

“3D VISUALIZATION USING DATA RECEIVED FROM
THE PROCESSES OF OBJECT RECOGNITION

AND OBJECT RECONSTRUCTION”

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
ÇANKAYA UNIVERSITY

BY

SEHER PELĐN GÜVENÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE, 2008

iv

ABSTRACT

“3D VISUALIZATION USING DATA RECEIVED FROM

THE PROCESSES OF OBJECT RECOGNITION

AND OBJECT RECONSTRUCTION”

Güvenç, Seher Pelin

M.S.c., Department of Computer Engineering

Supervisor: Asst. Prof. Dr. Abdül Kadir GÖRÜR

June 2008, 61 pages

This thesis presents the demonstration of what two images or two video

sequences can tell us about the situation and model of a third video sequence or

image. The method bears ideas from projective geometry as it’s basis.

The main purpose of the thesis is to be able to form a base line for

tracking an object in a 3D environment not only by using two stereo cameras

but also by using other cameras that may be located in various points of the

environment. The method visualizes the object and gives the information to a

third camera. This way it can be possible to track a moving object, along with

it’s visualized model, in an environment without losing sight of it and without

having to move the other two stereo cameras which we received data from.

Keywords: 3D Visualization, Projective Geometry, Pinhole Camera Model,

Hidden Surface Removal.

v

ÖZ

“CİSİM TANIMLAMA VE CİSİM REKONSTRÜKSİYONUNDAN

ALINAN BİLGİ İLE CİSMİ 3-BOYUTLU OLARAK GÖRÜNTÜLEME”

Güvenç, Seher Pelin

Yükseklisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi: Yrd. Doç. Dr. Abdül Kadir GÖRÜR

Haziran 2008, 61 sayfa

Bu tez çalışması, iki çiftli kameranın bize üçüncü bir kameradaki durum

hakkında neler söyleyebileceği ile ilgilidir. Bu görüntüler video veya resim

şeklinde de olabilir Uygulanan metod izdüşümsel geometrinin fikirlerinden yola

çıkararak gerçekleştirilmiştir.

Tezdeki asıl amaç 3 boyutlu bir ortamda takip edilen cismi

kaybetmemeye çalışmaktır. İki tane sabit çiftli kameradan aldığımız cisim

rekonstrüksiyon ve cisimi tanımlama bilgileri ile üçüncü bir kamerada o cisimin

nerede olabileceği ile ilgili, görsel bir sembol ile bilgi vermiş oluyoruz. Böylece

üç boyutlu ve birden fazla sabit kameranın bulunduğu bir ortamda cismi

kaybetmeden takip edebiliriz.

Anahtar Kelimeler: 3-Boyutlu Görüntüleme, İzdüşümsel Geometri, İğne

Deliği Kamera Modeli, Gizli Yüzey Giderme.

vi

ACKNOWLEDGMENTS

I want to thank my co-supervisor Asst. Prof. Dr. Reza HASSANPOUR

for sharing his experiences and great knowledge and for his guidance

throughout the study of this thesis. I would also like to thank my supervisor

Asst. Prof. Dr. Abdülkadir GÖRÜR for his great support and understanding.

I also want to thank my parents; my mom for her support and patience

and my dad for his suggestions and comments about the methods of pursuing

this experiment.

 vii

TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISM..iii

ABSTRACT..iv

ÖZ..v

ACKNOWLEDGMENTS..vi

TABLE OF CONTENTS..vii

LIST OF FIGURES..ix

LIST OF SYMBOLS..xi

LIST OF ABBREVIATIONS..xii

CHAPTERS:

1. INTRODUCTION...1

2. THE GEOMETRIC BACKGROUND..4

2.1 Transformations..4

 2.1.1 Rotation...5

 2.1.2 Translation..7

3. IMAGE FORMATION..10

3.1 Perspective Projection...10

 3.1.1 The Equations of Perspective Projection.................................13

 3.1.2 Properties of Perspective Projection..14

 viii

3.2 The Pinhole Camera Model...17

4. VISUALIZATION...23

 4.1 Information Visualization...24

5. HIDDEN SURFACE DETERMINATION...27

 5.1 Warnock’s Algorithm..29

 5.2 The Painter’s Algorithm..30

 5.3 Binary Space Partitioning (BSP)...31

 5.4 Ray Tracing..32

 5.5 The Z-Buffer Algorithm (The Depth Buffer Algorithm).....................33

6. SUPERIMPOSITION...40

7. METHODS AND ALGORITHMS...42

7.1 Steps Followed During the Application Process.................................42

 7.1.1 Receiving Image Data from Two Stereo Camera’s..................43

 7.1.2 Using the Geometric Transformation Methods........................43

 7.1.3 Performing Perspective Projection...47

 7.1.4 3D Visualization (3D Data Visualization)................................50

 7.1.5 Performing the Z-Buffer (Depth Buffer) Algorithm.................52

 7.1.6 Simple Superimposition..55

7.2 Experimental Results...57

8. CONCLUSION AND FUTURE WORK..59

REFERENCES..R1

 ix

LIST OF FIGURES

FIGURES

Figure 2.1 Rotation Around the X-Axis..6

Figure 2.2 Rotation Around the Y-Axis..7

Figure 2.3 Rotation Around the Z-Axis...7

Figure 2.4 2D Translation..8

Figure 2.5 3D Translation..9

Figure 3.1 Standard Perspective Projection...11

Figure 3.2 Alignment of the Camera with respect to the World Coordinate System12

Figure 3.3 Assumed Alignment of the Image Plane with respect to O.....................12

Figure 3.4 Geometric Model of Perspective Projection..13

Figure 3.5 Model of Object Distance and Size Relationship.....................................15

Figure 3.6 Difference between Scaling and Foreshortening.....................................15

Figure 3.7 Example of a Vanishing Point in a Real Life Image................................16

Figure 3.8 Geometric Representation of Vanishing Point...17

Figure 3.9 The Pinhole Camera Model..18

Figure 4.1 Visualization of the Human Face using Point Clouds..............................25

Figure 4.2 Visualization of an Architectural Model..25

Figure 5.1 Drawing Done Without Performing Hidden Surface Removal...............27

 x

Figure 5.2 Drawing Done by Performing Hidden Surface Removal.....................27

Figure 5.3 Hidden Line Removal Performed...28

Figure 5.4 Hidden Line Removal Not Performed..28

Figure 5.5 The Application of Warnock’s Algorithm...29

Figure 5.6 The Mountains are Painted First, and then the Meadows....................31

Figure 5.7 The Few Simple Steps of Binary Space Partitioning...........................32

Figure 5.8 The Ray Tracing Algorithm...33

Figure 5.9 Conceptual View of the Depth Buffer..34

Figure 5.10 The Z-Buffer Algorithm...35

Figure 5.11 Computation of Pseudodepth...36

Figure 6.1 Superimposition of a 3D Teapot Model...40

Figure 7.1 The Point of View used in the Previous Experiment...........................44

Figure 7.2 The Point of View used in This Experiment..44

Figure 7.3 Erroneous Projection..48

Figure 7.4 Projection of the 3D Edge Point Coordinates.......................................49

Figure 7.5 Projection of the 3D Corner Point Coordinates....................................50

Figure 7.6 3D Visualization of 3D Edge Point Coordinates..................................51

Figure 7.7 Barn Mesh File...54

Figure 7.8 Visualization of the Barn Example...55

Figure 7.9 Point of View of First Camera………………………………………..56

Figure 7.10 Point of View of Second Camera...56

Figure 7.11 Point of View of the Third Camera..57

 xi

LIST OF SYMBOLS

SYMBOLS

T(x

r
) : Transformation Function

A : Transformation Matrix of T

x
r

 : Column Vector

R : Rotation Matrix

R-1 : Inverse of R

RT : Transpose of R

T : Translation Matrix

∏ : Image Plane

f : Focal Length

P : Point in world coordinate system

p : Point projected to image plane

O : Center of Projection

d : Depth Buffer

p : Pixel Buffer

 xii

LIST OF ABBREVIATIONS

ABBREVIATIONS

2D : Two Dimensional

3D : Three Dimensional

BSP : Binary Space Partitioning

lerp : Linear Interpolation

AR : Augmented Reality

 1

CHAPTER 1

INTRODUCTION

The purpose of this thesis is to create a program that will visualize a 3D wire

frame model of an object that will be tracked in an object tracking system. This

visualization will give us an idea of the location of the object being tracked since

with a simple use of superimposition we will mark the location of the object while

being tracked. Though since this process takes time due to various calculations that

are pursued, it is not done in real time.

Various methods like geometric transformations, perspective projection,

visualization and superimposition were used in the making of this thesis. The

methods are elucidated in the following chapters of this thesis.

In Chapter 2 we describe the basic geometric methods that were used in the

basis of the thesis. These geometric methods (rotation and translation) were used to

convert the 3D corner and edge point coordinates received from the second or first

camera, to the world coordinates and then to the coordinates of the third camera or

third view point. This way we obtained the 3D point coordinates as numeric data and

stored them into a file to use them in the next process.

 2

In Chapter 3 we describe the basics of image formation by describing the

Pinhole Camera Model and perspective projection. Perspective projection plays a big

role in mapping 3D image data’s to 2D image planes. It was one of the main

processes used in the implementation part of the experiment. The mapping of the 3D

coordinates, that were transformed using the geometric transforms, rotation and

translation, were used in the geometric background of the projective geometry.

The Pinhole Camera model shows us how an image in 3D is mapped onto the

a 2D image plane. Here we also define the terms intrinsic parameters and extrinsic

parameters of a camera.

In the next chapter, Chapter 4, the term visualization is defined. It explains

the types of visualization; though emphasizing on data visualization. It shows the

types of data that may be used when visualizing an object. And gives examples of the

tools used in graphics visualization. The data in which we used in this experiment

was the 3D edge and corner point coordinates which were stored in a file, or in other

words numeric data. Another file which included the surface 3D point coordinates,

which was used in the process of applying the Z-Buffer algorithm, was used as well.

Chapter 5 defines the meaning of removing hidden surfaces and explains the

various hidden surface algorithms used to eliminate surfaces that remain behind other

surfaces. The algorithm in which we emphasize on is the Z-Buffer (depth buffer)

algorithm, because this algorithm was used in the method for performing the hidden

surface eliminations.

The reason of removing such surfaces gives us a more realistic view of the

object modeled.

 3

The last method used was superimposition, seen in Chapter 6. This section of

the thesis gives a brief explanation of the term superimposing and explains it’s

applications. It also mentions very briefly about an application in which

superimposition is used, called augmented reality.

In the end we combine the methods and explain the process done and how the

methods were used during the study period of the thesis, along with what could be

done in the future with a more advanced version of the methods and system.

 4

CHAPTER 2

THE GEOMETRIC BACKGROUND

 In the basis of the experiment, the geometrical methods used are the

mathematical and geometrical algorithms and equations used in both the camera

model, image processing and the three dimensional graphics operations.

 The most commanly used geometric method are the transformations.

2.1 Transformations

 There are several transformations in linear algebra; linear transformation,

affine transformation and perspective projection. In our case we have used the linear

transformation.

 A linear transformation can be represented by a matrix. If we have a linear

transformation T which maps a column vector x that has n entries to a vector with m

columns, then we have;

 (2.1)

Where the mxn matrix A is called the transformation matrix of T.

 5

The following are the most common used linear transformations and are also

the ones that were used in the baseline of the experiment.

2.1.1 Rotation

Rotation is a transformation around a plane or space that describes the motion

of a solid object around a fixed point. At the end the distance between any two points

on the object are unchanged.

R is said to be a rotation matrix if R-1 = RT, which means that each rotation

matrix is orthogonal.

There are two types of rotation; axis rotation and vector rotation. In our case

we used the axis rotation since we had two camera’s positioned in different places

which means their coordinate axis’s were rotated according to one another.

The representation of a 3x3 rotation matrix can be given as follows;

 (2.2)

Where in matrix notation;

=

 (2.3)

(Rotation done around the z-axis)

 6

=

 (2.4)

 (Rotation done around the new y-axis)

=

 (2.5)

(Rotation done around the new z-axis (x-axis))

When we multiply each individual matrix we get the rotation matrix R;

(2.6)

Figure 2.1 shows the rotation around the x-axis, Figure 2.2 shows the rotation

around the y-axis and Figure 2.3 shows the rotation around the z-axis.

Figure 2.1 : Rotation Around the X-Axis

 7

Figure 2.2 : Rotation Around the Y-Axis

Figure 2.3 : Rotation Around the Z-Axis

2.1.2 Translation

In image processing translation is the movement of every point on the object

in a specified direction. Though the points all move a constant distance, meaning that

each point on the object moves the same amount towards the specified direction.

 8

The translation matrix, T is a vector that takes 2 or 3 parameters depending on

the dimension that the translation will be taking place. In our case we have used three

parameters in our translation vector since translation was done in 3D. It is

represented as follows;

 T = (tx, ty, tz) (2.7)

Where tx represents the translation done in the x-axis, ty represents the

translation done in the y-axis and tz represents the translation done in the z-axis.

Figure 2.4 shows translation done in 2D and Figure 2.5 shows the translation

done in 3D.

x’ = x + tx

y’ = y + ty

Figure 2.4 : 2D Translation

 9

x’ = x + tx

y’ = y + ty

z’ = z + tz

Figure 2.5 : 3D Translation

There are other types of transformations as well such as Scaling in which the

object either enlarges or deminishes in size. This may happen in 2D or 3D. Another

transformation method is the Normal Transform. Just as we use the matrix T to

transform the geometry of the points or lines we use the normal transform method to

transform the normals of these geometries.

 10

CHAPTER 3

IMAGE FORMATION

 The commonly used model for capturing images from 3D to 2D is the Pinhole

Camera Model. Originally the Pinhole Camera is a camera without a glass lens. It

consists of an extremely small hole and is made up of very thin material. This hole

can focus the light by confining all rays from a scene through a single point.

 In order to understand the Pinhole Camera Model we first need to understand

the term; perspective projection.

3.1 Perspective Projection

 Perspective projection is used to project the 3D world to the 2D image plane.

A basic rule of perspective projection is that something that is further away from the

viewer at a three-dimensional space is “smaller” in the two-dimensional

representation and “larger” if it is closer in the two-dimensional space [1].

 Figure 3.1 illustrates how perspective projection works.

 11

Figure 3.1 : Standard Perspective Projection.[2]

 As it is seen the center of projection is at the center O which is located at the

center of the 3D reference frame, or in other words the world coordinate axis. The

image plane ∏ is parallel to the (x, y) plane and is shifted a distance the size of the

focal length f along the z-axis from the origin of the 3D reference frame. The 3D

point P projects to the image point p.

Though in order to perform perspective projection some simple geometric

arrangements need to be done. We know that in general the world coordinate system

does not align or overlap with the camera coordinate system.

Figure 3.2 shows a simple model of how the camera may be aligned

according to the world coordinate system. As it is seen in the figure the z-axis of the

world coordinate system is upward when the camera’s z-axis faces a different

direction. The camera coordinate system is rotated and translated compare to the

world coordinate system.

This can make things more difficult when calculating and projecting points on

the image plane.

 12

Figure 3.2 : Alignment of the Camera with respect to the World Coordinate

System.[2]

 For this reason, in order to simplify the derivation of the perspective

projection equations, the following assumptions should be made;

1. The center of projection O, described above, overlaps with the origin of the

world coordinate system.

2. The camera’s axis (optical axis) is aligned with the world’s z coordinate axis.

3. And we should avoid image inversion by assuming that the location of the

image plane is in front of the center of projection as shown in Figure 3.3.

Figure 3.3 : Assumed Alignment of the Image Plane with respect to O. [2]

 13

 The line passing through O, and that is perpendicular to the image plane is

called the optical axis, as seen in the figure above. The intersection of the optical

axis with the image plane is called the principal point or image center. (Though the

principal point does not always have to be the image center.)

3.1.1 The Equations of Perspective Projection

Figure 3.4 shows the geometric model of perspective projection, according to

the figure the following equations are derived.

Figure 3.4 : Geometric Model of Perspective Projection. [2]

(notations: (x, y, z) � (X, Y, Z), r � R, (x’, y’, z’) � (x, y, z), r’ � r)

 By using the simple triangles indicated in the figure above, and with the help

of simple geometry and ratio we have;

• From OA’B’ and OAB : f / Z = r / R (f is the focal length.)

• From A’B’C’ and ABC: x / X = y / Y = r / R

 14

From the above equations we obtain the following;

 (3.1)

By using the matrix notation the perspective projection matrix looks like the

following;

 (3.2)

To verify whether the matrix above is correct or not we do the following

(homogenize the matrix by assuming w = Z);

 (3.3)

3.1.2 Properties of Perspective Projection [2]

• Many-to-One Mapping; The projection of a point is not

unique. Any point on the line connecting the center of

projection, O, and the point P as shown in figure 3.3, has the

same projection.

• Scaling/Foreshortening; The distance of an object is inversely

proportional to its image size. In other words, the farther away

the object is the smaller it would look on the image plane. Why

 15

it is like that is explained in Figure 3.5. It shows the geometric

basics.

Figure 3.5 : Model of Object Distance and Size Relationship. [2]

When a line (or surface) is parallel to the image plane the

effect of perspective projection is scaling. In the reverse situation,

meaning that if the line or surface is not parallel to the image

plane the term foreshortening is used to describe the projective

distortion. As shown in figure 3.6 the line parallel to the optical

axis is compressed relative to the frontal line.

Figure 3.6 : Difference between Scaling and Foreshortening. [2]

 16

• Effect of the Focal Length; As the focal length f gets smaller

the number of points projected on the image plane

increase.(example: wide-angle camera). On the contrary, if f gets

larger the field of view gets smaller (example: telescopic view.)

• Lines, Distances, Angles; Lines in 3D project to lines in 2D.

While doing that the distances and angles are not preserved. And

parallel lines do not project to parallel lines unless they are

parallel to the image plane.

• Vanishing Point; Parallel lines in space project perspectively

onto lines that intersect at a single point in the image plane

called the vanishing point or point at infinity. The vanishing

point of any given line in space is located at the point in the

image where a parallel line through the center of projection

intersects the image plane. Figure 3.7 shows an image of a

vanishing point.

Figure 3.7 : Example of a Vanishing Point in a Real Life Image. [2]

 17

The following figure shows the geometric representation of the

perspective projection of parallel lines in the world coordinate

system. See how the parallel lines tend to vanish when projected

onto the image plane.

Figure 3.8 : Geometric Representation of Vanishing Point. [2]

• Vanishing Line; The vanishing points of all the lines that lie on

the same plane form the vanishing line.

3.2 The Pinhole Camera Model

As it is stated at the beginning of this chapter; in a Pinhole Camera model a

scene view is formed by projecting 3D points into the image plane by using

perspective projection.

Figure 3.9 shows a simple drawing of how the Pinhole Camera model looks

like. The rays of light which reflect from the top and bottom of the object go through

 18

the tiny hole to form an image in the back of the box, though an upside down image

of the object is created. It is similar to the image formation in the human eye.

Figure 3.9 : The Pinhole Camera Model. [2]

 The geometry of the Pinhole Camera Model is shown in Figure 3.1 where we

described the geometry of perspective projection. Since the basis of the Pinhole

Camera relies on perspective projection there is no other way then to represent it

geometricaly.

 The projection of a 3D point on an object to the 2D image plane can be

represented by the following equation;

 [] '*|*'* PtRAps = (3.4)

or

=

1

**

100

0

0

1 3333231

2232221

1131211

z

y

x

trrr

trrr

trrr

cf

cf

v

u

s yy

xx

 (3.5)

 19

 Here the (x, y, z) coordinates are the coordinates of a point in the 3D world

coordinate space. The “1” in the coordinate vector states that the coordinates are

homogeneous coordinates. (u, v) represent the coordinates of the point projection.

The camera matrix, or matrix of intrinsic parameters is represented by A. It includes

the parameters (cx, cy), which is the principal point that is usually considered as the

image center and fx, fy which are the focal lengths in both the x and the y direction

respectively.

 If the image maybe scaled by some factor the parameters (fx, fy, cx and cy)

must all be scaled (multiplied or divided depending on the sampling done) by the

same factor as well.[3]

 The matrix of intrinsic parameters does not depend on the scene viewed, and

once it is estimated it can be used again as long as the focal length does not change.

Otherwise it may differ in case of zoom lens, which in that case will have to be

estimated again with the new focal length values.[3]

 The joint rotation-translation matrix [R | t] is called the matrix of extrinsic

parameters and is used to describe the motion of a camera around a static scene or a

motion of an object in front of a still camera. The joint rotation-translation matrix;

[R | t] translates coordinates of a point (x, y, z) to some other coordinate system,

fixed with respect to the camera. [3]

 The equation above is a detailed version of how the actual estimation is done

when converting coordinates from one coordinate system to another coordinate

 20

system or in other words another camera’s coordinate system, the following equation

is another representation of the equation above when z≠ 0;

 t

Z

Y

X

R

z

y

x

+

=

* (3.6)

yy

xx

cyfv

cxfu

zyy

zxx

+=
+=

=
=

'*

'*

/'

/'

 Here R represents the rotation matrix belonging to the camera in which the

coordinates (x, y, z) want to be estimated. t is the translation vector of the same

camera. The projected points u and v are calculated using the transformed

coordinates ('x , 'y) and the intrinsic parameters of the camera matrix.

Though in the real case lens usually have distortion, which means the

abnormal rendering of lines in an image. There are two major distortion components

which are radial and slightly tangential distortion. With these two components the

above equation turns into the following equation;

t

Z

Y

X

R

z

y

x

+

=

*

 21

zyy

zxx

/'

/'

=
=

 (3.7)

x" = x' * (1 + k1r
2 + k2r

4) + 2 * p1x' * y' + p2(r
2 + 2 * x'2)

y" = y' * (1 + k1r
2 + k2r

4) + p1(r
2 + 2 * y'2) + 2 * p2 * x' * y'

Where r2 = x'2 + y'2.

 And from this the (u, v) parameters become;

 u = fx * x" + cx (3.8)

v = fy * y" + cy

 The parameters k1 and k2 are the radial distortion coefficients. The

parameters p1 and p2 are the tangential distortion coefficients. The distortion

coefficients also do not depend on the scene viewed since they are also considered as

the intrinsic parameters of the camera. And they do not differ according to the

resolution of the image taken.

 The following are the methods in which the Pinhole camera model

described above is used;

• Projecting 3D points to an image plane given the intrinsic and

extrinsic parameters of the camera.

• Computing extrinsic parameters given intrinsic parameters of the

camera and a few 3D points and there projections.

 22

• Estimating intrinsic and extrinsic camera parameters from several

views of a known calibration pattern (i.e. every view is described

by several 3D-2D point correspondences). [3]

 23

CHAPTER 4

VISUALIZATION

 Visualization can be any technique used for creating images, diagrams and

animations to show what the data has to tell us. It has been used since the first times

man learned how to draw.

 We can visualize 2D or 3D data depending on the numeric values that are

present. Because, visualization transforms numeric data into a visual form that

enables the users to conceptualize and understand the information. 3D visualization

is the ability to display, analyze, manipulate and interact with 3D data in a 3D

environment [4].

 There are various fields, in computer graphics, in which visualization is

used. These fields are; Information Visualization, Knowledge Visualization,

Educational Visualization and Product Visualization. We are going to emphasize on

Information Visualization since it is the type of visualization method used in the

experimental part of this thesis. The information received for applying visualization

is numeric data.

 24

4.1 Information Visualization

 Information visualization concentrates on the use of computer-supported

tools and libraries to examine large amounts of abstract data. The use of visualizing

such data helps the user or developer gain knowledge about the information written

in a file or another type of structure and helps the user or developer analyze the

abstract data in more detail. These structures maybe coordinates of points in 3D

space, or point cloud data of an object (which is our case) or could be color data or

texture data etc.

 There are various visualization techniques which are commonly used;

some of them are; constructing isosurfaces, direct volume rendering, parallel

coordinates which is a common visualization technique used to visualize high-

dimensional geometry, tables, matrixes, Maps etc...

 Figure 4.1 shows an example of 3D information visualization. The

information received by the supported tool or library is a point cloud, or in other

words the 3D coordinates of the points, of the specific curves and edges of the

human face. These points are extracted using certain object reconstruction methods

and can be stored in a file for later use.

 25

Figure 4.1 : Visualization of the Human Face using point clouds. [5]

 Figure 4.2 shows another example of 3D information visualization. This

figure represents an example for architectural data visualization. It is clearly seen that

the data source used here is much larger and contains more detail such as color,

texture and depth information.

Figure 4.2 : Visualization of an Architectural Model. [5]

 26

 These types of 3D models are visualized using strong visualization toolkits

for architectural development and modeling.

 As it is seen from the figures above, computer graphics plays a huge role in

the area of visualization. Not only can tools be used to visualize certain data but

some libraries such as OpenGL (Open Source Graphics Library) or VTK (The

Visualization Toolkit) can be used as well, where the developer writes his/her own

code by using special functions to visualize the data given. These are only some

examples of visualization libraries used in computer graphics programming.

 27

CHAPTER 5

HIDDEN SURFACE DETERMINATION

 When visualizing a source of data, such as polygonal meshes, due to the data

being 3 dimensional the surface of an object which needs to be behind another object

or obstacle may be seen through the first object. Hidden surface determination,

which is also known as hidden surface removal or visible surface determination is

used to find a solution to such a problem. It determines which parts of an object in a

scene is not visible from a certain point of view.

 [6] [6]

Figure 5.1 : Drawing done without Figure 5.2 : Drawing done by

performing hidden surface removal. performing hidden surface removal.

 28

Figures 5.1 and 5.2 show a polygonal mesh representation of a cat without

performing hidden surface removal and by performing hidden surface removal

respectively.

 As it is seen in the images, the figure in which hidden surface removal was

not performed is complex and uncertain and not close to what the object would look

like in real life, on the other hand the figure in which hidden surface removal was

performed the front meshes have come forward and the object no longer has a

transparent look, which means that the object is rendered in a way in which it would

look like in real life.

 Another type of removal is the hidden line removal which is used in rendering

lines. Figure 5.3 and 5.4 show some polygonal objects drawn with hidden line

removal performed and not performed respectively.

Figure 5.3 : Hidden Line Removal Figure 5.4 : Hidden Line Removal

 performed. [6] not performed. [6]

 There are many algorithms used in order to perform Hidden Surface Removal

in the rendering pipline, the projection, the clipping and the rasterization steps of the

the visualization of the scene. All of these steps are handled differently according to

the following algorithms;

 29

• Warnock’s Algorithm.

• The Painter’s Algorithm.

• Binary Space Partitioning.

• Ray Tracing.

• The Z-Buffer Algorithm. (Depth Buffer Algorithm)

5.1 Warnock’s Algorithm

 Warnock’s Algorithm divides the screen into smaller areas and sorts out the

triangles within these areas. If there is ambiguity (i.e., polygons overlap in depth

extent within these areas), then further subdivision occurs. Subdivision may occur

down to the pixel level, which is the limit of the performance of the algorithm [7].

 Figure 5.5 shows an example of the application of the Warnock Algorithm.

Figure 5.5 : The Application of Warnock’s Algorithm. [8]

 30

 A simple implementation of this algorithm can be given by the following

steps [8];

1. Take a given section of the screen. (In the first run it is the

entire screen.)

2. Check to see that it is “simple enough”. The meaning of simple

enough is; no more then one polygon in the viewport [9].

3. If it is simple enough, display it.

4. If it isn’t then subdivide the screen into four sections and begin

from the first step.

You can see the above algorithm applied in figure 5.5.

5.2 The Painter’s Algorithm

The painter's algorithm, also known as a priority fill, is one of the simplest

solutions to the visibility problem. When projecting a 3D scene onto a 2D plane, it is

necessary at some point to decide which polygons are visible, and which are hidden

[7].

The name "painter's algorithm" refers to a simple-minded painter who paints

the distant parts of a scene at first and then covers them by those parts which are

closer. The painter's algorithm sorts all the polygons in a scene by their depth and

then paints them in this order. It will paint over the parts that are normally not visible

-- thus solving the visibility problem -- at the cost of having painted unnecessary

areas of distant objects [7].

 31

Figure 5.6 shows the simple steps of how the Painter’s Algorithm works.

Figure 5.6 : The mountains are painted first, and then the meadows and

finally the trees up close are painted last. (Simple example of the Painter’s

Algorithm) [7]

5.3 Binary Space Partitioning (BSP)

Binary space partitioning is a generic process of recursively dividing a scene

into two until the partitioning satisfies one or more requirements. The specific

method of division varies depending on its final purpose. For instance, in a BSP tree

used for collision detection, the original object would be partitioned until each part

becomes simple enough to be individually tested, and in rendering it is desirable that

each part be convex so that the painter's algorithm can be used. [7]

It divides a scene along planes corresponding to polygonal boundaries. The

subdivision is constructed in such a way to provide an unambiguous depth ordering

from any point in the scene when the BSP tree is traversed. The disadvantage here is

that the BSP tree is created with an expensive pre-process. This means that it is less

suitable for scenes consisting of dynamic geometry. The advantage is that the data is

pre-sorted and error-free [7].

 32

The following figure shows an example of how Binary Space Partitioning

works, in a simple way.

Figure 5.7 : The few simple steps of Binary Space Partitioning. [7]

As it is seen, A is the root of the tree and the entire polygon. A is split into B

and C. Then B is split into D and E. And in the last part D is split into G and F which

are convex and hence become leaves on the tree. [7]

5.4 Ray Tracing

Ray tracing; attempts to model the path of light rays to a viewpoint by tracing

rays from the viewpoint into the scene. Although it may not be considered as a

hidden surface removal algorithm, it implicitly solves the hidden surface removal

problem by finding the nearest surface along each view-ray. Effectively this is

equivalent to sorting all the geometry on a per pixel basis [7].

The following figure shows an example of how ray tracing works.

 33

Figure 5.8 : The Ray Tracing Algorithm. [7]

5.5 The Z-Buffer Algorithm (The Depth Buffer Algori thm)

The final algorithm and the algorithm which was used in this experiment is

the Z-Buffer Algorithm. It is one of the simplest and most easily implemented

methods for removing hidden surfaces. Though there are some limitations to this

algorithm such as large amount of memory usage and it often renders an object that

is later on neglected by an object that is rendered which is nearer, which means that

the amount of time spent for the first object is wasted.

The reason this algorithm is called the Z-Buffer algorithm is because the z-

coordinate that represents depth value is used.

 Figure 5.9 shows a frame buffer along with its depth buffer.

 34

Figure 5.9 : Conceptual view of the depth buffer. [10]

For every pixel p[x][y] the depth buffer stores a b-bit (that is usually in the

range from 12 to 30) quantity d[x][y]. During the rendering process the depth buffer,

d[x][y] contains the pseudodepth (provides an adequate measure for pixel p) of the

closest object encountered so far at the pixel p[x][y]. As the algorithm proceeds,

“tile” by “tile” (we can consider each pixel as a tile), it checks and compares the

pseudodepth (z value) of the current tile with the depth d[x][y] stored in the depth

buffer. If it is less than the value stored in the depth buffer then the color of the closer

“tile” or surface replaces the color stored in pixel p[x][y], and the smaller

pseudodepth value replaces the old value in the depth buffer d[x][y].

The faces can be drawn in any order, though as mentioned above if the

surface that is far away is drawn first then the surface that is near will be drawn on

top of it which yields into a waste of time spent on the drawing of the far surface.

This algorithm can be used on any surface and works for any type of object

shape, including curved shapes, since it finds the closest surface based on a point-by-

point (pixel-by-pixel) testing.

 35

Figure 5.10 shows a simple example of how the Z-Buffer Algorithm works. A

tile sample is used to visually show how each tile is drawn step by step.

Figure 5.10 : The Z-Buffer Algorithm [10]

As seen in the figure the array d[x][y] is initially loaded with the value “0”.

Though usually the depth buffer d[x][y] is initially loaded with the value 1.0 since it

is the greatest pseudodepth value possible. The frame buffer on the other hand is

initially loaded with the value of the background color.

Now that we have given the information about the Z-Buffer let’s find out how

we can find the pseudodepth of each pixel.

In order to compute the pseudodepth we need a fast method. Recall that each

vertex P = (Px, Py, Pz) of a face is sent down the graphics pipeline and goes through

various transformations. The information of each vertex after these transformations is

the scaled and shifted version of the following equation;

 36

),,(),,(
z

z

z

y

z

x

P

baP

P

P

P

P
zyx

−
+

−−
=

 (5.1)

The third component is the pseudodepth. The constants a and b are used so

that the third component equals zero if P lies in the near plane and equals to one if P

lies in the far plane.

For more efficiency the pseudodepth at each pixel is computed along a scan

line incrementally as it is done for the color component of each pixel.

Figure 5.11 shows a face being filled along the scan line ys. The pseudodepth

values at certain points are marked.

Figure 5.11 : Computation of pseudodepth. [10]

 Let’s say the pseudodepth values at the vertices P0, P1 and P2 are known, our

aim is to calculate the pseudodepth value at point Pa, on the scan line ys. So we have

the following;

 37

Pa(z) = lerp(P0, P1, f) = dleft

 Where f = (ys – y0) / (y1 – y0) and (5.2)

lerp(a, b, t) = a + (b - a)*t

 To find the pseudodepth value at point Pb, on the scan line ys, we use the

following;

Pb(z) = lerp(P1, P2, h) = dright

 Where h = (ys – y2) / (y1 – y2) and (5.3)

lerp(a, b, t) = a + (b - a)*t

 So in general; to find the pseudodepth value d at each pixel (x, y) along the

scan line we can use the following;

d(Px) = lerp(dleft, dright, k)

 Where k = (x - xa) / (xa – xb) and (5.4)

 lerp(a, b, t) = a + (b - a)*t

(Not: Lerp is a quasi-acronym for linear interpolation.)

Now that we have defined the Z-Buffer, the question is; why is the Z-Buffer

algorithm so popular and why is it the most commonly used algorithm among the

hidden surface removal algorithms? Let’s list the advantages of the Z-Buffer

algorithm to give us an idea of why it is used so commonly.

• It is simple to implement in hardware.

 38

• It supports non-polygonal primitives.

• It does not have any limit in scene complexity.

• The depth values calculated can be saved for later use or for other

uses.

Along with the advantages there are also some disadvantages of the Z-Buffer

algorithm.

• It uses up extra memory (one storage cell for one pixel) and

bandwidth.

• It wastes time drawing objects that may turn out to be hidden

afterwards. So it may draw the same pixel more than once.

• Certain errors that may be done with the Z precisions lead to depth

aliasing.

If we should make a brief comparison of the three algorithms; Painter’s

Algorithm, Warnock’s Algorithm and Z-Buffer Algorithm, it shall look like the

following table [6];

Painter’s Algorithm Warnock’s Algorithm Z-Buffer Al gorithm

- Device independent.

- Details are tough.

- Algorithm is slow.

- Semi-device dependent.

- Easy to implement.

- Not very fast.

- Device dependent.

- Easy to implement.

- Fast algorithm.

- Memory intensive.

- Algorithm of choice

for hardware.

 39

The reason we are not including the other two algorithms into the table is

because the Ray Tracing algorithm is actually not considered as a hidden surface

removal algorithm and the Binary Space Partitioning algorithm is not a convenient

algorithm. The three algorithms compared above are the most widely used

algorithms for hidden surface detection and removal.

Another algorithm, Backface Culling, which we haven’t mentioned above is

another algorithm that is used for hidden surface removal. Even though this

algorithm is fast it is insufficient when used by itself.

 40

CHAPTER 6

SUPERIMPOSITION

 In computer graphics, superimposition is the placement of an image or video

on top of an already existing image or video. This is usually done to add effects to

the video or image or to just conceal the original image (such as superimposition of a

face on the original face in an image).

 Figure 6.1 shows an example of 3D superimposition into a video sequence. A

model of a teapot has been placed onto a ceratin area on the table and on the floor.

Though determining that location is another step which need to be taken in order to

place the modeled object on that specific location.

Figure 6.1 : Superimposition of a 3D teapot model. [11]

 41

 Superimposition can be done with 3D or 2D objects. You can superimpose

lines or dots to emphasize a certain region in an image as well as place an entirely

different modeled object onto another object in the image. These processes can both

be done in video sequences or images.

 A common application area of superimposition is augmented reality. The

image above is an example of augmented reality.

If we shall give a brief definition of augmented reality (AR); it combines a

virtual environment with the real world, in order to help people to understand the real

world more easily by providing additional information about interesting objects in

the real environment. An AR system should be able to [11];

1. Combine real environments and computer-generated virtual objects,

2. Operate virtual objects interactively with the change in the real world,

3. Align virtual graphic objects onto real environments.

 42

CHAPTER 7

METHODS AND ALGORITHMS

 The application consists of certain steps to perfom the visualization of an

object that is being tracked in a tracking system. Though the system first goes

through certain calculations and observations such as object recognition and object

reconstruction. This application of the thesis is the part of the system in which it

receives the data from those two methods and then performs it’s task.

 The experiment includes many inputs taken from other experiments, which is

why it requires alot of data which was calculated before.

7.1 Steps Followed During the Application Process

 The whole application process went through a series of steps to achieve the

goal set for starting this experiment. The steps include the methods and theory

mentioned in the previous chapters. We explain how these methods were applied in

the following headlines.

 43

7.1.1 Receiving Image Data from Two Stereo Camera’s

Before the process started, in another application camera calibration was done

using two stereo camera’s and with the use of that, object reconstruction and object

recognition was applied to the images received. From this application the 3D edge

points and 3D corner points were found, and the objects’ other features were found

and stored in a file.

In the experiment these files were used as a basis for beginning the process of

implementation which would lead on to the main idea in the purpose of this thesis.

7.1.2 Using the Geometric Transformation Methods

 The data stored in the files mentioned above were in numeric format

including the 3D edge points and corner points coordinates and the calibration

information of the camera’s (intrinsic parameters and extrinsic parameters).

 Since we assumed that the third camera we were looking through was the

same, we used the same calibration data that belonged to either the first or second

camera to perform the geometric methods.

 We applied this to still images since the data received was not from a video

sequence. Each view was a separate image taken from different view points. We

considered each view point to be a view point from a fixed camera.

 Figure 7.1 shows the view points used in the previous experiment in which

the image data was received from and Figure 7.2 shows the view point used in the

basis of this experiment.

 44

Figure 7.1 : The point of views used in the previous experiment.

Figure 7.2 : The point of view used in this experiment.

 45

 As mentioned above we used the same calibration data of the first two camera

view points for the third view point as well. So the image size was the same, the

camera’s intrinsic parameters were the same and the distortion coefficients were

considered the same.

The rotation matrix and translation vectors were also received from the

calibration method of the previous experiment.

 With all the data in hand we had to calculate the world coordinates first using

the data we had received. We used the following equation for calculating the world

coordinates;

22

2

2

2

* t

z

y

x

R

z

y

x

w

w

w

+

=

 (7.1)

 Here the vector containing (x2, y2, z2) are the 3D coordinates of the edge

points received in the data file (the same process was done for the 3D coordinates of

the corner points as well). R2 is the rotation matrix belonging to the second camera.

The vector (xw, yw, zw) are the world coordinates that is going to be calculated and t2

is the translation vector of the second camera.

 So in this equation we have one unknown which is the 3D world coordinates

that we need to calculate to move on to the next step. So with basic arithmetic we

extracted the world coordinates as follows;

 46

(Let’s replace the second camera coordinate vector with; X2 and the world coordinate

vector with; XW.) By using the equation 7.1 we can have the following;

22

2

2

2

* t

z

y

x

R

z

y

x

w

w

w

+

=

 � X2 = R2 * XW + t2

 Now let’s extract the world coordinates;

X2 – t2 = R2 * Xw

(X2 – T2) * R2
-1 = R2 * XW * R2

-1

(R2
-1 is the transpose of the matrix R2)

(X2 – T2) * R2 = XW

(calculated using equation 7.1)

 With the equation above we have calculated the 3D world coordinates. By

finding the world coordinates or in other words the representation of the 3D

coordinates in the world space, we can convert the coordinates to any type of

coordinate system. Our aim was to find the 3D coordinates of the points in the third

camera view point. So we used the following equation (taken by using equation 7.1)

again to find the 3D coordinates of camera three;

X3 = R3 * XW + t3

 47

Where X3 represents the coordinate vector (x3, y3, z3) of camera three and R3

and t3 are the rotation matrix and traslation vector respectively of the third camera.

Though before calculating the world coordinates the rotation data received from the

previous experiment needed to be trasformed. Because after calibration the rotation

data was in the form of a vector, though to use it in the equation we first needed to

transfer the rotation vector of the third camera to a 3x3 rotation matrix. That way we

could calculate the X3 coordinates using the above equation. The trasfer of the

rotation vector to a rotation matrix was done by using a special function in OpenCV.

The implementation of this part was done by using the open source library,

OpenCV. Microsoft Visual Studio 6.0 was used as the platform for implementation.

The programming language used for the implementation of the code was C.

7.1.3 Performing Perspective Projection

 After calculating the 3D coordinates it was time to use perspective projection

to project the points calculated onto the image to test whether the points have been

transformed correctly according to the third camera view point.

 The 3D point coordinates were read from an input file and then given to a

special function used in OpenCV. The function receives the object points, the

translation and rotation vectors of the coordinate system belonging to the third

camera and the third camera’s intrinsic parameters and distortion coefficients. As a

result it gives us the matrix of image points on the 2D image plane.

 48

 In order to test whther the projection of the points was done right, dots were

drawn on the image where the projected points belonged. At first by giving the

rotation and translation vectors the projected points did not align with the points in

which they should have. This is shown in figure 7.3.

Figure 7.3 : Erroneous Projection

 As it is faintly seen in the image above only one dot was drawn on an axis of

the image yet the other points are no where to be found. From this solution it was

understood that the function used in this method translated and rotated the already

translated and rotated points. In fact the points in which were given as an input were

already rotated and translated according to the following equation;

 X3 = R3 * XW + t3 (see equation 7.1)

 49

 After realizing the reason for the erroneous output, instead of giving the

rotation and translation vectors as inputs zero vectors were given, along with the

other parameters mentioned above, so that the points would be projected directly

without an change. And with having done this the output image turned out to look

like the image predicted at the beginning. The result of the projection of the 3D edge

point coordinates are shown in figure 7.4.

Figure 7.4 : Projection of the 3D edge point coordinates.

The same method was used to project and draw the 3D corner point

coordinates as well. That application is shown in Figure 7.5.

It is seen in both of the figures that the projected edge point coordinates and

corner point coordinates all overlap on the points in which they were suppose to.

This shows that the geometric methods used were correct and the calculationns done

were correct as well.

 50

Figure 7.5 : Projection of the 3D corner point coordinates.

7.1.4 3D Visualization (3D Data Visualization)

 In the process of 3D Visualization the open source graphics library, OpenGL,

was used.

 As an input the calculated 3D edge point coordinates were used. The aim was

to draw the coordinates in the 3D format, in order to visualize the 3D edge points in a

discrete environment. For this method a function in the OpenGL library was used.

Though due to the lack of surface point coordinates and other types of features such

as lighting effects and texture we needed to use another mesh file in order to test the

algorithm. The output of this test will be explained and shown in section 7.1.5

Performing the Z-Buffer (Depth Buffer) Algorithm.

 The following figure shows the output of the visualization of the 3D edge

point coordinates of the third point of view.

 51

Figure 7.6 : 3D Visualization of 3D edge point coordinates.

As it is seen in the image, there is something wrong in the way that the points

have been drawn. The image above does not look exactly like the original image.

The reason for this is the way that the points have been projected to the 2D screen.

The function used actually projects the points orthogonally, meaning directly without

giving any perspective. The perspective comes from the points itself. The edges

which are blue are the ones that are far away, and the green edges are the edges that

are closer to the viewer.

This image is not enough though. As an input there must also be texture or

surface information (for example 3D surface point coordinates) at least in order to

perform the next task. These informations are received from object recognition.

From that method we will receive a mesh file including every data, such as

vertices, faces, and normals of the faces or vertices. By using these data’s we form a

3D triangular mesh of the object being tracked.

 52

7.1.5 Performing the Z-Buffer (Depth Buffer) Algorithm

 The Z-Buffer algorithm was applied to another data file to test the algorithm.

Since the data file calculated did not include the surface data. In order to perfom the

Z-Buffer algorithm the data that will be drawn needs to include 3D point coordinates

of the surface of the object as well, otherwise, by using only edge point coordinates,

the elimination of the hidden parts can not be done, which means that the Z-Buffer

algorithm will not work properly.

 As mentioned before the Z-Buffer algorithm eliminates the hidden surfaces,

meaning it only shows what is suppose to be seen not the objects that remain behind

of other objects.

 By using the sample test data to test the Z-Buffer algorithm it was seen that it

worked. The test data file included the vertex’s of the polygonal surfaces in the

image and the point coordinates of the surfaces. With this data the following

algorithm was used in order to apply the hidden surface method;

 For each polygon P

 For each pixel (x, y) in P

 Compute z_depth at x, y

 If z_depth < z_buffer (x, y) then

 set_pixel (x, y, color)

 z_buffer (x, y) = z_depth

 The algorithm shown above is done during the visualization period of the

program. Since the Z-Buffer algorithm works in scan line format it checks the Z

value of the pixel and then draws it on the screen.

 53

 The Z-Buffer defined was first initialized to 1.0, since 1.0 is the largest

value stated for the Z-Buffer, because the range of the buffer was taken from 0.0 to

1.0. So the Z values in which we are dealing with are actually 1/Z. By doing this it

helped us to linearly interpolate the Z values along the polygon edges. This also

means that Z (Z-1) has been inverted, so points that are far away will have small

numbers, and points that are close to the viewer will have larger numbers. The

calculation was implemented as follows; as the 3D points were projected onto the

screen, the 1/Z value at that x, y point was stored.

 This continued on until every polygonal edge was drawn onto the image

screen. The surfaces and edges that were in the back did not appear. So the Z-Buffer

algorithm worked successfully. Instead of having the wire frame, transparent view,

as shown before in the visualization of the edge points we have a non-transparent

though again wire frame view due to the data. If we include the texture as well then

we will have a complete solid model view of the environment and object.

 Normally the data file will contain the surface point data along with the

edge data, of the scene in which we are viewing, as well. These data’s will be

received from the results of object recognition and segmentation (accomplished in

other experiments).

 Though in order to test the algorithm that had been written another sample

mesh file was used. This mesh file was compiled using the Z-Buffer algorithm,

which is why this example is being explained in this part of the thesis; to show how

the algorithm worked as a whole. Since a proper visualization can not be done

without the use of the Z-Buffer algorithm.

 54

 Our example mesh file was the simple Barn example. This example is

usually used in Computer Graphics text books.

 The following figure shows how the file looked like.

Figure 7.7: Barn Mesh File

 The format of the file was like the following; The numbers at the beginning

of the file indicate the number of vertices, the number of normals and number of

faces in the mesh. Each vertex is listed below it and following it are the normals to

those vertices. Next, each face is listed containing the number of vertices in the face,

the vertex list and the normal list for the vertices.

 By using this very simple file we managed to test our algorithm and we

obtained the solution seen in figure 7.8. The solution does not only contain the edges

and vertices it also contains the shading and light information as well.

 55

Figure 7.8: Visualization of the Barn Example.

 As it is seen in the figure the part of the barn that remains in the back is not

seen, this shows us that the Z-Buffer algorithm has worked. Our visualization

algorithm has worked also.

7.1.6 Simple Superimposition

 After having modeled the object our intentions was to apply a very simple

superimposition method to locate the whereabouts of the object, since we are

considering of tracking a certain object in a 3D environment. Though since we did

not have enough feature points to define the object, such as we mentioned in the

 56

previous sections, we only considered about drawing a circle or rectangle that shows

us the objects whereabouts.

 If we can consider the boxes in the following two figures;

Figure 7.9: Point of view of first camera.

Figure 7.10: Point of view of second camera.

As it is seen in the figures the boxes are visible. These were the point of

views from the two cameras’ we had taken data from. In our case we can not see the

box, it is somewhere behind the computer.

The following figure shows us the point of view of the third camera in which

we used to apply the algorithms.

 57

Figure 7.11: Point of view of the third camera.

The red rectangle was superimposed to show us approximatley where the

boxes in the figure may be.

Superimposition was used in this way. A more advanced use of

superimposition would be to superimpose a virtual 3D model of the object which we

explain in the next chapter.

7.2 Experimental Results

 As a result the algorithms used for this part of the system all worked though

were tested with different testing data due to the lack of data belonging to the same

system.

 If the data used in the object tracking experiment and the object recognition

and reconstruction experiments were all the same sample data it would have been

 58

better to show how the system would’ve worked as a whole. Though we only got to

test the algorithms using different testing data, which led to different views and

solutions. But the algorithms can work on any type of data received as long as the

data is in the suitable format.

 This experiment requires various inputs received from other experiments.

Which makes it difficult to achieve if the system is not well set.

 59

CHAPTER 8

CONCLUSION AND FUTURE WORK

 As a conclusion of this thesis we managed to give the viewer from the third

camera an idea of where the object, in which the system it was being tracked, is.

 The results are not precise since we have not used any statistical

computations, but the results still give us an idea of the whereabouts of the object do

to the visalization done. The program has a restriction on the input data given to

pursue the process. The data needs to be the 3D point coordinates of the vertices and

edges of the object along with the 3D point coordinates of the polygonal surfaces that

were calculated using the segmentation method in another experiment. With these

data’s the program will work. In order to expand the program, so it can work for

texture data and other details certain additions must be made to the algorithm.

As mentioned above the program provides a view of the object in the third

camera. This object may be behind an obstacle where it can no be seen at all or it can

remain behind another object but can be partly seen, meaning a certain portion of the

object can no be viewed. Even in these two cases the program is capable of telling us

the whereabouts of the object.

 60

Since we tend to use this program in a an object tracking system, the amount

of data given as an input to the program will be quite large. The processing of this

data will slow down the run time of the system. The reason for the data being so

large is because of the amount of detail that will be added for the determination and

modeling of the object. In our case we only have 3D corner and edge coordinates and

3D surface coordinates, though in the more complex case we will have texture data,

distance data and intensity data. These data’s will help us render the object in a more

realistic way. Though with this data the Z-Buffer algorithm will work much slower

since it already has a tendancy of working slow due to the amount it spend on

drawing points that may be eliminated later on.

To reduce the amount of time spent optimization can be applied to the

calculations. For example not all data may be used for certain processes in the

program, such as the Z-Buffer algorithm, since surface data is sufficient for the Z-

Buffer algorithm to work.

As future work this thesis can be developed into a system that shows us a 3D

virtual model of the object superimposed on the real object itself during the tracking

process. The third camera or other camera’s can then tell us the exact location of the

object along with it’s features. This way the camera will act sort of like a human eye

focusing only on one object.

In order for this to take place a 3D model of the object must be rendered

using a graphics library. The model does not need to be perfectly rendered, meaning

that it is not necessary for the object to look realistic, as long as the features are

clearly pointed out. Later on this 3D model can be superimposed onto the original

view of the object in the viewing screen of the third camera. The 3D model can be

 61

obaque or transparent depending on the level of detail in which the object wants to be

tracked. By purusing such an application the object in which we intend to track will

not be lost by the tracking system. Each camera in the environment, will be able to

show the exact location of the object along with it’s features. So as long as the object

moves around in the boundaries of the tracking system we will not lose sight if it.

The camera’s used in the system may be fixed or rotatable. They will be sending

each other the data they calculate once one of them loses sight of the object, the other

one will continue on with tracking the object until that one has lost sight as well. This

process will continue on until the object is totally lost.

Though this application has certain problems. Since we want to track the

object in full detail the rendering process will take up most of the run-time of the

program. So until the object is superimposed on it’s original view it may have

already moved to another location or even have left the tracking systems boundaries,

which will give us false information of the location of the object. Another time

consuming process will be the transfer of such large amount of data from one camera

to the other. This will effect the system in a negative way since the tracking system

will be working in real-time. So as the process time of calculation and drawing

increases the system will be far away from becoming a real-time application. These

problems can be over come with certain optimizations and better hardware, though

further studies are also required.

R1

REFERENCES

[1] http://faculty.cs.tamu.edu/jchai/CPSC641_fall07/PerspectiveProjection.pdf

[2] http://www.roysac.com/blog/2007/10/perspective-projection-on-

computer.html

[3] http://opencvlibrary.sourceforge.net/

[4] MCCASLIN, P.T., MCDONALD, P.A., and SZOKE, E.J. (2000) 3D
Visualization Development at NOAA Forecast Systems Laboratory,
COLUMN: Contributions: Focus: New Visualization Techniques, 41-42. Vol.
34.

[5] http://www.yuhui-fu.net/Images/JPEG/Project%20Pictures/Point_Cloud.jpg

[6] http://medialab.di.unipi.it/web/IUM/Waterloo/node70.html

[7] http://en.wikipedia.org

[8] http://medialab.di.unipi.it/web/IUM/Waterloo/node68.html

[9] http://medialab.di.unipi.it/web/IUM/Waterloo/node69.html

R2

[10] JANOWSKI, A., SAWICKI, P., SZULWIC, J. (2005) Advanced 3D
Visualization of an Architectural Object in the OpenGL Standard,
PanoPhot05, Berlin

[11] PARK, S.C., LEE, S.W. and LEE, S.W. (2006) Superimposing 3D
Virtual Objects using Markerless Tracking, Pattern Recognition, 2006.
ICPR 2006. 18th International Conference on, 897-900. Vol. 3.

[12] FAUGERAS, O., LUONG, Q.T., (2001), The Geometry of Multiple
Images: The Laws that Govern the Formation of Multiple Images of a
Scene and Some of Their Applications, The MIT Press, Massachuesets

[13] HARTLEY, R., ZISSERMAN, A., (2000), Multiple View Geometry in
Computer Vision, Cambridge University Press, Cambridge.

[14] EICK, S.G (2000) Visualizing Multi-Dimensional Data, COLUMN:
Contributions: Focus: New Visualization Techniques, 61-67

[15] http://www.cs.helsinki.fi/.../piilopinnat/warnock.html

[16] http://www.dgp.toronto.edu/~patrick/csc418/notes/pseudodepth.pdf

[17] http://medialab.di.unipi.it/web/IUM/Waterloo/node70.html

[18] HILL, F.S., Jr., (2001) , Computer Graphics Using OpenGL, second
edition, Prentice Hall, New Jersey.

[19] GONZALEZ, R.C., WOODS, R.E., (2002), Digital Image Processing,
second edition, Prentice Hall, New Jersey.

[20] http://genex.hgu.mrc.ac.uk/Software/paint/paint/node5.html

[21] http://www.gamespp.com/graphicsprogramming/ZBufferAlgorithm

R3

[22] STASKO, J.T. (1993) Three-Dimensional Computation Visualization,
Visual Languages, 1993., Proceedings 1993 IEEE Symposium on, 100-
107.

[23] RAMAMOORTI, R. Creating Generative Models from Range Images,
Masters Thesis

[24] FORSYTH, D.A., PONCE, J., (2003), Computer Vision – A Modern
Approach, Prentice Hall, New Jersey.

[25] http://www.siggraph.org/education/materials/HyperGraph/modeling

