there exists 𝜂 ∈ [𝑎, 𝑏] such that: 

𝐼(𝑓) − 𝑇1(𝑓) = −
1

12
(𝑏 − 𝑎)3𝑓′′(𝜂). 

where 

𝐼(𝑓) = ∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

. 

Theorem 3.3 (Trapezoidal rule error estimate, uniform grid): 

Let 𝑓 ∈ 𝐶2([𝑎, 𝑏]) and let 𝑇𝑛(𝑓) be the 𝑛 subinterval trapezoidal rule approximation 

to 𝐼(𝑓), by a uniform grid. 

There exists 𝜉ℎ ∈ [𝑎, 𝑏], depending on ℎ, such that [59]: 

𝐼(𝑓) − 𝑇𝑛(𝑓) = −
𝑏 − 𝑎

12
ℎ2𝑓′′(𝜉ℎ). 

 

Theorem 3.4 (Trapezoidal rule error estimate, non-uniform grid): 

Let 𝑓 ∈ 𝐶2([𝑎, 𝑏]) and let 𝑇𝑛(𝑓) be the 𝑛 subinterval trapezoidal rule approximation 

to 𝐼(𝑓) using the non-uniform grid defined by 

𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏, 

with ℎ𝑖 = 𝑥𝑖 − 𝑥𝑖−1 and ℎ = 𝑚𝑎𝑥𝑖ℎ𝑖 . Then [59]: 

|𝐼(𝑓) − 𝑇𝑛(𝑓)| ≤
𝑏 − 𝑎

12
ℎ2 max

𝑥∈[𝑎,𝑏]
|𝑓′′ |. 
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3.2.2 Simpson’s Rule 

 

We get Simpson’s rule by integrating over the closed interval [𝑎, 𝑏] and using the 

second Lagrange polynomial together with equally-spaced nodes 𝑥0 = 𝑎, 𝑥2 = 𝑏, 

and 𝑥1 = 𝑎 + ℎ, where ℎ = (𝑏 − 𝑎)/2. Simpson’s rule is given in Fig. 2. 

 

 

Figure 2 Simpson’s rule [57] 

 

Therefore 

∫𝑓(𝑥)

𝑏

𝑎

𝑑𝑥 = ∫ [
(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
𝑓(𝑥0) +

(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
𝑓(𝑥1)

𝑥2

𝑥0

 

+
(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
𝑓(𝑥2)] 𝑑𝑥                                

+ ∫
(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)

6
𝑓(3)(𝜉(𝑥)) 𝑑𝑥.

𝑥2

𝑥0

   

In this way, Simpson’s rule also offers only an 𝑂(ℎ4) error term including 𝑓(3). If we 

approach the problem in another way, a higher-order term including 𝑓(4) can be 

derived. 

To show this alternative method, assume that 𝑓 is expanded in the third Taylor 

polynomial about 𝑥1. Then for each 𝑥 in [𝑥0, 𝑥2], a number 𝜉(𝑥) in (𝑥0, 𝑥2) exists 

with 
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𝑓(𝑥) = 𝑓(𝑥1) + 𝑓
′(𝑥1)(𝑥 − 𝑥1) +

𝑓′′(𝑥1)

2
(𝑥 − 𝑥1)

2 +
𝑓′′′(𝑥1)

6
(𝑥 − 𝑥1)

3 

                +
𝑓(4)(𝜉(𝑥))

24
(𝑥 − 𝑥1)

4 

 

and 

 

∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥0

= [𝑓(𝑥1)(𝑥 − 𝑥1) +
𝑓′(𝑥1)

2
(𝑥 − 𝑥1)

2 +
𝑓′′(𝑥1)

6
(𝑥 − 𝑥1)

3 

                        +
𝑓′′′(𝑥1)

24
(𝑥 − 𝑥1)

4]
𝑥0

𝑥2

+
1

24
∫ 𝑓(4)

𝑥2

𝑥0

(𝜉(𝑥))(𝑥 − 𝑥1)
4𝑑𝑥. 

 

 

 

(3.9) 

Because (𝑥 − 𝑥1)
4 is never negative on [𝑥0, 𝑥2], the weighted mean value theorem 

(Theorem 2.3) for integrals means that: 

1

24
∫ 𝑓(4)

𝑥2

𝑥0

(𝜉(𝑥))(𝑥 − 𝑥1)
4𝑑𝑥 =

𝑓(4)(𝜉1)

24
∫ (𝑥 − 𝑥1)

4

𝑥2

𝑥0

𝑑𝑥 =
𝑓(4)(𝜉1)

120
(𝑥 − 𝑥1)

5]
𝑥0

𝑥2

, 

for some number 𝜉1 in  (𝑥0, 𝑥2). 

However, ℎ = 𝑥2 − 𝑥1 = 𝑥1 − 𝑥0, so 

(𝑥2 − 𝑥1)
2 − (𝑥0 − 𝑥1)

2 = (𝑥2 − 𝑥1)
4 − (𝑥0 − 𝑥1)

4 = 0, 

whereas 

(𝑥2 − 𝑥1)
3 − (𝑥0 − 𝑥1)

3 = 2ℎ3 and (𝑥2 − 𝑥1)
5 − (𝑥0 − 𝑥1)

5 = 2ℎ5. 

Consequently, Eq. (3.9) can be rewritten as: 

∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥0

= 2ℎ𝑓(𝑥1) +
ℎ3

3
𝑓′′(𝑥1) +

𝑓(4)(𝜉1)

60
ℎ5. 

If we now replace 𝑓′′(𝑥1) by the approximation, we have: 

 

∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥0

= 2ℎ𝑓(𝑥1) +
ℎ3

3
{
1

ℎ2
[𝑓(𝑥0) − 2𝑓(𝑥1) + 𝑓(𝑥2)] −

ℎ2

12
𝑓(4)(𝜉2)}

+
𝑓(4)(𝜉1)

60
ℎ5 

  =
ℎ

3
[𝑓(𝑥0) + 4𝑓(𝑥1) + 𝑓(𝑥2)] −

ℎ5

12
[
1

3
𝑓(4)(𝜉2) −

1

5
𝑓(4)(𝜉1)]. 

Alternative methods show that the values 𝜉1 and 𝜉2 in this expression can be replaced 

by a common value 𝜉 in (𝑥0, 𝑥2). This gives Simpson’s rule. 
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Simpson’s Rule: 

 ∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥0

=
ℎ

3
[𝑓(𝑥0) + 4𝑓(𝑥1) + 𝑓(𝑥2)] −

ℎ5

90
𝑓(4)(𝜉). (3.10) 

In Simpson’s rule the error term includes 𝑓(4), and when applied to any polynomial 

of degree three or less it gives exact results [57]. 

 

Theorem 3.5: (Composite Simpson’s rule) 

Let 𝑓 ∈ 𝐶4[𝑎, 𝑏], 𝑛 be even, ℎ = (𝑏 − 𝑎)/𝑛, and 𝑥𝑗 = 𝑎 + 𝑗ℎ, for each 𝑗 =

0,1,… , 𝑛. There exists a 𝜇 ∈ (𝑎, 𝑏) for which the composite Simpson’s rule for 𝑛 

subintervals can be written, together with its error term, in the following way [57]: 

 

∫𝑓(𝑥)𝑑𝑥 =
ℎ

3

𝑏

𝑎

[𝑓(𝑎) + 2 ∑ 𝑓(𝑥2𝑗) + 4∑𝑓(𝑥2𝑗−1) + 𝑓(𝑏)

𝑛/2

𝑗=1

(𝑛/2)−1

𝑗=1

] 

                        −
𝑏 − 𝑎

180
ℎ4𝑓(4)(𝜇). 

 

 

 

(3.11) 

 

Theorem 3.6 (Simpson’s rule error estimate, single subinterval): 

Let 𝑓 ∈ 𝐶4([𝑎, 𝑏]) and let 𝑝1 interpolate 𝑓 at 𝑎 and 𝑏. Define 𝑇1(𝑓) = 𝐼(𝑝1). Then 

there exists 𝜂 ∈ [𝑎, 𝑏] such that [59]: 

𝐼(𝑓) − 𝑇1(𝑓) = −
1

180
(𝑏 − 𝑎)5𝑓(4)(𝜂).                                    

where 

𝐼(𝑓) = ∫𝑓(𝑥)𝑑𝑥.

𝑏

𝑎

 

 

Theorem 3.7 (Simpson’s rule error estimate, uniform grid): 

Let 𝑓 ∈ 𝐶4([𝑎, 𝑏]) and let 𝑇𝑛(𝑓) be the 𝑛 subinterval Simpson’s rule approximation 

to 𝐼(𝑓), using a uniform grid. 

Then there exists 𝜉ℎ ∈ [𝑎, 𝑏], depending on ℎ, such that [59]: 

𝐼(𝑓) − 𝑇𝑛(𝑓) = −
𝑏 − 𝑎

180
ℎ4𝑓(4)(𝜉ℎ).                                          

Theorem 3.8 (Simpson’s rule error estimate, non-uniform grid): 

Let 𝑓 ∈ 𝐶2([𝑎, 𝑏]) and let 𝑇𝑛(𝑓) be the 𝑛 subinterval Simpson’s rule approximation 

to 𝐼(𝑓), using the non-uniform grid defined by: 
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𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏, 

with ℎ𝑖 = 𝑥𝑖 − 𝑥𝑖−1 and ℎ = 𝑚𝑎𝑥𝑖ℎ𝑖 . Then [59]: 

|𝐼(𝑓) − 𝑇𝑛(𝑓)| ≤
𝑏 − 𝑎

180
ℎ4 max

𝑥∈[𝑎,𝑏]
|𝑓(4) |. 

 

3.3 Solving Non-Linear VIEs Using Quadrature Methods 

The goal of using the quadrature method of integration is to approximate the integral 

equation over the suitable interval by evaluating the function at a finite number of 

sample points. 

 

3.3.1 Trapezoidal Rule for Solving Non-Linear VIEs 

𝑥0 = 𝑡0 = 0, ℎ = (𝑏 − 𝑎)/𝑛 = 𝑏/𝑛 

𝑥𝑟 = 𝑥0 + 𝑟 ∗ ℎ, 𝑡𝑟 = 𝑡0 + 𝑟 ∗ ℎ 

Φ(𝑥0) = 𝑓(𝑥0) 

 

Φ(𝑥𝑟) = 𝑓(𝑥𝑟) + (
ℎ

2
) [𝐾(𝑥𝑟 , 𝑡0, Φ(𝑡0)) + 2∑𝐾 (𝑥𝑟, 𝑡𝑗 , Φ(𝑡𝑗))

𝑟−1

𝑗=1

 

                    +𝐾(𝑥𝑟 , 𝑡𝑟 , Φ1(𝑡𝑟))] 

 

 

 

(3.12) 

where 𝑟 = 1,2,3,… , 𝑛. 

To evaluate Φ1(𝑡𝑟) we use Day’s starting procedure: 

 Φ1(𝑥1) = 𝑓(𝑥1) + ℎ ∗ 𝐾(𝑥1, 𝑡0, Φ(𝑡0)) (3.13) 

 

 Φ1(𝑥𝑟) = 𝑓(𝑥𝑟) + (
𝑟

𝑟 − 1
) ∗ ℎ ∗∑𝐾(𝑥𝑟 , 𝑡𝑗, Φ(𝑡𝑗))

𝑟−1

𝑗=1

 (3.14) 

where 𝑟 = 2,3,4,… , 𝑛. 
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3.3.2 Simpson’s Rule for Solving Non-Linear VIEs 

 

𝑥0 = 𝑡0 = 0,  ℎ = (𝑏 − 𝑎)/𝑛 = 𝑏/𝑛 

𝑥𝑟 = 𝑥0 + 𝑟 ∗ ℎ, 𝑡𝑟 = 𝑡0 + 𝑟 ∗ ℎ 

Φ(𝑥0) = 𝑓(𝑥0) 

 Φ(𝑥1) = 𝑓(𝑥1) + (
ℎ

3
) ∗ [

𝐾(𝑥1, 𝑡0, Φ(𝑡0)) + 4𝐾 (𝑥1,
𝑡1
2
, Φ3(𝑡1))

+𝐾(𝑥1, 𝑡1, Φ2(𝑡1))                                     

] (3.15) 

where we use Day’s starting procedure to evaluate  Φ2(𝑥1) and Φ3(𝑥1) as follows: 

 

Φ1(𝑥1) = 𝑓(𝑥1) + ℎ ∗ 𝐾(𝑥1, 𝑡0, Φ(𝑡0)) 

        Φ2(𝑥1) = 𝑓(𝑥1) + (
ℎ

2
) ∗ [𝐾(𝑥1, 𝑡0, Φ(𝑡0)) + 𝐾(𝑥1, 𝑡1, Φ1(𝑡1))]  

 Φ3(𝑥1) =
𝑓(𝑥1)

2
+ (

ℎ

4
) ∗

[
 
 
 
 𝐾 (

𝑥1
2
, 𝑡0, Φ(𝑡0))                      

+𝐾 (
𝑥1
2
,
𝑡1
2
,
Φ(𝑡0)

2
+
Φ2(𝑡1)

2
)
]
 
 
 
 

 (3.16) 

If  𝑟 is even: 

 

Φ(𝑥𝑟) = 𝑓(𝑥𝑟) + (
ℎ

3
) ∗ [𝐾(𝑥𝑟 , 𝑡0, Φ(𝑡0)) +∑𝑊𝑟𝑗(𝑥𝑟 , 𝑡𝑗

𝑟−1

𝑗=1

, Φ(𝑡𝑗)) 

                  +𝐾(𝑥𝑟 , 𝑡𝑟 , Φ1(𝑡𝑟))] 

 

 

 

(3.17) 

𝑊𝑟𝑗 = 4 if 𝑗 = 1,3,5,… 

𝑊𝑟𝑗 = 2 if 𝑗 = 2,4,6,… 

If 𝑟 is odd: 

 

Φ(𝑥𝑟) = 𝑓(𝑥𝑟) + (
ℎ

3
)∑𝑊𝑟𝑗𝐾 (𝑥𝑟 , 𝑡𝑗 , Φ(𝑡𝑗))

𝑟−3

𝑗=0

 

                + (
3

8
) ∗ ℎ[𝐾(𝑥𝑟 , 𝑡𝑟−3, Φ(𝑡𝑟−3)) + 3𝐾(𝑥𝑟 , 𝑡𝑟−2, Φ(𝑡𝑟−2)) 

                +3𝐾(𝑥𝑟 , 𝑡𝑟−1, Φ(𝑡𝑟−1)) + 𝐾(𝑥𝑟 , 𝑡𝑟 , Φ1(𝑡𝑟))]. 

 

 

 

 

(3.18) 

where 𝑊𝑟0 = 𝑊𝑟,𝑟−3 = 1 

and 𝑊𝑟𝑗 = 4 if 𝑗 = 1,3,5, … and 𝑊𝑟𝑗 = 2 if 𝑗 = 2,4,6,… 
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 Φ1(𝑥𝑟) = 𝑓(𝑥𝑟) + (
𝑟

𝑟 − 1
) ∗ ℎ∑𝐾(𝑥𝑟

𝑟−1

𝑗=1

, 𝑡𝑗, Φ(𝑡𝑗)).  (3.19) 

where 𝑟 = 2,3,4,… , 𝑛. 

 

3.4 Numerical Algorithm 

3.4.1 Non-Linear VIEs Using the Trapezoidal Rule (Non-Linear VIETRP) 

Step (1): 

a- Assume ℎ =
𝑏−𝑎

𝑛
, 𝑛 ∈ 𝑁. 

b- Set Φ0 = 𝑓0. 

Step (2): 

 Compute Φ11 using Day’s starting procedure (Eq. (3.13)). 

Step (3): 

 Compute  Φ1 using steps 1 and 2 and the trapezoidal rule (Eq. (3.12)). 

Step (4): 

 Compute Φ1𝑟; 𝑟 = 2,3,… , 𝑛, using Day’s starting procedure (Eq. (3.14)). 

Step (5): 

 Compute  Φ𝑟  ; 𝑟 = 2,3, … , 𝑛, using steps 1, 3, and 4 and the composite 

trapezoidal rule (Eq. (3.12)). 

 

3.4.2 Non-Linear VIEs Using Simpson’s Rule (Non-Linear VIESMP) 

Step (1): 

a- Assume ℎ =
𝑏−𝑎

𝑛
, 𝑛 ∈ 𝑁. 

b- Set Φ0 = 𝑓0. 
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Step (2): 

 Compute  Φ11, Φ21 using Day’s starting procedure (Eq. (3.16)). 

Step (3): 

 Compute  Φ1 using steps 1 and 2 and Simpson’s rule (Eq. (3.15)). 

Step (4): 

 Compute Φ1𝑟  ; 𝑟 = 2,3,… , 𝑛, using Day’s starting procedure (Eq. (3.19)). 

Step (5): 

 Compute  Φ𝑟  ; 𝑟 = 2,3, … , 𝑛, using steps 1, 3, and 4 and Simpson’s rule (Eq. 

(3.17)) if 𝑛 is even and the composite Simpson’s rule (Eq. (3.18)) if 𝑛 is odd. 

 

3.5 Numerical Examples 

We will show here how the quadrature methods (the trapezoidal rule and Simpson’s 

rule) can be used to give numerical results for non-linear VIEs with variable 

coefficients. The results of these two methods are given using algorithms for a  non-

linear VIE using the trapezoidal rule (non-linear VIETRP) and a non-linear VIE 

using Simpson’s rule (non-linear VIESMP) respectively. 

 

Test Example 1: 

Consider the non-linear VIE: 

Φ(𝑥) = 1 + 𝑥2 − 𝑥𝑒𝑥
2
+ ∫𝑒𝑥

2−𝑡2−1

𝑥

0

𝑒Φ(𝑡)𝑑𝑡 

with the exact solution [53]: 

Φ(𝑥) = 1 + 𝑥2 

 

The results for Test Example 1 using the trapezoidal rule (TRP) and Simpson’s rule 

(SMP) are shown in Table 1. 
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Table 1 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 1 Using TRP and SMP  

 

 

 

 

 

Test Example 2: 

Consider the non-linear VIE: 

Φ(𝑥) = cos(𝑥) − sin(𝑥) −
1

4
sin(2𝑥) +

1

2
𝑥 −

1

2
𝑥2 +∫(𝑥 − 𝑡)Φ2(𝑡)𝑑𝑡

𝑥

0

 

with the exact solution [53]: 

Φ(𝑥) = cos(𝑥) − sin(𝑥) 
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The results for the Test Example 2 using the TRP rule and the SMP rule are shown in 

Table 2. 

 

Table 2 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 2 Using TRP and SMP  

 

 

 

 

Test Example 3: 

Consider the non-linear VIE: 

Φ(𝑥) = 𝑒𝑥 −
1

9
𝑒3𝑥 +

1

9
+
1

3
𝑥 + ∫(𝑥 − 𝑡)Φ3(𝑡)𝑑𝑡

𝑥

0

 

with the exact solution [53]: 

Φ(𝑥) = 𝑒𝑥 
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The results for the Test Example 3 using the TRP rule and the SMP rule are shown in 

Table 3. 

 

Table 3 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 3 Using TRP and SMP  

 

 

 

  



31 

 

 

 

 

CHAPTER 4 

 

RUNGE-KUTTA METHOD 

 

4.1 Runge-Kutta Method 

 

The derivation follows closely that of the ordinary differential equation. We recall 

the general p-stage Runge-Kutta method for the initial value problem: 

 Φ′(𝑥) = 𝑓(𝑥, Φ(𝑥)) (4.1) 

 

Φ(𝑎) = Φ0 

Is given by 

 Φ𝑖+1 = Φ𝑖 + ℎ∑𝑤𝑗

𝑝−1

𝑗=0

𝑚𝑗
𝑖 (4.2) 

where  

𝑚0
𝑖 = 𝑓(𝑎 + 𝑖ℎ, Φ𝑖) 

 𝑚𝑟
𝑖 = 𝑓(𝑎 + (𝑖 + 𝑐𝑟)ℎ, Φ𝑖 + ℎ∑𝑎𝑟𝑗

𝑟−1

𝑗=0

𝑚𝑗
𝑖) (4.3) 

 ∑𝑎𝑟𝑗 = {
𝑎𝑟            𝑟 = 1,2,… , 𝑝 − 1
1             𝑟 = 𝑝                      

𝑟−1

𝑗=0

 (4.4) 

with Φ𝑟 an approximation to the solution at  𝑥 = 𝑥𝑟 = 𝑎 + 𝑟ℎ. The second argument 

of 𝑚𝑟
𝑖   may be regarded as an approximation to Φ(𝑎 + (𝑖 + 𝑎𝑟)ℎ) and we rewrite 

Eq. (4.2) as: 

 Φ𝑖+1 = Φ𝑖 + ℎ∑𝑤𝑗𝑘(𝑥𝑖 + 𝑐𝑗ℎ, Φ𝑖+𝑎𝑗)

𝑝−1

𝑗=0

 (4.5) 

The parameters 𝑎𝑝𝑗 and 𝑐𝑗 are chosen, in practice, to yield a final approximation of 

the specified order [37]. 
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4.1.1 Third-Order Runge-Kutta Methods 

The general form of a third-order Runge-Kutta method (RK3) is 

𝑚1 = ℎ𝑓(𝑥𝑖, 𝑦𝑖)                                                

𝑚2 = ℎ𝑓(𝑥𝑖 + 𝑐2ℎ, 𝑦𝑖 + 𝑎21𝑚1)                  

𝑚3 = ℎ𝑓(𝑥𝑖 + 𝑐3ℎ, 𝑦𝑖 + 𝑎31𝑚1 + 𝑎32𝑚2) 

𝑦𝑖+1 = 𝑦𝑖 + 𝑤1𝑚1 + 𝑤2𝑚2 +𝑤3𝑚3               

The array of parameters has the following form: 

 

  

𝟎                                                             

𝒄𝟐      𝒂𝟐𝟏                                                

𝒄𝟑      𝒂𝟑𝟏      𝒂𝟑𝟐                                   

 𝒘𝟏        𝒘𝟐        𝒘𝟑           

 

The first row gives the parameters needed to compute 𝑚1 (which is always 𝑚1 =

ℎ𝑓(𝑥𝑖, 𝑦𝑖) so 𝑐1 is always 0), the second row corresponds to 𝑚2, the third row gives 

the parameters to compute 𝑚3, and the row below the line gives the weights used to 

form 𝑦𝑖+1. 

 

The parameter arrays for two third-order methods are as follows: 

 

The parameters for the RK3 Kutta’s Classic method are as follows: 

𝑐1 = 0, 𝑐2 =
1

2
, 𝑎21 =

1

2
, 𝑐3 = 1, 𝑎31 = −1, 𝑎32 = 2,𝑤1 =

1

6
, 𝑤2 =

2

3
,𝑤3 =

1

6
 

 

The parameters for the RK3 Optimal method are as follows: 

𝑐1 = 0, 𝑐2 =
1

2
, 𝑎21 =

1

2
, 𝑐3 =

3

4
, 𝑎31 = 0, 𝑎32 =

3

4
,𝑤1 =

2

9
, 𝑤2 =

3

9
,𝑤3 =

4

9
 

 

4.1.2 Fourth-Order Runge-Kutta Methods  

The Runge-Kutta methods described in the previous sections are only the most 

common and simplest forms in a very extensive field of study. For the fourth-order 

Runge-Kutta method (RK4), 

𝑚1 = ℎ𝑓(𝑥𝑖, 𝑦𝑖)                                                   
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𝑚2 = ℎ𝑓(𝑥𝑖 + 𝑐2ℎ, 𝑦𝑖 + 𝑎21𝑚1)                     

𝑚3 = ℎ𝑓(𝑥𝑖 + 𝑐3ℎ, 𝑦𝑖 + 𝑎31𝑚1 + 𝑎32𝑚2)   

                𝑚4 = ℎ𝑓(𝑥𝑖 + 𝑐4ℎ, 𝑦𝑖 + 𝑎41𝑚1 + 𝑎42𝑚2 + 𝑎43𝑚3) 

𝑦𝑖+1 = 𝑦𝑖 + 𝑤1𝑚1 +𝑤2𝑚2 +𝑤3𝑚3 +𝑤4𝑚4   

The parameters may be shown in an array: 

 

 

𝟎                                                                

 𝒄𝟐      𝒂𝟐𝟏                                                    

𝒄𝟑      𝒂𝟑𝟏      𝒂𝟑𝟐                                       

 𝒄𝟒      𝒂𝟒𝟏      𝒂𝟒𝟐     𝒂𝟒𝟑                                      

                        𝒘𝟏        𝒘𝟐       𝒘𝟑       𝒘𝟒                           

 

The entries in the first column are the coefficients of ℎ; the other elements in each 

row are the coefficients of 𝑚2,𝑚3, and 𝑚4 that are used to determine the value of 𝑦 

used to compute the next 𝑚. Finally, the entries below the line are the weights used 

in the linear combination of the 𝑚’s to compute the value of the next 𝑦. 

 

The parameter arrays for two fourth-order methods are as follows: 

The parameters for the Classic fourth-order Runge-Kutta method (RK4_Classic) are 

as follows: 

𝑐1 = 0, 𝑐2 =
1

2
, 𝑎21 =

1

2
, 𝑐3 =

1

2
, 𝑎31 = 0, 𝑎32 =

1

2
, 𝑐4 = 1, 𝑎41 = 0, 𝑎42 = 0,  

𝑎43 = 1 

𝑤1 =
1

6
, 𝑤2 =

1

3
,𝑤3 =

1

3
, 𝑤4 =

1

6
  

 

The parameters for the fourth-order Runge-Kutta method (RK4_Kutta’s) are as 

follows: 

𝑐1 = 0, 𝑐2 =
1

3
, 𝑎21 =

1

3
, 𝑐3 =

2

3
, 𝑎31 = −

1

3
, 𝑎32 = 1, 𝑐4 = 1, 𝑎41 = 1, 𝑎42 = −1,  

𝑎43 = 1,𝑤1 =
1

8
, 𝑤2 =

3

8
, 𝑤3 =

3

8
,𝑤4 =

1

8
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4.2 Solution of Non-Linear VIEs Using the Runge-Kutta Method 

 

The method defined in Eq. (4.5) can be extended and gives a category of Runge-

Kutta methods for the solution of non-linear VIEs of the second kind, as follows: 

 Φ(𝑥) = 𝑓(𝑥) + ∫𝑘(𝑥, 𝑡,Φ(𝑡))

𝑥

0

𝑑𝑡 ; 𝑥 ∈ [𝑎, 𝑏]. (4.6) 

Setting  𝑥 = 𝑥𝑖  in (4.6) we have  

 Φ(𝑥𝑖) = 𝑓(𝑥𝑖) + ∫ 𝑘(𝑎 + 𝑖ℎ, 𝑡, Φ(𝑡))

𝑎+𝑖ℎ

𝑎

𝑑𝑡, 𝑖 = 1,2, … , 𝑛. (4.7) 

 

4.2.1 Classic Third-Order Runge-Kutta Method (RK3 Kutta’s) 

 

Φ0 = 𝑓0    

 

 𝑚0
𝑖 = Φ𝑖 (4.8) 

   

 𝑚1
𝑖 = 𝐿𝑖 (𝑥𝑖 +

1

2
ℎ) +

1

2
ℎ𝑘 (𝑥𝑖 +

1

2
ℎ, 𝑡𝑖, 𝑚0

𝑖 ) (4.9) 

 

 𝑚2
𝑖 = 𝐿𝑖(𝑥𝑖 + ℎ) + ℎ {

−𝑘(𝑥𝑖 + ℎ, 𝑡𝑖 ,𝑚0
𝑖 )                

+2𝑘 (𝑥𝑖 + ℎ, 𝑡𝑖 +
1

2
ℎ,𝑚1

𝑖 )
} (4.10) 

 

 Φ𝑖+1 = 𝐿𝑖(𝑥𝑖 + ℎ) +
1

6
ℎ

{
 
 

 
 𝑘(𝑥𝑖 + ℎ, 𝑡𝑖 ,𝑚0

𝑖 )                 

+4𝑘 (𝑥𝑖 + ℎ, 𝑡𝑖 +
1

2
ℎ,𝑚1

𝑖 )

+𝑘(𝑥𝑖 + ℎ, 𝑡𝑖 + ℎ,𝑚2
𝑖 )      }

 
 

 
 

 (4.11) 

 

 𝐿𝑖(𝑥) = 𝑓(𝑥) +
1

6
ℎ∑{

𝑘(𝑥, 𝑡𝑗, 𝑚0
𝑗) + 4𝑘 (𝑥, 𝑡𝑗 +

1

2
ℎ,𝑚1

𝑗
)

+𝑘(𝑥, 𝑡𝑗 + ℎ,𝑚2
𝑗
)                              

}

𝑖−1

𝑗=0

 (4.12) 

where 𝑖 = 0,1,2,… , 𝑛. 

and 

 𝐿0(𝑥) = 𝑓(𝑥) (4.13) 
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4.2.2 Optimal Third-Order Runge-Kutta Method (RK3 Optimal) 

 

 Φ0 = 𝑓0    

 

 𝑚0
𝑖 = Φ𝑖 (4.14) 

 

 𝑚1
𝑖 = 𝐿𝑖 (𝑥𝑖 +

1

2
ℎ) +

1

2
ℎ𝑘 (𝑥𝑖 +

1

2
ℎ, 𝑡𝑖, 𝑚0

𝑖 ) (4.15) 

 

 

 

𝑚2
𝑖 = 𝐿𝑖 (𝑥𝑖 +

3

4
ℎ) +

3

4
ℎ {𝑘 (𝑥𝑖 +

3

4
ℎ, 𝑡𝑖 +

1

2
ℎ,𝑚1

𝑖 )} (4.16) 

 

 Φ𝑖+1 = 𝐿𝑖(𝑥𝑖 + ℎ) +
1

9
ℎ

{
 
 

 
 
2𝑘(𝑥𝑖 + ℎ, 𝑡𝑖 , 𝑚0

𝑖 )                

+3𝑘 (𝑥𝑖 + ℎ, 𝑡𝑖 +
1

2
ℎ,𝑚1

𝑖 )

+4𝑘 (𝑥𝑖 + ℎ, 𝑡𝑖 +
3

4
ℎ,𝑚2

𝑖 )}
 
 

 
 

 (4.17) 

 

 𝐿𝑖(𝑥) = 𝑓(𝑥) +
1

9
ℎ∑

{
 
 

 
 2𝑘(𝑥, 𝑡𝑗 ,𝑚0

𝑗)                 

+3𝑘 (𝑥, 𝑡𝑗 +
1

2
ℎ,𝑚1

𝑗
) 

+4𝑘 (𝑥, 𝑡𝑗 +
3

4
ℎ,𝑚2

𝑗
) }
 
 

 
 

𝑖−1

𝑗=0

 (4.18) 

where 𝑖 = 1,2,… , 𝑛. 

and  

 𝐿0(𝑥) = 𝑓(𝑥). (4.19) 

 

4.2.3 Classic Fourth-Order Runge-Kutta Method (RK4_Classic) 

 

          Φ0 = 𝑓0 

 

 𝑚0
𝑖 = Φ𝑖 (4.20) 

 

 𝑚1
𝑖 = 𝐿𝑖 (𝑥𝑖 +

1

2
ℎ) +

1

2
ℎ𝑘 (𝑥𝑖 +

1

2
ℎ, 𝑡𝑖 , 𝑚0

𝑖 ) (4.21) 
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 𝑚2
𝑖 = 𝐿𝑖 (𝑥𝑖 +

1

2
ℎ) +

1

2
ℎ {𝑘 (𝑥𝑖 +

1

2
ℎ, 𝑡𝑖 +

1

2
ℎ,𝑚1

𝑖 )} (4.22) 

 

 𝑚3
𝑖 = 𝐿𝑖(𝑥𝑖 + ℎ) + ℎ {𝑘 (𝑥𝑖 + ℎ, 𝑡𝑖 +

1

2
ℎ,𝑚2

𝑖 )} (4.23) 

 

 Φ𝑖+1 = 𝐿𝑖(𝑥𝑖 + ℎ) +
1

6
ℎ

{
  
 

  
 
𝑘(𝑥𝑖 + ℎ, 𝑡𝑖, 𝑚0

𝑖 )                  

+2𝑘 (𝑥𝑖 + ℎ, 𝑡𝑖 +
1

2
ℎ,𝑚1

𝑖 ) 

+2𝑘 (𝑥𝑖 + ℎ, 𝑡𝑗 +
1

2
ℎ,𝑚2

𝑖 )

+𝑘(𝑥𝑖 + ℎ, 𝑡𝑖 + ℎ,𝑚3
𝑖 )       }

  
 

  
 

 (4.24) 

and 

 𝐿𝑖(𝑥) = 𝑓(𝑥) +
1

6
ℎ∑

{
  
 

  
 
𝑘(𝑥, 𝑡𝑗, 𝑚0

𝑖 )                  

+2𝑘 (𝑥, 𝑡𝑗 +
1

2
ℎ,𝑚1

𝑖 )

+2𝑘 (𝑥, 𝑡𝑗 +
1

2
ℎ,𝑚2

𝑖 )

+𝑘(𝑥, 𝑡𝑗 + ℎ,𝑚3
𝑖 )      }

  
 

  
 

𝑖−1

𝑗=0

 (4.25) 

where 𝑖 = 1,2,… , 𝑛. 

and 

 𝐿0(𝑥) = 𝑓(𝑥) (4.26) 

 

4.2.4 Fourth-Order Runge-Kutta Method (RK4_Kutta’s) 

 

           Φ0 = 𝑓0 

 

 𝑚0
𝑖 = Φ𝑖 (4.27) 

 

 𝑚1
𝑖 = 𝐿𝑖 (𝑥𝑖 +

1

3
ℎ) +

1

3
ℎ𝑘 (𝑥𝑖 +

1

3
ℎ, 𝑡𝑖 , 𝑚0

𝑖 ) (4.28) 

 

 𝑚2
𝑖 = 𝐿𝑖 (𝑥𝑖 +

2

3
ℎ) +

2

3
ℎ {

−
1

3
 𝑘 (𝑥𝑖 +

2

3
ℎ, 𝑡𝑖 ,𝑚0

𝑖 )      

+𝑘 (𝑥𝑖 +
2

3
ℎ, 𝑡𝑖 +

1

3
ℎ,𝑚1

𝑖 )

} (4.29) 
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 𝑚3
𝑖 = 𝐿𝑖(𝑥𝑖 + ℎ) + ℎ

{
 
 

 
 
𝑘(𝑥𝑖 + ℎ, 𝑡𝑖, 𝑚0

𝑖 )               

−𝑘 (𝑥𝑖 + ℎ, 𝑡𝑖 +
1

3
ℎ,𝑚1

𝑖 )

+𝑘 (𝑥𝑖 + ℎ, 𝑡𝑖 +
2

3
ℎ,𝑚2

𝑖 )}
 
 

 
 

 (4.30) 

 

 Φ𝑖+1 = 𝐿𝑖(𝑥𝑖 + ℎ) +
1

8
ℎ

{
  
 

  
 
𝑘(𝑥𝑖 + ℎ, 𝑡𝑖, 𝑚0

𝑖 )                  

+3𝑘 (𝑥𝑖 + ℎ, 𝑡𝑖 +
1

3
ℎ,𝑚1

𝑖 )

+3𝑘 (𝑥𝑖 + ℎ, 𝑡𝑗 +
2

3
ℎ,𝑚2

𝑖 )

+𝑘(𝑥𝑖 + ℎ, 𝑡𝑖 + ℎ,𝑚3
𝑖 )       }

  
 

  
 

 (4.31) 

and 

 𝐿𝑖(𝑥) = 𝑓(𝑥) +
1

8
ℎ∑

{
  
 

  
 
𝑘(𝑥, 𝑡𝑗, 𝑚0

𝑖 )                  

+3𝑘 (𝑥, 𝑡𝑗 +
1

3
ℎ,𝑚1

𝑖 )

+3𝑘 (𝑥, 𝑡𝑗 +
2

3
ℎ,𝑚2

𝑖 )

+𝑘(𝑥, 𝑡𝑗 + ℎ,𝑚3
𝑖 )       }

  
 

  
 

𝑖−1

𝑗=0

 (4.32) 

where 𝑖 = 1,2,… , 𝑛. 

and 

 𝐿0(𝑥) = 𝑓(𝑥) (4.33) 

 

4.3 Numerical Algorithm 

4.3.1 Classic Third-Order Runge-Kutta Method (RK3 Kutta’s) 

Step (1): 

a-  Assume ℎ =
𝑏−𝑎

𝑛
, 𝑛 ∈ 𝑁. 

b- Set Φ0 = Φ(𝑥0) = 𝑓0 = 𝑓(𝑥0) . 

Step (2):  

 Set 𝑥0 = 𝑎 = 0, then find 𝐿0(𝑥0), 𝐿0 (𝑥0 +
1

2
ℎ) , 𝐿0(𝑥0 + ℎ) using 

Eq.(4.13). 

Step (3): 

 Put 𝑖 = 0 to find 𝑚0
0, 𝑚1

0, 𝑚2
0 using Eq. (4.8), (4.9), and (4.10). 
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Step (4): 

 Compute Φ1 using steps 1, 2, and 3 and Eq. (4.11). 

Step (5): 

 For 𝑖 = 1 to 𝑛 do steps 6, 7, 8 and 9. 

Step (6): 

 𝑥𝑖 = 𝑥0 + 𝑖 ∗ ℎ. 

Step (7): 

 Compute  𝐿𝑖(𝑥𝑖), 𝐿𝑖 (𝑥𝑖 +
1

2
ℎ) , 𝐿𝑖(𝑥𝑖 + ℎ) using Eq. (4.12). 

Step (8): 

 Compute  𝑚0
𝑖 , 𝑚1

𝑖 , 𝑚2
𝑖  using Eq. (4.8), (4.9), and (4.10). 

Step (9): 

 Compute  Φ𝑖+1 using steps 6, 7 and 8 and Eq. (4.11). 

 

4.3.2 Optimal Third-Order Runge-Kutta Method (RK3 Optimal) 

Step (1): 

a-  Assume ℎ =
𝑏−𝑎

𝑛
, 𝑛 ∈ 𝑁. 

b-  Set Φ0 = Φ(𝑥0) = 𝑓0 = 𝑓(𝑥0) . 

Step (2): 

 Set 𝑥0 = 𝑎 = 0, then find  𝐿0(𝑥0), 𝐿0 (𝑥0 +
1

2
ℎ) , 𝐿0 (𝑥0 +

3

4
ℎ) , 𝐿0(𝑥0 + ℎ) 

using Eq. (4.19). 

Step (3): 

 Put 𝑖 = 0 to find 𝑚0
0, 𝑚1

0, 𝑚2
0 using Eq. (4.14), (4.15), and (4.16). 
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Step (4): 

 Compute Φ1 using steps 1, 2, and 3 and Eq. (4.17). 

Step (5): 

 For 𝑖 = 1 to 𝑛 do steps 6, 7, 8 and 9. 

Step (6): 

 𝑥𝑖 = 𝑥0 + 𝑖 ∗ ℎ. 

Step (7): 

 Compute  𝐿𝑖(𝑥𝑖), 𝐿𝑖 (𝑥𝑖 +
1

2
ℎ) , 𝐿𝑖 (𝑥𝑖 +

3

4
ℎ) , 𝐿𝑖(𝑥𝑖 + ℎ) using Eq. (4.18). 

Step (8): 

 Compute  𝑚0
𝑖 , 𝑚1

𝑖 , 𝑚2
𝑖  using Eq. (4.14), (4.15), and (4.16). 

Step (9): 

 Compute  Φ𝑖+1 using steps 6, 7 and 8 and Eq. (4.17). 

 

4.3.3 Classic Fourth-Order Runge-Kutta Method (RK4_Classic) 

 

Step (1): 

a- Assume ℎ =
𝑏−𝑎

𝑛
, 𝑛 ∈ 𝑁. 

b-  Set Φ0 = Φ(𝑥0) = 𝑓0 = 𝑓(𝑥0) . 

Step (2): 

 Set 𝑥0 = 𝑎 = 0, then find  𝐿0(𝑥0), 𝐿0 (𝑥0 +
1

2
ℎ) , 𝐿0(𝑥0 + ℎ) using Eq. 

(4.26). 

Step (3): 

 Put 𝑖 = 0 to find 𝑚0
0,  𝑚1

0, 𝑚2
0 , 𝑚3

0 using Eq. (4.20), (4.21), (4.22) and 

(4.23). 
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Step (4): 

 Compute Φ1 using steps 1, 2, and 3 and Eq. (4.24). 

Step (5): 

 For 𝑖 = 1 to 𝑛 do steps 6, 7, 8 and 9. 

Step (6): 

             𝑥𝑖 = 𝑥0 + 𝑖 ∗ ℎ. 

Step (7): 

 Compute  𝐿𝑖(𝑥𝑖), 𝐿𝑖 (𝑥𝑖 +
1

2
ℎ) , 𝐿𝑖(𝑥𝑖 + ℎ) using Eq. (4.25). 

Step (8): 

 Compute 𝑚0
𝑖 , 𝑚1

𝑖 ,  𝑚2
𝑖  , 𝑚3

𝑖   using Eq. (4.20), (4.21), (4.22) and (4.23). 

Step (9): 

 Compute  Φ𝑖+1 using steps 6, 7 and 8 and Eq. (4.24). 

 

4.3.4 Fourth-Order Runge-Kutta Method (RK4_Kutta’s) 

 

Step (1): 

a-  Assume ℎ =
𝑏−𝑎

𝑛
, 𝑛 ∈ 𝑁. 

b-  Set Φ0 = Φ(𝑥0) = 𝑓0 = 𝑓(𝑥0) . 

Step (2): 

  Set 𝑥0 = 𝑎 = 0, then find  𝐿0(𝑥0), 𝐿0 (𝑥0 +
1

3
ℎ) , 𝐿0 (𝑥0 +

2

3
ℎ) , 𝐿0(𝑥0 + ℎ) 

using Eq. (4.33). 

Step (3): 

 Put 𝑖 = 0 to find 𝑚0
0,  𝑚1

0, 𝑚2
0 , 𝑚3

0 using Eq. (4.27), (4.28), (4.29) and 

(4.30). 
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Step (4): 

 Compute Φ1 using steps 1, 2, and 3 and Eq. (4.31). 

Step (5): 

 For 𝑖 = 1 to 𝑛 do steps 6, 7, 8 and 9. 

Step (6): 

             𝑥𝑖 = 𝑥0 + 𝑖 ∗ ℎ. 

Step (7): 

 Compute  𝐿𝑖(𝑥𝑖), 𝐿𝑖 (𝑥𝑖 +
1

3
ℎ) , 𝐿𝑖 (𝑥𝑖 +

2

3
ℎ) , 𝐿𝑖(𝑥𝑖 + ℎ) using Eq. (4.32). 

Step (8): 

 Compute 𝑚0
𝑖 ,𝑚1

𝑖 ,𝑚2
𝑖  ,𝑚3

𝑖  using Eq. (4.27), (4.28), (4.29) and (4.30). 

Step (9): 

 Compute Φ𝑖+1 using steps 6, 7 and 8 and Eq. (4.31). 

 

4.4 Numerical Examples 

We will show here the numerical results for the Runge-Kutta methods (classic third-

order Runge-Kutta, optimal third-order Runge-Kutta, classic fourth-order Runge-

Kutta, and fourth-order Runge-Kutta) for non-linear VIEs with variable coefficients. 

The algorithms for the programming for these methods are given in sections (4.4.1), 

(4.4.2), (4.4.3), and (4.4.4) respectively. 

 

Test Example 1: 

Consider the non-linear VIE: 

Φ(𝑥) = 1 + 𝑥2 − 𝑥𝑒𝑥
2
+ ∫𝑒𝑥

2−𝑡2−1

𝑥

0

𝑒Φ(𝑡)𝑑𝑡 

with the exact solution [53]: 

Φ(𝑥) = 1 + 𝑥2 
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The results for the Test Example 1 using the classic third-order Runge-Kutta method  

(RK3 Kutta’s), the optimal third-order Runge-Kutta method (RK3 Optimal), the 

fourth-order Runge-Kutta method (RK4_Kutta’s) and the classic fourth-order Runge-

Kutta method (RK4_Classic) are shown in Table 4 and Table 5. 

 

Table 4 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 1 Using the RK3 Kutta’s and RK3 Optimal 

Methods 
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Table 5 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 1 Using the RK4_Classic and RK4_Kutta’s 

Methods 

 

 

 

 

Test Example 2: 

Consider the non-linear VIE: 

Φ(𝑥) = cos(𝑥) − sin(𝑥) −
1

4
sin(2𝑥) +

1

2
𝑥 −

1

2
𝑥2 +∫(𝑥 − 𝑡)Φ2(𝑡)𝑑𝑡

𝑥

0

 

with the exact solution [53]: 

Φ(𝑥) = cos(𝑥) − sin(𝑥) 
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The results for the Test Example 2 using the classic third-order Runge-Kutta method  

(RK3 Kutta’s), the Optimal third-order Runge-Kutta method (RK3 Optimal), the 

fourth-order Runge-Kutta method (RK4_Kutta’s) and the classic fourth-order Runge-

Kutta method (RK4_Classic) are shown in Table 6 and Table 7. 

 

Table 6 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 2 Using the RK3 Kutta’s and RK3 Optimal 

Methods 
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Table 7 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 2 Using the RK4_Classic and RK4_Kutta’s 

Methods 

 

 

 

 

 

 

Test Example 3: 

Consider the non-linear VIE: 

Φ(𝑥) = 𝑒𝑥 −
1

9
𝑒3𝑥 +

1

9
+
1

3
𝑥 + ∫(𝑥 − 𝑡)Φ3(𝑡)𝑑𝑡

𝑥

0

 

with the exact solution [53]: 

Φ(𝑥) = 𝑒𝑥 

 



46 

 

The results for the Test Example 3 using the classic third-order Runge-Kutta method 

(RK3 Kutta’s), the optimal third-order Runge-Kutta method (RK3 Optimal), the 

fourth-order Runge-Kutta method (RK4_Kutta’s) and the classic fourth-order Runge-

Kutta method (RK4_Classic) are shown in Table 8 and Table 9. 

 

Table 8 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 3 Using the RK3 Kutta’s and RK3 Optimal 

Methods 
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Table 9 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 3 Using the RK4_Classic and RK4_Kutta’s 

Methods  
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CHAPTER 5 

 

SPLINE FUNCTIONS 

 

5.1 Spline Interpolation 

 

A spline is a function composed of simple functions glued together. Splines are used 

to approximate complex functions and shapes. Because it is composed of different 

functions, a spline is different from a polynomial interpolation, which consists of a 

single well-defined function that approximates a given shape; mathematical splines 

are normally piecewise polynomial functions where the polynomial pieces 

correspond to the interval between the points that hold the physical spline fixed. A 

set of knots defines the intervals [60]. 

 

5.2 First and Second Degree Splines 

 

Splines make use of partitions, which lead to an interval being cut into a number of 

subintervals. 

 

Definition 5.1: Partition.  

The interval [a,b] is partitioned into an ordered sequence {𝑥𝑖}𝑖=0
𝑛  such that 

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏 

The numbers 𝑥𝑖 are called “knots”. 

A linear spline is a spline of degree 1, and is a function that is linear on each 

subinterval determined by a partition. 

 

Definition 5.2: Linear Splines.  

A function 𝐿 is a spline of degree 1 on [𝑎, 𝑏] if 

1. The domain of 𝑆 is [𝑎, 𝑏]. 

2. 𝑆 is continuous on [𝑎, 𝑏]. 
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3. There is a partition {𝑥𝑖}𝑖=0
𝑛  of [𝑎, 𝑏] such that on each [𝑥𝑖, 𝑥𝑖+1], 𝐿 is a linear 

polynomial. 

 

A linear spline is defined completely by its values at the knots. For example, with the 

following: 

 

𝑥 𝑥0 𝑥1 … 𝑥𝑛 

𝑦 𝑦0 𝑦1 … 𝑦𝑛 

 

there is only one linear spline with these values at the knots and it is on each given 

subinterval. 

 

For a spline with this data, the linear polynomial on each subinterval is in the form: 

 

 𝐿𝑖(𝑥) = 𝑦𝑖 +
𝑦𝑖+1 − 𝑦𝑖
𝑥𝑖+1 − 𝑥𝑖

(𝑥 − 𝑥𝑖). (5.1) 

 

Note that if 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1], then 𝑥 − 𝑥𝑖 > 0, but 𝑥 − 𝑥𝑖−1 ≤ 0. Therefore if we want 

to evaluate 𝐿(𝑥), we seek the largest 𝑖 so that 𝑥 − 𝑥𝑖 > 0, then evaluate 𝐿𝑖(𝑥). 

 

5.2.1 First Degree Spline Accuracy 

 

In the same way as for polynomial functions, splines are also used to interpolate 

tabulated data as well as functions. In the latter case this means that if the spline is 

being used to interpolate the function 𝑓, we can say that this is equivalent to 

interpolating the data: 

 

𝑥 𝑥0 𝑥1 … 𝑥𝑛 

𝑦 𝑓(𝑥0) 𝑓(𝑥1) … 𝑓(𝑥𝑛) 

 

We will consider how to find a bound for the error on a single interval of the 

partition, with the use of a little calculus. Assume 𝑝(𝑥) is the linear polynomial 
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interpolating 𝑓(𝑥) at the endpoints of the subinterval [𝑥𝑖, 𝑥𝑖+1], then for 𝑥 ∈

[𝑥𝑖, 𝑥𝑖+1], 

 

|𝑓(𝑥) − 𝑝(𝑥)| ≤ 𝑚𝑎𝑥{|𝑓(𝑥) − 𝑓(𝑥𝑖), |𝑓(𝑥) − 𝑓(𝑥𝑖+1)}. 

 

That is, |𝑓(𝑥) − 𝑝(𝑥)| is no larger than the “maximum variation” of 𝑓(𝑥) on this 

interval. 

In particular, if 𝑓′(𝑥) exists and is bounded by 𝑀1 on [𝑥𝑖, 𝑥𝑖+1], then 

 

|𝑓(𝑥) − 𝑝(𝑥)| ≤
𝑀1

2
(𝑥𝑖+1 − 𝑥𝑖). 

Similarly, if the second derivative 𝑓′′(𝑥) is exists and bounded by 𝑀2 on the 

subinterval [𝑥𝑖, 𝑥𝑖+1], then 

|𝑓(𝑥) − 𝑝(𝑥)| ≤
𝑀2

8
(𝑥𝑖+1 − 𝑥𝑖)

2. 

 

5.2.2 Second Degree Splines 

 

We can similarly define piecewise quadratic splines, or splines of degree 2. 

 

Definition 5.4: Quadratic Splines.  

A function 𝑄 is a quadratic spline on [𝑎, 𝑏] if 

1. The domain of 𝑄 is [𝑎, 𝑏].  

2. 𝑄 is continuous on [𝑎, 𝑏].  

3. 𝑄0 is continuous on (𝑎, 𝑏). 

4. There is a partition {𝑥𝑖}𝑖=0
𝑛  of [𝑎, 𝑏] such that on [𝑥𝑖, 𝑥𝑖+1], 𝑄 is a polynomial of 

degree at most 2. 

 

5.2.3 Computing Second Degree Splines 

 

Assume the data 

𝑥 𝑥0 𝑥1 … 𝑥𝑛 

𝑦 𝑦0 𝑦1 … 𝑦𝑛 
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are given. Let 𝑧𝑖 = 𝑄𝑖
′(𝑥𝑖), and assume that the additional condition to define the 

quadratic spline is given by identifying 𝑧0. We will seek to compute the form of 

𝑄𝑖(𝑥). 

Because 𝑄𝑖(𝑥𝑖) = 𝑦𝑖 , 𝑄𝑖
′(𝑥𝑖) = 𝑧𝑖, 𝑄𝑖

′(𝑥𝑖+1) = 𝑧𝑖+1, we see that we can define 

 

 𝑄𝑖(𝑥) =
𝑧𝑖+1 − 𝑧𝑖

2(𝑥𝑖+1 − 𝑥𝑖)
(𝑥 − 𝑥𝑖)

2 + 𝑧𝑖(𝑥 − 𝑥𝑖) + 𝑦𝑖 . (5.2) 

Use this at 𝑥𝑖+1: 

𝑦𝑖+1 = 𝑄𝑖(𝑥𝑖+1) =
𝑧𝑖+1 − 𝑧𝑖

2(𝑥𝑖+1 − 𝑥𝑖)
(𝑥𝑖+1 − 𝑥𝑖)

2 + 𝑧𝑖(𝑥𝑖+1 − 𝑥𝑖) + 𝑦𝑖 , 

𝑦𝑖+1 − 𝑦𝑖 =
𝑧𝑖+1 + 𝑧𝑖

2
(𝑥𝑖+1 − 𝑥𝑖) + 𝑧𝑖(𝑥𝑖+1 − 𝑥𝑖), 

Thus we can determine, from the data alone, 𝑧𝑖+1 from 𝑧𝑖: 

 

 𝑧𝑖+1 = 2
𝑦𝑖+1 − 𝑦𝑖
𝑥𝑖+1 − 𝑥𝑖

− 𝑧𝑖 . (5.3) 

 

 

5.3 Natural Cubic Splines 

 

We can expand the definition to a spline of degree 𝑘, if we remember the definitions 

of linear and quadratic splines. 

 

Definition 5.6: Splines of degree 𝒌. 

A function 𝑆 is a spline of degree 𝑘 on [𝑎, 𝑏] if 

1. The domain of 𝑆 is [𝑎, 𝑏]. 

2. 𝑆, 𝑆′ , 𝑆′′, … , 𝑆(𝑘−1) are continuous on (𝑎, 𝑏). 

3. There is a partition {𝑥𝑖}𝑖=0
𝑛  of [𝑎, 𝑏] such that on [𝑥𝑖, 𝑥𝑖+1], 𝑆 is a polynomial of 

degree ≤ 𝑘. 

 

We would expect that a spline of degree 𝑘 has 𝑘 − 1 degrees of freedom, as we show 

here. A spline of degree 𝑘 is defined by 𝑛(𝑘 + 1) parameters if the partition has 

𝑛 + 1 knots. The following given data: 

 



52 

 

𝑥 𝑥0 𝑥1 … 𝑥𝑛 

𝑦 𝑦0 𝑦1 … 𝑦𝑛 

 

provide 2𝑛 equations. The continuity of 𝑆, 𝑆′, 𝑆′′, … , 𝑆(𝑘−1) at the 𝑛 − 1 internal 

knots gives (𝑘 − 1)(𝑛 − 1) equations. This is a total of 𝑛(𝑘 + 1) − (𝑘 − 1) 

equations. Consequently, we get 𝑘 − 1 more unknowns than equations. Thus, except 

for some singularity, and we must add 𝑘 − 1 constraints for a unique definition of the 

spline. These are the degrees of freedom. Usually 𝑘 is selected to be equal to 3. 

These are cubic splines. We must add two extra constraints to define the spline. The 

normal or usual choice is to make: 

 𝑆′′(𝑥0) = 𝑆
′′(𝑥𝑛) = 0. (5.4) 

This yields the natural cubic spline. 

 

 

5.3.1 Why Natural Cubic Splines? 

 

We show that natural cubic splines are an excellent choice because they are the 

interpolant of the minimal 𝐻2 semi norm. The natural result following this theorem 

states this in more readily understandable terms. 

 

Theorem 5.7: 

Assume the function 𝑓 has two continuous derivatives, and 𝑆 is the natural cubic 

spline interpolating 𝑓 at the knots 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏. Then: 

∫[𝑆′′(𝑥)]2

𝑏

𝑎

𝑑𝑥 ≤ ∫[𝑓′′(𝑥)]2

𝑏

𝑎

𝑑𝑥 

Proof: We let g(𝑥) = 𝑓(𝑥) − 𝑆(𝑥). Then g(𝑥) is zero on the (𝑛 + 1) knots 𝑥𝑖. The 

derivatives are linear, meaning that 

 

𝑓′′(𝑥) = 𝑆′′(𝑥) + g′′(𝑥). 

Then 

∫[𝑓′′(𝑥)]2

𝑏

𝑎

𝑑𝑥 = ∫[𝑆′′(𝑥)]2

𝑏

𝑎

𝑑𝑥 + ∫[g′′(𝑥)]2

𝑏

𝑎

𝑑𝑥 + ∫2𝑆′′(𝑥)g′′(𝑥)

𝑏

𝑎

𝑑𝑥. 
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Moreover, the last integral is zero. Integrating by parts we obtain 

∫2𝑆′′(𝑥)g′′(𝑥)

𝑏

𝑎

𝑑𝑥 = 𝑆′′g′|𝑎
𝑏 − ∫𝑆′′′g′𝑑𝑥

𝑏

𝑎

= −∫𝑆′′′g′𝑑𝑥,

𝑏

𝑎

 

because 𝑆′′(𝑎) = 𝑆′′(𝑏) = 0. Then note that 𝑆 is a polynomial of degree ≤ 3 on each 

interval, thus 𝑆′′′(𝑥) is a piecewise constant function that takes the value 𝑐𝑖 on each 

interval [𝑥𝑖, 𝑥𝑖+1].  Thus 

∫𝑆′′′g′𝑑𝑥

𝑏

𝑎

= ∑∫𝑐𝑖g
′𝑑𝑥 = ∑𝑐𝑖g

𝑛−1

𝑖=0

|𝑥𝑖
𝑥𝑖+1 = 0,

𝑏

𝑎

𝑛−1

𝑖=0

 

with the last equality following because g(𝑥) is equal to zero at the knots. 

 

Corollary 5.8: The natural cubic spline is the best twice-continuously differentiable 

interpolant for a twice-continuously differentiable function, under the measure given 

by the theorem. 

Proof: Assume 𝑓 to be twice-continuously differentiable and assume 𝑆 to be the 

natural cubic spline interpolating 𝑓(𝑥) at some given nodes {𝑥𝑖}𝑖=0
𝑛 . Also assume that 

𝑅(𝑥) is some twice-continuously differentiable function that interpolates 𝑓(𝑥) at 

these nodes. This leads us to the fact that 𝑆(𝑥) interpolates 𝑅(𝑥) at these nodes. We 

apply the theorem to obtain   

∫[𝑆′′(𝑥)]2

𝑏

𝑎

𝑑𝑥 ≤ ∫[𝑅′′(𝑥)]2

𝑏

𝑎

𝑑𝑥 

 

5.4 B-Splines 

 

The B-splines form a basis for spline functions, and take their name from this. We 

presuppose the existence of an infinite number of knots. 

… < 𝑥2 < 𝑥1 < 𝑥0 < 𝑥1 < 𝑥2 < ⋯, 

with  

𝑙𝑖𝑚
𝑘→−∞

𝑥𝑘 = −∞ 

and  

𝑙𝑖𝑚
𝑘→∞

𝑥𝑘 = ∞. 

The B-splines of degree 0 are defined as single blocks. 
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 𝐵𝑖
0 = {

1    𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1
0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (5.5) 

 

The zero degree B-splines are continuous from the right side, and they are nonzero 

only on one subinterval [𝑥𝑖, 𝑥𝑖+1); they add up to 1. 

 

We want justify the description of B-splines as basis splines. If 𝑆 is a spline of degree 

0 on the given knots and is continuous from the right side then: 

 

 𝑆(𝑥) = ∑𝑆(𝑥𝑖)𝐵𝑖
0(𝑥).

𝑖

 (5.6) 

 

As can be seen, the basis splines work in the same way that Lagrange polynomials 

worked for polynomial interpolation. 

 

The B-splines of degree 𝑘 are defined recursively: 

 

 𝐵𝑖
𝑘(𝑥) = (

𝑥 − 𝑥𝑖
𝑥𝑖+𝑘 − 𝑥𝑖

)𝐵𝑖
𝑘−1(𝑥) + (

𝑥𝑖+𝑘+1 − 𝑥

𝑥𝑖+𝑘+1 − 𝑥𝑖+1
)𝐵𝑖+1

𝑘−1(𝑥). (5.7) 

 

The B-splines speedily become unwieldy. We choose the case when 𝑘 = 1. The B-

spline 𝐵𝑖
1(𝑥) is 

 Piecewise linear. 

 Continuous. 

 Nonzero only on (𝑥𝑖, 𝑥𝑖+2). 

 1 at 𝑥𝑖+1. 

These B-splines are sometimes called hat functions. Imagine wearing a hat shaped 

like this! 

 

The good thing about the hat functions is that they can be used through an analogy. 

The hat functions play a similar role to polynomial interpolation and the Lagrange 

functions because:  
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 𝐵𝑖
1(𝑥𝑗) = {

1    (𝑖 + 1) = 𝑗

0    (𝑖 + 1) ≠ 𝑗
 (5.8) 

 

Then if we want to inset data such as the following with splines of degree 1, 

 

𝑥 𝑥0 𝑥1 … 𝑥𝑛 

𝑦 𝑦0 𝑦1 … 𝑦𝑛 

 

we can directly set 

 𝑆(𝑥) =∑𝑦𝑖𝐵𝑖−1
1 (𝑥).

𝑛

𝑖=0

 (5.9) 

 

5.5 Solution of Non-Linear VIEs Using Classic Spline Functions 

 

In this section, we use classic spline functions (quadratic and cubic spline functions) 

to seek and find the numerical solutions of non-linear VIEs of the form: 

 

 Φ(𝑥) = 𝑓(𝑥) + ∫𝑘

𝑥

0

(𝑥, 𝑡,Φ(𝑡))𝑑𝑡        ; 𝑥 ∈ [𝑎, 𝑏] (5.10) 

where 𝑓 is assumed to be continuous on 𝑥, and  𝑘 denotes the given continuous 

function. 

 

5.5.1 Using the Linear Classic Spline Function 𝑳(𝒕) 

 

A linear interpolation 𝐿(𝑡) with the knots 𝑡0, 𝑡1, … , 𝑡𝑛 in the interval [𝑡𝑖 , 𝑡𝑖+1] is given 

by the formula: 

 𝐿(𝑡) = 𝐴𝑖(𝑡)𝐿𝑖 + 𝐵𝑖(𝑡)𝐿𝑖−1 (5.11) 

 

where  

 𝐴𝑖(𝑡) =
𝑡𝑖+1−𝑡

ℎ
 and 𝐵𝑖(𝑡) =

𝑡−𝑡𝑖

ℎ
 

Substituting Eq. (5.11) into Eq. (5.10) gives 

𝐿𝑖; 𝑖 = 1,2, … , 𝑛 with 𝑡 = 𝑡𝑟 and  𝑟 = 1,2,… , 𝑛  , so we get: 
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𝐿𝑟 = 𝑓𝑟 +∑ ∫ 𝑘

𝑥𝑧+1

𝑥𝑧

𝑟−1

𝑧=0

(𝑥, 𝑡, [𝐴𝑧(𝑡)𝐿𝑧 + 𝐵𝑧(𝑡)𝐿𝑧+1])𝑑𝑡 ; 

 𝑟 = 1,2, . . . , 𝑛. 

 

 

 

(5.12) 

 

where 𝐿𝑟 = 𝐿(𝑡𝑟) and 𝑓𝑟 = 𝑓(𝑡𝑟), and the iterated integrals in Eq. (5.12) are 

calculated using the trapezoidal rule or the Runge-Kutta method. 

 

The following algorithm can be used to solve non-linear VIEs using a linear classic 

spline function: 

 

Algorithm for non-linear VIEs using a linear classic spline function (non-linear 

VIELSP): 

 

Step (1): 

a-  Assume ℎ =
𝑏

𝑛
, 𝑛 ∈ 𝑁. 

b-  Set 𝐿0 = 𝑓0. 

Step (2): 

To compute 𝐿𝑟 use step 1 and put 𝑟 = 1 in Eq. (5.12), and then use the non-

linear VIETRP algorithm. 

Step (3): 

As in step 2, and using Eq. (5.12), compute 𝐿𝑟; 𝑟 = 2,3,… , 𝑛. 

 

5.5.2 Using the Quadratic Classic Spline Function 𝑸(𝒕) 

 

A quadratic classic spline 𝑄(𝑡) with the knots 𝑡0, 𝑡1, 𝑡𝑛 in the interval [𝑡𝑖 , 𝑡𝑖+1] can be 

written as: 

 𝑄(𝑡) = 𝐴𝑖(𝑡)𝑄𝑖 + 𝐵𝑖(𝑡)𝑄𝑖+1 + 𝐷𝑖(𝑡)
𝑑𝑄𝑖
𝑑𝑡

 (5.13) 

where  

𝐴𝑖(𝑡) = 1 − (
𝑡−𝑡𝑖

ℎ
)
2

, 𝐵𝑖(𝑡) = 1 − 𝐴𝑖(𝑡) and 𝐷𝑖(𝑡) =
(𝑡−𝑡𝑖)(𝑡𝑖−1−𝑡)

ℎ
 

Putting Eq. (5.13) into Eq. (5.10) gives 

𝑄𝑖; 𝑖 = 1,2,… , 𝑛, with 𝑡 = 𝑡𝑟 and 𝑟 = 1,2, . . , 𝑛, we get: 
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𝑄𝑟 = 𝑓𝑟 +∑ ∫ 𝐾

𝑥𝑧−1

𝑥𝑧

𝑟−2

𝑧=0

(𝑥𝑟, 𝑡, [𝐴𝑧(𝑡)𝑄𝑧 + 𝐵𝑧(𝑡)𝑄𝑧+1 + 𝐷𝑧(𝑡)
𝑑𝑄𝑧
𝑑𝑡
])𝑑𝑡 

     + ∫ 𝐾

𝑥𝑧

𝑥𝑧−1

(𝑥𝑟, 𝑡, [𝐴𝑟−1(𝑡)𝑄𝑧−1 + 𝐵𝑟−1(𝑡)𝑄𝑧 +𝐷𝑟(𝑡)
𝑑𝑄𝑧
𝑑𝑡
]) 𝑑𝑡 

 

 

 

(5.14) 

 

where 𝑄𝑟 = 𝑄(𝑡𝑟) and 𝑓𝑟 = 𝑓(𝑡𝑟) 

 

Now, for 𝑟 = 1 we need to calculate 
𝑑𝑄0

𝑑𝑡
. We can find this value by differentiating 

Eq. (5.10) once with respect to 𝑥, from which we get: 

 

𝑄′(𝑥) = 𝑓′(𝑥) + ∫
𝑑𝐾(𝑥, 𝑡, 𝑄(𝑡))

𝑑𝑥
𝑑𝑡

𝑥

0

+ 𝐾(𝑥, 𝑥, 𝑄(𝑥))        

Putting 𝑡 = 𝑎, we obtain: 

 

 𝑄0
′ = 𝑓0

′(𝑥) +  𝐾(𝑎, 𝑎, 𝑄0) (5.15) 

 

But, for 𝑟 = 2,3,… , 𝑛  we calculate  
𝑑𝑄𝑟

𝑑𝑡
  from the equation below: 

 

 
𝑑𝑄𝑟
𝑑𝑡

=
𝑑𝑄𝑟−1
𝑑𝑡

+
2(𝑄𝑟 − 𝑄𝑟−1)

ℎ
 (5.16) 

 

The following algorithm can be used to solve a system of non-linear VIEs using a 

quadratic classic spline function: 

 

Algorithm for non-linear VIEs using a quadratic classic spline function and the 

trapezoidal rule (non-linear VIEQSP1): 

 

Step (1): 

a- Assume ℎ =
𝑏

𝑛
, 𝑛 ∈ 𝑁. 

b-  Set 𝑄0 = 𝑓0. 
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Step (2): 

a- To calculate 
𝑑Q0

𝑑𝑡
, use step 1 with Eq. (5.15). 

b- To compute 𝑄1 use steps 1 and 2a, put 𝑟 = 1 in Eq. (5.14), and use the non-

linear VIETRP algorithm. 

Step (3): 

a-  Use steps 1 and 2 to find  
𝑑𝑄1

𝑑𝑡
, putting 𝑟 = 1 in Eq. (5.16). 

b- Put 𝑟 = 2 in Eq. (5.14), find 𝑄2, and use the non-linear VIETRP algorithm. 

Step (4): 

 In the same way as in step 3, and by using Eq. (5.16) and also Eq. (4.14), 

compute 
𝑑𝑄2

𝑑𝑡
, 𝑄3

𝑑𝑄3

𝑑𝑡
, 𝑄4, …, and so on. 

 

Algorithm for non-linear VIEs using a quadratic classic spline function and the 

classic fourth-order Runge-Kutta method (non-linear VIEQSP2): 

 

Step (1): 

a- Assume ℎ =
𝑏

𝑛
, 𝑛 ∈ 𝑁. 

b- Set 𝑄0 = 𝑓0. 

Step (2): 

a- To calculate 
𝑑Q0

𝑑𝑡
, use step 1 with Eq. (5.15). 

b- To compute 𝑄1 use steps 1 and 2a, put 𝑟 = 1 in Eq. (5.14), and use the 

RK4_Classic algorithm. 

Step (3): 

a- Use steps 1 and 2 to find  
𝑑𝑄1

𝑑𝑡
, putting 𝑟 = 1 in Eq. (5.16). 

b- Put 𝑟 = 2 in Eq. (5.14) to find 𝑄2, and use the RK4_Classic algorithm. 

Step (4): 

 In the same way as in step 3, and by using Eq. (5.16) and also Eq. (4.14), 

compute 
𝑑𝑄2

𝑑𝑡
, 𝑄3

𝑑𝑄3

𝑑𝑡
, 𝑄4, …, and so on. 
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5.5.3 Using the Cubic Classic Spline Function 𝑺(𝒕) 

 

A cubic classic spline 𝑆(𝑡) with the knots 𝑡0, 𝑡1, … , 𝑡𝑛 in the interval [𝑡𝑖 , 𝑡𝑖+1] can be 

written as: 

 𝑆(𝑡) = 𝐴𝑖(𝑡)𝑆𝑖 + 𝐵𝑖(𝑡)𝑆𝑖+1 + 𝐶𝑖(𝑡)
𝑑𝑆𝑖
𝑑𝑡

+ 𝐷𝑖(𝑡)
𝑑𝑆𝑖+1
𝑑𝑡

 (5.17) 

 

𝐴𝑖(𝑡) = 1 − 3 (
𝑡 − 𝑡𝑖
ℎ

)
2

+ 2(
𝑡 − 𝑡𝑖
ℎ

)
3

, 𝐵𝑖(𝑡) = 1 − 𝐴𝑖(𝑡) 

where 

𝐶𝑖(𝑡) = (𝑡 − 𝑡𝑖) (
𝑡−𝑡𝑖+1

ℎ
)
2

 and 𝐷𝑖(𝑡) = (𝑡 − 𝑡𝑖) (
𝑡−𝑡𝑖+1

ℎ
)
2

 

Substituting Eq. (5.17) in Eq. (5.10) gives 

𝑆𝑖; 𝑖 = 1,2,… , 𝑛, with 𝑡 = 𝑡𝑟 and 𝑟 = 1,2, . . , 𝑛, we get: 

 

 

𝑆𝑟 = 𝑓𝑟 +∑ ∫ 𝐾

𝑥𝑧−1

𝑥𝑧

𝑟−2

𝑧=0

(𝑥𝑟 , 𝑡, [
𝐴𝑧(𝑡)𝑆𝑧 + 𝐵𝑧(𝑡)𝑆𝑧+1

+𝐶𝑧(𝑡)
𝑑𝑆𝑧
𝑑𝑡

+ 𝐷𝑧(𝑡)
𝑑𝑆𝑧+1
𝑑𝑡

]) 𝑑𝑡 

+ ∫ 𝐾

𝑥𝑧

𝑥𝑧−1

(𝑥𝑟 , 𝑡, [
𝐴𝑟−1(𝑡)𝑆𝑧−1 + 𝐵𝑟−1(𝑡)𝑆𝑧

+𝐶𝑟(𝑡)
𝑑𝑆𝑧−1
𝑑𝑡

+ 𝐷𝑟(𝑡)
𝑑𝑆𝑧
𝑑𝑡

]) 𝑑𝑡    

 

 

 

(5.18) 

 

where 

𝑆𝑟 = 𝑆(𝑡𝑟) and 𝑓𝑟 = 𝑓(𝑡𝑟)  

We calculate 
𝑑𝑆𝑟

𝑑𝑡
 by the equation as: 

 

 
𝑑𝑆𝑟−1
𝑑𝑡

= −
𝑑𝑆𝑟−1
𝑑𝑡

− 4
𝑑𝑆𝑟
𝑑𝑡

+
3(𝑆𝑟−2 − 𝑆𝑟−1)

ℎ
 (5.19) 

 

The following algorithm can be used to solve a system of non-linear VIEs using a 

cubic spline function. 
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Algorithm for non-linear VIEs using a cubic classic spline function and the 

trapezoidal rule (non-linear VIECSP1): 

 

Step (1): 

a- Assume ℎ =
𝑏

𝑛
, 𝑛 ∈ 𝑁. 

b- Set 𝑆0 = 𝑓0. 

Step (2): 

a-  To calculate 
𝑑𝑆0

𝑑𝑡
, use step 1 with Eq. (5.15). 

b- To compute 𝑆1 use steps 1 and 2-a, put 𝑟 = 1 in Eq. (5.18), and use the non-

linear VIETRP algorithm. 

Step (3): 

a-  Use steps 1 and 2 to find 
𝑑𝑆1

𝑑𝑡
 by putting 𝑟 = 2 in Eq. (5.19). 

b- Put 𝑟 = 2 in Eq. (5.19) to find 𝑆2, and use the non-linear VIETRP algorithm. 

Step (4): 

 In the same way as in step 3, and by using Eq. (5.18) and Eq. (5.19). 

compute 
𝑑𝑆2

𝑑𝑡
, 𝑆3,

𝑑𝑆3

𝑑𝑡
𝑆4, …, and so on. 

 

Algorithm for non-linear VIEs using the cubic classic spline function and the 

classic fourth-order Runge-Kutta Method (non-linear VIECSP2): 

 

Step (1): 

a- Assume ℎ =
𝑏

𝑛
, 𝑛 ∈ 𝑁. 

b-  Set 𝑆0 = 𝑓0. 

Step (2): 

a- To calculate 
𝑑𝑆0

𝑑𝑡
, use step 1 with Eq. (5.15). 

b- To compute 𝑆1 use steps 1 and 2-a, put 𝑟 = 1 in Eq. (5.18), and use the 

RK4_Classic algorithm. 

Step (3): 

a- Use steps 1 and 2 to find 
𝑑𝑆1

𝑑𝑡
, by putting 𝑟 = 2 in Eq. (5.19). 

b-  Put 𝑟 = 2 in Eq. (5.19) to find 𝑆2, and use the RK4_Classic algorithm. 
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Step (4): 

 In the same way as in step 3, and by using Eq. (5.18) and Eq. (5.19), 

compute 
𝑑𝑆2

𝑑𝑡
, 𝑆3,

𝑑𝑆3

𝑑𝑡
𝑆4, …, and so on. 

 

5.6 Solution of Non-Linear VIEs Using B-Spline Functions 

 

In this section, we use first-, second-, third- and fourth-order B-spline functions to 

seek and find the numerical solution of non-linear VIEs in the form: 

 Φ(𝑥) = 𝑓(𝑥) + ∫𝑘

𝑥

0

(𝑥, 𝑡, Φ(𝑡))𝑑𝑡  ; 𝑥 ∈ 𝐼 ∈ [𝑎, 𝑏] (5.20) 

where 𝑓 is assumed to be continuous on 𝐼, and 𝑘 denotes a given continuous 

function. First, we derive a new formula that is essential for our work. 

 

Theorem 5.1: (Fundamental theorem). 

This is the generalized form of the basic theorem in integral calculus, Leibnitz’s 

generalized formula [46]. 

 

 

𝑑

𝑑𝑥
∫ 𝐹(𝑥, 𝑦)𝑑𝑦

𝛽(𝑥)

𝛼(𝑥)

= ∫
𝜕𝐹(𝑥, 𝑦)

𝜕𝑥

𝛽(𝑥)

𝛼(𝑥)

𝑑𝑦 + 𝐹(𝑥, 𝛽(𝑥))
𝑑𝛽(𝑥)

𝑑𝑥
 

           −𝐹(𝑥, 𝛼(𝑥))
𝑑𝛼(𝑥)

𝑑𝑥
       

 

 

 

(5.21) 

 

Remark 5.1: 

1- Leibnitz’s generalized formula can be written as follows: 

 

𝑑

𝑑𝑥
∫ 𝐹(𝑥, 𝑦, Φ(𝑥))𝑑𝑦

𝛽(𝑥)

𝛼(𝑥)

= ∫
𝜕𝐹(𝑥, 𝑦,Φ(𝑥))

𝜕𝑥

𝛽(𝑥)

𝛼(𝑥)

𝑑𝑦 + 𝐹 (𝑥, 𝛽(𝑥),Φ(𝛽(𝑥)))
𝑑𝛽(𝑥)

𝑑𝑥
 

       −𝐹 (𝑥, 𝛼(𝑥),Φ(𝛽(𝑥)))
𝑑𝛼(𝑥)

𝑑𝑥
   

 

2- if 𝛼(𝑥) = 0 and 𝛽(𝑥) = 𝑥 then Leibnitz’s generalized formula can be written as: 
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𝑑

𝑑𝑥
∫𝐹(𝑥, 𝑦, Φ(𝑦))𝑑𝑦

𝑥

0

= ∫𝐹(𝑥, 𝑦,Φ(𝑦))

𝑥

0

+ 𝐹(𝑥, 𝑥,Φ(𝑥)) (5.22) 

 

Theorem 5.2:  

For all 𝑛 ≥ 0 

 

𝑑𝑛

𝑑𝑥𝑛
∫𝑘(𝑥, 𝑡, Φ(𝑡))𝑑𝑡

𝑥

0

= ∫
𝑑𝑛

𝑑𝑥𝑛
𝑘(𝑥, 𝑡, Φ(𝑡))𝑑𝑡

𝑥

0

 

 +∑
𝑑𝑗−1

𝑑𝑥𝑗−1

𝑛−1

𝑗=1

(
𝑑𝑛−𝑗

𝑑𝑥𝑛−𝑗
𝑘(𝑥, 𝑡, Φ(𝑡))|𝑡=𝑥)     

         +
𝑑𝑛−1

𝑑𝑥𝑛−1
𝑘(𝑥, 𝑥,Φ(𝑥)) 

 

 

 

 

 

(5.23) 

 

Proof: 

Mathematical induction is used to prove this theorem. 

 

In order to establish the validity of this theorem, the following steps are needed: 

 

(i) prove that the theorem is true for 𝑛 = 1, 

i.e. 

𝑑

𝑑𝑥
∫𝑘(𝑥, 𝑡, Φ(𝑡))𝑑𝑡 = ∫

𝑑

𝑑𝑥
𝑘(𝑥, 𝑡, Φ(𝑡))𝑑𝑡

𝑥

0

𝑥

0

+ 𝑘(𝑥, 𝑥,Φ(𝑥)) 

This has already been shown in Remark (5.1) (2). 

(ii) For fixed 𝑛 = 𝑘, assume Eq. (5.23) is true, i.e., 

 
𝑑𝑘

𝑑𝑥𝑘
∫𝑘(𝑥, 𝑡, Φ(𝑡))𝑑𝑡

𝑥

0

=

{
 
 
 
 

 
 
 
 
∫
𝑑𝑘

𝑑𝑥𝑘
𝑘(𝑥, 𝑡,Φ(𝑡))𝑑𝑡                               

𝑥

0

+∑
𝑑𝑗−1

𝑑𝑥𝑗−1

𝑘−1

𝑗=1

(
𝑑𝑘−𝑗

𝑑𝑥𝑘−𝑗
𝑘(𝑥, 𝑡, Φ(𝑡))|𝑡=𝑥)

+
𝑑𝑘−1

𝑑𝑥𝑘−1
𝑘(𝑥, 𝑥, Φ(𝑥))                              }

 
 
 
 

 
 
 
 

 (5.24) 

 

Then we need to prove that Eq. (5.23) is true for 𝑛 = 𝑘 + 1, that is we want to prove 

that: 
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𝑑𝑘+1

𝑑𝑥𝑘+1
∫𝑘(𝑥, 𝑡, Φ(𝑡))𝑑𝑡

𝑥

0

=

{
 
 
 
 

 
 
 
 ∫

𝑑𝑘+1

𝑑𝑥𝑘+1
𝑘(𝑥, 𝑡, Φ(𝑡))𝑑𝑡                               

𝑥

0

+∑
𝑑𝑗−1

𝑑𝑥𝑗−1

𝑛−1

𝑗=1

(
𝑑𝑘+1−𝑗

𝑑𝑥𝑘+1−𝑗
𝑘(𝑥, 𝑡, Φ(𝑡))|𝑡=𝑥)

+
𝑑𝑘

𝑑𝑥𝑘
𝑘(𝑥, 𝑥,Φ(𝑥))                                       }

 
 
 
 

 
 
 
 

 

 

Differentiating Eq. (5.24) with respect to 𝑥 yields: 

𝑑

𝑑𝑥

𝑑𝑘

𝑑𝑥𝑘
∫𝑘(𝑥, 𝑡, Φ(𝑡))𝑑𝑡

𝑥

0

=

{
 
 
 
 

 
 
 
 𝑑

𝑑𝑥
∫
𝑑𝑘

𝑑𝑥𝑘
𝑘(𝑥, 𝑡,Φ(𝑡))𝑑𝑡

𝑥

0

                               

+
𝑑

𝑑𝑥
∑

𝑑𝑗−1

𝑑𝑥𝑗−1

𝑛−1

𝑗=1

(
𝑑𝑘−𝑗

𝑑𝑥𝑘−𝑗
𝑘(𝑥, 𝑡, Φ(𝑡))|𝑡=𝑥)

+
𝑑

𝑑𝑥

𝑑𝑘

𝑑𝑥𝑘
𝑘(𝑥, 𝑥, Φ(𝑥))                                   }

 
 
 
 

 
 
 
 

 

  

                                           

With the aid of Remark (5.1) (2), the following is obtained: 

𝑑𝑘+1

𝑑𝑥𝑘+1
∫𝑘(𝑥, 𝑡, Φ(𝑡))𝑑𝑡

𝑥

0

=

{
 
 
 
 

 
 
 
 ∫

𝑑𝑘+1

𝑑𝑥𝑘+1
𝑘(𝑥, 𝑡,Φ(𝑡))𝑑𝑡

𝑥

0

+
𝑑𝑘

𝑑𝑥𝑘
𝑘(𝑥, 𝑡, Φ(𝑡))|𝑡=𝑥

+∑
𝑑𝑗−1

𝑑𝑥𝑗−1

𝑛−1

𝑗=1

(
𝑑𝑘−𝑗

𝑑𝑥𝑘−𝑗
𝑘(𝑥, 𝑡,Φ(𝑡))|𝑗=𝑥)                 

+
𝑑𝑘

𝑑𝑥𝑘
𝑘(𝑥, 𝑥, Φ(𝑥))                                                    }

 
 
 
 

 
 
 
 

 

                      

Therefore, 

𝑑𝑘+1

𝑑𝑥𝑘+1
∫𝑘(𝑥, 𝑡,Φ(𝑡))𝑑𝑡

𝑥

0

=

{
 
 
 
 

 
 
 
 ∫

𝑑𝑘+1

𝑑𝑥𝑘+1
𝑘(𝑥, 𝑡, Φ(𝑡))𝑑𝑡                            

𝑥

0

+ ∑
𝑑𝑗−1

𝑑𝑥𝑗−1

  𝑛−1

𝑗=1

(
𝑑𝑘−𝑗

𝑑𝑥𝑘−𝑗
𝑘(𝑥, 𝑡, Φ(𝑡))|𝑡=𝑥)

+
𝑑𝑘

𝑑𝑥𝑘
𝑘(𝑥, 𝑥,Φ(𝑥))                                    }

 
 
 
 

 
 
 
 

  

     

Hence Eq. (5.23) is true for 𝑛 = 𝑘 + 1, so it is valid for all 𝑛. 
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If we differentiate Eq. (5.20) 𝑛 times with respect to 𝑥, using Eq. (5.23) we have: 

 

 
𝑑𝑛

𝑑𝑥𝑛
Φ(𝑥) =

𝑑𝑛

𝑑𝑥𝑛
𝑓(𝑥) +

{
 
 
 
 

 
 
 
 
∫
𝑑𝑛

𝑑𝑥𝑛
𝑘(𝑥, 𝑡, Φ(𝑡))𝑑𝑡                               

𝑥

0

+∑
𝑑𝑗−1

𝑑𝑥𝑗−1

𝑛−1

𝑗=1

(
𝑑𝑛−𝑗

𝑑𝑥𝑛−𝑗
𝑘(𝑥, 𝑡,Φ(𝑡))|𝑡=𝑥)

+(
𝑑𝑛−1

𝑑𝑥𝑛−1
𝑘(𝑥, 𝑥,Φ(𝑥)))                         

                                }
 
 
 
 

 
 
 
 

 (5.25) 

 

then putting 𝑥 = 0 gives: 

 

 Φ0
(𝑛)

= 𝑓0
(𝑛)
+    

{
 
 

 
 ∑

𝑑𝑗−1

𝑑𝑥𝑗−1
(
𝑑𝑛−𝑗

𝑑𝑥𝑛−𝑗
𝑘(𝑥, 𝑡,Φ(𝑡))|𝑡=𝑥) |𝑥=0

𝑛−1

𝑗=1

+
𝑑𝑛−1

𝑑𝑥𝑛−1
𝑘(𝑥, 𝑥,Φ(𝑥))|𝑥=0                         }

 
 

 
 

 (5.26) 

 

 Φ0
′ = 𝑓0

′ + 𝑘(0,0,Φ(0)) (5.27) 

 

Therefore, if we put 𝑛 = 2, and substitute 𝑥 = 0, we have: 

 

 Φ0
′′ = 𝑓0

′′ +

[
 
 
 
 

𝜕𝑘(𝑥, 𝑡, Φ(𝑡))

𝜕𝑥
|
𝑡=𝑥=0

 + [
𝜕𝑘(𝑥, 𝑥,Φ(𝑥))

𝜕𝑥
|
𝑥=0

+𝑘(0,0,Φ(0))Φ′(0)                                            
                                                                                                      ]

 
 
 
 

  (5.28) 

 

 

In a similar way, if we put 𝑛 = 3 then the third derivative of Eq. (5.20), after setting 

𝑥 = 0, becomes: 

  

 Φ0
′′′ = 𝑓0

′′′ +

[
 
 
 
 𝜕

2𝑘(𝑥, 𝑡,Φ(𝑡))

𝜕𝑥2
|
𝑡=𝑥=0

+
𝜕

𝜕𝑥
([
𝜕𝑘(𝑥, 𝑥, Φ(𝑡))

𝜕𝑥
|
𝑡=𝑥

) |𝑥=0

+(
𝜕2

𝜕𝑥2
(𝑘(𝑥, 𝑡, Φ(𝑡))) |𝑡=𝑥) |𝑥=0 +

𝜕

𝜕𝑥2
𝑘(𝑥, 𝑥, Φ(𝑥))

]
 
 
 
 

 (5.29) 

 

Now, we treat Eq. (5.20) using first-, second-, third-, and fourth-order B-spline 

functions as follows: 
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5.6.1 Using a First-Order B-Spline Function 𝑩𝟏(𝒔) 

 

For 0 ≤ 𝑠 ≤ 1, the first-order B-spline function formula is given by: 

𝐵1(𝑠) = 𝑏0(1 − 𝑠) + 𝑏1𝑠     ; 0 ≤ 𝑠 ≤ 1 

𝑏0 and 𝑏1 are control points. Now, if we take 𝑠 = 0 and 𝑠 = 1, we get 

𝑏0 = 𝐵
1(0) and 𝑏1 = 𝐵

1(1) respectively. Therefore, we have: 

 

 𝐵1(𝑠) = 𝐵1(0)(1 − 𝑠) + 𝐵1(1)𝑠      ; 0 ≤ 𝑠 ≤ 1 (5.30) 

 

The numerical solution of a system of non-linear VIEs using a first-order B-spline 

function is calculated by following the algorithm below: 

 

Algorithm for non-linear VIE using a first-order B-spline function (non-linear 

VIEB1SP): 

 

Step (1): 

a- Put ℎ = (𝑏 − 𝑎) + 𝑛    ; 𝑛 ∈ 𝑁. 

b- Set 𝑏0 = 𝑓0. 

Step (2): 

  Use the non-linear VIETRP algorithm to get an initial value for 𝑏1. 

Step (3): 

a- 𝑠𝑟 = 𝑎 + 𝑟ℎ   ; 𝑟 = 0,1,2,… , 𝑛. 

b-  Calculate 𝐵𝑟
1   ;  𝑟 = 0,1, … , 𝑛, by substituting 𝑠𝑟 in Eq. (5.30) and using 

steps 1, 2, and 3-a. 

 

5.6.2 Using a Second-Order B-Spline Function 𝑩𝟐(𝒔) 

 

For 0 ≤ 𝑠 ≤ 1, the second-order B-spline function formula is given by: 

 

 𝐵2(𝑠) = 𝑏0(1 − 𝑠)
2 + 2𝑏1(1 − 𝑠)𝑠 + 𝑏2𝑠

2      ; 0 ≤ 𝑠 ≤ 1 (5.31) 

 

The control points 𝑏0 and 𝑏1 can be found by substituting 𝑠 = 0 and 𝑠 = 1 in 𝐵2(𝑠); 

that is, 𝑏0 = 𝐵
2(0) and 𝑏2 = 𝐵

2(1) respectively. 
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Therefore, we have: 

𝐵2(𝑠) = 𝑏0(0)(1− 𝑠)
2 + 2𝑏1(1 − 𝑠)𝑠 + 𝐵

2(1)𝑠2      ; 0 ≤ 𝑠 ≤ 1 

To evaluate 𝑏1, we differentiate Eq. (5.31) once with respect to 𝑠, to get: 

𝑑𝐵2(𝑠)

𝑑𝑠
= −2𝑏0(1 − 𝑠) + 2𝑏1[𝑠(−1) + (1 − 𝑠)] + 2𝑏2𝑠 

Putting 𝑠 = 0 gives: 

𝑑𝐵2(0)

𝑑𝑠
= −2𝑏0 + 2𝑏1 

This shows that: 

 𝑏1 =
1

2

𝑑𝐵2(0)

𝑑𝑠
+ 𝑏0 

(5.32) 

 

The numerical solution of a system of non-linear VIEs using a second-order B-spline 

function can be calculated by following the algorithm below: 

 

Algorithm for non-linear VIE using a second-order B-spline function (non-

linear VIEB2SP): 

 

Step (1): 

a- Put ℎ = (𝑏 − 𝑎) + 𝑛    ; 𝑛 ∈ 𝑁. 

b- Set 𝑏𝑗0 = 𝑓𝑗0      ; 𝑗 = 1,2,… ,𝑚. 

Step (2): 

Use the non-linear VIETRP algorithm to get an initial value for 𝑏𝑗1    ; 𝑗 =

1,2,… ,𝑚. 

Step (3): 

a- Use step 1 and Eq. (5.27) to calculate 
𝑑𝐵2(0)

𝑑𝑠
    ; 𝑗 = 1,2,… ,𝑚. 

b- Compute 𝑏𝑗1; 𝑗 = 1,2, … ,𝑚  using steps 1 and 3-a and Eq. (5.32). 

Step (4): 

a- 𝑠𝑟 = 𝑎 + 𝑟ℎ    ; 𝑟 = 1,2, … , 𝑛. 

b- Calculate 𝐵𝑖𝑟
2     ; 𝑖 = 1,2,… ,𝑚 , 𝑟 = 0,1,… , 𝑛, by substituting 𝑠𝑟 in Eq. (5.31) 

and following steps 1, 2, 3 and 4-a. 
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5.6.3 Using a Third-Order B-Spline Function 𝑩𝟑(𝒔) 

 

The third-order B-spline function formula can be written as: 

 𝐵3(𝑠) = 𝑏0(1 − 𝑠)
3 + 3𝑏1(1 − 𝑠)

2𝑠 + 3𝑏2(1 − 𝑠)𝑠
2+𝑏3𝑠

3; (5.33) 

where 0 ≤ 𝑠 ≤ 1 and 𝑏0 and 𝑏1 are control points. Now, if we take 𝑠 = 0 and 𝑠 = 1, 

we get 𝑏0 = 𝐵
3(0) and 𝑏3 = 𝐵

3(1) respectively. 

Therefore, we have: 

 

𝐵3(𝑠) = 𝐵3(0)(1 − 𝑠)3 + 3𝑏1(1 − 𝑠)
2𝑠 + 3𝑏2(1 − 𝑠)𝑠

2+𝑏3𝑠
3        ; 0 ≤ 𝑠 ≤ 1  

 

To obtain 𝑏1, we differentiate Eq. (5.33) once with respect to 𝑠, to get: 

 

𝑑𝐵3(𝑠)

𝑑𝑠
= −3𝑏0(1 − 𝑠)

2 + 3𝑏1[(1 − 𝑠)
2 − 2(1 − 𝑠)𝑠] 

+3𝑏2[2(1 − 𝑠)𝑠 − 𝑠
2] + 3𝑏3𝑠

2    

 

Therefore, putting 𝑠 = 0 yields: 

 

𝑑𝐵3(0)

𝑑𝑠
= −3𝑏0 + 3𝑏1 

 

This shows that: 

 

 𝑏1 =
1

3

𝑑𝐵3(0)

𝑑𝑠
+ 𝑏0 

(5.34) 

 

In the same way, to obtain 𝑏2, we differentiate Eq. (5.33) twice with respect to 𝑠, and 

then set 𝑠 = 0, so we have: 

 

 𝑏2 =
1

6

𝑑2𝐵3(0)

𝑑𝑠2
− 𝑏0 + 2𝑏1 

(5.35) 

 

The numerical solution for a system of non-linear VIEs using  a third-order B-spline 

function is calculated using the following algorithm: 
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Algorithm for non-linear VIE using a third-order B-spline function (non-linear 

VIEB3SP): 

 

Step (1): 

a-  Put ℎ = (𝑏 − 𝑎) + 𝑛    ; 𝑛 ∈ 𝑁. 

b- Set 𝑏𝑗0 = 𝑓𝑗0       ; 𝑗 = 1,2,… ,𝑚. 

Step (2): 

Use the non-linear VIETRP algorithm to get an initial value for 𝑏𝑗3     ; 𝑗 =

1,2,… ,𝑚. 

Step (3): 

a- Using step 1 and Eq. (5.27), calculate 
𝑑𝐵𝑗

3(0)

𝑑𝑠
    ; 𝑗 = 1,2,… ,𝑚. 

b- Compute 𝑏𝑗1; 𝑗 = 1,2,… ,𝑚 using steps 1 and 3-a and Eq. (5.34). 

Step (4): 

a- Use steps 1 and 3 and Eq. (5.28) to calculate 
𝑑2𝐵𝑗

3(0)

𝑑𝑠2
    ; 𝑗 = 1,2, … ,𝑚. 

b- Compute 𝑏𝑗2; 𝑗 = 1,2,… ,𝑚  using steps 1, 3, and 4-a and Eq. (5.35). 

Step (5): 

a- 𝑠𝑟 = 𝑎 + 𝑟ℎ    ; 𝑟 = 1,2, … , 𝑛. 

b- Calculate 𝐵𝑖𝑟
2     ; 𝑖 = 1,2,… ,𝑚 , 𝑟 = 0,1,… , 𝑛, by substituting 𝑠𝑟 in Eq. (5.33) 

with steps 1, 2, 3, 4 and 5-a. 

 

5.6.4 Using a Fourth-Order B-Spline Function 𝑩𝟒(𝒔) 

 

The fourth-order B-spline function formula can be written as: 

 

 
𝑃(𝑠) = 𝑏0(1 − 𝑠)

4 + 4𝑏1𝑠(1 − 𝑠)
3    + 6𝑏2𝑠

2(1 − 𝑠)2 

+4𝑏3𝑠
3(1 − 𝑠) + 𝑏4𝑠

4;           0 ≤ 𝑠 ≤ 1 

 

(5.36) 

 

Therefore, in a similar way to what we have done before, we have: 

𝑏0 = 𝐵
4(0) and 𝑏4 = 𝐵

4(1) 

 , 𝑏1 =
1

4

𝑑𝐵4(0)

𝑑𝑠
+ 𝑏0 

(5.37) 
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 , 𝑏2 =
1

12

𝑑2𝐵4(0)

𝑑𝑠2
− 𝑏0 + 2𝑏1 

(5.38) 

 

and 

 𝑏3 =
1

24

𝑑3𝐵4(0)

𝑑𝑠3
− 3𝑏1 + 3𝑏2 + 𝑏0  

(5.39) 

 

The numerical solution of a system of non-linear VIEs using a fourth-order B-spline 

function can be calculated using the following algorithm: 

 

Algorithm for non-linear VIE using a fourth-order B-spline function (non-

linear VIEB4SP): 

 

Step (1): 

a-  Put ℎ = (𝑏 − 𝑎) + 𝑛    ; 𝑛 ∈ 𝑁. 

b-  Set 𝑏𝑗0 = 𝑓𝑗0      ; 𝑗 = 1,2,… ,𝑚. 

 

Step (2): 

Use the non-linear VIETRP algorithm to get an initial value for 𝑏𝑗4 ;  𝑗 =

1,2,… ,𝑚. 

 

Step (3): 

a- Using step 1 and Eq. (5.27), calculate 
𝑑𝐵𝑗

4(0)

𝑑𝑠
    ; 𝑗 = 1,2,… ,𝑚. 

b- Compute 𝑏𝑗4    ; 𝑗 = 1,2,… ,𝑚 using steps 1 and 3-a and Eq. (5.37). 

Step (4): 

a- Use steps 1 and 3 and Eq. (5.28) to calculate 
𝑑𝐵𝑗

4(0)

𝑑𝑠
    ; 𝑗 = 1,2,… ,𝑚. 

b- Compute 𝑏𝑗2    ; 𝑗 = 1,2,… ,𝑚 using steps 1, 3, and 4-a and Eq. (5.38). 

Step (5): 

a- Use steps 1, 3 and 4 and Eq. (5.29) to calculate 
𝑑3𝐵𝑗

4(0)

𝑑𝑠3
    ; 𝑗 = 1,2,… ,𝑚. 

b- Compute 𝑏𝑗3; 𝑗 = 1,2,… ,𝑚 using steps 1, 3, 4 and 5-a and Eq. (5.39). 

 

Step (6): 

a- 𝑠𝑟 = 𝑎 + 𝑟ℎ    ; 𝑟 = 1,2, … , 𝑛. 
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b- Calculate 𝐵𝑖𝑟
4     ; 𝑖 = 1,2,… ,𝑚 , 𝑟 = 0,1,… , 𝑛, by substituting 𝑠𝑟 in Eq. (5.36) 

with steps 1, 2, 3, 4, 5 and 6-a. 

 

 

5.7 Numerical Examples 

 

We will show here some numerical results for a non-linear VIE with variable 

coefficients using spline functions. We use a quadratic classic spline with the 

trapezoidal rule (Qu-Sp1), a quadratic classic spline with the classic Runge-Kutta 

fourth order method (Qu-Sp2), a cubic classic spline with the trapezoidal rule (Cu-

Sp1), a cubic classic spline with the classic Runge-Kutta fourth order method (Cu-

Sp2), a first-order B-spline (B1-Sp), a second-order B-spline (B2-Sp), a third-order 

B-spline (B3-Sp), and a fourth-order B-spline (B4-Sp). The results for these methods 

are obtained using the non-linear VIEQSP1, non-linear VIEQSP2, non-linear 

VIECSP1, non-linear VIECSP2, non-linear VIEB1SP, non-linear VIEB2SP, non-

linear VIEB3SP and non-linear VIEB4SP algorithms, respectively. 

 

 

Test Example 1: 

Consider the non-linear VIE: 

Φ(𝑥) = 1 + 𝑥2 − 𝑥𝑒𝑥
2
+ ∫𝑒𝑥

2−𝑡2−1

𝑥

0

𝑒Φ(𝑡)𝑑𝑡 

with exact solution is [53]: 

 

Φ(𝑥) = 1 + 𝑥2 

 

 

The results for the Test Example 1 using a first-order B-spline (B1-Sp), a second-

order B-spline (B2-Sp), a third-order B-spline (B3-Sp), a fourth-order B-spline (B4-

Sp), a quadratic spline using the trapezoidal rule (Qu-Sp1), a quadratic spline using 

the classic fourth-order Runge-Kutta method (Qu-Sp2), a cubic spline using the 

trapezoidal rule (Cu-Sp1) and a cubic spline using the classic fourth-order Runge-

Kutta method (Cu-Sp2) are shown in Table 10 and Table 11. 



71 

 

Table 10 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 1 Using the B1-Sp, B2-Sp, B3-Sp and B4-Sp 

Methods 
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Table 11 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 1 Using the Qu-Sp1, Qu-Sp2, Cu-Sp1 and 

Cu-Sp2 Methods 

 

 

 

 

 

Test Example 2: 

Consider the non-linear VIE: 

Φ(𝑥) = cos(𝑥) − sin(𝑥) −
1

4
sin(2𝑥) +

1

2
𝑥 −

1

2
𝑥2 +∫(𝑥 − 𝑡)Φ2(𝑡)𝑑𝑡

𝑥

0

 

with exact solution [53]: 

Φ(𝑥) = cos(𝑥) − sin(𝑥) 
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The results for the Test Example 2 using a first-order B-spline function (B1-Sp), a 

second-order B-spline function (B2-Sp), a third-order B-spline function (B3-Sp), a 

fourth-order B-spline function (B4-Sp), a quadratic spline using the trapezoidal rule 

(Qu-Sp1), a quadratic spline using the classic fourth-order Runge-Kutta method (Qu-

Sp2), a cubic spline using the trapezoidal rule (Cu-Sp1) and a cubic spline using the 

classic fourth-order Runge-Kutta method (Cu-Sp2) are shown in Table 12 and Table 

13. 

 

Table 12 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 2 Using the B1-Sp, B2-Sp, B3-Sp and B4-Sp 

Methods 
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Table 13 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 2 Using the Qu-Sp1, Qu-Sp2, Cu-Sp1 and 

Cu-Sp2 Methods 

 

 

 

 

Test Example 3: 

Consider the non-linear VIE: 

Φ(𝑥) = 𝑒𝑥 −
1

9
𝑒3𝑥 +

1

9
+
1

3
𝑥 + ∫(𝑥 − 𝑡)Φ3(𝑡)𝑑𝑡

𝑥

0

 

with exact solution [53]: 

Φ(𝑥) = 𝑒𝑥 
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The results for the Test Example 3 using a first-order B-spline function (B1-Sp), a 

second-order B-spline function (B2-Sp), a third-order B-spline function (B3-Sp), a 

fourth-order B-spline function (B4-Sp), a quadratic spline function using the 

trapezoidal rule (Qu-Sp1), a quadratic spline function using the classic fourth-order 

Runge-Kutta method (Qu-Sp2), a cubic spline function using the trapezoidal rule 

(Cu-Sp1) and a cubic spline function using the classic fourth-order Runge-Kutta 

method (Cu-Sp2) are shown in Table 14 and Table 15. 

 

Table 14 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 3 Using the B1-Sp, B2-Sp, B3-Sp and B4-Sp 

Methods 
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Table 15 Comparison Between the Exact Solution and the Numerical Solution of 

Φ(𝑥) Taking ℎ = 0.1 for Test Example 3 Using the Qu-Sp1, Qu-Sp2, Cu-Sp1 and 

Cu-Sp2 Methods 
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CHAPTER 6 

 

CONCLUSION 

 

6.1 Discussion 

 

In this thesis, Picard’s iteration method is introduced to find the solution of a non-

linear VIE of the second kind. 

In addition to the previous methods, there are other approaches that are important in 

finding solutions. These are the approximate or numerical methods. The importance 

of such methods lies in the fact that many problems cannot be solved using Picard’s 

iteration method, and it is very convenient to solve them using the numerical or 

approximate methods as a result of the great developments in computational methods 

used in computers. 

This proves the need to find and use numerical or approximate methods. 

Some numerical methods were used to find approximate solutions to non-linear VIEs 

of the second kind. 

A comparison was made between these methods by calculating the least square error 

(L.S.E.) between the calculated solution and the exact solution of the VIEs. 

Multistep methods, Runge-Kutta methods and spline functions were used to find the 

solution of non-linear VIEs of the second kind, and the exact results were presented. 

These results are compared below. 

Tables 16, 17, and 18 show a comparison between the results obtained from solving 

Test Examples 1, 2, and 3 using the multistep methods, Runge-Kutta methods and 

spline functions.  

The approximate or numerical solution of a non-linear VIE of the second kind is 

found, using some numerical methods. Algorithms are built, examples are solved and 

good results are obtained. A comparison is also made between these methods 

depending on the least square error (L.S.E.), which is calculated from the numerical 

solution against the exact solution. 
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The approximate solution of the non-linear integral equation Eq. (2.2) was obtained 

from multistep methods; these were described in chapter 3, sections 3, 4, and 5. For 

each method a computer program was written and several examples were solved. 

From our results, the following notes are drawn: 

1- Simpson’s 1/3 rule requires that the interval be subdivided into an even number of 

subdivisions, and Simpson’s 3/8 rule requires it to be subdivided into a number of 

subdivisions that is a multiple of three. 

2- In order to approximate the solution of the Volterra equation at the points 𝑡𝑖, 

Simpson’s 1/3 rule cannot define 𝑡𝑖 for all 𝑖, so we need to use a combination of 

Simpson’s 1/3 rule and Simpson’s 3/8 rule. 

 

In this thesis a single-step Runge-Kutta method of the second, third and fourth 

orderswas successfully used to find the numerical solutions of a non-linear VIE of 

the second kind. Examples were considered in this context. We note that the fourth-

order Runge-Kutta method gives a better approximation to the exact solution than the 

other orders of Runge-Kutta methods. 

Quadratic and cubic spline functions were introduced to find the numerical solutions 

to non-linear VIEs of the second kind. Several examples were applied for illustration 

and good results were achieved. 

The following points were identified: 

1-We found that a cubic spline function is superior to a quadratic spline function at 

𝑛 = 10 in all the examples. 

2-As 𝑛 increases, the error term decreases when quadratic and cubic spline functions 

are used, with no ended 𝑛 or even an optimal solution be handled. This is true for 

all examples. 

3-The interpretation of this paradox may lie in the fact that the mathematical 

treatment is insufficient for integral problems with this method. 

4-In all examples, the Runge-Kutta method is better than the trapezoidal rule for 

evaluating the integral involved. 

5-In all examples, the fourth-order Runge-Kutta method (RK4_Kutta’s) is better than 

all the other methods. 

This thesis introduces numerical methods for approximating the solution of a system 

of non-linear VIEs; these solutions use classic spline and B-spline functions of 
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different types. We have tried to emphasize some important ideas while maintaining 

a reasonable level of complexity. For one thing, we have always used a uniform step 

size. 

This method for solving non-linear VIEs has some advantages and some 

disadvantages. We conclude with the following remarks: 

1. The cubic classic spline function gives better accuracy than the quadratic classic 

spline function. 

2. The fourth-order B-spline function gives better accuracy than the first-, second-, 

and third-order B-spline functions. 

3. As the degree of the B-spline function increases, the error term is decreased. 

 

The results for the least square error (L.S.E.) for the different methods for Test 

Example 1 are shown in Table 16. 

 

Table 16 Comparison of the Error Between the Methods for Test Example 1 
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The results for the least square error (L.S.E.) for the different methods for Test 

Example 2 are shown in Table 17. 

 

 

Table 17 Comparison of the Error Between the Methods for Test Example 2 
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The results for the least square error (L.S.E.) for the different methods for Test 

Example 3 are shown in Table 18. 

 

 

Table 18 Comparison of the Error Between the Methods for Test Example 3 
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6.2 Recommendations 

 

Our recommendations for future work are as follow: 

1. Another type of spline function, such as cardinal spline functions, could be used to 

compute a numerical solution for a system of non-linear VIEs and a system of 

higher-order non-linear Volterra integro-differential equations (VIDEs). 

 

2. Another type of spline function, such as G-spline functions, could be used to 

compute a numerical solution for a system of non-linear VIEs and a system of 

higher-order non-linear VIDEs. 

 

3. Another order of B-spline functions could be used to solve a system of non-linear 

VIEs and a system of higher-order non-linear VIDEs. 

 

4. Other methods of numerical integration such as the Richardson and Romberg 

methods could be used. 
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