

MULTIFUNCTION ROBOT

CONTROLLED BY COMPUTER VISION SYSTEM

MOHAMMED SULAIMAN MUSTAFA

OCTOBER 2014

MULTIFUNCTION ROBOT

CONTROLLED BY COMPUTER VISION SYSTEM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

MOHAMMED SULAIMAN MUSTAFA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF

COMPUTER ENGINEERING

OCTOBER 2014

Title of the Thesis : Multifunction Robot Controlled by Computer Vision
System

Submitted by Mohammed Sulaiman MUSTAFA

Approval of the Graduate School of Natural and Applied Sciences, Çankaya
University.

Prof. Dr. Taner ALTUNOK
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Assist. Prof. Dr. Murat SARAN
 Head of Department

This is to certify that we have read this thesis and that in our opinion; it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Dr. Yuriy ALYEKSYEYENKOV
 Supervisor

Examination Date : 31.10.2014

Examining Committee Members

Assist. Prof. Dr. Yuriy ALYEKSYEYENKOV (Çankaya Univ.)

Assoc. Prof. Dr. Fahd JARAD (THK Univ.)

Assist. Prof. Dr. Abdül Kadir GÖRÜR (Çankaya Univ.)

__

__

__

 __

Prof. Dr. Taner ALTUNOK
 Director

iii

STATEMENT OF NON-PLAGIARISM PAGE

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last Name : Mohammed Sulaiman MUSTAFA

Signature :

Date : 31.10.2014

e : Mohammemememed Sulaiman

::::::

31 10.2014

iv

ABSTRACT

MULTIFUNCTION ROBOT

CONTROLLED BY COMPUTER VISION SYSTEM

Mohammed Sulaiman, MUSTAFA

M.Sc., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Yuriy ALYEKSYEYENKOV

October 2014, 82 pages

In this thesis, we try to come up and build a robot platform with multifunction

capabilities, easy to add, modify and delete those functions without redesigning, by

using easy use technology that can create a suitable efficient platform. The process of

building platform is by using figures, tables and programming code to make this

thesis capable to apply and implement in real world, showing obstacles and

challenges that lead to the key of success until it reaches the final goal. This thesis

requires only basic level in electronic and computer programming because we are

using a simplified way for building robot. The multifunction platform is a unique

idea and opens new space to experimenters to get benefits from this opinions or ideas

to use these functions in raw state, with no need to study hardware and software

material of robot. The final robot form is shown in the last pages of this thesis as

appendix.

Keywords: Robotics, Computer Vision, Machine Vision, Microcontroller.

v

ÖZ

BİLGİSAYAR GÖRÜNTÜ SİSTEMİ İLE KONTROL EDİLEN

ÇOK FONKSİYONLU ROBOT

Mohammed Sulaiman, MUSTAFA

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi: Assist. Prof. Dr. Yuriy ALYEKSYEYENKOV

Ekim 2014, 82 sayfa

Bu tez çalışmasında, uygun verimlilikte platformları oluşturabilen kolay teknolojiyi

kullanarak, tekrar tasarlanmasına gerek kalmaksızın fonksiyonlarına bir şeyler

eklenmesi, modifiye edilmesi ve silinmesi kolay olan bir robot platformu yapmaya

çalıştık. Bu platform oluşturma süreci, figürleri oluşturma, tablolar ve programlama

kodlarından oluşarak, bu tezin gerçek hayatta uygulanmasını sağlayacak ve nihai

amacına ulaşıncaya kadar başarı anahtarının zorluklarını gösterecektir. Bu tez için

sadece temel düzeyde elektronik ve bilgisayar programlaması gerekir çünkü biz

robot yapımı için basitleştirilmiş bir yol uyguluyoruz. Çok fonksiyonlu platform

kendine has bir fikirdir ve deney yapanların robotun donanım ve yazılımı üzerinde

çalışmaya gerek duymadan bu fonksiyonları ham hali ile kullanması amacıyla bu

fikirlerden faydalanması için onlara bir yol açar. Robotun son hali, bu tezin son

sayfası olan ekte sunulmuştur.

Anahtar Kelimeler: Robotik, Bilgisayar Gösterim, Makine Görme, Mikro

Kontrolör.

vi

ACKNOWLEDGEMENTS

I would like to express my special thanks to those names below, for them supports,

efforts, supervision, special guidance, suggestions, and encouragement through the

development of this thesis and for the department staff.

Special thanks to my teachers in university especially my supervisor:

Assist. Prof. Dr. Yuriy ALYEKSYEYENKOV.

Special thanks to my family especially my brother:

Assist. Samer Sulaiman MUSTAFA.

Special thanks to my friend’s especially my close friend:

Assist. Ahmed Burhan MOHAMMED.

vii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM .. iii

ABSTRACT ... iv

ÖZ ... v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES ... x

LIST OF TABLES .. xiii

LIST OF ABBREVIATIONS ... xiv

CHAPTERS

1. OVERVIEW ... 1

1.1. Introduction .. 1

1.2. Definitions .. 2

1.3. Background and Early Systems ... 5

1.4. Fields of Applications ... 7

 1.4.1. Submarines Field .. 8

 1.4.2. Space Field ... 8

 1.4.3. Military Field.. 9

 1.4.4. Industry Field ... 9

1.5. Thesis Goal..10

1.6. Thesis Outline ...10

2. DESCRIPTION OF HARDWARE SYSTEM ...11

2.1. Introduction ...11

2.2. Chassis of My Project Robot..12

viii

2.3. Peripheral Hardware ..12

 2.3.1. Motors ..13

 2.3.2. Relays ...16

 2.3.3. Robot Arm ..17

 2.3.4. Power Supply of System (Battery) ..20

 2.3.5. Camera ...22

 2.3.6. Steering...23

2.4. Core Hardware ..25

 2.4.1. Bridge to Hardware ...25

 2.4.2. Bridge to Software ..27

 2.4.3. Linking Two Bridges ..28

2.5. Summary ...28

3. DESCRIPTION OF THE SOFTWARE SYSTEM ..29

3.1. Introduction ...29

3.2. Software in SBM ...29

3.3. Communication SBM with SBC (SBM Side)35

3.4. Software in SBC ..36

3.5. Communication SBC with SBM (SBC Side)..39

3.6. OpenCV (Add-On Library) ..41

3.7. Image Structure in OpenCV ...47

3.8. Vision Input in OpenCV ..49

3.9. Object Representation in OpenCV ...50

3.10. Function: Find Laser Spot Using RGB Manipulating51

3.11. Function: Find Green Ball Using HSV Morphological Manipulating ...59

3.12. Function: Find Image Inside Image Using Feature Detection64

3.13. Function: Trained Object Finder Using Cascade Classifier Training68

3.14. Homing Guidance ..73

3.15. Summary ...76

4. CONCLUSION ..77

4.1. Characterization and Future Works ...77

ix

4.2. Obstacles and Challenges ...78

4.3. Recommendations and Developments ...80

REFERENCES .. R1

APPENDICES .. A1

A. PROJECT ROBOT PICTURES AND MEASUREMENTS A1

B. CURRICULUM VITAE ... A2

x

LIST OF FIGURES

FIGURES

Figure 1 The robots .. 2

Figure 2 The unmanned vehicles .. 3

Figure 3 The pods platform .. 4

Figure 4 The truck platform .. 4

Figure 5 The wheel platform... 5

Figure 6 Isaac Asimov .. 5

Figure 7 TT-26 ... 6

Figure 8 Raymond Goertz using E1 tele arm .. 7

Figure 9 Mr. Barack Obama playe soccer with ASIMO 7

Figure 10 Kingfish UUV .. 8

Figure 11 NASA space robots .. 8

Figure 12 Military robots, sword units .. 9

Figure 13 KUKA industry robots .. 9

Figure 14 Overview of my project robot ..11

Figure 15 Chassis used in project robot ...12

Figure 16 The motors ..13

Figure 17 The gear motors ...14

Figure 18 The brushless motors ...14

Figure 19 The servo motors ...15

xi

FIGURES

Figure 20 The steeper motors ..16

Figure 21 The relay ...16

Figure 22 Relay scheme ..17

Figure 23 Robot arm with five servo motors ..17

Figure 24 Arm panned to right by motor “A” ..18

Figure 25 Arm claw from close to open state by motor “E”19

Figure 26 Arm in “pistol mode” ..19

Figure 27 Arm in “cobra mode” ..19

Figure 28 Arm in “park mode” ..20

Figure 29 Comparison between three type batteries ...21

Figure 30 Cells of Li-ion ...22

Figure 31 Internal web camera for laptop ..22

Figure 32 Parallel steering ...23

Figure 33 All wheel steering ..24

Figure 34 Front wheel steering ..24

Figure 35 My project robot wheel system ..25

Figure 36 Arduino uno R3 ...26

Figure 37 Arduino uno R3 datasheet schema ...27

Figure 38 Laptop board using it as SBC ..27

Figure 39 Comparison among connection mediums ...28

Figure 40 Arduino IDE ..30

Figure 41 Visual C++ 2010 ultimate, “selecting template”38

xii

FIGURES

Figure 42 Project configuration properties, “general”38

Figure 43 Project configuration properties, “precompiled headers”39

Figure 44 Project configuration properties for openCV, “C\C++ general”........43

Figure 45 Project configuration properties for openCV, “linker general”44

Figure 46 Project configuration properties for openCV, “linker input”.............44

Figure 47 Source input test image ..58

Figure 48 Obtain result mask image ..58

Figure 49 Mask image enhancement ..58

Figure 50 HSV color representation...60

Figure 51 Dilate operation ...61

Figure 52 Erode operation ...61

Figure 53 Opening operation ...61

Figure 54 Closing operation ..62

Figure 55 Gradient operation ...62

Figure 56 Top hat operation...62

Figure 57 Black hat operation ..63

Figure 58 SIFT detection key points ..65

Figure 59 SIFT description with FLANN matching methods65

Figure 60 Vector file “.vec” content for rubik's cube70

Figure 61 Passive homing using “eye in hand” ..75

Figure 62 Multifunction system illustrating diagram ..78

xiii

LIST OF TABLES

TABLES

Table 1 Difference Between Image Processing and Vision Processing41

Table 2 Difference Between Machine Vision and Computer Vision42

xiv

LIST OF ABBREVIATIONS

UGV Unmanned Ground Vehicles

UAV Unmanned Aerial Vehicles

UUV Unmanned Underwater Vehicles

ASIMO Advanced Step in Innovative Mobility

PWM Pulse-Width modulation

GND Ground

NiMH Nickel–Metal Hydride

Li-ion Lithium-ion

Li-Po Lithium Polymer

SBM Single-Board Microcontroller

ATMEL Advanced Technology for Memory and Logic

RISC Reduced Instruction Set Computing

AVR Alf and Vegard RISC

PIC Peripheral Interface Controller

STM Sustainability Microelectronics

ARM Acorn RISC Machine

R3 Revision 3

SBC Single-Board Computer

LAN Local Area Network

GPS Global Positioning System

GPRS General Packet Radio Service

IDE Integrated Development Environment

GCC GNU Compiler Collection

ATM Automated Teller Machine

CLR Common Language Runtime

GUI Graphical User Interface

CV Computer Vision

xv

RGB Red, Green and Blue

HSV Hue, Saturation and Value

HSB Hue, Saturation and Brightness

FAST Features from Accelerated Segment Test

MSER Maximally Stable Extremely Regions

SURF Speeded Up Robust Features

SIFT Scale-Invariant Feature Transform

FLANN Fast Approximate Nearest Neighbor

XML Extensible Markup Language

HARR Alfred Haar

LBP Local Binary Patterns

HOG Histogram of Oriented Gradients

Mi-Fi Mobile Wireless Fidelity

1

CHAPTER 1

OVERVIEW

1.1 Introduction

The major goal of robotics is to imitate human—like activities. Robots can solve

several complex tasks without caring for the natural of the environment. All robots

until this day are unable to self learn and creativity [1], so robots need pre

programmed and sometimes need to be supervised and remote controlled or fully

automotive by themselves or hyper. Remote activity of robots is very important

because in some environment it is very dangerous or impossible to reach for

replacing or adding on operation without risking human life because human soul is

more precious than robots (Fig. 1).

Robotics involves three main processes [2]:

• Sense

• Think

• Act

• “Sense” is the technologies that demonstrate the innovative ways used by robots to

collect data about the world, including machines with vision, motion detection, and

ultrasonic mapping abilities.

• “Think” process includes many exhibits that explore how robots are programmed to

process information and act accordingly, including the many facets of robot.

Intelligence is basic for advanced and artificial programming. Intelligence systems

simulate human thoughts and emotions.

2

• “Act” is an obvious feature of most of robots, it is the theme of "acting" that

demonstrates how robots walk, roll, climb, fly, grasp and use tools, collect materials,

and build structures.

Figure 1: The robots

1.2 Definitions

The term robot is a mechanical or virtual artificial agent it is an electro-mechanical

machine that is usually guided by a computer programmer or electronic circuitry [3].

Some robots are fully automatic control and they do not need any type of observation

or control and named as autonomous robots, or other robots have some functions and

need human control and some other automatic functions. This type is named semi-

autonomous robots. Some others need fully remote control and without any human

need, they are dump machines. This type is named non-autonomous robots [4]. When

robots are autonomous they usually have less and fixed function like factory robots

that can have less function as moving some objects from one place to another, and

fixed function that grip the object from its accurate place. When autonomous robots

have a lot of flexible functions they need complex programming and a lot of

environments, and probabilities. The hardest one is when robots try to be human.

Until now they never achieve that but they are on their way to do it.

Building all robots stared through from non-autonomous and programmed and tested

in indoor environment like labs or workplaces then advance to semi-autonomous

with testing outdoor environment. If robots need to be fully autonomous then the

3

human controlling and observing is amputation from function to another with loop

back checking advanced robots.

Platforms include two main types, station robots and mobile robots. Station robots

have no capability to move from one place to another like arm robots used in

medicine and constructions. Also we have mobile robots used for various tasks and

include all environment operations like air, sea and ground. This robots are usually

named as unmanned vehicles because human is not on board. These vehicles maybe

observed and remotely controlled from far stations by human. Therefore, these

vehicles should be in minimum size as much as possible and designed careless on

creating internal environment for human. \since they are not ridden by human they

cheap in their price.

We have three main environments: Air, sea and ground thus these unmanned

vehicles are named as for ground “Unmanned Ground Vehicles” or for short “UGV”,

and for air named “Unmanned Aerial Vehicles” or for short “UAV”, and for sea

named “Unmanned Underwater Vehicles” or for short “UUV” [5] (Fig. 2).

Figure 2: The unmanned vehicles

The “UGV” usually have mobile ability with specific platform changed according to

terrain and natural operation. These platforms include three main types:

Pods, wheel and tracks [6]. Every platform has unique factors like: Speed, complex

and torque.

4

UGV platforms are important and well-selected to count on factors that can fit with

UGV natural operation. Pod platforms are very useful for complex mobile similar to

human nature but the process of building and balancing it is very complex. Pods are

different in number of legs, bipeds (two legs) and quadrupeds (four legs) and

hexapods (6 legs) are most popular pods, and increasing the pod legs resulted

efficiency with complexity (Fig. 3).

Figure 3: The pods platform

UGV track platforms are useful for torque factor that is used almost in all terrains,

but have high energy consumption. They are commonly used by military and space

explorer. Track’s platform scheme is not static and changed according to the kind of

the operation (Fig. 4).

Figure 4: The truck platform

5

UGV wheel platforms are useful for general and normal use, easy building and

cheaper than other types, and can go faster. The number of wheels is not static, more

wheels will be better for critical situations when some wheel are broken, others

wheels can be equivalent to the broken one (Fig. 5).

Figure 5: The wheel platform

1.3 Background and Early Systems

In 1921 the term “Robot” was first used by the writer Karel Capek for “Rossum's

Universal Robots” to denote fictional automata. In 1941 the term “Robotics” had

been used by the writer Isaac Asimov (Fig. 6) to describe technology of robots, in

1942 Asimov Write “Runaround” described three laws of robotics [7]:

1 - Robot must not harm human.

2 - Robot must obey human orders (except 1'st law).

3 - Robot must protect itself if the operator tries to contradict law 1 and 2.

Figure 6: Isaac Asimov

6

In the same period of time, i.e. 1940’s, UGV version was started to be developed.

UGV first design is used for military purposes only for wars, especially in the Word

Wide War 2 (WWII 1939-1945). TELETANK is the first UGV version designed by

the Union of Soviet Socialist Republic (USSR) in 1930’s in winter war against

Finland and also in WWII against German in 1941 [8]. This UGV was non

autonomous vehicle that remotely controlled from fix station like bunkers or mobile

station like tank that ranges from 500 to 1500 km. This UGV functionality is firing

bullets from guns machines, throwing heat or smoke bombs, mine explosive, also

treatment with chemical weapons that can suffocate humans if they are done by

themselves. These UGV have two possible frequencies to be controlled in order to

avoid interference and jamming with 16 to 24 different commands. The “TT” was

indicated to TELETANKS, for example TT-26 (Fig. 7).

Figure 7: TT-26

In 1950s the atomic energy started to be used, the radioactive substances that come

from atomic materials are dangerous for humans. This leads to the used station

robots in the field of work. In 1951 France, Raymond GOERTZ designed remote

controlled electronic arm that is used to manipulate radiation materials [9]. This arm

is named E1. E1 arm which has two arms: Master and slave. The master arm is

attached and controlled by human and slave arm repeats master arm action. The two

arms connected by steel cables and pulleys (Fig. 8).

7

Figure 8: Raymond Goertz using E1 tele arm

The most high technology and humanoid robots are called “ASIMO” (Advanced

Step in Innovative Mobility) (Fig. 9) [10], which are designed and developed by the

Japanese company Honda and, completed and introduced to public in November

2000, and continue in developing and creating new versions. Honda celebrates the

10th anniversary of ASIMO in November 2010 and creating application called “Run

with ASIMO” for smart phone to invoke virtually ASIMO walking [11].

Figure 9: Mr. Barack Obama play soccer with ASIMO

1.4 Fields of Applications

As we mentioned before robots have a lot of various types and forms and platforms,

which lead to be used in various applications, Technology and human needs are

increasing every day and this all leads to the capability of using robots in any

application, and minimizing the jobs as we can decrease the cost.

8

Fields of applications include:

1.4.1 Submarines Field

Robots can be used for water and submarines with water proof designed. They can

tolerate high sea pressure when dive too deep that is impossible for human. The best

example of submarine robot is “Kingfish” which has the ability to dive 600 meters

depths in water [12] (Fig. 10).

Figure 10: Kingfish UUV

1.4.2 Space Field

The space environment is lifeless, and sending humans to space is dangerous and

costly process. National Aeronautics and Space Administration (NASA) sends a lot

of robots to space, planets and moons [13] (Fig. 11).

Figure 11: NASA space robots

9

1.4.3 Military Field

Human life is more precious than machines thus robots are mostly used in military

operations such as, mine detecting and air surveillance photographs. The future of

this application is prosperous and the government will develop this kind of

technology nowadays [14] (Fig. 12).

Figure 12: Military robots, swords units

1.4.4 Industry Field

 A lot of Robots are used in factories because they have low error ratio and never

become tired from repeated works, also these robots are purchased only for one time

and need maintenance but their low cost for human employed insisted, no injury or

harm if they work for long hours like humans and very fast. Robots in industry have

few functions because every robot has a job to do repeatedly as it is preprogrammed

and re-executed. KUKA arms are commonly used in Industry Field [15] (Fig. 13).

 Figure 13: KUKA industry robots

10

1.5 Thesis Goal

The current thesis aim at building simple unmanned ground vehicle robot and

controlling software, showing and discussing steps to achieve the goal, and showing

the challenges and failure or success in the way to achieve that goal. This thesis also

aims at adding some primary functions and building platforms that accept and

modify new functions easily without redesigning.

Moreover, it aims at designing computable software to be used easily and widely,

and using computer vision programs. Thus, this thesis is entitled a multifunction

robot controlled by computer vision.

1.6 Thesis Outline

This thesis is divided into chapters. Every chapter completes the material presented

by the previous one, in order to avoid any ambiguity.

• Chapter one includes basic information and introduction to thesis goal concerning

building a robot and a type of robot, which is different from other types, to be ready

to enter the other chapters, in detail.

• Chapter two describes my hardware work and building robots in detail and

describes the system, it includes two parts the peripheral hardware and the core

hardware. Each part studies in details.

• Chapter three describes the software and functions that can be produced from our

system and what they are capable for with showing simple function examples.

• Chapter four discusses the conclusion, shows the power and weak point of system,

and works challenges and future recommendations.

11

CHAPTER 2

DESCRIPTION OF HARDWARE SYSTEM

2.1 Introduction

There is no robot without hardware. The hardware gives the robot mobility and

physical actions and feeds it with environment data. Selecting which hardware to be

used will affect the whole robot system. The hardware of the robot can be divided

into three parts: robot chassis, peripheral hardware and core hardware. Each section

will be covered in detail. The Project robot is will result final hardware form (Fig.

14).

Figure 14: Overview of my project robot

12

2.2 Chassis of My Project Robot

Selecting the type of chassis is very important, using floppy metal gain light weight

and losses firmness of chassis and using solid metals gain firmness and lost light

weight, vise versa. Selecting wrong metals maybe makes the project to fail and

redesigned from the beginning. Final chassis size is also important, optimize

designed chassis size must be as small as possible. If chassis too small that will make

problems of suffocation area for robot parts.

For project robot I select Aluminum (Al) polished plates that are used in some parts

of home building like kitchens, they bay as plat [16], using special tools for cutting

and denting (Fig. 15).

Figure 15: Chassis used in my project robot

2.3 Peripheral Hardware

Peripheral hardware in robots is the terminal electronic device that any robot has to

apply input or output to environment, like mobility, applying some operations,

fetching data vision from outside of robot. This type of hardware is not smart and

unable to process any information. Without this type of hardware the robot converts

to an empty box and loses connection with real world. Peripheral hardware can

include:

13

2.3.1 Motors

Electric motors have a main role in robots designed, make a lot of tasks, like moving

and doing custom action, using various types of motors, each motor has a place of

use. Motors in simple form are electric coil with electric flow current inside two

magnetic poles, using magnetic field with repulsion and attraction to obtain motion.

This motion leads to infinite rotation [17] (Fig. 16).

Figure 16: The motors

Usually, there are four common types of motor used in robots [18]:

1- Gear Motors

2- Brushless Motors

3- Servo Motors

4- Stepper Motors

Every Motor is characterized by specific factors, as follows [19]:

• Speed, measure by “rpm”, times of motor rotation in one minute.

• Working electronic status, like voltage, current, power. Where the volt is static for

 each motor, power and current depend on moment of motion status.

• Torque, measure by “KP” (kilopond or kilo gram per 1 cm for motors) [20].

• Physical status, like motor dimension and weights.

“Gear Motors” have specific features that are used in mobility medium because they

have high torque and high power consumption [21]. These motors have usually two

pinout repressing power supply line for motor. In my project I used four gear motors

connected with four wheels (Fig. 17).

14

Figure 17: The gear motors

“Brushless Motors” have specific features that are used in flying and take off with

middle power consumption. The rotation is very fast and high rotation in one second

through using multi coils in motor. Normal motors contain two or four coils and this

type of motors contain eight or more coils [22]. These types of motors are usually

connected to blades that make object able to take off. These motors have three

pinouts which are controlled by decoder circuit. In my project this type is not

included (Fig. 18).

Figure 18: The brushless motors

For “Servo Motors”, the rotation of this type of motors is limited for 180 degree

which means that these motors never rotated in continuous circle, so these motors

will be usually used in custom actions and movements. In my work, I used these

motors in robot arm and robot motion steering. These motors have three pinouts, two

pinouts for the power supply and one pinout for degree rotation [23] (Fig. 19). This

line is PWM.

15

PWM mean “Pulse-Width Modulation” it’s type of modulation that controls the

width or duration of pulse [24], when PWM adjusted width of plus to 1% duty cycle

the servo motor rotate to 1 decimal degree and reach to limit of far less of rotation, If

PWM is 100% duty cycle will rotate to 180 decimal degree and reach to limit of far

most rotation.

Figure 19: The servo motors

Servo motors, as mentioned above have three pinouts. Two pinouts represent power

supply and one pinout is PWM. The following paragraph shows the color for each

pinout and its purpose:

Pinout color: Yellow (Version 1) or White (Version 2) à PWM.

Pinout color: Red (Version 1 and Version 2) à Power (+5V DC).

Pinout color: Brown (Version 1) or Black (Version 2) à GND (Ground).

“Stepper Motors” are also brushless motors but they have at most four coils each coil

has one line input, for example if we have stepper motor with four coils each coil

have two pinouts, totally we have four multiply two equal eight pinout. This makes

to overall motor controlling and lead to fine control in speed of rotation and fine

stop. It is used a lot in robotics but in my project there is no need to use robot system

(Fig. 20).

16

Figure 20: The steeper motors

2.3.2 Relays

Relays are majorly used in controlling tasks. Their benefit is to separate controlling

from the device power supply, and known as driven circuit [25] (Fig. 21). There are

different types of really, such as like working volts and amount of ampere that can be

supported, usually in computer interfacing and robotics used relays of 5 volt because

of core volt, and supporting ampere is different depending on its use. As far as the

current project is concerned, supporting relays used to control robots wheels.

Figure 21: The relay

Relay scheme are almost the same. They have two pinouts which represent the

magnetic coil. When there are currents in coil, the relay will be in action and when

there are no currents the relay will be mute. The work volt of this coil is representing

the working of the relay. The other pinout for relay is representing the way of

controlling, usually has one way in simple relays or two or more. If we take one way

as an example we will have three pinouts, one pinout is a common line and the other

two points represent the “normally open line” and “normally closed line”. One pinout

is always connected to the common line in no-action state and called “normally

17

closed line”, and the other line is unconnected and called “normally open line”. In

action state the operation will be visa versa (Fig. 22).

Figure 22: Relay scheme

2.3.3 Robot Arm

Robots arms have a lot of shape and a lot of types, it depending on its work and what

is expected from arms to do. Therefore, we must focus on the arms that are

commonly used in robots and also in my project robot system as well. The common

arm must have claw to pick-and-place, also free rotation and tilt forward. This

motion is done by a series of motors, especially servo motor with a strong shaft

holding all motors together (Fig. 23).

Figure 23: Robot arm with five servo motors

In the above figure we can see all five servo motors. For motor “A” it is responsible

to rotate and pan whole arm 180 degree from far left to far right, and motor “B” is

responsible to tilt the arm to front and rare, for motors “C” and “D” they are also

responsible to tilt forward and backward but in fine steps that make the arm exactly

approach to target object.

18

And for the last motor “E” it controls on arm claw to pick-and-place objects. All

motors as we early state range from (1 to 180) degree, and adjusting this degree to

specific degrees can make arm applying the procedure of jobs. Applying these jobs

in sequence makes, the arms move as they want. Let us take an example of arm

modes:

Note:

Style of examples will be as:

Name of Motor [A,B,C,D,E] (Degree of that motor from 1 to 180) à Action.

Motor “A” controlled on arm pan from left to right of arm, if

A(1) à Arm turn to far limit left,

A(180) à Arm turn to far limit right,

A(90) à Arm facing front middle of far left and far right and this always will be the

robot start point (Fig. 24).

Figure 24: Arm panned to right by motor “A”

Motor “E” controlled on arm claw only, when

E(1) à claw is closed,

E(90) à claw is half open,

E(180)à claw full open (Fig. 25).

19

Figure 25: Arm claw from close to open state by motor “E”

The remaining motor will control the tilt arm from frontward to backward, we can

obtain different patterns of arm orders, and but the common and most used patterns

will be:

B(90),C(90),D(90) à “pistol mode” (Fig. 26).

Figure 26: Arm in “pistol mode”

B(90),C(180),D(90) à “cobra mode” (Fig. 27).

Figure 27: Arm in “cobra mode”

20

B(180),C(45),D(45) à “park mode” (Fig. 28).

Figure 28: Arm in “park mode”

Robot arms have a number of concrete pinouts. Two pinouts represent power supply

of arm (+, GND) as inputs to all motors they contain. And the pinout of each servo

motor represents the PWM and we have five PWM inputs. Totally we have seven

pinouts.

2.3.4 Power Supply of System (Battery)

Any robotic system will never be in action without power supply. There are a lot of

power sources like nuclear, solar systems and petroleum, etc. but we need simple and

efficient sources, therefore, the optimize selection is battery.

Batteries are simple, portable and easy to use. Also there are a lot of batteries, the

most important one is the multi reachable battery. Famous reachable battery includes

the following three types [26] (Fig. 29):

Lead-acid, Nickel–metal hydride (NiMH) and Lithium-ion (Li-Po or Li-ion).

For lead-acid battery it is well used in cars and generators. They have multi size and

each size has specific Watt, measurement by Ah (Ampere per hour).

These batteries have good long hours of usage and very good for use in robotic but

also have cons, which are heavy for small and middle size robots.

21

For NiMH battery, it is used in electronic device and some reachable batteries in

toys. These batteries have a major problem known as “Dreaded Memory Effect”

[27], which means when it loses their capacity for full recharging if they are

discharged repeatedly and then recharge the same amount without overcharge before

they have fully drained.

For Li-ion or know as lithium polymer battery, it is the best battery for using in

electronic device such as mobile phones, characterized by high energy density, no

memory effect, and only a slow loss of charge when they not in use.

These batteries commonly used in laptops, contained inside laptop battery cover

small cells of Li-ion battery, each cell has static core volt, using it in serial order

gaining increase in volts.

Figure 29: Comparison between three type batteries

For my project robot, I used Li-ion cells, their optimal choice, each cell has 3.7 volt

and as we state above we can get multi amounts of volts when they are connected

serial order that my project robot system needs multi volts, also I connect them in a

parallel order to get backed power (Fig. 30).

22

Figure 30: Cells of Li-ion

2.3.5 Camera

Most of robots contain cameras, and have data vision input to observe and apply

procedures. There are hundred’s types of camera and multi sizes, but we must be

sure to choose the one which is combatable with its system. The core hardware plays

a major role in the selection of the type of camera. In my project robot, USB camera

like web camera is combatable with the core hardware. USB camera has four pinouts

(in USB 1.x – 2.0), the two pinouts in edge is power supply (+,-) of camera and its 5

Volt. The other two pins represent data in and data out for the camera which is in

super fast serial order sending [28]. In my project robot system, I used two cameras,

one in front of the robot to see the front and the second is attached with robot arm

claw to see the pick able object clearly (Fig. 31).

Figure 31: Internal web camera for laptop

23

2.3.6 Steering

Steering robot means rotation and guides it to a specific point, if no steering robot

will turn left or right just in straight direction. Steering has a lot of methods.

Choosing the method can affect robot mobility in a good way or in a bad way. There

are three major types of steering method [29]:

Parallel wheel steering, all wheel steering and front wheel steering.

In parallel wheel steering there are four by four or six by six or more, wheels which

are divided into two parallel part left side and right side, every side can rotate clock

wise or counter clock wise and this movement lead the robot to go to different

directions for each status (Fig. 32).

In This type of steering no wheels have angling, this leads to robust in wheel shaft

construction but have some cons and this type of steering cannot do all types of

rotation and losing soft steering. This type of steering is used in army vehicles and

also in tracked robot platform.

Figure 32: Parallel steering

In all wheel steering, all wheels come in action of steering. In this type of steering all

wheels have mount of steer angle and also all wheels have specific rotation from

other wheels. This action leads to gain soft steering and custom rotation and motion

24

(Fig. 33). This type of steering has cons, complexity of building and a lot of defects.

This type of steering used in small and light robots which usually have four wheels.

Figure 33: All wheel steering

In front wheel steering, wheels are divided into two sides, front and remaining

wheels. The front wheels have the ability of steer angling while remaining wheels

cannot angling and just can be used as be as driver wheels giving robot thrust of

moving (Fig. 34). This type of steering has the same benefits of other two types of

steering and easy implementation.

Figure 34: Front wheel steering

In my project robot system, I used front wheel steering, using two front wheels as

steering and remains wheels as driver wheels that have big size four by four wheels

and two small size wheels (Fig. 35).

25

Figure 35: My project robot wheel system (bottom view)

2.4 Core Hardware

All peripheral hardware will be useless if there is no electronic board to control it,

and connect between the operator and the peripheral hardware. This type of hardware

must have the ability to connect and control motors and relays and other types of

hardware. Simultaneously it must be specialist in operating system and programming

language. These entire characteristic in one device is rare and semi impossible. The

idea is to use two core boards, the first core device bridged to robot hardware and the

second core board bridged to robot software, in the same time both core boards

connect each other as well. In this case it is easy to find each core board

characteristic alone and independent from each other. So we can divide core

hardware, as follows:

2.4.1 Bridge to Hardware

In this section of bridge, we must select the best electronic board that can be

connected easily with robot hardware as motors, relays and other peripheral devices

and professional for control in electric input and output with compatible pinout. The

best selection for these devices is “Single-Board Microcontroller” or knows as

“SBM”. In markets now, there are a lot of SBM with different specifications like

Atmel AVR, PIC, STM32 and ARM. Every SBM has pros and cons [30]. The best

SBM is Atmel AVR which is represented by “Arduino” product.

26

Arduino is SBM contain microprocessor (single chip) with electronic card. This

SBM is built in Italy with wide distribute and cheap cost, Arduino has multi product,

we will focus on “Arduino Uno R3” (Fig. 36).

Figure 36: Arduino UNO R3

Arduino Uno R3 has multi pinouts. If we hold Arduino as aiming USB port to upper

and Microprocessor chip to front, we see in the upper one USB type “B” jack

(female) using for programming and uploading code, and one DC jack for power

supply that can be in range 5 Volt to 12 Volt.

In the right side we see a group of pins, pins from 3 to 13 which can be used as

digital input or output (core volt is 5 volt), pins that mark in tilde (~) (3,5,6,9,10,11)

can also be used as analog output (from 0 volt to 5 volt) or used as PWM that control

Servo Motors. Pin 13 is connected to internal small led that is used for test prosper.

Pin groups in the left (A0 to A5) side are used for analog input (from 0 volt to 5

volt). The remaining of pins are used as multi volt source “3.3” Volt and ground

signal “GND” and other pins are used for custom operation [31] (Fig. 37).

27

Figure 37: Arduino UNO R3 datasheet schema

2.4.2 Bridge to Software

In this section of bridge we must select electronic board that is professional with

software and compatible with programming language and easy to be connected to

networks and ability to remote. These types of boards must have an operation system

inside and internal storage to save control code. These boards are named as “Single-

Board Computer” or know as “SBC” [32]. In markets there are limited SBC that

satisfy our requirements. Result of this research indicate that the best option is to use

laptop mother board, getting rid of some extra part as cover, laptop screen, keyboard,

DVD driver. While keeping of hard drive and battery. Using laptop board as SBC in

robot has a lot of benefits, as uniform programming environment, and very

compatible with a lot of interface like networks and internets (Fig. 38).

Figure 38: Laptop board using it as SBC

28

2.4.3 Linking Two Bridges

Arduino as SBM and laptop board as SBC, as the last step are two connected parts.

Arduino is connected by USB port but also has extended ability to be connected with

LAN, Bluetooth, Wi-Fi and ZigBee and GPRS [33], while laptops have the ability to

connect most of the above ways. Every connection medium has pros and cons, and

choosing the right one depends on the system structure itself [34] (Fig. 39).

Figure 39: Comparison among connection mediums

2.5 Summary

The final robot hardware system of my project be include: Wheels with DC motors,

arms with servo motors, steering with servo motors, relays as electronic switches,

powers supply as a Lio-ion battery (laptop battery), Arduino as a single boarded

microcontroller and laptop board as a single boarded computer.

29

CHAPTER 3

DESCRIPTION OF THE SOFTWARE SYSTEM

3.1 Introduction

In the previous chapter we talked about hardware and all accessories in detail, but

none of them can achieve any object without software to control it. Robot software is

complex and to make it easy we must first select the best suitable software and

programming language. Moreover, we talked about peripheral robot hardware and

core robot hardware, for peripheral hardware they do not accept any programming

language just electric signal from core hardware. Core hardware is divided into two

parts, SBM and SBC. Every part has its own software and programming language.

We will study every part in detail.

3.2 Software in SBM

In the previous chapter we represented SBM as Atmel Microcontroller as “Arduino”

product and we talked about board pinout. Now it is the time to program it. The first

step is connecting Arduino with PC by using USB cable and software driver and

programming IDE (Integrated Development Environment).

The official website for Arduino is “http://arduino.cc”, to download the driver and

programming IDE from “http://arduino.cc/en/Main/Software”. The software package

contains both driver and IDE. The latest version includes more Arduino products and

more language code development. Below is the latest version which has multi

operating systems like windows, Linux and MAC OSX. Then we select the type of

software package as self installation or portable compressed file, best chooses is ZIP

file (compressed file for non-administrator install). The best place extract ZIP file to

30

last drives that does not contain an operating system and not risk or reformatting that

drive. After we extract it we will see multiple folders, folder named “DRIVERS”

contain driver software for Arduino and we can select this folder when the operating

system asks for Arduino driver. Folder name “EXAMPLES” contains the example

file that we can import and modify it to match our jobs. In root folder file name

“ARDUINO.EXE”, this file opens Arduino IDE for programming and uploading

code. Work file extension is “*.INO”. After running Arduino IDE we will see

programming environment (Fig. 40).

Figure 40: Arduino IDE

We have some important commands in file menu. First we must choose which

Arduino board we want to upload by following: “File Menu à Tools à Board”.

Then selecting the number of port that Arduino is connected to PC by USB

(communication port), it will auto detect by IDE they just need to confirm selection,

because sometimes they have more than one board to connect, by following:

“File Menu à Tools à Port”. To start with any project some static steps:

1- Beginning: We have three choices: new project or load previous work or load

example, and after finishing we have to save and close, all of this operation in:

“File Menu à File”.

2- Writing or editing codes.

31

3- Verifying: We check if the code has any errors by following:

“File Menu à Sketch à Verify / Compile”. If there is any error we should go back

to step (2).

4- Uploading: We must be sure that Arduino is connected to PC and selecting the

right board and right communication port, then we upload code to microprocessor

ATMEL chip is existed that exist inside Arduino. This code has not volatile and does

not need power supply to keep programming code and also re writable multiple time

[35].

Arduino IDE use “AVR-GCC” as programming compiler [36]. Programming

language similar to C++ style, Inside Arduino IDE we have two main functions:

“Setup” and “Loop”.

“Setup” function is used to set variable and alter the option and runs once when

Arduino boot is up. Where “Loop” function runs repeatedly in loop form until power

supply is cut from Arduino.

In Arduino IDE we have a lot of commands, but in general we have the major

operation that is always repeated in project, to make these commands run once we

write them inside “Setup” function or want run repeatedly then write in “Loop”

function.

Note:

• All codes ended by “;”.

• For comment inside code used “//” for one line, and “/*” “*/” for multiline.

• Capital and small letters sensitive.

• All below codes (SBM only) applied to “Arduino UNO R3”.

• Codes are between these comments “//CODE STAR” to “//CODE END” in Italic

 text font form.

32

We can divide operations into:

1- Digital output, used pins from (2 to 13):

//CODE START

DigitalWrite(4,1);

DigitalWrite(4,0);

/*

Where 4 is pins number and 0 as zero volt or 1 as 5 volt in digital output form

*/

//CODE END

2- Analog output, used only PWM pins (3, 5, 6, 9, 10, 11):

//CODE START

AnalogWrite(6,0);

AnalogWrite(6,128);

AnalogWrite(6,255);

/*

Where 6 is pin number and output is range from (0 to 255), 0 is zero volt, 128 is 2.5

volt and 255 is 5 volt

*/

//CODE END

3- Digital input, used pins from (2 to 13):

//CODE START

int d;

d = DigitalRead(4);

/*

 Where “d” is integer variable contain input digital value 1 or 0

*/

//CODE END

33

4- Analog input, used pins from (A0 to A5):

//CODE START

int a;

a = AnalogRead(A2);

/*

Where “a” is integer variable contain analog value from pin A2 in range from (0 to

1023) where 1023 is 5 volt.

*/

//CODE END

5- Delaying, if the program is too fast we can delay it:

//CODE START

delay(1000);

// where 1000 is millisecond (1000 millisecond = 1 second)

//CODE END

6- Mapping, remap the number from one range to another range, used for analogs

range:

//CODE START

int a;

a = AnalogRead(A1);

float m;

m = map(a,0,1023,0,5);

/*

 m is float variable remap from (0-1023) range to (0-5) range, m now is true value of

input analog volt.

*/

//CODE END

34

7- Programming library, we can extend commands by using extra library:

//CODE START

// This command writes outside of functions.

#include <Servo.h>

// where “Servo” an example for represent library name

//CODE END

8- Servo motor controlling, used only PWM pins (3, 5, 6, 9, 10, and 11), we follow a

fixed style:

//CODE START

#include <Servo.h>

// import library, this command write outside functions only.

Servo motorA;

Servo motorB;

// declaration for servo motor, this command write outside functions only.

motorA.attach(3);

motorB.attach(5);

/*

Attaching motors to destination pin, motors in this level start work and lock there

angle, this command write inside “Setup” function only.

*/

motorA.write(33);

motorB.write(134);

// move motors to destination angle, where angle between (0 to 180)

motorA. detach();

motorB. detach();

//release motors, motors in this level will free

//CODE END

35

The other operation in Arduino is including the eight operations above. Arduino is

built as a self-sufficiency environment and instruction execution. These operations

mean that instruction verify and compile then upload to chip, after that will repeat the

execution of this code and not accept any order from PC any more, but for robotics

operation we need real-time controlling. So we will use Arduino as a real-time

interface board.

3.3 Communication SBM with SBC (SBM Side)

We mean to make Arduino ready to control by using SBC in any time for input or

output operation without delays. In Arduino we have this capability by using same

the communication when we upload codes before.

To make Arduino receive and send instruction with SBC in real-time we should use

some fixed steps:

1- Initialize communication port (serial port) with specific data bit speed 9600:

//CODE START

Serial.begin(9600);

// this command will write on “Setup” function only

//CODE END

2- For sending data to SBC:

//CODE START

Serial.print("DATA1");

Serial.print("DATA2");

Serial.println("");

Serial.flush;

delay(2);

// where “DATA” replace by variables or any information want to send

//CODE END

36

3- For receive data from SBC:

//CODE START

int d=0;

if (Serial.available()) d = Serial.read();

/*

 when any data send and available for SBC will import it in “d” variable this

command will write in “loop” function only.

*/

if (d== X) // Instructions

if (d ==Y) // Instructions

if (d == Z) // Instructions

/*

X, Y and Z are numbers that SBC send to SBM. In this style we can do more than one

Instruction when data send from SBC

*/

//CODE END

To test these communications when we have no SBC available in mean time, we can

open simulation window in Arduino IDE to substitute SBC by following:

“File Menu à Tools à Serial Monitor”.

3.4 Software in SBC

In the previous chapter we talk about the best select for SBC, and we end to choose

laptop motherboard as SBC board. Using of LMB (laptop mother board) has a lot of

benefits in software part. The main benefit is very compatible in giving us the same

environment that already given to students and a lot of people working on. Power

supply is not problematic anymore in SBC because LBM already battery has supply,

with great storage that may contain any operating software with any software

programming language.

The best compatible software with conventional program language is “Windows”

operating system like “Windows XP” and “Windows 7”. Lower or upper version is

37

not recommended. Also this system is used in ATM (Automated teller machine) [37]

to simplify network and database connection. Normally we install software to LBM

and we continue further to prepare programming software, for Windows operating

system conventional programming language is Visual Studio (VS), version 2010 can

install in Windows XP and Windows 7 [38]. Visual Studio also includes multi types

as: Ultimate, Premium, Pro and Express. Where Ultimate is the best package but not

frees and express is free and downloads from this link

“http://www.visualstudio.com/downloads/download-visual-studio-vs#d-2010-

express”.

After fixed procedure to complete install. Visual Studio is multi platform

programming language include: VBasic, VC#, VC++ and VF#. Every language can

be connected connect to SBM by using fixed style in every each platform, but in the

same time we need to add on programming library to extended program language

capability like using computer vision operation. The best platform is flexible and

accepts all kinds of libraries are VC++. So the final choose is “Visual C++ 2010

Ultimate”.

In VC++ we have two types of codes managed and unmanaged [39], the difference

between them are code managed by the third party or intermediate language when it

compiled or not, unmanaged code is also called native code that CPU can directly

execute to machine code [40], VC++ and has the ability to be in both forms, to be

perfect connecting to add-on library we must sure that what we select should be

managed by CLR (Common Language Runtime), when creating the new project we

must select the following template: “Visual C++ à CLR”. We would also select

“NET Frame 2.0” to be compatible with early operating system, and then we decide

whether our project needs graphical user interface (GUI) or not just as black

windows. Template “Windows Forms Application” support GUI interface and “CLR

Console Application” is without GUI (Fig. 41).

38

Figure 41: Visual C++ 2010 ultimate, “selecting template”

When we create consoled or windows formed application we need to prepare it to

accept add-on library. These steps is fixed and done once for each one project, and

the steps are:

1- Press ALT+F7 inside environment of project, this will show project configuration

properties.

2- In “General” section highlighted setting must be changed, as shown below

(Fig. 42).

Figure 42: Project configuration properties, “general”

39

3- In “Precompiled Headers” section highlighted setting must be changed, as shown

below (Fig. 43).

Figure 43: Project configuration properties, “precompiled headers”

After that the project is ready to accept, add-on library, and this is done once for

every new project.

3.5 Communication SBC with SBM (SBC Side)

In the previous section we prepared SBM to accept input and output from SBC, now

it is the time to prepare SBC to send and receive commands to SBM using

communication port, all code writings will be on base file (the same name of the

project is named with “.CPP” extension), following the fixed steps below [41]:

1- Open communication port from SBC side:

//CODE START

System::IO::Ports::SerialPort^ link;

link = gcnew System::IO::Ports::SerialPort;

link->PortName= "COM4";

40

link->Handshake= System::IO::Ports::Handshake::None;

link->BaudRate = 9600;

link->Parity= System::IO::Ports::Parity::None;

link->StopBits = System::IO::Ports::StopBits::One;

link->DtrEnable = false;

link->RtsEnable = false;

link->Open();

/*

Where “4” in “COM4”, represent the number that SBM used it as communication

port

*/

//CODE END

2- Sending data from SBC to SBM will be as:

//CODE START

link->Write("DATA");

// where “DATA” represent output data to SBM

//CODE END

3- Receiving data from SBM will be as:

//CODE START

String^ k;

k = link->ReadLine();

// where k is system string variable

//CODE END

4- Closing port when all operations would finish:

//CODE START

Link->Close();

//CODE END

41

We can also precede with fixed protocols between SBC and SBM and concurrent

both sides with the same command.

3.6 OpenCV (Add-On Library)

The above section explains in detail the connection between control board and robot

device and how, this path was lead in. Now the other path must lead out, mean the

connection between robot and outside environment by using computer vision

operation to feed robot with images and video. The difference between image

processing and vision processing are shown below [42] (Table 1):

 Table 1: Difference Between Image Processing and Vision Processing

Therefore, to apply some procedures in vision processing we need first to go through

from image processing first. Vision processing is called for computer vision and

machine vision, the two vision processes are similar and hard to find difference in

both methods, therefore, a lot of people mixed between them and the difference can

be as in the above table [43] (Table 2):

Operation Image Processing Vision Processing

Input Raw Image(Source) Enhancement Image

Procedure
Smoothing, Sharpening,

Contrasting and Stretching

Shape and Object Recognition,

Training and Learning

Output Enhancement Image Inference, Decision and Action

42

Feature Machine Vision Computer Vision

Natural usage Practice Academic

Cost Critical Concern Minor Concern

Dedicated electronic

hardware usage
Yes, Very Likely No

None Algorithm solution

usage
Yes No

Input Data Real Time Inputs Computer File

Knowledge of human

vision influences system

design

Most Unlikely Very Likely

Nature of Solution Satisfactory Performance Optimal Performance

Output Data
Simple signal to control

external equipment
Complex

Table 2: Difference Between Machine Vision and Computer Vision

In VC++ Using original command for computer vision is very hard and very slow

processing. The best thing is to add-on library to extend VC++ ability, to gain speed

and uniform style programming. The best library to achieve it is OpenCV, OpenCV

mean open source computer vision developed by Intel Russia research center in

Nizhny Novgorod, and now supported by Willow Garage and Itseez. It is free to

download and install from “www.opencv.org”. Setting up OpenCV in VC++ is not

easy and a lot of people have problems and there are many ways to setting it up.

43

The best and simple way is to follow the fixed stable for any new project (after

prepare it for CLR):

1- Press ALT+F7 inside environment of Project, this will make to show project

configuration properties.

2- In “C\C++ à General” section highlighted setting must be added with new

settings, which are shown in the following figure (Fig. 44):

Figure 44: Project configuration properties for opencv, “C\C++ general”

Item Add: header folder path “*.H” and “*.HPP”, that are found in

“[PATH]\opencv\build\include”.

3- In “Linker à General” section highlighted setting must be added with new

settings, which are shown in the following figure (Fig. 45):

44

Figure 45: Project configuration properties for opencv, “linker general”

Item add: Static library folder path “*.LIB”, that found in

“[PATH]\opencv\build\x86\vc10\lib”.

Where “x86” for 32bit operating system and “vc10” for VC++ 2010.

4- In “Linker à Input” section highlighted setting must be added with new settings,

which are shown in the following figure (Fig. 46):

Figure 46: Project configuration properties for opencv, “linker input”

45

Item add: Static library files “*d.LIB”, that found in

“[PATH]\opencv\build\x86\vc10\lib”.

Where “x86” for 32bit operating system and “vc10” for VC++ 2010.

Every LIB file name that is ended with “d” letter must be written in the highlighted

setting. The files have fixed style:

(“opencv_”)(LIBRARY NAME)(Version Number)(“d”).(“LIB”).

For current stable version number when this thesis is written is 2.4.9 so the files will

be: (Note: files must separate by “;”)

“opencv_calib3d249d.lib;opencv_contrib249d.lib;opencv_core249d.lib;opencv_feat

ures2d249d.lib;opencv_flann249d.lib;opencv_gpu249d.lib;opencv_highgui249d.lib;

opencv_imgproc249d.lib;opencv_legacy249d.lib;opencv_ml249d.lib;opencv_nonfree

249d.lib;opencv_objdetect249d.lib;opencv_ocl249d.lib;opencv_photo249d.lib;openc

v_stitching249d.lib;opencv_superres249d.lib;opencv_video249d.lib”

5- Dynamic library “*d.DLL” that is ended with “d” must be attached with the

project current folder to reach within the project code or a copy of these files to:

“Windows à System32” folder, these library files that are found in

“[PATH]\opencv\build\x86\vc10\bin”.

Where “x86” for 32bit operating system and “vc10” for VC++ 2010

The files have fixed style:

(“opencv_”)(LIBRARY NAME)(Version Number)(“d”).(“DLL”).

6- The project file coding must be written in the top of all commands calling for

header file by using “#include” command like:

//CODE START

#include <opencv2/opencv.hpp>

#include <opencv2/core/core.hpp>

#include <opencv2/highgui/highgui.hpp>

#include <opencv2/imgproc/imgproc.hpp>

46

#include <opencv2/nonfree/nonfree.hpp>

#include <opencv2/nonfree/features2d.hpp>

#include <opencv2/legacy/legacy.hpp>

#include <opencv2/video/video.hpp>

#include <opencv2/ml/ml.hpp>

#include <opencv2/objdetect/objdetect.hpp>

#include <opencv2/flann/flann.hpp>

#include <opencv2/calib3d/calib3d.hpp>

//CODE END

Note:

“.H” and “.HPP” files are header files that contain a definition of the function that

points to “.LIB“ files, “.LIB” files known as static library contain body of function

compatible only with specific program language (OpenCV “.LIB” files compatible

with VC++), it is called once at compiling and combine with project. “.DLL” files

known as dynamic library is compatible with almost all programming language, it is

called in run-time period and not combine with the project therefore must be kept

attached with the project.

To ensure adding OpenCV is successful, we will execute these sample codes that

import image and show it:

//CODE START

//Includes written here

int main(void)

{

cv::Mat k; //creating matrix image file

k=cv::imread("c:\\test.jpg"); //path and name image file (must exist)

cv::imshow("test",k); //showing image file with test name window

cv::waitKey(); //press key to end project

}

//CODE END

47

If windows appear with the above specific above image, all things are alright and we

can keep moving.

Also in

“[PATH]\opencv\build\doc”,

There are very good documentation material and user guide.

3.7 Image Structure in OpenCV

Image in OpenCV is represented by a matrix dimension of matrix image size. The

Matrix image dimension is represented by [44]: (With different calls names)

1- N = Columns = Width = Horizontal = X = Left to Right Range of image.

2- M = Rows = Height = Vertical = Y = Top to Bottom Range of image.

3- K = Layer or Channel of Image (only in color image).

The value of this image matrix depends on image type, in monochrome image there

are only white or black (pixel spot or empty) and there is no need for the third

dimension(K), the value of matrix will be only 1 or 0 (255 or 0 in OpenCV) where 1

or 255 is white and 0 is back.

In gray scale image there are also the same two dimensions, but the value ranges

from 0 to 255, where the color is scaled as old films. Both images are symbolized by

“CV_8UC1” that mean 8bit (1Byte) unsigned integer (0 to 255) with one channel (no

third layer):

//CODE START

//OpenCV Code, create gray or monochrome black image (zero image) with 800x600

// dimension

cv::Mat gray;

gray = Mat::zeros(Size(800,600), CV_8UC1);

// access to specific pixel at location 20 row, 50 column

int pix=0;

pix = gray.at<unsigned char>(20,50);

48

// change to specific pixel at location 20 row, 50 column

int pix = 33;

gray.at<unsigned char>(20,50) = pix;

//CODE END

In color image the structure is a bit different because colored image file consists of

three source color: red, green and blue. Every source color have ranges from (0 to

255, 256 unique pixel) so the number of the possible color will be 256 * 256 * 256 =

16777216 unique color, this image is known as RGB image (every source color first

latter). The third dimensions represent the layers of the source code, the first layer is

(Layer 2) is Red, the second layer (layer 1) is green and the third layer (layer 0) is

blue [45]:

//CODE START

//OpenCV Code, create color empty image with 800x600 dimension

cv::Mat rgb;

rgb = Mat::zeros(Size(800,600), CV_8UC3);

// access to specific pixel at location 20 row, 50 column

int red_pix=0;

int grn_pix=0;

int blu_pix=0;

red_pix = rgb.at<cv::Vec3b>(20,50)[2]; //Red pixel

grn_pix = rgb.at<cv::Vec3b>(20,50)[1]; //Green pixel

blu_pix = rgb.at<cv::Vec3b>(20,50)[0]; //Blue pixel

// change to specific pixel at location 20 row, 50 column

int red_pix=40;

int grn_pix=6;

int blu_pix=248;

rgb.at<cv::Vec3b>(20,50)[2] = red_pix; //Red pixel

rgb.at<cv::Vec3b>(20,50)[1] = grn_pix; //Green pixel

rgb.at<cv::Vec3b>(20,50)[0] = blu_pix; //Blue pixel

//CODE END

49

3.8 Vision Input in OpenCV

OpenCV procedure can apply only to image files, therefore if we need to procedure

live video or storage video we must convert to sequence of image [46], in OpenCV

there are simple commands to do that:

//CODE START

// Load Image from storage

cv::Mat img; //creating matrix image file

img=cv::imread("c:\\pic.jpg"); //path and name image file (must exist)

// Show Image

cv::imshow("myproj",img); //showing image file with “myproj” name window

cv::waitKey(); //wait to show image, non present number will wait until

 //key press, if number represent will wait to specific milliseconds

// Save Image to storage

cv::imwrite("c:\\pic2.jpg", img);

// Getting sequence image from live video (web cam)

cv::VideoCapture vid; //Create video stream

cv::Mat img; //Create Image for Stream

vid.open(0); //Open live video stream from camera id 0 (any camera)

while(1) //DO

{

vid >> img; //Send live video stream to Image, now all procedure will on this file

// Procedures will here

} // LOOP

vid.release(); //Close stream when we finish

50

// Getting sequence image from storage video (video file in drive)

cv::VideoCapture vid; //Create video stream

cv::Mat img; //Create image for stream

vid.open("c:\\video.avi"); // Open video stream from storage path (file must exist)

vid.set(CV_CAP_PROP_POS_FRAMES,0); //Start from frame 0

while(1) //DO

{

vid >> img;

// Procedures

} // LOOP UNTIL (img.data == NULL), video file reach to end

vid.release(); //Close stream when we finish

//CODE END

3.9 Object Representation in OpenCV

Object in OpenCV is a multi type data related to something. This set of data refers to

the details of that object with various data type and this data can extract it from raw

data like raw image that is fed by live camera. We can create the framework of this

object with specific data model, in programming language and call it structure data

or record data. In VC++ we can create this type of data by command “struct” [47].

Therefore the object code will be: (Note: must write this code above main function)

//CODE START

struct obj

{

 int id;

//Object identify number (ID), we can put any number to suit program

 cv::String name; // Object name, any name inside “ “

 int loc_x; // location of object in raw image (horizontal location)

 int loc_y; // location of object in raw image (vertical location)

 int shf_x; //displacement horizontal location from center of image

 int shf_y; //displacement horizontal location from center of image

51

 int area_x1; // area location from x1 in horizontal space

 int area_x2; // area location from x2 in horizontal space

 int area_y1; // area location from y1 in vertical space

 int area_y2; // area location from y2 in vertical space

 int hgt; //hight of object

 int wdt; //width of object

 int size; //size of object area (hgt * wdt) or diameter

 int raw_hgt; //hight of raw image that object found in

 int raw_wdt; //width of raw image that object found in

 cv::Mat img; //image of object

 int found;

/*

Found variable is very important indicate the object has been found last time or not,

if found = 0 mean the object is disappear and all above information is for object is

seen last time, if found = 1 then object is available and on sight

*/

};

obj myobj; // create object name “myobj” using above structural

//CODE END

 We can access the object structure by using “.” like myobj.name, “myobj.found”,

“myobj.size”, and etc. Most information feed objects inside manipulating function in

robot system we can enumerate the major object manipulating functions that will be

followed below.

3.10 Function: Find Laser Spot Using RGB Manipulating

In this function we can try to find green laser beam that can be highlighted on wall or

floor in front of the robot system. Laser is pure green color while other source color

is less (red and blue), this will be our key to find, if Green ranges from (0 to 255)

then the most high will be above 128, while red and green are almost low and will be

under 128, then we must find where this spot light dense (spot dense mean is focus or

52

gather target pixel or true pixel in spot of image) will find in spot dense procedure

location and size of target object.

//CODE START

int mf_find_spot(cv::Mat rawimg,obj &myobj,int red_low=0,int red_hgh=255,int

grn_low=0,int grn_hgh=255,int blu_low=0,int blu_hgh=255)

{

int lfts = rawimg.cols;

int tops = rawimg.rows;

myobj.raw_wdt = lfts;

myobj.raw_hgt = tops;

cv::Mat maskimg = cv::Mat::zeros(cv::Size(myobj.raw_wdt, myobj.raw_hgt),

CV_8UC1);

int Redp=0;

int Grnp=0;

int Blup=0;

int ilft=0;

int itop=0;

int flag_red=0;

int flag_grn=0;

int flag_blu=0;

int fnd=0;

myobj.found=0;

for (ilft = 0; ilft < lfts; ilft++){

for (itop=0; itop < tops; itop++){

Redp = rawimg.at<cv::Vec3b>(itop,ilft)[2];

Grnp = rawimg.at<cv::Vec3b>(itop,ilft)[1];

Blup = rawimg.at<cv::Vec3b>(itop,ilft)[0];

flag_red=0;

flag_grn=0;

flag_blu=0;

53

if ((Redp>=red_low) && (Redp<=red_hgh)) flag_red=1;

if ((Grnp>=grn_low) && (Grnp<=grn_hgh)) flag_grn=1;

if ((Blup>=blu_low) && (Blup<=blu_hgh)) flag_blu=1;

if (flag_red+flag_grn+flag_blu >= 3)

{

fnd=fnd+1;

maskimg.at<unsigned char>(itop,ilft)=255;

}

else maskimg.at<unsigned char>(itop,ilft)=0;

}

}

if (fnd > 0)

{

int x=0; int x1=0; int x2=0;

int y=0; int y1=0; int y2=0;

mf_find_density(maskimg,x,y,x1,x2,y1,y2);

mf_inf2obj(myobject,x,y,0,0,x1,x2,y1,y2,0,0, maskimg);

return 1;

}

return 0;

}

//CODE END

Function “mf_find_density” find where “true” or “1” point is gathered using

Distance Transform “chessboard” distance metric [48]:

//CODE START

int mf_find_density(cv::Mat mask,int& x, int& y, int &x1,int& x2,int& y1,int& y2)

{

int n = mask.cols;

int m = mask.rows;

cv::Mat dns = cv::Mat::zeros(cv::Size(n, m), CV_8UC1);

int p=0;

54

int i=0;

int j=0;

int d=0;

int nd = 0;

int sd = 0;

int ed = 0;

int wd = 0;

int no = 0;

int so = 0;

int eo = 0;

int wo = 0;

int ng = 0;

int sg = 0;

int eg = 0;

int wg = 0;

int prd=1;

int max=0;

int im=0;

int jm=0;

int tmp=0;

for (i = 0; i < n -1; i++){

for (j=0; j < m - 1; j++){

p=mask.at<unsigned char>(j,i);

if (p>0)

{

d=0;

for(;;)

{

d=d+1;

nd = i - d;

sd = i + d;

ed = j - d;

wd = j + d;

55

if (nd < 1) nd = 1;

if (ed < 1) ed = 1;

if (sd >= n) sd = n-1;

if (wd >= m) wd = m-1;

no = mask.at<unsigned char>(j,nd);

so = mask.at<unsigned char>(j,sd);

eo = mask.at<unsigned char>(ed,i);

wo = mask.at<unsigned char>(wd,i);

ng=0;

if (no > 0) ng = 1;

if (no < 0) ng = -1;

sg=0;

if (so > 0) sg = 1;

if (so < 0) sg = -1;

eg=0;

if (eo > 0) eg = 1;

if (eo < 0) eg = -1;

wg=0;

if (wo > 0) wg = 1;

if (wo < 0) wg = -1;

prd = ng * sg * eg * wg;

if (prd == 0)

{

if (d > max)

{

max = d;

im = i;

jm = j;

}

dns.at<unsigned char>(j,i)=d;

break;

}}}}}

x = im;

56

y = jm;

x1 = im - (max - 1);

y1 = jm - (max - 1);

if (x1 < 0) x1 = x1 * -1;

if (y1 < 0) y1 = y1 * -1;

x2 = max + im;

y2 = max + jm;

if (x2 > n) x2 = n;

if (y2 > m) y2 = m;

if (x1 > x2) { tmp = x1; x1 = x2; x2 = tmp; }

if (y1 > y2) { tmp = y1; y1 = y2; y2 = tmp; }

return 0;

}

//CODE END

Function “mf_inf2obj” converts information to object:

//CODE START

int mf_inf2obj(obj &myobj,int x,int y,int width=0,int hight=0,int x1=0,int x2=0, int

y1 = 0, int y2=0, int raw_width=0,int raw_hight=0, cv::Mat rawimg =

cv::Mat::zeros(1,1,CV_8UC3))

{

if ((x<1) || (y<1))

{

myobj.found=0;

return 1;

}

myobj.found=1;

int tmp=0;

if (x1 > x2) { tmp = x1; x1=x2; x2=tmp; }

if (y1 > y2) { tmp = y1; y1=y2; y2=tmp; }

if (width==0) width= x2-x1;

if (hight==0) hight= y2-y1;

57

myobj.wdt = width;

myobj.hgt = hight;

myobj.size = width * hight;

myobj.loc_x = x;

myobj.loc_y = y;

myobj.area_x1 = x1;

myobj.area_x2 = x2;

myobj.area_y1 = y1;

myobj.area_y2 = y2;

if (raw_width == 0) raw_width = rawimg.cols;

if (raw_hight == 0) raw_hight = rawimg.rows;

myobj.shf_x = raw_width - myobj.loc_x;

myobj.shf_y = raw_hight - myobj.loc_y;

if (rawimg.data != NULL)

{

cv::Rect roi = cv::Rect(x1,y1,x2-x1,y2-y1);

rawimg(roi).copyTo(myobj.img);

}

return 0;

}

//CODE END

Function “mf_find_spot” receives several parameters like: raw image, object, red

range, green range, blue range. And then try to mark to white on true condition color

ranges and black for not matching the range to new image as it is a mask image.

Then by using “mf_find_density” to obtain point location where white points are

gathered (Fig. 47, 48). Then we can apply blur filter (like median blur) [49] to get rid

of noise and small true white points on mask image (Fig. 49).

58

Figure 47: Source input test image

Figure 48: Obtain result mask image

Figure 49: Mask image enhancement and dense image

59

The main call code to track and find laser spot will be like:

//CODE START

//Initialize live video (web camer) send it to à frm image (check previous code)

myobj.name = "Laser"

mf_find_spot(frm,myobj,128,255,0,128,0,128); //Green laser

/*

myobj.loc_x, myobj.lox_y we obtain all information that robot

 need it as object form

*/

//CODE END

Robot function software mechanism has a specific parameter and a specific result.

Robot homing guidance will depend only on object data.

3.11 Function: Find Green Ball Using HSV Morphological Manipulating

The RGB manipulation above is not an optimal solution because it is very sensitive

to environment change like brightness and noise. Therefore, we can use HSV color

system [50]. HSV refers to (Hue, Saturation, and Value) or sometimes is called HSB

(parameter Value can be also called Brightness).

In Hue (H) parameter determines the list of gradual colors(0 to 179) starting from red

à gradual red with green à green à gradual green with blue à blue à gradual

blue with red à red.

The Saturation (S) parameter determines the rate saturation the hue color with white

color (0 to 255).

The Value (V) or Brightness (B) parameter determines the rate of hue color with

black (0 to 255). Different software’s uses different scales. So if they are compared

to OpenCV values, we will need to normalize these ranges.

60

Note:

Brightness is the amount of the light let in; contrast is the difference between dark

areas and light areas.

Let us take example and pick a specific color like cyan, cyan is blue white color that

is worn by surgery doctors and it is also color of the sky in the morning. The RGB

code for cyan is R=0, G=255, B=255, if we need to get more bright cyan color we

need to change green and blue by a specific amount and in other color we need to

change all three parameters and getting very sensitive and high noise affection.

In HSV cyan code color is H=90, S=255, V=255, to make cyan more bright, we only

need to change parameter (V) and if we want to change the rate of cyan in color, we

only change the parameter (V). This is useful to control color range (Fig. 50).

Figure 50: HSV color representation

Morphological manipulation is a set of operations that can be done on mask binary

image and changing the sequence of operations can obtain different results. If we

have white spots on black background (like mask binary image), the operation that

makes those spot be more expanded and more thick is called “Dilate” (Fig. 51),

whereas the operation that makes those spots more narrow and thinner is called

“Erode” [51] (Fig. 52).

61

Figure 51: Dilate operation

Figure 52: Erode operation

If we apply “Erode” then apply “Dilate” we obtain “Opening”, useful to remove a

noisy and small true white spot and mix it in one big spot (Fig. 53).

Figure 53: Opening operation

If we apply “Dilate” then apply “Erode” we obtain “Closing” operation, useful to

close small gaps inside spots (Fig. 54).

62

Figure 54: Closing operation

If we apply subtract “Erode” from “Dilate” we obtain “Gradient” operation, useful to

find edge detection (Fig. 55).

Figure 55: Gradient operation

If we apply subtract original input image from “Opening” we obtain “Top Hat”

operation, useful to fracture spot from connection points (Fig. 56).

Figure 56: Top hat operation

63

If we apply subtract “Closing” from original input image obtain “Black Hat”

operation, useful to find the connect point among spots (Fig. 57).

Figure 57: Black hat operation

“Dilate” and “Erode” used matrix, usually used “3x3”. In our project we will use

“Opening” to beat small true white spot in binary mask to obtain the best result then

save the truest white spot in an object form for later use:

//CODE STAR

/*

Green Ball

H : 43 ~ 92

S : 48 ~ 162

V : 17 6 ~ 255

*/

int mf_find_hsv(cv::Mat img,obj& myobj,int H_min, int H_max, int S_min,int

S_max, int V_min, int V_max,int erot=3,int dilt=3)

{

myobj.found=0;

cv::Mat frame = img.clone();

cv::Mat frame_HSV;

cv::Mat thresh_HSV;

int H_MIN=H_min; int H_MAX=H_max;

int S_MIN=S_min; int S_MAX=S_max;

64

int V_MIN=V_min; int V_MAX=V_max;

int EROT=erot; int DILT=dilt;

cv::Mat erodeElement;

cv::Mat dilateElement;

cv::Mat thresh_tmp;

frame_HSV=NULL;

thresh_HSV=NULL;

erodeElement = cv::getStructuringElement(

cv::MORPH_RECT,cv::Size(EROT,EROT));

dilateElement = cv::getStructuringElement(

cv::MORPH_RECT,cv::Size(DILT,DILT));

thresh_tmp=NULL;

cvtColor(frame,frame_HSV,cv::COLOR_BGR2HSV);

inRange(frame_HSV,cv::Scalar(H_MIN,S_MIN,V_MIN),cv::Scalar(H_MAX,S_MAX

,V_MAX),thresh_HSV);

erode(thresh_HSV,thresh_HSV,erodeElement);

erode(thresh_HSV,thresh_HSV,erodeElement);

dilate(thresh_HSV,thresh_HSV,dilateElement);

dilate(thresh_HSV,thresh_HSV,dilateElement);

int x=0,x1=0,x2=0;

int y=0,y1=0,y2=0;

mf_find_density(thresh_HSV,x,y,x1,x2,y1,y2);

mf_inf2obj(myobj,x,y,0,0,x1,x2,y1,y2,0,0,frame);}

//CODE END

3.12 Function: Find Image Inside Image Using Feature Detection

Feature detection is a method used to extract and find interest point inside image and

relationship between the locations of this point for later use. There are many methods

like “FAST” (Features from Accelerated Segment Test), “MSER” (Maximally Stable

Extremely Regions) and “SURF” (Speeded Up Robust Features) [52]. The famous

method of feature detection is “SIFT” (Scale-Invariant Feature Transform). This

method can be applied only in gray scale images (carless for color) then try to find

65

location of interest point inside image, if the location of interest “SIFT” hit one in

that place or hit zero [53]. The point of interest may be one the following types:

1 – Isolated points

2 – Connected region points

3 – high-contrast region points

4 – Blob region points

5 – Rapped change (edge)

The result of this method is vector of key points (hits) then “SIFT” descriptor convert

this key point from vector form to describe domain, like orientation and relationship

between points [54] (Fig. 58).

Figure 58: SIFT detection key points

Then try to find match between the two description domains of the target image and

source image and find rate of matching using specific threshold value using

“FLANN” (Fast Approximate Nearest Neighbor) search library, perform a quick and

efficient matching [55] (Fig. 59). Then convert final result to object form.

Figure 59: SIFT description with FLANN matching methods

66

//CODE STAR

int mf_find_sift(cv::Mat img1,cv::Mat img2,obj& myobj)

{

myobj.found=0;

cv::Mat IMG_GRY1;

cv::Mat IMG_GRY2;

if (img1.type() == 16)

cv::cvtColor(img1,IMG_GRY1,CV_RGB2GRAY);

else

IMG_GRY1 = img1.clone();

if (img2.type() == 16) cv::cvtColor(img2,IMG_GRY2,CV_RGB2GRAY);

else IMG_GRY2 = img2.clone();

cv::SiftFeatureDetector sift1;

cv::vector<cv::KeyPoint> keyps1;

cv::Mat dsc1;

sift1.detect (IMG_GRY1, keyps1);

sift1.compute(IMG_GRY1, keyps1,dsc1);

cv::SiftFeatureDetector sift2;

cv::vector<cv::KeyPoint> keyps2;

cv::Mat dsc2;

sift2.detect (IMG_GRY2, keyps2);

sift2.compute(IMG_GRY2, keyps2,dsc2);

cv::FlannBasedMatcher matcher;

cv::vector< cv::DMatch > matches;

matcher.match(dsc1, dsc2, matches);

double max_dist = 0; double min_dist = 100;

for(int i = 0; i < dsc1.rows; i++)

{

double dist = matches[i].distance;

if(dist < min_dist) min_dist = dist;

if(dist > max_dist) max_dist = dist;

}

67

cv::vector< cv::DMatch > good_matches;

int thresh = 2*min_dist; // = 0.8

for(int i = 0; i < dsc1.rows; i++)

if(matches[i].distance < thresh) good_matches.push_back(matches[i]);

if (good_matches.size() >= 3) myobj.found=1;

if (myobj.found == 1) {

cv::Mat mask=cv::Mat::zeros(cv::Size(IMG_GRY1.cols, IMG_GRY1.rows),

CV_8UC1);

int ptx=0;

int pty=0;

for(int i=0;i< good_matches.size();i++)

{

ptx=keyps1[good_matches[i].queryIdx].pt.x;

pty=keyps1[good_matches[i].queryIdx].pt.y;

mask.at<unsigned char>(pty,ptx)=255;

}

int EROT=21;

int DILT=51;

cv::Mat erodeArray = cv::getStructuringElement(

cv::MORPH_RECT,cv::Size(EROT,EROT));

cv::Mat dilateArray = cv::getStructuringElement(

cv::MORPH_RECT,cv::Size(DILT,DILT));

dilate(mask,mask,dilateArray);

dilate(mask,mask,dilateArray);

erode(mask,mask,erodeArray);

erode(mask,mask,erodeArray);

cv::medianBlur(mask,mask,9);

int x=0,x1=0,x2=0;

int y=0,y1=0,y2=0;

mf_find_density(mask,x,y,x1,x2,y1,y2);

mf_inf2obj(myobj,x,y,0,0,x1,x2,y1,y2,0,0,img1);

return 0;

}//CODE END

68

3.13 Function: Trained Object Finder Using Cascade Classifier Training

In this method we try also to find image inside image but using multi images as input

to increase the chance of detection by converting a set of images to database file and

then try to find it inside source image. This operation is called “Cascade Training”.

The cascade training depends on some factors as:

1 - High mount number for train images resulting high accuracy and vice versa.

2 - Long amount of time taking for train images resulting high accuracy and vice

 versa.

Cascade training divides the set of images into two parts: Positive images (or called

object images) and negative images (or called background images). Positive images

include images that contain one or more target object inside those images, all the

objects inside the positive images need information related to it, like location and

size of that object inside positive images. The style of this order needs to put positive

images inside specific folder [56], for example “pos”:

/pos (Folder “pos”)

img001.jpg (positive images inside folder)

img002.jpg (positive images inside folder)

…. Etc.

The form of information file will be like “Pos.inf” that contains:

pos/img001.jpg 1 20 20 100 100 (1 object à x1,y1= 20,20 à x2,y2 = 100,100)

pos/img.002.jpg 2 80 80 190 190 40 40 120 120 (2 objects and locations of objects)

….. Etc.

This “pos.inf” file must be in root with “pos” folder (not inside with images).

Where negative images will contain any image and not include object, any image can

be used, with caring about the size of the negative images must be equal or large that

69

from positive images. The style of this order needs to put negative images inside

specific folder, for example “neg”:

/neg (Folder “neg”)

img001.jpg (negative images inside folder)

img002.jpg (negative images inside folder)

…. Etc.

The form of information file will be like “neg.inf” contains:

neg/img001.jpg

neg/img.002.jpg

….. Etc.

The result of the above operation could be summarized, as follows:

1 - Folder “pos” contains positive object images.

2 - File “pos.inf” contains information related to images inside “pos” folder.

3 - Folder “neg” contain negative background images.

4 - File “neg.inf” contains a list of names images that are inside “neg” folder.

Note:

• All the above images (positive and negative) must be in gray scale form.

• All folder and files above must put to:

 “[PATH]\opencv\build\x86\vc10\bin”.

The next step is creating Vector file for positive images, and all positive images will

be converted to one file that contains them all. Using command line in side above

path:

“[PATH]\opencv\build\x86\vc10\bin\ opencv_createsamples.exe

-info pos.inf -num “X” -w “W” –h “H” -vec pos.vec”.

Where “X” number of samples (positive images), “W” width of output vector, “H”

height of output vector, where output of this step is vector file “pos.vec”. To check

our step and go successfully we can show vector file and see inside images by:

70

“[PATH]\opencv\build\x86\vc10\bin\ opencv_createsamples.exe

 -w “W” –h “H” -vec pos.vec”.

Make vector file appear inside windows with turning between images files that

contains it.

Note:

For width and height of output vector file, not fixed change depends on the size of

the object inside positive images. The small value will correspond to 24 and other big

values will correspond to 24 * (big/small) value. Let us take an example if we have

objects size 640X480 (WXH) then the vector file must be (32X24) where 480 small

from 640 corresponded to 24 (480 à 24) and 640 corresponded to 24 * (640/480) =

32. These calculations keep vector image form change in Aspect ratio and save the

style dispose.

The result of the above operation could be summarized as:

Output vector file “pos.vec” [57] (Fig. 60).

Figure 60: Vector file “.vec” content for rubik's cube

The next and last step to create cascade by training positive vector file with negative

file creating cascade trained database and extension of output will be “.XML”

(Extensible Markup Language) that keeps all information inside it and there is no

need to images. To start trainings we must create empty folder named XML that keep

71

“.XML” files inside and make sure that they are empty. Then we try to train all

images by using command line:

[PATH]\opencv\build\x86\vc10\bin\ opencv_traincascade.exe

 -data XML -vec pos.vec -bg neg.inf -numPos “P” -numNeg “N” -numStages “S”

-w “W” -h “H” -featureType “F”.

Where “P” number of positive images, “N” number of negative images, “S” number

of stage level (more level more accuracy, more time), “F” feature type for creating

cascade by using different methods like : HARR (ratio to Hungarian mathematician

Alfred Haar in 1910), LBP (Local Binary Patterns) and HOG (Histogram of Oriented

Gradients) [58]. Every cascade method has pros and cons, if the time taken is a

couple of hours, in LBP to train cascade may take a couple of weeks in HARR [59].

The final output will be “Cascade.XML” we may give it another name in our object

like “ball.xml”. This XML file will be used as database for code in OPENCV, we

can also use any XML database that has been already taken from the internet or from

other sources and get rid of any effort to create a new one. This technique is already

used in face detection and other human body detection.

There are already trained sample XML file in:

[PATH]\opencv\sources\data\haarcascades”,

and we can use any of these files.

The OpenCV code can be represented as “mf_find_cascade”:

//CODE START

int mf_find_cascade(cv::Mat img,obj &myobj, cv::String xml,double

par3_ScaleFactor=1.1,int par4_MinNeighbors=2,int par5_flags=0,int

par6_MinSiz=30,int par7_MaxSize=100)

{

myobj.fnd=0;

cv::Mat frame = img.clone();

struct strc3

{

72

double par3_ScaleFactor;

int par4_MinNeighbors;

int par5_flags;

int par6_MinSize;

int par7_MaxSize;

};

strc3 cas;

int TgT_Left =0;

int TgT_Top =0;

int TgT_Height =0;

int TgT_Width =0;

int Tgt_FindIt =0;

cv::String obj_cascade_name;

cv::CascadeClassifier obj_cascade;

cv::vector<cv::Rect> objk;

cv::Mat frame_gray;

cas.par3_ScaleFactor = par3_ScaleFactor;

cas.par4_MinNeighbors = par4_MinNeighbors;

cas.par5_flags = par5_flags;

cas.par6_MinSize = par6_MinSiz;

cas.par7_MaxSize = par7_MaxSize;

obj_cascade_name = xml;

if(!obj_cascade.load(obj_cascade_name))

{std::cout<<"--(!)Error loading XML cascade\n"; return 1;}

cv::cvtColor(frame, frame_gray, cv::COLOR_BGR2GRAY);

cv::equalizeHist(frame_gray, frame_gray);

obj_cascade.detectMultiScale

(frame_gray, objk, cas.par3_ScaleFactor, cas.par4_MinNeighbors,

cas.par5_flags,cv::Size(cas.par6_MinSize, cas.par6_MinSize,

cv::Size(cas.par7_MaxSize,cas.par7_MaxSize));

73

if (objk.size() >= 1)

{

TgT_Left = objk[0].x+ int(objk[0].width / 2);

TgT_Top = objk[0].y+ int(objk[0].height /2);

TgT_Height = objk[0].height;

TgT_Width = objk[0].width;

Tgt_FindIt = 1;

}

if (Tgt_FindIt == 1)

mf_inf2obj(myobj,TgT_Left,TgT_Top, TgT_Width, TgT_Height,0,0,0,0,0,0,frame);

return 0;

}

//CODE END

3.14 Homing Guidance

We talk in chapter one about autonomous robot function. That robot is full controlled

without any human intervention and here in this section we try to do autonomous

function for homing robot arm to make target object on sight. There are three types

of homing system: active homing, semi active homing and passive homing [60].

In active homing robot we try to send signal or sound wave to target and these waves

will be reflected from object to robot sensor and then try to act peripheral device

depending on reflect signal. This homing system keeps the robot to continue lock

target until peripheral device finishes the duty where this device will not take any

order from the environment, they receive an order from robot central system only.

In semi active homing all peripheral devices send and receive information with

object target at outside using radio or ultra sound systems.

In passive homing the peripheral device will only receive signals that emission from

target like unique color, unique shape and infra red. This system will be used almost

in all vision robotic systems using camera, camera mount in a different place on

robot if the camera not mount in peripheral device like robot arm.

74

This called “Eye at Hand”, if camera mounts on peripheral device that makes camera

in moving position this call “Eye In Hand”. Every style has pros and cons, in my

system I used “Eye in Hand” where target object stay locked into the screen center

using information that is gathered from detection functions. We use from pervious

vision function and make it useful by using object information, we have two

information:

“myobj.sft_x” and “myobj.sft_y” indicating mount of shift of object from the center

of the screen. The robot arm with camera mount in try to be put in the center of

screen, using arm motor (A) as pan (mean paining from far left to far right) and

using arm motor (C) as tilt (mean tilt from bottom to upper), moving in two axel and

free aiming to any location:

//CODE START

int mf_homing(obj &myobj) {

int tgtx=myobj.sft_x;

int sgnx=0

if (tgtx > 0) sgnx=1

if (tgtx < 0) sgnx=-1

tgtx= tgtx * sgnx;

int stpx=0;

if (tgtx >= 5) stpx=stpx+1;

if (tgtx >= 55) stpx=stpx+1;

if (tgtx >= 105) stpx=stpx+1;

if (tgtx >= 205) stpx=stpx+1;

if (tgtx >= 255) stpx=stpx+1;

stpx = stpx * sgnx;

int armx = stpx;

int tgty=myobj.sft_y;

int sgny=0

if (tgty > 0) sgny=1

if (tgty < 0) sgny=-1

tgty= tgty * sgny;

75

int stpy=0;

if (tgty >= 5) stpy=stpy+1;

if (tgty >= 55) stpy=stpy+1;

if (tgty >= 105) stpy=stpy+1;

if (tgty >= 205) stpy=stpy+1;

if (tgty >= 255) stpy=stpy+1;

stpy = stpy * sgny;

int army = stpy;

link->Write(armx+3000);

link->Write(army+4000);

return 0;

}

 //CODE END

Output will be (Fig. 61).

Figure 61: Passive homing using “eye in hand”

76

3.15 Summary

The software we used Arduino IDE as inside Arduino as SBM board, Windows

operating system with Visual Studio C++ 2010 Ultimate combine OpenCV library

using it in light version inside laptop board as SBC board and then connecting SBM

with SBC by communication port “COM” from both sides.

77

CHAPTER 4

CONCLUSION

In this chapter we discuss the obtained result and draw some conclusion to be

discussed and utilized for the future work, for our system and advantages of this

system and what characterize it from other systems, then we discuss the obstacles

and challenges for building our system and how to avoid those disadvantages in the

future, and last section will be about recommendations and the development of a

system for those who want to improve the work with the system and upgrade it in

future.

4.1 Characterization and Future Works

This system is characterized from other systems in being applicable for future work

but first let us summarize this characterization as follow:

1- Very uniform software language that any person coded on his own pc he can

execute on this system.

2- Very compatible with extra device without need to be relearn, because compatible

with university students materials and famous devices in markets.

3- Flexible and expandable because the structure of this system has a lot of interface

port that easily adds a new device without redesigned it.

4- No need to study internal hardware or software, we just need a brief explanation

of the main instruction of this system and any one can just add a specific function

without re changing other functions or redesigning core software (Fig. 62).

78

Figure 62: Multifunction system illustrating diagram

This unique structure leads to the application of useful and scientific application

easily and in multi ways. We can apply it as a stationary or mobility status, this

means that we can remove the wheels or unused them to stay only in the same place

and application function and this is called stationary, or we can use them as mobility

status like patrolling. Whatever used, in both cases we can use as: remote camera,

motion detection and useful form sensors that can mount inside the system and used

as weather sensors and risk managements. Moreover, that great useful from of this

system is using computer vision algorithms and methods to detect and find the object

that can be used as national security to find car sticky bombs and road mount bombs,

and a lot of things even I cannot imagine the things that make computer vision to be

alive.

4.2 Obstacles and Challenges

No project or working without getting obstacles, its life natural but smart way to

convert this obstacle to our advantage by using to future development. We can

summarize it as follow:

1- Real-Time system problems: Because this system is immediately in act procedures

there are high ratio of errors effect on system stability. Fatal errors could only be

known when the system in duty, can eliminate these errors goes for ever [61].

• Avoidance: This problems cannot be eliminated easily but we can avoid it by using

team testers that make fatal errors appear quickly and try to eliminated them, and we

79

should not go to the next step if we are not sure that the present step is working

perfectly because if we go to the next step without checking it the incoming errors

will be ambiguous and very hard to be found and fixed.

2- Hardware representation: A lot of theses and projects are done without any

implementation in real, but in robot system with hardware representation will be easy

to understand and apply the methods but in the same time will be a hard work

because the producers that we apply in our imagination do not get the same result

which are got by real presentation. And dealing with hardware representation is not

easy because they need maximum expertise and knowledge in electronics.

• Avoidance: Using simulations, there are limited robot simulations, we need to find

the best suitable one with real presentation and our development and optimization

will be virtually inside simulation and in the final stage we can build the system by

using the final form of robot simulation [62]. Simulator call “LabView” create by Ni

(National Instruments) company, in LabView 2012 a package add-on called “Robotic

Simulator” that is easy to the implementation of robot and easy to convert from

virtual world to real word [63-64].

3- Cost fee: Building robotic system cost a lot of fees and buying the device and its

development, without financial supply from the government and university, the robot

building will be high costing.

• Avoidance: Using again simulation [65], for its best choice you should be sure that

have complete financial fee or never try to work with any system because you will

stop in the middle.

4- Duration of the work: As thesis work you should have hardware presentation and

coding, you also need to write the thesis documentation. The whole thing you need

much time and you go beyond normal thesis, specialty when you learn new things

such as, dealing with a new device or new coding language. You must remember that

you have limited time and you should consider that fact or you will be late in

schedule.

• Avoidance: You are not recommended to work with a new thing which you do not

understand and take a lot of time. Try to work with the thing you already know to

80

save time and to start a plan early from schedule time. Keep the portions of work

balanced in time dividing do not focus on part and leave the other three main parts:

hardware, software and documentation.

5- National security: Some countries as the third world countries see that this work

threats their national security because there are chances to use robot materials in

wrong way. Therefore, some robot devices in the third world countries is illegal and

hard to be found in the market. Moreover, dealing with these devices exposes you to

arrest.

• Avoidance: If you live in the third world countries try never to work in hardware

representation and keep your work in low profile as much as possible like using

simulation.

4.3 Recommendations and Developments

In this section we will talk about the possible development of the system in future or

for the person who wants to continue develop what I finished. These commendations

and developments are summarized as follow:

1- Using small SBC as possible, light version of laptop board has a lot of benefits but

in the same time, its disadvantage is the size and weight of the board with its battery

and storage device and these things make the robot need more power.

• Recommendation: Use “Raspberry pi” [65] or “PCduino” [66] or “beaglebone

black” [67] or “pandaboard ES” [68]

2- Using high power motor for movements (not for steering) to avoid robot weight

problems.

• Recommendation: Use the motor that has high torque as possible and marked with

“HP” (Horse Power customization) [69].

3- Using high and full power battery.

• Recommendation: Use high mount of mApH (mille ampere per hour) as possible

[70].

81

4- Using online charge system that can charge robot itself without turning it off, by

using sockets electric charging or solar cell charging system [71].

• Recommendation: Use a charge system similar to the aerial refueling by using

“Probe-and-drogue” [72], where robot park in custom station and using specific

probe that mounts in robot and then connects it to drogue charging system.

5- Using ultrasonic to determine and measure any obstacle in front of the robot and

avoid it. Using pulse signal to send and wait for response and measurement of the

period of time taken from sending until receiving, with using the ultrasonic sensor

four pinouts type or three pinouts type.

• Recommendation: Use “HC-SR04” Ultrasonic Sensor [73].

6- Using GPS “Global Positioning System” to locate the robot on the map, by

applying three variables that GPS board provides system (X, Y, and Z):

Where X is location in Horizontal Line (Latitude “LAT”).

Where Y is location in Vertical Line (Longitude “LON”).

Where Z is location in elevation (Altitude from mean sea level “ALT”).

Range of X: -90N to 90N (N: North).

Range of Y: -180E to 180E (E: East).

Range of Z: -10924M to 8848M (M: Meters).

And apply the above information to the map [74].

• Recommendation: Use “Sparkfun Arduino GPS Shield” [75].

7- Using IR (Infra Red) cameras to duty in night and dark place.

• Recommendation: Use cheap CCTV (Closed-Circuit Television) camera that is use

in survival DVR (Digital Video Recorder) systems [76].

82

8- Using mobile internet inside robot system to be remote, observing and controlling

for far distance.

• Recommendation: Use ”Mi-Fi” (Mobile Wireless Fidelity) that is connected to self

phone internet provider network and provide system by using LAN cables (Local

Area Network), which is sometimes, called “3G Router” [77].

R1

REFERENCES

1. Marvin L., (1982), "Why People Think Computers Can’t", AI Magazine,
California, vol. 3, no. 4, pp. 4-9.

2. Scheier C., Pfeifer R., (2001), "Understanding Intelligence", MIT Press,
Boston, pp. 56-60.

3. Mittal R. K., Nagrath I., (2003), "Robotics and Control", Tata McGraw-Hill
Education, Noida, pp. 6-10.

4. Parisi D., (2014), "Future Robots: Towards a Robotic Science of Human

Beings", John Benjamins, Amsterdam, vol. 7, pp. 36-39.

5. Kent A., Williams G. J., (1994), "Encyclopedia of Microcomputers:

Reporting on Parallel Software to SNOBOL", CRC Press, Florida, vol. 15,
pp. 108-111.

6. Shimon Y. N., (1999), "Handbook of Industrial Robotics", John Wiley &
Sons, New York, vol. 1, pp. 148-153.

7. Luokkala B. B., (2013), "Exploring Science through Science Fiction",
Springer Science & Business Media, Berlin, pp. 96-99.

8. Springer J. P., (2013), "Military Robots and Drones: A Reference Handbook

Contemporary World Issues", ABC-CLIO, California, pp. 1-6.

9. Sheridan B. T., (1992), "Telerobotics, Automation, and Human Supervisory

Control", MIT Press, California, pp. 99-104.

10. Cohen B. Y., Marom A., Hanson D., (2009), "The Coming Robot

Revolution: Expectations and Fears About Emerging Intelligent, Humanlike

Machines", Springer Science & Business Media, Berlin, pp. 29-34.

R2

11. CNS News, http://cnsnews.com/mrctv-blog/curtis-kalin/obama-admits-hes-
scared-japanese-robots. (Data Download Date: 19.07.2014).

12. Peters A., (2014), "Thunder Under the Sea", Dorrance Publishing,
Pennsylvania, pp. 2-5.

13. Launius D. R., McCurdy E. H., (2008), "Robots in Space", JHU Press,
Maryland, pp. 22-26.

14. Springer J. P., (2013), "Military Robots and Drones: A Reference Handbook

Contemporary World Issues", ABC-CLIO, California, pp. 205-210.

15. Bernhardt R., Bernard R., Dillman R., Hormann K., Tierney K., (1991),
"Integration of Robots into CIM", Springer Science & Business Media,
Berlin, pp. 302-307.

16. Cook D., (2010), "Intermediate Robot Building", Apress Media, New York,
pp. 410-414.

17. Phipps A. C., (1999), "Fundamentals of Electrical Control", Fairmont Press,
Georgia, pp. 162-166.

18. Onwubolu G., (2005), "Mechatronics: Principles and Applications",
Butterworth-Heinemann, Oxford, pp. 245-249.

19. Bakshi A. U., Bakshi V. M., (2009), "Electrical Drives and Control",
Technical Publications, Wolverhampton, pp. 68-73.

20. Husain I., (2003), "Electric and Hybrid Vehicles: Design Fundamentals",
CRC Press, Florida, pp.96-100.

21. Funakubo H., (1991), "Actuators for Control", CRC Press, Florida, vol. 2,
pp. 55-59.

22. Niku S., (2010), "Introduction to Robotics", John Wiley & Sons, New York,
pp. 286-289.

R3

23. Barrett S., (2010), "Arduino Microcontroller Processing for Everyone",
Morgan & Claypool Publishers, California, vol. 28, pp. 199-202.

24. Parab S. J., (2008), "Practical Aspects of Embedded System Design Using

Microcontrollers", Springer Science & Business Media, Berlin, pp. 53-58.

25. Gurevich V., (2005), "Electric Relays: Principles and Applications", CRC
Press, Florida, pp. 118-121.

26. Chakraborty S., Simoes G. M., Kramer E. W., (2013), "Power Electronics

for Renewable and Distributed Energy Systems", Springer Science &
Business Media, Berlin, pp. 534-539.

27. Gookin D., (2012), "Laptops for Dummies", John Wiley & Sons, New York,
pp. 190-195.

28. James L. K., (2013), "Computer Hardware: Installation, Interfacing,

Troubleshooting and Maintenance", PHI Learning, Delhi, pp. 47-52.

29. Wong Y. J., (2008), "Theory of Ground Vehicles", John Wiley & Sons, New
York, pp. 454-458.

30. Singh K. A., Kumar A. S., (2008), "Microcontroller and Embedded

System", New Age International, Kolkata, pp. 6-11.

31. Barrett S., (2010), "Arduino Microcontroller Processing for Everyone",
Morgan & Claypool Publishers, California, vol. 28, pp. 9-13.

32. Kent A., Williams G. J., (1991), "Encyclopedia of Computer Science and

Technology", CRC Press, Florida, vol. 25, pp. 278-283.

33. Grimmett R., (2014), "Arduino Robotic Projects", Packt Publishing,
Birmingham, pp. 210-214.

R4

34. Wu Y., (2011), "Advances in Computer, Communication, Control and

Automation", Springer Science & Business Media, Berlin, vol. 121,
pp. 466-469.

35. Barrett F. S., (2012), "Arduino Microcontroller: Processing for Everyone",
Morgan & Claypool Publishers, California, vol. 38, pp. 41-46.

36. Premeaux E., Evans B., (2011), "Arduino Projects to Save the World",
Apress Media, New York, pp. 52-56.

37. The Conversation UK News, http://theconversation.com/when-the-atm-
runs-windows-how-safe-is-your-money-32823. (Data Download Date:
18.08.2014).

38. Microsoft Developer Network Library, http://msdn.microsoft.com/en-
us/library/gg265786%28v=vs.100%29.aspx. (Data Download Date:
03.08.2014).

39. Wienholt N., (2003), "Maximizing.NET Performance", Apress Media, New
York, pp. 95-99.

40. Rubin E., Yates R., (2003), "Microsoft.NET Compact Framework", SAMS
Publishing, Indianapolis, pp. 37-40.

41. Web Tuts Depot, http://webtutsdepot.com/2010/05/01/arduino-visual-c-plus-
plus-tutorial. (Data Download Date: 05.08.2014).

42. Nagabhushana S., (2005), "Computer Vision and Image Processing", New
Age International, Kolkata, pp. 164-169.

43. Driggers G. R., (2003), "Encyclopedia of Optical Engineering", CRC Press,
Florida, vol. 2, pp. 1212-1216.

44. Laganiere R., (2014), "OpenCV Computer Vision Application Programming

Cookbook", Packt Publishing, Birmingham, pp. 92-96.

45. Brahmbhatt S., (2013), "Practical OpenCV", Apress Media, New York,
pp. 24-29.

R5

46. Dalal J., Patel S., (2013), "Instant Opencv Starter", Packt Publishing,
Birmingham, pp. 48-52.

47. Petersen R. L., (2006), "Introductory C with C++", Surfing Turtle Press,
California, pp. 618-622.

48. Goshtasby A. A., (2005), "2-D and 3-D Image Registration", John Wiley &
Sons, New York, pp. 90-93.

49. Burger W., Burge M. J., (2009), "Digital Image Processing", Springer
Science & Business Media, Berlin, pp. 108-113.

50. Girod B., Niemann H., Seidel H. P., (1999), "Vision Modelling and

Visualization", IOS Press, Amsterdam, pp. 95-99.

51. Bradski G., Kaehler A., (2008), "Learning OpenCV", O'Reilly Media,
California, pp. 155-159.

52. Siegwart R., Nourbakhsh I. R., Scaramuzza D., (2011), "Introduction to

Autonomous Mobile Robots", MIT Press, Boston, pp. 234-237.

53. Brahmbhatt S., (2013), "Practical OpenCV", Apress Media, New York,
pp. 125-128.

54. Kalra P., (2006), "Computer Vision, Graphics and Image Processing",
Springer Science & Business Media, Berlin, pp. 59-64.

55. Sandri S., Sanchez M. M., Cortes U., (2009), "Artificial Intelligence

Research and Development", IOS Press, Amsterdam, vol. 202, pp. 13-16.

56. Bradski G., Kaehler A., (2008), "Learning OpenCV", O'Reilly Media,
California, pp. 509-514.

57. Nomacs Image Lounge, http://www.nomacs.org/2-0-2-supports-vec-file.
(Data Download Date: 10.09.2014).

R6

58. Zhang C., Zhang Z., (2010), "Face Detection and Adaptation", Morgan &
Claypool Publishers, California, pp. 12-16.

59. Kornyakov A. S., (2013), "Instant Opencv for IOS", Packt Publishing,
Birmingham, pp. 32-36.

60. Maini A. K., (2013), "Lasers and Optoelectronics", John Wiley & Sons,
California, pp. 306-309.

61. Lauwereins R., Madsen J., (2008), "Design, Automation, and Test in

Europe", Springer Science & Business Media, Berlin, pp. 97-101.

62. Cetto J. A., Ferrier J. L., Filipe J., (2009), "Informatics in Control,

Automation and Robotics", Springer Science & Business Media, Berlin,
pp. 93-98.

63. Sumathi S., Surekha P., (2007), "LabVIEW Based Advanced

Instrumentation Systems", Springer Science & Business Media, Berlin,
pp. 644-649.

64. Liu H., Ding H., Xiong Z., Zhu X., (2010), "Intelligent Robotics and

Applications", Springer Science & Business Media, Berlin, pp. 351-354.

65. Richardson M., Wallace S., (2012), "Getting Started with Raspberry Pi",
O'Reilly Media, California, pp. 8-13.

66. Kurniawan A., (2014), "Getting Started with pcDuino3", PE Press,
California, pp. 6-10.

67. Richardson M., (2013), "Getting Started with BeagleBone", O'Reilly Media,
California, pp. 8-12.

68. Auler B. C., (2014), "Getting Started with LLVM Core Libraries", Packt
Publishing, Birmingham, pp. 235-240.

R7

69. Smith R. L., Herman S. L., (2004), "Electrical Wiring Industrial", Cengage
Learning, Boston, pp. 121-124.

70. Jha A. R., (2012), "Next-Generation Batteries and Fuel Cells for

Commercial, Military, and Space Applications", CRC Press, Florida,
pp. 266-270.

71. Barsukov Y., Qian J., (2013), "Battery Power Management for Portable

Devices", Artech House, Boston, pp. 90-94.

72. Langton R., Clark C., Hewitt M., Richards L., (2009), "Aircraft Fuel

Systems", John Wiley & Sons, New York, vol. 24, pp. 111-114.

73. Karvinen K., Karvinen T., (2014), "Getting Started with Sensors", Maker
Media, California, pp. 70-74.

74. Gabler R., Petersen J, Trapasso L., Sack D., (2008), "Physical

Geography", Cengage Learning, Boston, pp. 38-42.

75. Boxall J., (2013), "Arduino Workshop", No Starch Press, California,
pp. 261-264.

76. Kruegle H., (2011), "CCTV Surveillance", Butterworth-Heinemann, Oxford,
pp. 56-59.

77. Parsons J. J., Oja D., (2013), "New Perspectives on Computer Concepts",
Cengage Learning, Boston, pp. 327-332.

A1

APPENDICES A

PROJECT ROBOT PICTURES AND MEASUREMENTS

First Prototype of MF Robot Project:

Final Version of MF Robot Project:

 Top View Side View

(1). Length of Project Robot: 50 Cm.
(2). Width of Project Robot: 29 Cm.
(3). Width of Project Robot Wheel: 6 Cm.
(4). Diameter of Project Robot Wheel: 16 Cm.
(5). Height Project Robot from ground: 13 Cm.
(6). Height of Project Robot: 10 Cm.
(7). Height of Project Robot Arm (Cobra Mode): 25 Cm.
(•). Total Weigh of Project Robot: 5 Kg.
(•). Weigh of Project Robot for: (SBC: 1.5 Kg, Battery: 0.5 Kg, Arm: 0.5 Kg).

A2

APPENDICES B

CURRICULUM VITAE

PERSONAL INFORMATION

Name, Surname: Mohammed Sulaiman, MUSTAFA
Date and Place of Birth: 30 December 1983, Kirkuk/Iraq
Marital Status: Single
Phone: Iraq +964.770.936.67.57 Turkey +9.0538.270.48.11
Email: moh.kirkuk@gmail.com
Skype: moh_kbc2
Webpage: http://www.facebook.com/moh.kirkuk

EDUCATION

Degree Institution Year of Graduation

M.Sc.
Çankaya University,

Computer Engineering
2014

B.Sc.
Kirkuk Technical Collage,
Software Engineering

2007

Diploma
Kirkuk Technical Institute,
Computer Systems

2003

WORK EXPERIENCE
Free Works, Unemployed.

FOREIN LANGUAGES
Advanced English, Advanced Arabic, Beginner Turkish.

