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ABSTRACT 

SIMULATIVE AND REAL TIME STABILIZATION AND ONTROL OF THE 

CART-PENDULUM SYSTEM 

 

                                                 Fidan, Tahseen SEDEEQ  

 

M.Sc., Department of ELECTRONIC AND COMUNICATION ENGINEERING 

Supervisor: Asst. Prof. Dr. Ulaş BELDEK 

AUGUST 2016,81 pages 

 

The cart-pendulum system has a non-linear dynamics and its mathematical model is 

expressed by differential equations with high order. Besides, at some control 

applications this system should be stabilized and controlled around unstable 

equilibrium points. Due to these characteristics, the cart pendulum system is a good 

test-bed to design and implement different control algorithms in both simulation and 

real time applications. In this thesis, applicability of different control algorithms to 

stabilize and control the cart-pendulum system in inverted pendulum mode is 

analyzed. Primarily the system structure is simulated and a state feedback control 

strategy is implemented for this mission. However, the state feedback control 

strategy is unsuccessful in the real time application. For this reason, in the real time 

application, a system identification step is required as it is observed that there is a 

dissonance in the real system dynamics and mathematical model of the system. The 

system identification step has specified the valuable information about the 

approximate linearized system structure and this information is used to design new 

and competent controllers to accomplish the stabilization and control missions in real 

time. The controllers are designed based on root locus plots of the identified system. 

After the controllers are designed, their capabilities are tested in various real time 

applications. 

Key Words : Cart-pendulum System, System Identification, Proportional-integral-

derivative Controllers, Root Locus, State Feedback, Linearization. 
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ÖZ 

ARABALI SARKAÇ SİSTEMİNİN BENZETİMSEL VE GERÇEK ZAMANLI 

DENGELENMESİ VE KONTROLÜ 

 

                                                 Fidan Tahseen SEDEEQ 

 Yüksek Lisans, Makine Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Asst. Prof. Dr. Ulaş BELDEK 

AĞUSTOS 2016, 81 sayfa 

Arabalı sarkaç sisteminin doğrusal olmayan bir dinamiği bulunmaktadır ve 

matematiksel modeli yüksek dereceli türevsel denklemlerle ifade edilmektedir. 

Ayrıca bu sistemin, bazı kontrol uygulamalarında kararsız denge noktalarında 

dengelenmesi ve kontrol edilmesi gerekmektedir. Bu özelliklerinden dolayı, arabalı 

ters sarkaç sistemi hem benzetimlerde hem de gerçek zamanlı uygulamalarda kontrol 

algoritmalarının tasarlanması ve uygulanması için iyi bir sınama ortamıdır. Bu tezde, 

arabalı sarkaç sisteminin ters sarkaç kipinde dengelenmesi ve kontrol edilmesi için 

farklı kontrol algoritmalarının uygulanabilirliği analiz edilmiştir. Bu amaç 

doğrultusunda, ilk olarak, sistemin yapısının benzetimi yapılmış ve durum geri 

beslemesi kontrol stratejisi benzetimde uygulanmıştır.  Buna karşın, durum geri 

beslemesi kontrol stratejisi gerçek zamanlı uygulamada başarısız olmuştur. Bu 

nedenle, gerçek zamanlı sistemin dinamiği ve sistemin matematiksel modelinin 

arasındaki uyumsuzluktan dolayı, gerçek zamanlı uygulamada bir sistem tanımlama 

adımına ihtiyaç duyulmuştur. Sistem tanımlama adımı yaklaşık doğrusal sistem 

yapısı hakkında değerli bilgileri tayin etmiş ve bu bilgiler gerçek zamanlı 

uygulamalarda dengeleme ve kontrol görevlerinin başarıyla sonuçlandırması 

amacıyla yeni ve yetkin denetleyicilerin tasarlanması için kullanılmıştır. 

Denetleyiciler, tanımlanan sistemin kök yer eğrisi çizimlerine dayanarak 

tasarlanmıştır. Denetleyiciler tasarlandıktan sonra kabiliyetleri farlı gerçek zamanlı 

uygulamalarda sınanmıştır. 

Anahtar Kelimeler: Arabalı Sarkaç Sistemi, Sistem Tanımlama, Oransal-İntegral-

Türevsel Denetleyiciler, Kök Yer Eğrisi, Durum Geri Beslemesi, Doğru sallaştırma. 
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 CHAPTER 1  

 

   INTRODUCTION 

 
 

The Cart-Pendulum system is a good example for non-linear dynamical systems and 

it is also an important and useful control laboratory experimental set-up to let 

analysis of unstable mechanical system as well [1]. Due to its non-linear and unstable 

characteristics, it constitutes a perfect environment to design and implement modern 

linear and non-linear control techniques and methods. To give an example in [2] 

Bettayeb et all used PI state feedback to control this system at the stabilization stage, 

Udhayakumar and Lakshmi [3] implemented an energy based control strategy in the 

swing up part and used a pole placement strategy in the stabilization stage. Adhikary 

and Mahanta [4] used sliding mode control in order to meanly deal with the 

uncertainties in the system structure to obtain robust controller structures. Kai and 

Bito [5] used discrete mechanics to cope with cart-pendulum problem. Das and Paul 

[6] in simulation used the cascade model of the cart pendulum system in their 

feedback control structure that contains two feedbacks loops. The inner feedback 

loop contains a feedback controller to control the pendulum angle whereas the outer 

feedback loop is used to control the cart position. In [7], Lee et all focused on 

uncertainties on the cart pendulum system and they designed observes to estimate the 

unmeasured states. Uncertainties play an important role in real time applications and 

sometimes it is better to surpass this problem through different methods as explained 

in [7]. 

  

Cart pendulum system is an excellent tool and test-bed for a wide range application 

to design, test and implement control strategies that can be used for various concepts 

ranging from robotics to space rocket guidance system as well as systems having 

similar structures such as cart flexible pendulum system [8]. The ideas and 

experiences gained from non-linear systems can also be implemented for other 
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control theory applications, but mostly for the control of non-linear unstable system. 

However, at some occasions, in order to design competent controller structures and 

ease the burden of dealing with non-linear dynamics, the non-linear system to be 

controlled is linearized. Linearization [9-10] is generally carried out for the cases 

when it is intended to control the system around unstable or stable equilibrium point 

[11].  

 

Any controller structure consists of two vital components. The first component is 

means of knowledge representation used to indicate the controller structure and the 

second component is the method it computes its outputs or makes inferences (the 

decision-making mechanism). The conventional controller structures such as 

Proportional-Integral-Derivative (PID) controllers represent the knowledge using a 

mathematical model [12-13]. Differential equations or transfer functions can be used 

for this purpose. The decision-making mechanism for PIDs is solely the evaluation of 

the mathematical model embodied in the controllers structure depending on the 

imminent input(s) to the controller. For the same task, non-conventional structures 

(i.e. neural-networks, rule-bases, decision trees) and suitable inference mechanisms 

coherent with these structures (i.e. fuzzy logic, mathematical interpolation) [14-15] 

can also be employed. Especially these structures and techniques can be fruitful to 

control non-linear systems. However, still some information should be available 

about the system characteristics in order to train and realize these structures and 

mechanism in simulations efficiently. Unluckily training and realization of these 

structures in real time applications in case the system has unstable characteristics is 

extremely difficult. Generally, one should implement properly working conventional 

controllers for these systems first and then mimic the working principle of 

conventional controller by an extra training step, which is not an easy task. 

Designing proper controllers most of the time necessitates some extra steps (system 

identification steps, robust controller design strategies) [8-16] for non-linear and 

unstable systems as their mathematical model in majority of the cases turn out to be 

insufficient to represent the dynamical model due to the impurities in system 

dynamics and uncertainties in the system parameters. Particularly for the cart-

pendulum system, if we want to stabilize and control it around one of its unstable 
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equilibrium points using a neural network in real time application, the system should 

primarily be carried to a state close to the unstable equilibrium point. Then by 

different inputs the system should be identified. Finally, depending on the 

identification step a working neural network that stabilizes and controls the system in 

dissimilar circumstances such as reference tracking application of disturbances 

should be trained depending on different scenarios. The scenarios might include 

cases that threaten the system stability as well. For example, sudden application of 

reference signal changes can destabilize the system or create increasing oscillations. 

As a result, these kinds of training scenarios could return to be destructive or at least 

it causes the controller not to be properly trained. For these reasons, it is better to 

realize a properly working controller structure using conventional methods instead of 

the effort to train or implement a non-conventional controller structure primarily. 

One should not forget that, the critical step to design an unconventional controller 

also passes from designing a properly working conventional controller. 

  

Particularly for cart-pendulum system, controlling the system around an unstable 

equilibrium point means keeping the pendulum in upright position (inverted 

pendulum mode with pendulum angle equal to 0 degree) with the cart position not 

exceeding dimensions of the rail it is moving along while keeping pendulum angular 

velocity and cart velocity as small as possible. This control operation is called as 

stabilization or hold stage. In real time application, precise identification of dynamics 

of this systems model could be essential for the developing appropriate control 

algorithms for this stage. Besides, to bring the system close to an unstable 

equilibrium point one should take the advantage of some non-linear control 

algorithm first. This operation starts by guiding the system from a stable equilibrium 

point until it is brought closer to the unstable equilibrium point, which is called as the 

swing-up stage. 

 

In our thesis, we employed previously defined swing up stage non-linear controllers 

and previously defined stabilization stage PID controllers to design new controllers 

in simulation and in real time applications. The designed controllers both for the 

simulation and the real time application are only for the stabilization stage. In the 
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simulation part, the mathematical model of the dynamical system is employed to 

develop state feedback [17-18] control strategy. However, the state feedback control 

strategy is not able to stabilize the cart-pendulum system in the real time application 

in the stabilization stage. Hence, a system identification procedure is carried out to 

realize the system around the unstable equilibrium point. The system identification 

yields the valuable information (i.e. approximate transfer functions) about the system 

that is necessary to design new PID controller structures. The design of PID 

controllers is carried out facilitating from root locus method [17-18]. After design, 

the controllers are tested and their performances are compared with the previously 

defined controllers for the stabilization stage with various control applications such 

as reference signal tracking and durability in case of disturbance. The outputs 

demonstrate promising results. 

  

The main task and the practical contribution of this thesis is integrating system 

identification and controller development techniques for a high dimensional non-

linear and unstable system altogether in real time application to develop competent 

PID controller structures. If it is carried out as a simulation, this is a more 

straightforward task. However, as a real time application the process is not so simple.  

   

The organization of the remaining part of this thesis is as follows: in Chapter 2 the 

mathematical model of the cart-pendulum system is given. In Chapter 3, the 

linearization of the mathematical model is carried out around one of the unstable 

equilibrium points and the linearized model of the system is obtained. In Chapter 4 a 

simulated model for the system is modified and this modified model is employed to 

stabilize and control the system around the unstable equilibrium point. In the 

modified model, state feedback control strategy is employed in the stabilization 

stage. In Chapter 5, the real time identification and controller design techniques are 

carried out for the cart-pendulum system. Finally, Chapter 6 summarizes all the 

thesis work done and it gives concluding remarks and future works.  
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CHAPTER TWO 

 

SYSTEM DESCRIPTION 

 

 

 

2.1 System Description 

 

The illustration of an inverted pendulum-cart system is shown in Figure 2.1 [1]. The 

system is made up of two sub systems. One of the subsystems is a cart moving over a 

rail horizontally due to a belt connected along its direction of motion. The belt and 

hence the cart are driven by a DC motor. The voltage applied to the DC motor is 

proportional with the force exerted to the cart via the belt. Therefore, the value of the 

force depends on the value of the control voltage. Due to this force, it is possible to 

move the cart back and forth. The second subsystem is a rigidly connected two-

pendulum stick. This stick rotates freely around the cart. In total, the system exhibits 

non-linear characteristic. 

 

The cart-pendulum system can be represented as a Single Input Multiple Output 

(SIMO) system where the input is the DC motor Voltage (which is assumed to be 

directly proportional with the applied force F to the cart-pendulum system) and the 

system states and outputs can be assigned as the cart position (𝑥1 = 𝑥), cart velocity 

(𝑥2 = �̇� = 𝑣), pendulum angle (𝑥3 = 𝜃) and pendulum angular velocity (𝑥4 = �̇� =

𝑤).  This system has infinitely many equilibrium points some of which are unstable.  

When the system is set to one of these unstable equilibrium points even if a very 

small and time-limited force is applied to cart, the system directly traverses to one of 

the equilibrium points, which are all stable. Hence, when there is no type of feedback 

control (i.e. the system is open loop), it is impossible to stabilize it at unstable 

equilibrium points in real time applications. To sustain and preserve stability at the 

unstable equilibrium points the control signal should be achieved due to a closed 

loop control strategy. 
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As the system structure is inspected, it is observed that the set of unstable 

equilibrium points are reached when the pendulum is at upright position (𝜃 = 0 

degree) and the stable equilibrium points are reached when the pendulum is at 

downright position (𝜃 = 180 degree). The task of balancing the pendulum vertically 

at one of the unstable equilibrium points starting from one of the stable equilibrium 

points is called as Swing Up and Hold (Stabilization) process. In the preceding 

chapters, we will focus on the Swing Up and Hold Process for the cart-pendulum 

system after its dynamics is realized and identified. 

  

 

 
Figure 2.1: The pendulum mechanical unit [1]. 

 

 

2.2 The Pendulum-Cart System Components 

 

 In Figure 2.2 the front profile of the system with its hardware connections is 

illustrated. The system consists of the following units [1] 

 Pentium or AMD based personal computer equipped with RTDAC4/PCI/O 

board, 

 Pendulum and cart mechanical unit, 

 Power interface,  
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 Control software, 

 

 
Figure 2.2: Pendulum control unit [1] 

 

 

2.3 System Dynamics 

 

The phenomenological model of the system is illustrated in Figure 2.3 [1]. Using this 

model, the system parameters and variables can be declared as follows: M is the cart 

mass, m is the mass of the pendulum, 𝑙 is the pole length (length of the stick), 𝐼 is the 

moment of inertia of the pendulum, b is the friction coefficient of the cart, d is the 

rotational friction coefficient of the pendulum and g is the gravitational acceleration 

constant for the earth, x is the position of the cart and ϴ is the angular position of the 

pendulum. The dynamic equations of motion of the system can be obtained by 

summing the forces acting on the pendulum subsystem and cart subsystem. The 

mathematical equations related to cart-pendulum can be obtained using and 

modifying the system equations given in [1-2-3-4-5-6]. But, due direction of motion 

and rotation and declaration of the direction of variables there are sometimes signal 

and variable differences in these equation.  
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Figure 2.3: Pendulum phenomenological model [1]. 

 

 
Based, on the forces in the free body diagram of the cart in horizontal direction we 

get the following equation of motion 

 
𝐹 = 𝑁 + 𝑏�̇� + 𝑀�̈�                                                       (2.1) 

Equation (2.1), F is the force applied to the system, 𝑏�̇� is the friction force, N is the 

reaction force in horizontal direction and  𝑀�̈� is the acceleration force achieved for 

the cart.  

To obtain the horizontal reaction force, one can write 

N=m
𝑑2

𝑑𝑡2 [𝑥 + 𝑙 sin 𝜃] = 𝑚𝑥 ̈ + 𝑚𝑙�̈� 𝑐𝑜𝑠 𝜃 − 𝑚𝑙�̇�2 𝑠𝑖𝑛 𝜃                         (2.2) 

Where 𝑥 + 𝑙 𝑠𝑖𝑛 𝜃 is the center of mass of the pendulum in horizantal direction. 

Using Equation (2.1) and Equation (2.2), we get the first equation of motion for the 

system.  

𝐹 = 𝑚𝑥 ̈ + 𝑚𝑙�̈� 𝑐𝑜𝑠 𝜃 − 𝑚𝑙�̇�2 𝑠𝑖𝑛 𝜃 + 𝑏�̇� + 𝑀�̈�                            (2.3) 

Rearranging the terms at Equation (2.3), we get 

𝐹 = [𝑚 + 𝑀]�̈� + 𝑏�̇� + 𝑚𝑙�̈� cos 𝜃 − 𝑚𝑙�̇�2 sin 𝜃                           (2.4) 
 

To get the second equation of motion, sum the forces vertically to the pendulum. The 

vertical components of the forces are obtained from the following equation  
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𝑚
𝑑2

𝑑𝑡2 [𝑙 cos 𝜃] = 𝑃 − 𝑚𝑔                                                    (2.5) 

Where P is the reaction force acting on the pole, mg is the force due to gravitational 

acceleration acting on pole mass, 𝑙 cos 𝜃 is the center of mass of the pole in vertical 

direction. Since the length of the pole is constant, we can write 

𝑚𝑙
𝑑2

𝑑𝑡2 cos 𝜃 = 𝑃 − 𝑚𝑔                                                       (2.6) 

Taking the first derivative, we obtain 

𝑚𝑙[
𝑑

𝑑𝑡
(−�̇� sin 𝜃)] = 𝑃 − 𝑚𝑔                                               (2.7) 

Taking the second derivative, we obtain 

  

−𝑚𝑙[�̈� sin 𝜃 + �̇�2 cos 𝜃] = 𝑃 − 𝑚𝑔                                      (2.8) 

 

The total sum of the moments about the centroid of the pendulum gives us the 

equation 

𝑃𝑙 sin 𝜃 − 𝑁𝑙 cos 𝜃 = 𝐼�̈� + 𝑑�̇�                                              (2.9) 

Obtaining P from Equation (2.9). 

𝑃 =
𝐼�̈�+𝑁𝑙 cos𝜃+𝑑�̇�

𝑙 sin𝜃
                                                     (2.10) 

We put Equation (2.10), in Equation (2.8) to solve the second equation of motion, we 

get 

 

−𝑚𝑙 [�̈�  𝑠𝑖𝑛 𝜃  + �̇�2  𝑐𝑜𝑠 𝜃]= 
𝐼 �̈�+𝑁𝑙 cos𝜃+𝑑�̇�

𝑙 sin𝜃
− 𝑚𝑔                          (2.11) 

Using Equation (2.2) in Equation (2.11), we obtain 

 

−𝑚𝑙2�̈� sin2 𝜃 − 𝑚𝑙�̇�2 cos 𝜃 sin 𝜃 = 𝐼�̈� − 𝑚𝑔𝑙 sin 𝜃 + 𝑙 cos 𝜃[𝑚�̈� + 𝑚𝑙�̈� cos 𝜃 −

𝑚𝑙�̇�2 sin 𝜃]                                                                                                          (2.12) 

 

Expanding Equation (2.12), we obtain 

−𝑚𝑙2�̈� sin2 𝜃 − 𝑚𝑙�̇�2 cos 𝜃 sin 𝜃 = 𝐼�̈� − 𝑚𝑔𝑙 sin 𝜃 + 𝑚𝑙 cos 𝜃 �̈� + 𝑚𝑙2�̈� cos2 𝜃 −

𝑚𝑙2�̇�2 cos 𝜃 sin 𝜃                                                                                                  (2.13) 

                                                                                                 

Reorganizing the terms in Equation (2.13), we obtain 

−𝑚𝑙2�̈� [sin2 𝜃 + cos2 𝜃]= 𝐼�̈� − 𝑚𝑔𝑙 sin 𝜃 + 𝑚𝑙 cos 𝜃�̈� +𝑑�̇�                            (2.14) 

 

Since, (sin2 𝜃 + cos2 𝜃) = 1, the final equation is obtained as 
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(𝐼 + 𝑚𝑙2)�̈� − 𝑚𝑔𝑙 sin 𝜃 + 𝑚𝑙 cos 𝜃�̈� +𝑑�̇�=0                      (2.15) 

 

As the result, if we put the states x1, x2, x3 and x4 in Equation (2.4) and (2.15) and 

knowing that the cart velocity is the time derivative of cart position and pendulum 

angular velocity is the time derivative of the pendulum angle, we obtain the 

following nonlinear equation of motion  

 

  (𝑚+𝑀) 𝑥2̇+ 𝑏 𝑥2 + 𝑚𝑙𝑥4̇ cos 𝑥3 - 𝑚𝑙 𝑥4
2 sin 𝑥3 =F                     (2.16)                                                           

  (I+ 𝑚𝑙2)𝑥4̇- 𝑚𝑔𝑙 sin 𝑥3 + 𝑚𝑙𝑥2̇ cos 𝑥3 +d𝑥4=0                        (2.17)                                                           

  𝑥1̇ = 𝑥2                                                              (2.18) 

   𝑥3̇ = 𝑥4                                                              (2.19) 
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2.4 The System Parameters 

 

The nominal values of cart-pendulum system parameters are taken from [1]. These 

parameters are given in Table 2.1. 

 

Table 2.1: The pendulum parameters. 

Parameter Value 

g-Gravity 9.81 m/𝑠2 

l-Pole length 0.36 to 0.4 m-depending on the 

configuration. For the  problem we 

take it as 0.36 m. 

M-Cart mass 2.4 kg 

m-Pole mass 0.23 kg 

I-moment of inertia of the pole About 0.099 kg.𝑚2-depends on the 

configuration 

b- Cart friction coefficient 0.05 Ns/m 

d-Pendulum damping coefficient 

although negligible, necessary in the 

model -0.005 Nms/rad 

Although negligible, necessary in the 

model-0.005 Nms/rad 
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CHAPTER 3 

 

LINEARIZATION, EQIULIBRIUM POINTS AND CONTROL STRATIGE 

 

3.1 System Structure 

 

The dynamics model of the cart-pendulum system given in Chapter 2 consists of four 

differential equations (Equation 2.16, Equation 2.17, Equation 2.18 and Equation 

2.19) where two of the equations are non-linear (Equation 2.16, Equation 2.17). In 

order to design controller structures more effectively at and around an operating 

point, is sometimes necessary to linearize them and used the linearized form of the 

differential equations. Indeed, there are two important set of equilibrium points 

depending on the angular position value x3. One of the set of equilibrium points has 

stable characteristics whereas, the other set of equilibrium points exhibits unstable 

characteristics. The unstable equilibrium points are reached when 𝑥3 = 0 (inverted 

pendulum mode). For this case, the pendulum is in upright position. The stable 

equilibrium points are achieved when 𝑥3 = 𝜋  (crane mode). 

 

 

3.2 Equilibrium Points 

 

In a differential equation, in order to achieve the equilibrium points, the derivatives 

of the states are all equated to 0 (𝑥1̇ = 0, 𝑥2̇ = 0, 𝑥3̇ = 0 𝑎𝑛𝑑 𝑥4̇ = 0). Putting these 

values inside Equation (2.16), Equation (2.17), Equation (2.18) and Equation (2.19), 

we obtain the equilibrium points  

𝐹 = 0, sin(𝑥3) = 0, x1 = arbitrary, 𝑥2 = 0 and𝑥4 = 0. 

Hence, to obtain an equilibrium point x3 can be assigned infinitely many values, 

𝑥3 = [… . , −3𝜋,−2𝜋,−𝜋, 0, 𝜋, 2𝜋, 3𝜋,…… . . ] 



 

 13 
 

From these equilibrium points the ones where 𝑥3 = [… ,−4𝜋 − 2𝜋, 0,2𝜋, 4𝜋,… ] are 

the unstable equilibrium points whereas the ones where 𝑥3 = [… ,−3𝜋 − 𝜋, 𝜋, 3𝜋,… ] 

are the stable equilibrium points. We want to focus on particularly two of these 

equilibrium points. One of them is x1=0, x2=0, x3=0, x4=0 and F=0 (the pendulum is 

in upright position with cart position being at the origin) and the other one is x1=0, 

x2=π, x3=0, x4=0 and F=0 (the pendulum is in downright position with the cart 

position being at origin). 

 

 

3.3 Linearization of the Model 

 

The equations given in Equation (2.4) and Equation (2.15) are highly non-linear 

equations and besides they contain some trigonometric functions. The equilibrium 

points of the system are obtained either when 𝑥3 = 𝛳 = 0 or 𝑥3 = 𝛳 = 𝜋 . The 

linearization step starts with the approximation of trigonometric functions around the 

equilibrium points. If 𝛳 = 0  (𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 𝑚𝑜𝑑𝑒), the trigonometric 

functions can be approximated as   

𝑠𝑖𝑛 𝛳 ≈ 𝛳                                                         (3.1) 

cos𝛳 ≈ 1                                                               (3.2) 

Besides at the equilibrium point, there should be no translational or rotational motion 

hence angular velocity of the pendulum should be close to 0. Thus 

𝜃2̇ ≈ 0                                                            (3.3) 

Using these approximations, the equations of motion given in Equation (2.4) and 

Equation (2.15) for the inverted pendulum mode take the form  

 (𝑚+𝑀) �̈� + 𝑏 �̇� + 𝑚𝑙 �̈�  =F                                               (3.4) 

(I+ 𝑚𝑙2) �̈�- 𝑚𝑔𝑙𝜃 +𝑚𝑙 �̈�  +d�̇�=0                                         (3.5) 

For the linearization of the same system at the stable equilibrium points, =

𝜋 (𝑐𝑟𝑎𝑛𝑒 𝑚𝑜𝑑𝑒 ) , following substations have to be made 

sin𝛳 ≈ −𝜃                                                             (3.6) 

cos 𝜃 ≈ −1                                                             (3.7) 

𝜃2̇ ≈ 0                                                                   (3.8) 
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Thus, the equation of motion given in Equation (2.4) and Equation (2.15) for the 

crane mode can be approximated to take the form 

 

 (𝑚+𝑀)�̈� + 𝑏�̇� - 𝑚𝑙�̈�  =F                                                   [3.9] 

(I+ 𝑚𝑙2)�̈�+ 𝑚𝑔𝑙𝜃 −𝑚𝑙�̈� +d�̇�=0                                         [3.10]  

 

3.4 Transfer Functions 

 

We want to focus on the inverted pendulum linearized model given by the Equation 

(3.4), and Equation (3.5). Depending on the declaration of the output in the system, 

we can construct different transfer functions. The first step to obtain these transfer 

functions is to convert the linearized differential equations to Laplace equations by 

Laplace transformation assuming all initial conditions of the states are equal to zero. 

The Laplace transformations of Equation (3.4) and Equation (3.5) gives 

 

(𝑚+𝑀)𝑠2𝑋(𝑠)+ 𝑏𝑠𝑋(𝑠) +𝑚𝑙𝑠2𝜃(𝑠) = 𝐹(𝑠)                                [3.11] 

 

(I+ 𝑚𝑙2) 𝑠2𝛳(𝑠) - 𝑚𝑔𝑙𝛳(𝑠) + 𝑚𝑙𝑠2 X(s) +d𝑠𝛳(𝑠) =0                    [3.12] 

 

In Equation (3.11) and Equation (3.12), the  X(s), 𝜃(𝑠) and F(s) are the Laplace 

domain representations of x, 𝜃 and F and s is the Laplace variable. Recall that 

transfer function represents the relation between a single input and a single output in 

Laplace domain. For the system, there is only one input F(s), but there might be 

more than one outputs. If the output is declared as, 𝜃(𝑠) we need to eliminate 𝑋(𝑠) 

from Equation (3.11), and Equation (3.12). Bu before that let’s make some new 

parameter declarations to ease the task  

h = (m+M)                                                         (3.13) 

N = (I+𝑚𝑙2)                                                        (3.14) 

q = ℎ𝑁 − 𝑚2𝑙2                                                           (3.15) 

 

From Equation (3.11) using through the parameter change in Equation (3.13), we 

have 
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𝑋(𝑠) =
𝐹(𝑠)−𝑚𝑙𝑠2𝜃(𝑠)

ℎ𝑠2+𝑏𝑠
                                               (3.16) 

 

Putting Equation (3.16) in Equation (3.12) with the parameter change in Equation 

(3.14) and we obtain one of the transfer function their force is the input and the 

angular position is the output as 

 

𝛳(𝑠)

𝐹(𝑠)
=

−𝑚𝑙𝑠2

𝑞𝑠4+[𝑁𝑏+ℎ𝑑]𝑠3+[𝑏𝑑−𝑚𝑔𝑙ℎ]𝑠2−𝑚glbs
                               (3.17) 

 

As can be seen from Equation (3.17) there is a pole-zero cancellation in this transfer 

function and it can be written as  

 

𝛳(𝑠)

𝐹(𝑠)
=

−𝑚𝑙𝑠

𝑞𝑠3+[𝑁𝑏+ℎ𝑑]𝑠2+[𝑏𝑑−𝑚𝑔𝑙ℎ]𝑠−𝑚glb
                                 (3.18) 

 

Writing ϴ(s) in terms of F(s) from Equation (3.18) and putting this equation into 

Equation (3.16), we can eliminate ϴ(s) and find the transfer function where force is 

the input and cart position is the output as 

 

𝑋(𝑠)

𝐹(𝑠)
=

𝑁𝑠2+𝑑𝑠−𝑚𝑔𝑙

𝑠[𝑞𝑠3+[𝑁𝑏+ℎ𝑑]𝑠2+[𝑏𝑑−𝑚𝑔𝑙ℎ]𝑠−𝑚glb]
                                       (3.19) 

 

It is known that the cart velocity is the time derivative of cart position (�̇� = 𝑣) an 

pendulum angular velocity is the time derivative of the pendulum angle (�̇� = 𝑤).  

Taking the Laplace trasnforms of these equations and putting inside Equation (3.18) 

and Equation (3.19), we reach to new transfer functions. 

 

𝑊(𝑠)

𝐹(𝑠)
=

−𝑚𝑙𝑠2

𝑞𝑠3+[𝑁𝑏+ℎ𝑑]𝑠2+[𝑏𝑑−𝑚𝑔𝑙ℎ]𝑠−𝑚glb
                                         (3.20) 

and 

𝑉(𝑠)

𝐹(𝑠)
=

𝑁𝑠2+𝑑𝑠−𝑚𝑔𝑙

[𝑞𝑠3+[𝑁𝑏+ℎ𝑑]𝑠2+[𝑏𝑑−𝑚𝑔𝑙ℎ]𝑠−𝑚glb]
                                        (3.21) 
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In Equation (3.20) and Equation (3.21), W(s) and V(s) are the Laplace transformed 

forms of w and v respectively. All parameters of the original model of the system are 

given in Table 2.1. 

 

 

3.5 State-Space Representation of the Linearized Model: 

 
Sometimes, in order to design controllers, not the transfer functions but the state 

space representation of the linearized model is necessary.  Equation (3.4) and 

Equation (3.5) are used to generate the state space representation of the cart-

pendulum system around the unstable equilibrium point. To obtain the state space 

model we used the states defined previously as𝑥1 = 𝑥, 𝑥2 = �̇� = 𝑣, 𝑥3 = 𝜃 and 𝑥4 =

�̇� = 𝑤. With these defined states the state space representation of the system is given 

by 

 

 

 

[
 
 
 
𝑥1

𝑥2̇

𝑥3̇

𝑥4̇

̇

]
 
 
 
=

[
 
 
 
 
 
0 1

0 −
𝑏𝑁

𝑁ℎ − 𝑚2𝑙2

0 0

−
𝑔𝑚2𝑙2

𝑁ℎ − 𝑚2𝑙2
      

𝑚𝑙𝑑

𝑁ℎ − 𝑚2𝑙2

0   0

0   
𝑚𝑙ℎ

𝑁ℎ − 𝑚2𝑙2

0 1
𝑚𝑔𝑙ℎ

𝑁ℎ − 𝑚2𝑙2
      −

𝑑ℎ

𝑁ℎ − 𝑚2𝑙2]
 
 
 
 
 

[

𝑥1

𝑥2
𝑥3

𝑥4

] +

[
 
 
 
 
 

0
𝑁

ℎ𝑁 − 𝑚2𝑙2

0
−𝑚𝑙

ℎ𝑁 − 𝑚2𝑙2]
 
 
 
 
 

𝐹 

 

(3.22) 
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3.6 Control Strategies  

 

The cart moves in x or -x direction along a horizontal rail with limit length, making 

the pendulum to rotate as shown in Figure 3.1.  

 

 
 

 

Figure 3.1: Pendulum stabilization and swing up zones [1] 

 

In order to stabilize the system around unstable equilibrium point ϴ = 0o, two 

different control strategies should be accomplished in an order. Initially the 

pendulum is positioned to the stable equilibrium point ϴ = 180o. Then by application 

of the first control strategy, the pendulum is carried from stable equilibrium point 

(downright position of the pendulum) to the close locality of the unstable equilibrium 

point. This process is called as swing up stage (control) and the region this control 

strategy is applied is called as swing up region. The second control strategy is 

utilized at and around the unstable equilibrium point, which is called as the 

stabilization stage (control) or hold stage. When these two strategies are applied 

altogether the resulting hybrid control strategy is named as swing up and stabilization 

(hold) operation. The swing up zone and the stabilization zone are illustrated in 

Figure 3.1. As can be comprehended the zone depend on pendulum angle variable𝜃. 

Generally, the stabilization zone in simulations and real time applications is chosen 

x -x 

ϴ=0o 

ϴ=180o 

ϴ=90o 
ϴ=-90o or 270o 

Swing up zone 
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as (−𝜃1 ≤ 𝜃 ≤ 𝜃1) where 𝜃1 is chosen a value between 0.2 and 0.25 radians.  On the 

other hand, the main purpose of the stabilization stage is to stabilize not only the 

pendulum but also required to bring the cart to the reference point on the rail. 

 

 

3.6.1 Swing-Up Control 

 

Swing up control technique depends on swinging up the pendulum and obtaining 

controllable oscillations, while keeping the cart travel on the horizontal rail within 

verges of the rail (between 0.4 meter and -0.4 meter). However, if the acceleration is 

unbounded it is possible to bring the pendulum to the upright point in a single swing 

but this might cause the cart to exceed the limits of the rail. Therefore, it is better to 

swing up the pendulum in a robust way, which will assure that the pendulum will end 

up nearly in a vertical position where 𝜃 ≈ 0. There are many methods the swing up 

control can be accomplished. But, one of the most convenient methods can be 

described graphically as in Figure 3.2 [1]. The details of this swing up strategy are as 

follows: 

 

In this strategy, it is assumed that the force magnitude applied to the system is 

constant. Although, the force magnitude is constant, its direction and duration is 

changed due to pendulum angle value. Primarily, apply a very short duration starting 

force to move to the cart. This operation actuates the cart in x or –x direction and 

hence the pendulum also begins to rotate. If pendulum angle 𝜃 is between 90o and 

270o, this means the pendulum is in the lower zone. In the lower zone, apply a force 

until the pendulum angular velocity reaches 0 rad/sec. When the angular velocity 

reaches 0 reverse the direction of the force. Continue this procedure as long as the 

pendulum is at lower zone. If the angle is below 90o or above 2700, this means the 

pendulum is in now upper zone. When the pendulum crosses from lower zone to 

upper zone once again change the direction of the force and apply the force until the 

angular velocity reaches to 0 rad/sec. If the pendulum angular velocity reaches to 0 

rad/sec at upper zone, once again the direction of the force is switched. This time the 

pendulum will move from upper zone to lower zone and when it enters from upper 
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zone to lower zone once again change the direction of the force. Continue the above 

procedure until the pendulum reaches and stays within the stabilization zone.  

 

 

Figure 3.2: Pendulum swing-up principle [1]. 

 

 

 

3.6.2 Stabilization Control 

 

There are also many different stabilization stage methods on the literature.  These 

methods mainly use state-space representation design techniques based on the 

linearized model of the cart-pendulum system. For example, in [3], a kind of pole 

placement is applied to ensure local stability at the unstable equilibrium point. 
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CHAPTER 4 

 

 
SIMULATION MODEL 

 
4.1 Design Strategy 

 

As previously mentioned in Chapter 2 and Chapter 3 the cart-inverted pendulum 

system has non-linear characteristics. In order to control the pendulum in upright 

position generally a swing up and stabilization control is employed. Hence the 

control strategy consists of two stages. The first stage is the swing up stage where the 

pendulum is carried from downright position to nearly upright position 

(approximately the pendulum angle reaches and stays nearly between -11.5 and 11.5 

degrees as the result of this stage). In the second stage the pendulum is stabilized 

around the unstable equilibrium point by a specific controller or set of controllers. 

The design of this/these controller(s) for simulation models is the main content of 

this chapter. For the sake of simplicity, the controllers design is handled based on the 

linearized model of the system. In this chapter primarily the SIMULINK model and 

implementation of the sub-blocks in the SIMULINK model corresponding to swing-

up stage and hold (stabilization) stage is explained in details. Finally, simulation 

results are monitored. 

 

 

4.2 Simulation Sub-Blocks 

4.2.1. Non-linear Mathematical Model of the Cart-Pendulum System Sub-Block 

The cart-pendulum system’s non-linear mathematical structure is shown in Figure 

4.1 [1]. 
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Figure 4.1: The non-linear mathematical model of the cart-pendulum system [1].   

 

 

The model in Figure 4.1 is obtained by modifying the non-linear model explained 

and implemented in the package program for inverted pendulum control applications 

produced by Feedback Instruments Ltd [1]. Details can be found on the manual 

booklet package program [1]. The mathematical model is implemented SIMULINK 

blocks generated using the motion equations in Chapter 2. It has a single input: 

voltage (voltage applied to the DC motor) and 4 outputs: position (x1 cart position), 

velocity (x2 cart velocity), angle (x3 pendulum angle), angular velocity (x4 pendulum 

angular velocity). The driving force exposed to the cart-pendulum system is directly 

proportional to the voltage applied to the DC motor with the proportionality constant 

taken to be equal to 1. In the model there are also the parameters of the system which 

are m (pole mass), cM (cart mass), l (pole length), b (cart friction coefficient), d 

(pendulum damping coefficient), g (gravitational acceleration) and I (moment of 

inertia of the pole). This mathematical model is used in order to implement and test 

the designed controllers in simulation. In total, the mathematical model is embodying 

as a SIMULINK sub-block as in Figure 4.2. 
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Figure 4.2: Sub-block for non-linear mathematical model of cart-pendulum system. 

 

 

4.2.2. Stabilization with State Feedback Sub-Block 

 

In order to design the controllers, it is better to initially check the dynamic properties 

of the linearized system. First we want to obtain the dynamical model of the 

linearized system at the unstable equilibrium point (x3=0). Putting the parameters 

used for the system that are given in Table 2.1 the state space representation of the 

linearized system using through Equation (3.22) will be of the form 

 

[
 
 
 
𝑥1

𝑥2̇

𝑥3̇

𝑥4̇

̇

]
 
 
 
= [

0 1.000
0 −0.0194

0 0
−0.2026 0.0012

0   0
0   0.0125

0 1.000
6.4363 −0.0396

] [

𝑥1

𝑥2
𝑥3

𝑥4

] + [

0
0.3881

0
−0.2495

] 𝐹 

 (4.1) 

 

In Equation (4.1), F is the input (applied force) to the system and V=k×F,                                            

where V is the voltage applied to the motor with the proportionality constant k being 

equal to 1. In Equation (4.1) the system matrix A and input matrix B can be written 

as  

A=[

0 1.000
0 −0.0194

0 0
−0.2026 0.0012

0   0
0   0.0125

0 1.000
6.4363 −0.0396

],       𝐵 = [

0
0.3881

0
−0.2495

]                       (4.2) 
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The system outputs can be declared as cart position, cart velocity, pendulum angle or 

the pendulum angular velocity. 

 

To have a better insight of this linearized system, we also found the transfer 

functions for each output using Equation (3.18) Equation (3.19) Equation (3.20) and 

Equation (3.21) where X1(s), X2(s), X3(s) and X4(s) stands for X(s), V(s), ϴ(s) and 

W(s) respectively 

 

𝐺1(𝑠) =
𝑋1(𝑠)

𝐹(𝑠)
=

0.3881𝑠2+0.01506𝑠−2.447

𝑠4+0.05902𝑠3−6.436𝑆2−0.1224𝑆
                                        (4.3) 

 

 

𝐺2(𝑠) =
𝑋2(𝑠)

𝐹(𝑠)
=

0.3881𝑠2+0.01506𝑠−2.447

𝑠3+0.05902𝑠2−6.436𝑠−0.1224
                                            (4.4) 

 

 

𝐺3(𝑠) =
𝑋3(𝑠)

𝐹(𝑠)
=

−0.2495𝑠+8.114∗10−19

𝑠3+0.05902𝑠2−6.436𝑠−0.1224
                                        (4.5) 

 

𝐺4(𝑠) =
𝑋4(𝑠)

𝐹(𝑠)
=

−0.2495𝑠2−8.182∗10−19𝑠

𝑠3+0.05902𝑠2−6.436𝑠−0.1224
                                            (4.6) 

 

 

The denominators of each transfer function are nearly equal however, G1(s) has an 

extra pole at the origin (the order of G1(s) is 4 whereas the order of the other transfer 

functions is 3). The open loop poles and zeros of each transfer function are given at 

Table 4.1 

 

Table 4.1: Poles and zeros of the transfer functions G1(s), G2(s), G3(s), G4(s). 

Transfer Function Open loop poles Open loop zeros 

G1(s) 0,-2.5571,2.5171,-0.0190 -2.5307, 2.4918 

G2(s) -2.5571,2.5171,-0.0190 -2.5307, 2.4918 

G3(s) -2.5571,2.5171,-0.0190 3.2526×10-18≈0 

G4(s) -2.5571,2.5171,-0.0190 0, -3.2526×10-18≈0 

 

From Table 4.1, we can conclude that the system has four eigenvalues at the 

locations 0, -2.5571, 2.5171, -0.0190. Only in one of the transfer functions, we do 

not observe a pole zero cancellation, which is G1(s). Besides, G1(s) and G2(s) has 

non-minimum phase zero.  
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The root locus plots for G1(s), G2(s), G3(s), and G4 are shown in Figure 4.3, Figure 

4.4, Figure 4.5, and Figure 4.6 respectively. 

 

 
Figure 4.3: Root locus for G1(s) 

 

 

 
Figure 4.4: Root locus for G2(s) 
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Figure 4.5: Root locus for G3(s) 

 

 

 
Figure 4.6: Root locus for G4(s) 
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As seen from root locus plots, the open loop system is unstable for all the states 

besides it is hard to control all the states at the same time with a feedback control 

strategy solely from one of the selected outputs. There are many alternatives for 

solving this control problem. One of them is establishing PID controllers for more 

than one output (i.e. cart position and pendulum angle together) and combining these 

controller outputs to carve out the final control signal. Another alternative is using 

state feedback [17-18]. State feedback is employed in order to relocate all the poles 

of the closed loop system to desired location. In simulations, employing state 

feedback is straightforward as not the actual state signals but their imitations in the 

simulative model are processed. However, to apply state feedback thoroughly in the 

simulations, we should check whether the system is small time locally controllable or 

not. If the linearized system is completely controllable at the unstable equilibrium 

point than the system is small time locally controllable as it is given by the theorem 

[19]. In general, controllability of non-linear systems is also studies in [20]. For 

showing the linearized system is controllable, we have to check the controllability 

matrix Q. 

 

𝑄 = [𝐵 𝐴𝐵 𝐴2𝐵 𝐴3𝐵]                                                (4.7) 

 

Now Q matrix can be computed as 

 

𝑄 = [

0     0.3881
0.3881 −  0.0078

−0.0078      0.0507
0.0507  −0.0060

0       − 0.2495
−0.2495     0.0147

   
0.0147      −1.6063

−1.6063      0.1590

]               (4.8) 

 

 

The determinant of Q is non-zero (det(Q)=0.3727). Hence, the linearized system is 

completely controllable that means the non-linear system is small time locally 

controllable as explained in [19] and state feedback can be applied perfectly around 

the unstable equilibrium point. For state feedback, the Ackermann formula [17-18] is 

employed. Primarily the new eigenvalue locations for the system with state feedback 

should be determined. Checking the pole locations at Table 4.1, we decided to put 

them to -3, -3, -3, and -3. These values have more negative real parts compared to the 

eigenvalues of uncontrolled linearized system. Hence, the corresponding closed loop 

system characteristic polynomial will be 
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P(s) =(s+3)4=s4+12s3+54s2+108s+81                                     (4.9) 

 

The coefficients of the characteristic polynomial are p0=81, p1=108, p2=54, p3=12 

and p4=1. 

 

To obtain the coefficients of the state feedback vector K, we need the vector vT where 

 

𝑣𝑇 = [0 0 0 1]𝑄−1                                                          (4.10) 

Taking the inverse of Q, we get 

 

𝑄−1 = [

0.0500     2.6300
2.6297 −  0.0079

−0.0000      0.0828
0.00818  −0.0123

−0.0241       − 0.4088
−0.4086    −0.0025

    
−0.0622      −0.6359
−0.6358    −0.0039

]        (4.11) 

 

Using Equation (4.10) and (4.11), vT can be computed 

  

𝑣𝑇 = [−0.4086 −0.0025 −0.6358 −0.0039]                    (4.12) 

 

Now it is possible to find the transpose of state feedback vector K 

 

KT = -p0v
T-p1v

TA-p2v
TA2-p3v

TA3-p4v
TA4                                             (4.13) 

 

Putting the values at of A, vT and p0, p1, p2, p3 and p4 at Equation (4.13) we obtain 

 

𝐾𝑇 = [𝑘1 𝑘2 𝑘3 𝑘4] = [33.0982 44.3847 296.4294 116.9134]      (4.14) 

 

This state feedback vector is used for stabilization of the pendulum in upright 

position. The computed SIMULINK model for this operation is given in Figure 4.7 
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Figure 4.7: Cart-pendulum system stabilization using state feedback 

 

 

In the model shown in Figure 4.7 there are 5 inputs (position, angle set point, angle, 

velocity and angular velocity) and 3 parameters which are taken to be equal to zero 

(position set point, velocity set point and angular velocity set point) and a single 

output (control). The state feedback parameters obtained in Equation (4.15) as k1, k2, 

k3 and k4 are used as the gain values of the gain blocks in Figure 4.7 and as the result 

state feedback control is implemented.  Enable signal in the block activates this 

control strategy when necessary (If enable is 1 it is activated; this operation is 

performed in stabilization stage). The activated control strategy generates the control 

signal (voltage). This SIMULINK model is implemented as a sub-block is in Figure 

4.8. 

 
Figure 4.8: Stabilization with state feedback sub-block 
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4.2.3 Set Point Selection Sub-Block 

 

In the simulation model, this sub-block is shown in Figure 4.9. 

 

 

 
Figure 4.9: Set Point Selection Sub-Block 

 

This sub-block is implemented as a MATLAB function. It has a single input (angle) 

and a single output (angle_set_point).  It determines the angle set point at the 

stabilization stage (either 0 or 2π radian) due to the number of net rotations of the 

pendulum starting from downright position (180 degrees) to upright position (to 0 or 

2π radians). If pendulum reaches the final upright position by rotating in clockwise 

direction (if angle < radians) angle_set_point is set to 0, otherwise it is set to 2π. The 

code for set point selection is given in Appendix 1. 
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4.2.4 Swing Up Control with Extra PI Position Control Sub-Block 

 

In the simulation model this sub-block is shown in Figure 4.10 

 

 
Figure 4.10: Swing up control with extra PI position control sub-block 

 

 

This sub-block has 4 inputs (angle, angle compare value, position and force 

amplitude) and two outputs (control and zone detection). The expended view of the 

sub-block is given in Figure 4.11. 

 

Figure 4.11: Expended view of swing up control with extra PI position control sub-

block 
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In the expended view, new SIMULINK sub-blocks are also implemented: These sub-

blocks are ‘Applied force direction function’, ‘Lower zone-upper zone function’, 

‘Upright position detection function’ and ‘Extra PI control for cart position’ sub-

blocks. 

 

 

4.2.4.1 Applied Force Direction Function 

 

The SIMULINK sub-block for this function is given in Figure 4.12 

 

 
Figure 4.12: Applied force direction function sub-block. 

 

This function takes two inputs. The first input is angular_velocity (pendulum angular 

velocity). If the angular velocity is in clockwise direction its value is negative if it is 

in counterclockwise direction, its value is positive. The second input is zone_signal. 

This input is equal to 1 when the pendulum is in the upper region, and it is equal to 

zero when the pendulum is in the lower region. The output of this function is 

force_direction which gives the direction of the force that should be applied to swing 

the pendulum to make it reach to stabilization zone. The implementation of this 

function is given in Table 4.2 
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Table 4.2: Evaluation of force direction depending on angular_velocity and 

zone_signal inputs. 

 

angular_velocity and zone_signal force_direction 

angular_velocity>=0 and zone_signal=1 

(the pendulum returns in counterclockwise 

direction and the pendulum is at the upper 

zone 

-1 (in negative x direction) 

angular_velocity >=0 and zone_signal=0 

(the pendulum returns in counterclockwise 

direction and the pendulum is at the lower 

zone 

1 (in positive x direction) 

angular_velocity <0 and zone_signal=1 

(the pendulum returns in counterclockwise 

direction and the pendulum is at the upper 

zone 

1 (in positive x direction) 

angular_velocity <0 and zone_signal=0 

(the pendulum returns in counterclockwise 

direction and the pendulum is at the lower 

zone 

-1 (in negative x direction) 

 

 

The MATLAB code of this function is given in the Appendix 2 

 

 

4.2.4.2. Lower Zone-Upper Zone Function 

 

The SIMULINK sub-block for this function is given in given in Figure 4.13. 

 

 

 

Figure 4.13:  Lower zone-upper zone function sub-block 

 

This function has one input (angle) and one output (zone_signal). If the pendulum 

angle is at the upper zone, (angle value is between 0 and 90 degrees or angle value is 

between 270 and 360 degrees) the zone_signal is equal to 1. If the pendulum angle is 

at the lower zone (the angle is between 90 and 270 degrees), the zone_signal will be 

equal to 0. The MATLAB code of this function is given in the Appendix 3. 
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4.2.4.3 Upright Position Detection Function 

 

The SIMULINK sub-block for this function is given in given in Figure 4.14. 

 

 

 
Figure 4.14:  Upright position detection function sub-block 

 

 

This function takes two inputs and it has one output.  The inputs are angle (pendulum 

angle) and angle_compare_value whereas the output is stabilization_zone_region 

signal, which can be assigned two values (either 0 or 1).  The function determines 

whether the system has reached to stabilization zone or not based on the comparison 

of the angle with the angle_compare_value. Stabilization zone is localized by the 

angle_compare_value in the simulation and it is set to 0.2 radians (11.4592 degrees). 

If the angle is between 0.2 and -0.2 radians this means the system is in stabilization 

zone and in this case stabilization_zone_region signal becomes 1 and the swing up 

stage is finalized and the system goes to stabilization stage, otherwise 

stabilization_zone_region signal is always equal to 0 and the system continues to 

operate in the swing up stage until the stabilization zone is reached. The MATLAB 

code of this function is given in the Appendix 4. 
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4.2.4.4 Extra PI Control for Cart Position 

 

This block is indeed realized in order not to let the cart move to much close to the 

end of the rails in the swing up stage. It is a PI controller block that tries to pulls the 

cart to its initial position (x1=0) as it moves away from its initial position. The PI 

controller parameters should be determined based on the experience in the swing up 

stage for better performance. The output of the sub-block is the extra control signal 

that tries to compensate the gap between the actual cart position and initial car 

position.  

 

 

4.2.4.5. Swing up Stage Strategy 

 

Swing up stage strategy is given in Figure 4.11. The explanation of this strategy can 

be summarized as follows: if the system is not in stabilization zone 

(stabilization_zone_region = 0), based on the Lower zone-upper zone function, the 

zone_signal is specified. The zone_signal and angular velocity of the pendulum are 

used in determination of the evaluation strategy given in Table 4.2 to yield the 

force_direction in swing up stage. Then the force_direction is multiplied by the force 

amplitude to yield the actual force. The actual force is added with the first cart move 

force (employed to create the first cart movement from its initial position) and extra 

force for cart control (the force that intends to pull the cart to its initial position in 

order not to let it go the boundaries of the rail). The aggregation of these forces 

creates the control signals (voltage) that govern the system when the system is in 

swing up stage. Whenever, the system enters to the stabilization zone 

(stabilization_zone_region = 1), the swing up stage finalizes.  
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4.3 Complete Control Strategy 

 

The complete SIMULINK model is given in Figure 4.15. 

 

 

 
Figure 4.15: Complete Control Strategy 

 

 

The explanation of operation of the complete model is as follows: the pendulum 

starts its movement from downright position in swing up stage. The non-linear 

mathematical model or the cart pendulum system is run by the voltage signal 

generated by the ‘Swing up control with extra PI position control sub-block. In this 

sub-block, the force amplitude is taken as 3 Newton and angle compare value is set 

to 0.2 radians. Swing up stage continues until zone detection 

(stabilization_zone_region) signal becomes 1 and the pendulum enters to the 

stabilization zone. When the pendulum enters the stabilization zone, hold 

(stabilization) stage takes action. In the stabilization stage ‘Stabilization with state 

feedback’ block is enabled and it begins to produce the voltage signal that runs the 

system.  During these actions, all states and control signal are recorded in scopes. 

Using these procedures and parameters and running the simulation model given in 

Figure 4.15 we have obtained the results given in Figure 4.16 and Figure 4.17. 
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Figure 4.16: Cart position, pendulum angle and control voltage plotted versus time. 

 

 

 
Figure 4.17:  Cart velocity and pendulum angular velocity plotted versus time. 
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As seen from Figure 4.16 and 4.17 using state feedback at the stabilization, stage 

(with the state feedback parameters given in Equation 4.14) stabilizes the system. We 

also want to see the performance of state feedback for reference signal tracking. For 

this reason, position set point block in Figure 4.7 is replaced by a pulse train that is 

activated at the 20th second of the simulation. The amplitude of the pulse train is 0.1 

and period is 10 seconds with a duty cycle of 50%. With this reference change, we 

simulate the model given in Figure 4.15 once again and we have obtained the results 

given in Figure 4.18 Figure 4.19 and Figure 4.20. 

 

 

 
 

Figure 4.18: Cart position and pendulum angle and control voltage plotted versus  

time for reference tracking. 
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Figure 4.19:  Cart velocity and pendulum angular velocity plotted versus time for 

reference tracking. 

 

 
Figure 4.20:  Cart position (green) and reference cart position (blue) plotted versus 

time for reference tracking. 

 As seen from Figure 4.18, Figure 4.19 and Figure 4.20, the state feedback can also 

fulfill the reference signal-tracking task successfully. 
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CHAPTER 5 

 

 

REAL- TIME SYSTEM IDENTIFICATION AND CONTROLLER DESIGN 

 

 

5.1 Running Real Time Model  

 

System identification is an important intermediate stage to realize more successful 

controller structures for the real time applications.  For this reason, we have used the 

previously established ‘InvPendIdent’ model [1]. This model is a real time 

application that can be divided into two different stages where the first stage is the 

swing up stage that is carried out to take the system from the initial state (x1=0, x2=0, 

x3=π, x4=0) to a state where the system is in stabilization zone (-0.25 rad ≤ x3 ≤ 0.25 

rad and x1 stay in the limits of the rail).  The second stage is the use of linear 

controllers coupled with extra excitation signal to carry out the tasks of stabilizing 

the cart position x1 and the pendulum angle x3 simultaneously with exiting the 

stabilized system by the extra excitation signal to carry out the identification process. 

Hence, the data obtained in the swing up stage related with the states and extra 

excitation signal are not used in the identification process. This stage is indeed just a 

preliminary step to bring the system to the stabilization stage where the identification 

process is actually covered.  

 

The details of the swing up stage are as follow: It is initiated by the slow oscillations. 

The cart-pendulum system is moved from the initial state to states where oscillations 

are observed both in the cart position and pendulum angle. These oscillations are 

controlled oscillations such that the cart position does not exceed the limits of the rail 

it is moving over and besides the pendulum navigates more widespread nearly 

circular trajectories from one swing to another. This is practiced by increasing the 

magnitude of the force applied to the cart-pendulum system in each swing in 

opposite directions by a specific algorithm similar to the one explained in Chapter 4 
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in the simulation example. This stage is suddenly stopped and stabilization stage is 

activated whenever, the system states enter the stabilization (hold) zone. 

    

The stabilization stage includes two tasks that are fulfilled simultaneously. One of 

them is the stabilization of the system at and around an unstable equilibrium point 

(i.e. x1=0, x2=0, x3=π, x4=0) and the other one is the system identification task. 

Whenever, the system enters the stabilization zone two previously designed PID 

controllers in [1] (one for cart position control and the other one for pendulum angle 

control) instantly begin to rule over the system. The mathematical structure of the 

controllers for cart position and pendulum angle are given in Equation (5.1) and 

Equation (5.2) respectively 

𝐶𝑐𝑎𝑟𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑠) = 7 +
0.1

𝑠
+ 2𝑠                                           (5.1) 

 

𝐶𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒(𝑠) = 20 +
0.1

𝑠
+ 2𝑠                                          (5.2) 

 

In these equations, the derivative parts of the controllers are also connected to a 

previously designed low pass filter [1] in order to get rid of the noise which is 

amplified due to the differentiation process. This filter is given by 

 

𝐶𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) =
104

𝑠2+70.4𝑠+104                                            (5.3) 

 

This filter eliminates high frequency noise and yields smother control signals. The 

filter is also used at the swing up stage in order to manipulate more precise and 

accurate cart velocity (x2) and pendulum angular velocity (x4) signals. The magnitude 

and phase characteristics of this filter’s frequency response are given in Figure 5.1. 
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Figure 5.1: Magnitude and Phase characteristics of the low-pass filter used in the 

derivative control part of PID controllers. 

 

 

The filter passes small angular frequency components (between 0 and 20 rad/sec) 

with a gain nearly equal to 1. It amplifies the mid-range angular frequencies (20 to 

120 rad/sec) slightly and it rejects high-range angular frequencies very sharply (after 

130 rad/sec).   

 

Another source of noise is the undesired mechanical vibrations both in swing up and 

stabilization stage. The states x2 (cart velocity) and x4 (pendulum angular velocity) 

are the time derivatives of the states x1 (cart position) and x3 (pendulum angle) 

respectively. When there are undesired vibrations in the control process the states 

measured by the sensor (x1 and x3) are sure to be noisy. Taking the derivatives of 

these states amplifies the noise in the new states created due the derivatives. Hence, 

states x2 and x4 contains more noise compared to x1 and x3. In order to get rid of the 

excessive noise x2 and x4 are also passed from the filter given in Equation (5.3) for 

obtaining these states more precisely in both the swing up stage and the stabilization 

stage coupled with the identification process. 

 

The PID controllers employed in the stabilization stage are assumed to have average 

performance, however, they are still successful. For identification mission the PID 
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controllers outputs are coupled with an extra excitation signal that is used at the 

identification task. The block diagram of control strategy coupled with extra 

excitation signal for identification purpose is shown in Figure5.2. 

 

 

 
Figure 5.2: Control strategy coupled with system identification 

 

 

As seen from Figure 5.2, the controller structure is activated by an Enable signal 

when necessary (whenever the system states reach to stabilization zone). There are 3 

inputs (cart position, angle set point and angle) and 1 parameter (position set point) 

which is initialized as 0. The angle set point of the model is either taken to be equal 

to 0 or 2π depending on the number of net rotations of the pendulum.  A random 

number function is inserted to block to generate the extra excitation signal r. The 

signals coming from the PID controllers for stabilizing the cart position and 

pendulum angle and the extra excitation signal are aggregated to obtain the control 

signal (control voltage). The control voltage drives the system and the system is 

stabilized and then it is kept stabilized in the stabilization zone while the system is 

excited with the extra excitation signal. Due to the system configuration and used 

coordinate frame the positive x direction for the real time system and the applied 

force direction are opposite (if F is positive it causes x1 to decrease and if F is 
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negative it causes the x1 to increase). This effect is implanted into the control strategy 

shown in Figure 5.2 in the form of a negative addition in the addition block Add3.   

Using this control strategy, the state signals for x1 and x3 and the extra excitation 

signal are recorded throughout the real time application which lasts for 40 seconds. 

The profile of the signals (cart position, pendulum angle and extra excitation signal) 

obtained as the result of this application are shown in Figure 5.3 In Figure 5.4 the 

unfiltered pendulum angular velocity and the cart velocity signals are also given. 

 

 

 
Figure 5.3: Pendulum angle, cart position and extra excitation signals in the 

identification step. 
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Figure 5.4: Unfiltered pendulum angular velocity and the cart velocity signals in the 

identification step. 

 

As seen from the Figure 5.3, the system is stabilized (the pendulum angle remains 

nearly constant around 2π radians closely after 10 seconds) by the use of these two 

controllers. As there is some extra excitation signal the cart position x1 is somewhat 

oscillatory however these oscillations do not cause a sudden change in the pendulum 

angle value.  From Figure 5.4. it is easy to observe that the unfiltered pendulum 

angular velocity and the cart velocity signals are very noisy (especially the pendulum 

angular velocity signal). Besides, the maximum angular velocity value of the 

pendulum is seen to be around 12-13 rad/sec. Hence, it is convenient to use the filter 

given in Equation (5.3) both in the PID controllers and in the other processes of the 

swing up stage to eliminate the noisy components of the states x2 and x4. When the 

noise is filtered out with the filter used in Equation (5.3). we obtain the following 

pendulum angular velocity and cart velocity profiles given in Figure 5.5 and Figure 

5.6 respectively 
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Figure 5.5: Filtered (green) and unfiltered (blue) pendulum angular velocity versus 

time in the identification step. 

 

 

 
Figure 5.6: Filtered (green) and unfiltered (blue) cart velocity versus time in the 

identification step 
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As can be seen from Figure 5.5 and Figure 5.6 the filtering of the pendulum angular 

velocity and the cart velocity signals eliminates most of the components of the noise. 

The filtering effect is much more significant especially for the pendulum angular 

velocity signal. 

 

 

5.2. System Identification 

 

In the system identification step we will use the data gathered in Section 5.1. These 

data are the states x1 and x3 and the extra excitation signal r. As seen from the Figure 

5.3 a non-zero extra excitation signal is first observed nearly after 9 seconds (it is the 

first time the system gets into stabilization zone) and the pendulum angle nearly 

settles around the unstable equilibrium point (x3≈ 2π radians or x3≈ 0 radians) when 

the time is nearly equal to 10 seconds. Thus, to use in the identification process, x1, 

x3 and r values are recorded after the 10th second. However, recording them is not 

enough. In order to start the identification, process these data might require a pre-

processing. A pre-processing step is applied to x3. If the pendulum rotates a net 

amount of π radians in counterclockwise direction starting from the initial point 

(x3=π radians initially) it stabilizes around 2π and reversely if it rotates a net amount 

of -π radians in clockwise direction starting from the initial point it stabilizes around 

0. Hence, as an extra normalization step, if the pendulum stabilizes around 2π, we 

subtract 2π from each x3 data and use this normalized data as actual x3 data. 

  

In the identification step the system identification toolbox of MATLAB is used. One 

should not forget that not the exact mathematical model of the real time system is 

found but approximated model by system identification is attained. Besides, the data 

related with states x1 and x3 are the data obtained for the stabilized system. Hence, 

they are not solely the data of the open loop system. There should be some extra 

effort to identify the open loop system structure.  

 

The identification step starts with determining the structure of the controlled closed 

loop system. If we want to show them as block diagrams, we can use the following 

models Figure 5.7 and Figure 5.8 
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Figure 5.7: Identification controller for closed-loop control model. 

 
 

Figure 5.8: Identification controller for closed-loop control model. 

 

 

In Figure 5.7 and Figure 5.8, x1_ref is the cart position reference value (position set 

point), x1 is the cart position, x3_ref is the pendulum angle reference value (angle set 

point), x3 is the pendulum angle, r is the extra excitation signal, u is the control 

signal. Gcart_position is the linearized open loop transfer function for the cart position, 

Gpend_angle is the linearized open loop transfer function for the pendulum angle, 

Ccart_position is the PID controller for the cart position given in Equation (5.1), 

Cpend_angle is the PID controller for the pendulum angle given in Equation (5.2). If we 

check the signs of the addition blocks where the extra excitation signal is added, in 

Figure 5.7 the sign is negative since it is coming from the cart position and it is 

positive in Figure 5.8 since it is coming from the pendulum angle (check the model 

in Figure 5.2).  

 

For both models the reference values can be taken as 0 (x1_ref=0 and x3_ref=0 due 

to normalization). Hence, we need to find the closed loop linearized mathematical 

relations where r is the input and x1 and x2 are the outputs. Let’s say the closed loop 

system has the transfer functions T1(s) and T2(s) where: 

𝑇1(𝑠) =
𝑋1(𝑠)

𝑅(𝑠)
                                                           (5.4) 
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𝑇2(𝑠) =
𝑋3(𝑠)

𝑅(𝑠)
                                                           (5.5) 

In Equation (5.4) and Equation (5.5), X1(s), X2(s) and R(s) are the Laplace 

transformed forms of signals x1, x2 and r respectively.  Taking the reference values to 

be equal to 0, these transfer functions can mathematically be obtained as 

 

𝑇1(𝑠) =
𝐺𝑐𝑎𝑟𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑠)

1−𝐺𝑐𝑎𝑟𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑠)×𝐶𝑐𝑎𝑟𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑠)
                                (5.6) 

 

𝑇2(𝑠) =
𝐺𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒(𝑠)

1+𝐺𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒(𝑠)×𝐶𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒(𝑠)
                                   (5.7) 

 

The identification toolbox of MATLAB is used in order to find the closed loop 

transfer functions of T1(s) and T2(s). For this purpose, states x1 and x2 and extra 

excitation signal r are employed in the identification process where r is the input and 

x1 and x3 are the outputs. The identification process yields the transfer functions for 

T1(s) and T2(s). The success percentages (fit to estimate to data) of the transfer 

functions T1(s) and T2(s) are 85.7% and 81.25% respectively (success percentages are 

evaluated by the mean square error between the actual state values and the state 

value calculated using T1(s) and T2(s)). In the system identification step, it is assumed 

that T1(s) and T2(s) are fourth order transfer functions with 4 poles and 2 zeros in 

reality by increasing the order of T1(s) and T2(s) better success rates and better 

transfer functions can be obtained, however as system order increases, the open loop 

system transfer function gets more complex structures and it becomes more difficult 

to design controllers. Due to this reason, the number of poles is selected as 4 and 

number of zeros is selected as 2 for each transfer function. 

 

The resulting T1(s) and T2(s) are: 

 

𝑇1(𝑠) =
−0.08784𝑠2+0.4083𝑠−60.43

𝑠4+2.87𝑠3+85.04𝑠2+29.45𝑠+373.4
                                  (5.8) 

  

𝑇2(𝑠) =
10.68𝑠2−6.981𝑠+5.239

𝑠4+18.67𝑆3+159.1𝑠2+117.7𝑠+696.5
                                 (5.9) 

The poles and zeros of the transfer function are shown in Table 5.1. 
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           Table 5.1: Poles and zeros of the transfer functions 𝑇1(𝑠)and 𝑇2(𝑠). 

 𝑇1(𝑠) -1.3281+8.8333j 

-1.3281-8.8333j 

-0.1067+2.1607j 

-0.1067-2.1607j 

2.3242+26.1247j 

2.3242-26.1247j 

𝑇2(𝑠) -9.2266+8.0874j 

-9.2266-8.0874j 

-0.1073+2.1483j 

-0.1073-2.1483j 

0.3268+0.6195j 

0.3268-0.6195j 

 

 

As seen from the poles of T1(s) and T2(s), the closed loop systems are stable (real 

parts of all the poles are smaller than 0). Now using the identified closed loop 

systems, we can find the open loop transfer functions by 

 

𝐺𝑐𝑎𝑟𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
(𝑠) =

𝑇1(𝑠)

1+𝑇1(𝑠)×𝐶𝑐𝑎𝑟𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
(𝑠)

                             (5.10) 

𝐺𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒(𝑠) =
𝑇2(𝑠)

1−𝑇2(𝑠)×𝐶𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒(𝑠)
                         (5.11) 

 

Using Equation (5.10), Equation (5.1), Equation (5.11), Equation (5.2) we obtain the 

minimal realization of Gcart_position(s) and   Gpend_angle(s) as 

 

𝐺𝑐𝑎𝑟𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑠) =
−0.08784𝑠3+0.4083𝑠2−60.43𝑠

𝑠5+2.694𝑠4−85.24𝑠3−88.566𝑠2−49.54𝑠−6.043
                                       (5.10) 

𝐺𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒(𝑠) =
10.68𝑠3−6.981𝑠2+5.239𝑠

𝑠5−2.693𝑠4−40.52𝑠3+245.8𝑠2+592.9𝑠−0.5239
                                          (5.11) 

 

These transfer functions are the outcomes of system identification procedure. Hence, 

we cannot account them as the actual transfer functions of the linearized system at 

the unstable equilibrium point. However, they still exhibit a respectable estimate of 

the functionality of the real time system. The poles and the zeros of the Gcart_position(s) 

and   Gpend_angle(s) are given in Table 5.2. 
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                        Table 5.2: Poles and zeros of Gcart_position(s) and   Gpend_angle(s) 

Transfer Function Poles Zeros 

𝐺𝑐𝑎𝑟𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑠) -1.8309+9.2727j 

-1.8309-9.2727j 

1.3974 

-0.2148+0.0478j 

-0.2148-0.0478j 

0.0000 

2.3242+26.1247j 

2.3242-26.1247j 

𝐺𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒(𝑠) 5.6923+3.6016j 

5.6923-3.6016j 

-6.7606 

-1.9320 

0.0009 

0.0000 

0.3268+0.6195j 

0.3268-0.6195j 

 

 

The root locus plots of Gcart_position(s) and Gpend_angle(s) are given in Figure 5.9 and 

5.10 respectively. 

 

 
Figure 5.9: The root locus plot of Gcart_position(s) 
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Figure 5.10: The root locus plot of Gpend_angle(s). 

 

 

As seen from the Figure 5.9, as we give positive gain for Gcart_position(s), one of the 

roots goes to positive infinity and the other one goes to negative infinity direction 

along the real axis. Thus, according to this plot there are two asymptotes and one of 

them is 0 degrees whereas the other one is 180 degrees. In reality for a linear system 

having 5 poles and 3 zeros, the asymptotes in the root locus plot should be 90 and -

90 degrees as it is the case for the root locus plot obtained for Gpend_angle(s) in Figure 

5.10. This difference comes from the sign of the highest order term at the numerator 

of the transfer function. For Gcart_position(s) this term is negative while for Gpend_angle(s) 

it is positive.  Hence, the root locus plot of Gcart_position(s) resembles a complementary 

root locus plot. 

 

 

5.3. Controller Design 

 

In order to design more competent and successful controllers, the behavior of the 

system should be understood properly. This is definitely possible if the root locus 

plots given in Figure 5.9 and 5.10 are better investigated and attained information 

from these plots are properly employed for controller design and development 

procedure. Our aim is to design PID controllers that are functioning altogether in 
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harmony both to stabilize cart position (x1) and pendulum angle (x3) at the unstable 

equilibrium point. Initially, it is intended to design a PID controller structure for the 

pendulum angle then for the cart position and finally these controllers performance 

will be tested and compared with respect to the controllers given in Equation (5.1) 

and Equation (5.2).  

 

 

5.3.1. Controller Design for Pendulum Angle Control 

 

The transfer function for Gpend_angle(s) has 3 unstable poles (locations are 

5.6923+3.6016j, 5.6923-3.6016j, 0.0009) and a zero at the origin (location 0). 

Besides, one of the unstable poles (location 0.0009) is very close to the zero at the 

origin. As a design specification, the most important objective should be getting rid 

of all of the unstable poles (the real parts of the poles should be negative) while not 

letting any stable pole to become unstable. After this objective is accomplished, one 

should also enhance the quality of the stability sustained in the system. For example, 

another important objective that the system exhibit should be obtaining zero steady 

state error value for unit step type inputs. For this purpose, we decided to use a PID 

controller: 

 

                               𝐶𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒(𝑠) = 𝑃 +
𝐼

𝑠
+ 𝐷𝑠                                                 (5.12) 

 

The PID controller in Equation (5.12) can also be written in the form 

 

                                  𝐶𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒(𝑠) = 𝐷 × (
𝑠2+

𝑃

𝐷
𝑠+

𝐼

𝐷

𝑠
)                                        (5.13) 

 

Cpend_angle(s) has a single pole at the origin and two zeros. The zeros of Cpend_angle(s) 

can be chosen such that with suitable parameter settings, these two zeros are due to 

attract and pull the unstable poles of Gpend_angle(s) located at 5.6923+3.6016j, 5.6923-

3.6016j when Cpend_angle(s) and Gpend_angle(s) are multiplied to yield the open loop 

controller and the identified system total transfer function as: 

 

𝐺𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒_𝑜𝑝𝑒𝑛(𝑠) = 𝐷 × (
𝑠2+

𝑃

𝐷
𝑠+

𝐼

𝐷

𝑠
)(

10.68𝑠3−6.981𝑠2+5.239𝑠

𝑠5−2.693𝑠4−40.52𝑠3+245.8𝑠2+592.9𝑠−0.5239
) (5.13) 
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As there is pole-zero cancellation on Equation (5.13), Gpend_angle_open(s) can be 

reassigned as 

 

𝐺𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒_𝑜𝑝𝑒𝑛(𝑠) = 𝐷 × (𝑠2 +
𝑃

𝐷
𝑠 +

𝐼

𝐷
)(

10.68𝑠2−6.981𝑠+5.239

𝑠5−2.693𝑠4−40.52𝑠3+245.8𝑠2+592.9𝑠−0.5239
)  

 

(5.14) 

 

 

The pole-zero cancellation at the origin for the transfer function Gpend_angle_open(s) is 

expected to stabilize the unstable pole located at 0.0009 as this pole will probably 

traverse to and at the end collide with the pole located at -1.9320 with suitable P, I, D 

parameter settings. 

 

Now, as an intermediate step, we want to put two zeros to locations at -3 and -3 to 

attract the unstable poles at 5.6923+3.6016j and 5.6923-3.6016j. These two new 

zeros will have a polynomial equation that should be equal to the zeros of the 

controller as 

  

                              𝑠2 +
𝑃

𝐷
𝑠 +

𝐼

𝐷
= (𝑠 + 3)2 = 𝑠2 + 6𝑠 + 9                                    (5.15) 

 

Putting Equation (5.15) in Equation (5.14) we get 

 

      𝐺𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒_𝑜𝑝𝑒𝑛(𝑠) = 𝐷
(𝑠+3)2×(10.68𝑠2−6.981𝑠+5.239)

𝑠5−2.693𝑠4−40.52𝑠3+245.8𝑠2+592.9𝑠−0.5239
                   (5.16) 

 

 

And from (5.15) we get 

                                                           
𝑃

𝐷
= 6                                                          (5.17) 

                                                                    
𝐼

𝐷
= 9                                                         (5.18) 

Hence, there is only one design parameter left for the open loop controller and the 

identified system total transfer function Gpend_angle_open(s). That parameter is D   

parameter governs and sustains the stability of the transfer function Gpend_angle_open(s). 

Hence, it is better to check the root locus of the Gpend_angle_open(s) to specify its value. 

In Figure 5.11, we observe the root locus of Gpend_angle_open(s) given in Equation 

(5.16) as D is the free gain parameter for this transfer function. 
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Figure 5.11: The root locus plot of Gpend_angle_open(s) 

 

 

In Table 5.3 the open loop pole and zero locations of Gpend_angle_open(s) are given 

 

                                   Table 5.3: Poles and zeros of Gpend_angle_open(s) 

 

Transfer Function Poles Zeros 

Gpend_angle_open(s) 5.6923+3.6016j 

5.6923-3.6016j 

-6.7606 

-1.9320 

0.0009 

0.3268+0.6195j 

0.3268-0.6195j 

-3 

-3 

 

 

Deeply investigating the root locus plot of Gpend_angle_open(s), the pendulum angle is 

stabilized nearly when 1.46 ≤ D≤ 8.8. When D ≈ 1.46 the two unstable poles (located 

at 5.6923+3.6016j and5.6923-3.6016j initially) crosses the imaginary axis from right 

to left and thus their real parts become negative and stabilizes the system. Similarly, 

When D ≈ 8.8 the two poles (located at -1.9320 and 0.0009 initially) after collusion 

with each other passes the imaginary axis from left to right and thus their real parts 

become positive causing instability. Hence, in our design D value should be between 

these two bound values. One of the best ways to specify D is choosing it as the gain 

value where the poles located at -1.9320 and 0.0009 initially collide. These two poles 
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collide at -0.784 (two overlapping poles at the same location) when the gain value is 

3.49. Hence, one of the best alternatives for the choice of D is 3.49. 

  

If D=3.49 in this case, the closed loop pole locations will be determined by solving 

the equation 

 

𝐺𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒_𝑜𝑝𝑒𝑛(𝑠) + 1 = 1 + 3.49
(𝑠+3)2×(10.68𝑠2−6.981𝑠+5.239)

𝑠5−2.693𝑠4−40.52𝑠3+245.8𝑠2+592.9𝑠−0.5239
= 0  

            (5.19) 

 

Which gives the pole locations -29.7373, -1.6383+2.5036j, -1.6383-2.5036j, -

0.7838+0.0441j, -0.7838-0.0441j. As seen all the closed loop poles have negative 

real parts and the closed loop transfer function is stable. 

 

Choosing D=3.49 and using Equation (5.17) and (5.18) we obtain P=20.94 and 

I=31.41. Thus design of the controller for stabilizing the pendulum angle is 

completed where the controller has the following mathematical structure 

 

𝐶𝑝𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒(𝑠) = 20.94 +
31.41

𝑠
+ 3.19𝑠                          (5.20) 

 

 

 

5.3.2. Controller Design for Cart Position Control 

 

The transfer function for Gcart_position(s) has 1 unstable pole (location is 1.3974) and a 

zero at the origin). The main characteristics of the root locus of Gcart_position(s) are that 

it resembles a complementary root locus plot (root locus where the gain is negative). 

Hence, it is better to check the root locus plot of -1× Gcart_position(s) (complementary 

root locus of Gcart_position(s)) and perform the PID controller design due to this new 

plot.  The complementary root locus root of Gcart_position(s) is given in Figure 5.12. 
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Figure 5.12: The complementary root locus root of Gcart_position(s) (root locus of -

Gcart_position(s)). 

 

 

The complementary root locus of -Gcart_position(s), illustrates the difficulty of 

controller design for controlling the cart position. The difficulties can be summarized 

as follows: primarily, the transfer function -Gcart_position(s) has 5 poles and 3 zeros. 

The complex conjugate poles located at -0.2148+0.0478j and -0.2148-0.0478j are 

very close to the origin and by application of a very small gain value (nearly 0.9), 

these poles cross the imaginary axis from left to right and hence they become 

unstable poles in addition to the unstable pole located at 1.3974 initially. Secondly, 

the pole located at 1.3974 always remains in the open right half plane for any 

positive gain value. This pole reaches to the zero of the -Gcart_position(s) located at the 

origin when gain value reaches to infinity. These two situations make the controller 

design extremely difficult. However, by suitable selection of PID controller 

parameters these difficulties can partially or totally be removed. 

 

As we have done previously for the design of the PID controller in order to stabilize 

the pendulum angle, the design procedure for the cart position control focuses on 

eliminating the effect of the unstable pole (located at 1.3974) and not letting any 

stable pole to become unstable. For other secondary objectives like zero steady state 
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error one can insert extra serial controllers chained with this primary PID controller 

structure after the controller is designed. The structure of PID controller is 

 

𝐶𝑐𝑎𝑟𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑠) = 𝑃 +
𝐼

𝑠
+ 𝐷𝑠                                       (5.21) 

The PID controller in Equation (5.21) can also be written in the form: 

𝐶𝑐𝑎𝑟𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑠) = 𝐷 × (
𝑠2+

𝑃

𝐷
𝑠+

𝐼

𝐷

𝑠
)                                (5.22) 

 

Ccart_position(s) has a single pole at the origin and two zeros. The pole of Ccart_position(s) 

located at the origin cancel the zero of -Gcart_position(s) at the origin when these two 

transfer functions are multiplied to yield 

  

𝐺𝑐𝑎𝑟𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑜𝑝𝑒𝑛(𝑠) = 𝐷 × (
𝑠2+

𝑃

𝐷
𝑠+

𝐼

𝐷

𝑠
)(

−1×(−0.08784𝑠3+0.4083𝑠2−60.43𝑠)

𝑠5+2.694𝑠4−85.24𝑠3−88.566𝑠2−49.54𝑠−6.043
)                      

(5.23) 

After pole-zero cancellation at the origin the transfer function in Equation (5.23) can 

be written as 

𝐺𝑐𝑎𝑟𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑜𝑝𝑒𝑛(𝑠) = 𝐷 × (𝑠2 +
𝑃

𝐷
𝑠 +

𝐼

𝐷
)(

(0.08784𝑠2−0.4083𝑠+60.43)

𝑠5+2.694𝑠4−85.24𝑠3−88.566𝑠2−49.54𝑠−6.043
) 

(5.24) 

 

Now open loop controller and identified system transfer function in total is given by 

Equation (5.24). This transfer function has 5 poles and 4 zeros where two of the 

zeros are undetermined 

 

Choosing the undetermined zero locations properly gives the opportunity to relocate 

the unstable pole (located at 1.3974 initially) and two complex conjugate pole pairs 

(located at -0.2148+0.0478j and -0.2148-0.0478j) to locations, which more negative 

real parts. For this reason, the zero locations should be chosen such that they have 

more negative real parts compared to complex conjugate pole pairs (located at -

0.2148+0.0478j and -0.2148-0.0478j initially). Hence, we have chosen the zero 

locations as -2 and -2.  In this case, we can write 

 

                                             𝑠2 +
𝑃

𝐷
𝑠 +

𝐼

𝐷
= (𝑠 + 2)2 = 𝑠2 + 4𝑠 + 4                          (5.25) 
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From Equation (5.25) we can get: 

                                                                      
𝑃

𝐷
= 4                                                     (5.26) 

                                                                      
𝐼

𝐷
= 4                                                      (5.27) 

Using Equation (5.25) the open loop controller and identified system transfer 

function can be written as 

 

𝐺𝑐𝑎𝑟𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑜𝑝𝑒𝑛(𝑠) = 𝐷 (
(𝑠+2)2×(0.08784𝑠2−0.4083𝑠+60.43)

𝑠5+2.694𝑠4−85.24𝑠3−88.566𝑠2−49.54𝑠−6.043
)          (5.28) 

 

Hence, there is only one design parameter left for the open loop controller and the 

identified system total transfer function Gcart_position_open(s). To specify the value of D, 

it is better to check the root locus of the Gcart_position_open(s). In Figure 5.13, we 

observe the root locus of Gcart_position_open(s).  

 

 
Figure 5.13: The root locus of Gcart_position_open(s). 

 

 

In Table 5.4, the open loop pole and zero locations of Gcart_position_open(s) are given. 
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            Table 5.4: Poles and zeros of Gcart_position_open(s) 

 

Transfer Function Poles Zeros 

Gcart_position_open(s) -1.8309+9.2727j 

-1.8309-9.2727j 

1.3974 

-0.2148+0.0478j 

-0.2148-0.0478j 

2.3242+26.1247j 

2.3242-26.1247j 

-2 

-2 

 

 

The root locus plot gives the trajectory of roots. Luckily by deeper investigation, it is 

observed that all the closed loop poles of the system remain in open left half plane 

(left hand side of the imaginary axis) if the gain value (namely D value of the 

controller in Equation 5.22) is chosen nearly between 5.35 and 3.52. The behavior of 

the closed loop poles due to increasing gain value is as follows. Primarily, the 

complex conjugate poles located initially at -0.2148+0.0478j and -0.2148-0.0478j 

collide with each other (at break-in break-away point located nearly at -0.213) when 

the gain value is nearly 0.00169. Then one of these poles began to go to one of the 

zeros located at -2 (reaches there when the gain is increased to infinity) and the other 

pole began to move towards the unstable pole located initially at 1.3974. The 

unstable pole and the pole moving towards the unstable pole hit each other at another 

break-in break-away point when the gain value is 0.123 at the location 0.716 (at this 

gain value both of these poles has unstable characteristics). Later on these two 

unstable poles began to make a reverse arc towards the imaginary axis and they cut 

the imaginary axis from right to left at the gain value 3.52 and the poles become 

stable. After this gain those two poles always produce stable modes. While these 

three poles are traversing such trajectories, the complex conjugate pole pairs initially 

located at -1.8309+9.2727j and -1.8309-9.2727j trace arc like trajectories and pass 

the imaginary axis from left to right at the gain value 5.35 and they began to exhibit 

unstable characteristics after this point. As the gain increases these two closed loop 

poles try to reach to the zeros located at 2.3242+26.1247j and 2.3242-26.1247j. 

Hence, the closed loop transfer function exhibits stable characteristics when the gain 

(namely D parameter) is between 3.52 and 5.35. It is better to take a value between 

these two limit values to finish the design of the controller. Hence, we selected 

D=4.5.  
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Using Equation (5.26) and (5.27) we obtain P=18 and I=18. Thus, the design of the 

controller for stabilizing the cart position is completed where the controller has the 

following mathematical structure 

𝐶𝑐𝑎𝑟𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑠) = 18 +
18

𝑠
+ 4.5𝑠                                 (5.29). 

 

If D=4.5 in this case, the closed loop pole locations will be determined by solving the 

equation 

 

𝐺𝑐𝑎𝑟𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑜𝑝𝑒𝑛(𝑠) + 1 = 1 + 4.5(
(𝑠+2)2×(0.08784𝑠2−0.4083𝑠+60.43)

𝑠5+2.694𝑠4−85.24𝑠3−88.566𝑠2−49.54𝑠−6.043
)    (5.30) 

 

Which gives the pole locations are -0.4569 + 8.2374j, -0.4569 - 8.2374j, -0.5099 + 

3.6733j, -0.5099 - 3.6733j, -1.1555. As seen, all the closed loop poles have negative 

real parts and the closed loop transfer function is stable. 

 

 

5.4. Test and Comparison of the Controllers 

 

As the design of the controllers (given in Equation 5.20 and 5.29) is completed, we 

can test them and compare their performance with the performance of the controllers 

given in Equation (5.1) and Equation (5.2). After the comparison, the designed 

controllers will also be examined for reference signal tracking and their resilience 

due to disturbance will be monitored with different real time applications. 

 

 

5.4.1. Comparison of Performances of Controllers for no Load Condition 

 

For comparison, we have made a variation in the ‘InvPendIdent’ model [1]. With 

every other procedure remaining the same, we replaced the extra excitation signal r 

used in the identification step with zero signals (a constant value 0 is given as extra 

excitation signal r). Hence, the controllers are only due to stabilize the system with 

no extra objective of system identification. With this modification, the block diagram 

of control strategy coupled with extra excitation signal for test and comparison 

purpose is implemented as the illustrated model in Figure5.14. 
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Figure 5.14: The block diagram of control strategy for no load condition 

 

 

We have run this modified real time model primarily using the Ccart_position(s) and and 

Cpend_angle(s) controllers given in Equation (5.1) and Equation (5.2). The pendulum 

angle, cart position and control signal outputs are plotted in Figure 5.15 
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Figure 5.15: The cart position, pendulum angle and control signal plotted versus           

time with no extra excitation signals using controllers given in Equation (5.1) and 

Equation (5.2). 

 

As we deeply investigate Figure 5.15. we can say that the system stabilized around 

the equilibrium point x3= 0 radians nearly after the 10th second. However, there are 

some oscillations for the state variable x1. These oscillations deviate approximately 

between 70 mm and -75 mm. Hence, there is some controlled oscillation for x1 (cart 

position) to better control the state x3 (pendulum angle). However, the fluctuations 

(oscillations) for x3 seem to be limited. x3 oscillated between 0.03 and -0.03 radians 

(nearly ±1.71 degrees).  

Now we want to see the performance of the controllers that are designed at Section 

5.3. We have run this modified real time model primarily using the Ccart_position(s)  and  

Cpend_angle(s) controllers given in Equation (5.29) and Equation (5.20). The pendulum 

angle, cart position and control signal outputs are plotted in Figure 5.16. 
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Figure 5.16: The cart position, pendulum angle and control signal plotted versus 

time. The plots are obtained employing the Ccart_position(s) and   Cpend_angle(s) 

controllers given in Equation (5.29) and Equation (5.20). 

 

As we deeply investigate Figure 5.16, we can say that the system stabilized around 

the equilibrium point x3= 0 radians nearly after the 10th second. Still using the 

designed controllers, there are some oscillations for the state variable x1. But these 

oscillations are not as high as the ones that we observe in Figure 5.15. The 

oscillations deviate approximately between 30 mm and -30 mm. The fluctuations 

(oscillations) for x3 seem to be also limited. x3 oscillates between 0.024 and -0.027 

radians (nearly ±1.54 degrees). Thus the designed controllers seem to work better 

compared to the controllers given in Equation (5.1) and Equation (5.2).  
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5.4.2 Reference Tracking Capability 

 

The reference tracking capabilities of the controllers is an important identifier for 

concluding whether the controllers are working properly or not. For this reason, 

some real time reference tracking applications are devised. In the first application, 

we want to test the reference tracking for pulse changes. For this reason, the position 

set point block (which is initially set to zero) in Figure 5.14 is replaced by a pulse of 

0.15, which is applied between the 20th and 30th second of the real time application. 

In order to limit the control voltage, a saturation block is also inserted before the 

control voltage that limits the voltage between 3 and -3 volts. The performance of the 

old controllers (given in Equation 5.1 and 5.2) and the new ones (given in Equation 

5.29 and 5.20) are tested. The results for the old controllers are given in Figure 5.17 

and Figure 5.18. 

 

Figure 5.17: The cart position, pendulum angle and control signal plotted versus 

time in case of pulse type reference- tracking for cart position. The plots are obtained 

employing the Ccart_position(s) and Cpend_angle(s) controllers given in Equation (5.1) and 

Equation (5.2). 
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Figure 5.18: The cart position (green) plotted versus time in case of pulse type 

reference (blue) tracking for cart position. The plots are obtained employing the 

Ccart_position(s) and and Cpend_angle(s) controllers given in Equation (5.1) and Equation 

(5.2). 

 

The results for the new controllers are given Figure 5.19 and Figure 5.20. 
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Figure 5.19: The cart position, pendulum angle and control signal plotted versus 

time in case of pulse type reference tracking for cart position. The plots are obtained 

employing the Ccart_position(s) and Cpend_angle(s) controllers given in Equation (5.29) 

and Equation (5.20). 
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Figure 5.20: The cart position (blue) plotted versus time in case of pulse type 

reference (green) tracking for cart position. The plots are obtained employing the 

Ccart_position(s) and Cpend_angle(s) controllers given in Equation (5.29) and Equation 

(5.20). 

 

From the Figures 5.17, 5.18, 5.19 and 5.20, one can conclude that for pulse type 

reference tracking where the reference value changes in a sudden, the new controllers 

are fast but in total they cause high overshoot (especially for cart position tracking) 

and the old controllers are slow however they cause less overshoot. On the other 

hand, the reaction speed of the new controllers is respectable and the settling time for 

both of the states x1 (cart position) and x3 (pendulum angle) is small by use of these 

new controllers. After the system is settled, the cart position and pendulum angle 

oscillates in similar levels as explained in section 5.4.1 when new controllers are 

employed. When old controllers are employed, the reaction of the system is very 

slow. It takes more time for the system to settle down besides still high oscillations 

are observed for the cart position even if the system settles down. 
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As a second reference tracking application, we applied a sinusoidal input as the 

position reference between the 20th and 40th seconds of the real time application. The 

sinusoidal signal has amplitude of 0.15 and frequency of 0.2 Hertz. The performance 

of the controllers is checked under these circumstances. The results for the old 

controllers are given in Figure 5.21 and Figure 5.22 and the results for the new 

controllers are given in Figure 5.23 and Figure 5.24. 

 

 

 

 

Figure 5.21: The cart position, pendulum angle and control signal plotted versus 

time in case of sinusoidal type reference tracking for cart position. The plots are 

obtained employing the Ccart_position(s) and Cpend_angle(s) controllers given in Equation 

(5.1) and Equation (5.2). 
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. 

Figure 5.22: The cart position (green) plotted versus time in case of sinusoidal type 

reference (blue) tracking for cart position. The plots are obtained employing the 

Ccart_position(s) and Cpend_angle(s) controllers given in Equation (5.1) and Equation (5.2). 
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Figure 5.23: The cart position, pendulum angle and control signal plotted versus 

time in case of sinusoidal type reference tracking for cart position. The plots are 

obtained employing the Ccart_position(s) and Cpend_angle(s) controllers given in Equation 

(5.29) and Equation (5.20). 
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Figure 5.24: The cart position (blue) plotted versus time in case of sinusoidal type 

reference (green) tracking for cart position. The plots are obtained employing the 

Ccart_position(s) and Cpend_angle(s) controllers given in Equation (5.29) and Equation 

(5.20). 

 

As seen from Figures 5.21, 5.22, 5.23 and 5.24 new controllers are much better than 

the old ones for sinusoidal reference tracking for cart position. We have also 

increased the amplitude of the reference signal from 0.15 to 0.25, even in these 

circumstances, the new controllers are able to track the reference signal however, the 

old controllers are not able to move the cart-pendulum system regularly and the cart 

reached the limits of the rail and hence it stopped and the tracking task failed. The 

results obtained employing the new controllers with this real time application are 

shown in Figure 5.25 and 5.26. 
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Figure 5.25: The cart position, pendulum angle and control signal plotted versus 

time in case of sinusoidal type reference tracking for cart position. The plots are 

obtained employing the Ccart_position(s) and Cpend_angle(s) controllers given in Equation 

(5.29) and Equation (5.20). Amplitude of the reference signal is 0.25. 
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Figure 5.26: The cart position (blue) plotted versus time in case of sinusoidal type 

reference (green) tracking for cart position. The plot is obtained employing the 

Ccart_position(s) and Cpend_angle(s) controllers given in Equation (5.29) and Equation 

(5.20). Amplitude of the reference signal is 0.25. 

 

Nearly all the cart position reference-tracking applications show that, the new 

controllers demonstrate better performance in terms of speed, steady state error and 

capacity to stabilize the unstable system around the unstable equilibrium point. There 

is only one drawback of the new controllers: when the reference signal changes very 

suddenly (a pulse like reference signal) and besides if the amplitude of this reference 

signal is high, the new controllers produces very high control signals because of the 

derivative content they encompass and this causes very sudden movements in the 

cart besides because of the integral content the system began to exhibit underdamped 

oscillations and overshoot is observed. Even in these circumstances, the system is 
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still stabilized however as the amplitude is increased more the system becomes 

unstable 

 

 

5.4.3 Effect of Disturbances 

 

In this new real time application, we intend to see the effect of disturbance. The first 

disturbance is putting an extra mass to the cart when the system is stabilized around 

the equilibrium point. The second one is giving some force to the pole by a stick by 

pushing and pulling when the system is stabilized. And combination of both of these 

disturbances in system performance is also monitored as a third application. First, the 

real time application is run as in section 5.4.1 using old and new controllers when the 

position set point in Figure 5.14 is set to 0. At the 20th second (after the system is 

stabilized at the unstable equilibrium point) we put extra mass of 1246.35 gram to the 

system and the following cart position, pendulum angle and control voltage signals 

are observed in Figure 5.27 when new controller are used given in Equations (5.29) 

and Equations (5.20). 
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Figure 5.27: The cart position, pendulum angle and control signal plotted versus 

time in case of a mass disturbance of 1246.35 gram. The plots are obtained 

employing the Ccart_position(s) and Cpend_angle(s) controllers given in Equation (5.29) and 

Equation (5.20). 

 

The same mass is also applied for the old controllers given in Equation (5.1) and 

Equation (5.2) and the following results in Figure 5.28 are obtained. 
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Figure 5.28: The cart position, pendulum angle and control signal plotted versus 

time in case of a mass of 1246.35 gram. The plots are obtained employing the 

Ccart_position(s) and Cpend_angle(s) controllers given in Equation (5.1) and Equation (5.2). 

 

We haven’t observed much difference between the performances of old and new 

controllers when we put the extra mass of 1246.35 gram over the cart as a 

disturbance. However, the cart began to have oscillations with slightly higher 

frequencies around the cart position set point (x1=0) if the new controllers are 

employed. Such a disorder is not significantly observed for the old controllers.  

Hence, the system controlled by new controllers might go to instability earlier 

compared to the case with old controller in case of application of higher masses. To 

see this effect, we also applied higher masses to compare the durability of the old and 

new controllers. When we put a total extra mass of 2140.98 gram to the system, we 

observed that the old controllers performance is nearly smiler compared to the 

situation when smaller mass of 1246.35 gram is applied.  However, as we put the 

same mass to the system controlled by the new controllers we observed that the 

system began to oscillate with higher frequency and amplitude around the cart 

position set point and become instable at the end. Hence, durability of the system 

controlled by the old controllers is higher compared to system controlled by the new 

controllers in case of application of a mass type of disturbance. However, both 
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systems can resist until masses of nearly 1250 gram and not much performance 

change is observed. 

 

The second application is applying a force to the pole in order to destabilize it by a 

stick. We pushed and pulled the pole connected to the pendulum with this stick. In 

both circumstances, the cart-pendulum system is able to stabilize the system again, 

hence the performance of the two set of controllers (old controllers and new 

controllers) is not very different. Besides as, the disturbances are not directly 

measurable for this application, a one to one comparison cannot be performed 

soundly. 

 

As a last application, we put the mass and we changed the reference point. First, we 

used a pulse like reference point change in the cart position of 0.05 units between the 

30th and 40th seconds of the real time application besides we put 894.63 gram of mass 

nearly at the 20th second over the cart.  Primarily, the old controllers are employed. 

The result about the cart position are shown in Figure 5.29. 
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Figure 5.29: The cart position (green) plotted versus time in case of a mass of 

894.63 gram and reference (blue) pulse change of 0.05 units for the cart position. The 

plots are obtained employing the Ccart_position(s) and Cpend_angle(s) controllers given in 

Equation (5.1) and Equation (5.2). 

 

The results when the new controllers are used for the same application are shown in 

Figure 5.30. 
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Figure 5.30: The cart position (blue) plotted versus time in case of a mass of 894.63 

gram and reference (green) pulse change of 0.05 units for the cart position. The plots 

are obtained employing the Ccart_position(s) and Cpend_angle(s) controllers given in 

Equation (5.29) and Equation (5.20). 

 

If we apply a pulse type reference change coupled with a mass type of disturbance, 

the new controllers track the reference signal more rapidly and settles down around 

the cart position set point a few level faster compared to the old controllers. 

However, increasing the amplitude of the pulse or increasing the mass further 

degenerate the system response more rapidly when new controllers are on duty.  

Thus although new controllers exhibit better steady state error values and settles 

around the cart position set point more rapidly, they are not as robust as the old 

controllers.  
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CHAPTER 6 

 

 

CONCLUSION 

 

 
In this thesis, the main aim is to design of PID controllers for a high dimensional 

non-linear system that is guided around an unstable equilibrium point. To complete 

the design, some complex procedures are carried out in an order one by one. 

Primarily, the system state is brought from an initial stable equilibrium point (state) 

close to an unstable equilibrium point by a previously defined swing up operation. 

Then a system identification operation is carried by means of previously defined 

controllers around the unstable equilibrium point. Finally, using the outputs of 

system identification step, new PID controllers are designed through using root locus 

method.  By these procedures, the closed loop system with the designed controllers 

attains some specific characteristics pertaining to stability. Besides, improvements 

are also observed for various performance criteria. Speed of the system response is 

increased and steady state error is decreased. Besides, for some control application 

such as reference signal tracking (for cart position), the designed controllers are more 

successful than the preciously defined controllers in terms of speed and steady state 

error both for sinusoidal and pulse like reference inputs.  

 

Despite the success of the designed controllers in many operations, it is also 

observed that they have some drawbacks.  Primarily, reference signal tracking of 

suddenly applied signals such as pulses are a bit problematic. If the magnitude of the 

pulse like reference signal (for cart position) is so high no tangible problem is 

observed. However, if the magnitude is further increased, the designed controllers 

produce higher overshoots in the cart position and unfortunately after some extent, 

the overshoot increases radically and the closed loop system turns out to be unstable. 

The old controllers are more robust for such reference signal alterations although 

they began to trace longer trajectories.  Another drawback is observed when extra 
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mass is exerted to the cart as a disturbance. Until some extent (nearly 1250 gram of 

extra mass), both old controllers and new controllers operate similarly: the 

performances are nearly same as the performances they have for unloaded cases.  

However, if the mass is further increased (nearly 2140 gram of extra mass), it is 

observed that the durability of the old controllers for such a disturbance is higher 

than the new designed controllers. The old controllers keep operating properly 

however, the new controllers began to produce increasing oscillations in the cart 

position and the system become unstable at the end. 

   

Hence, as a future work, it is intended to deal with the drawbacks of the designed 

controllers. For this reason, the primary future work will be increasing the robustness 

of the designed controllers by parameter adjustment and optimization. Secondly, the 

developed controller structures will be used in order to design newer ones having 

unconventional structures such as neural networks and these controllers will be 

implemented in real time applications.  
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Appendices 1 

 

Set Point Selection 

 

 
function angle_set_point = fcn(angle) 
if angle>=pi, 
    angle_set_point=2*pi; 
else 
    angle_set_point=0; 
end 

Appendices 2 

 

 

Applied force direction function 

 

 

 
function force_direction = fcn(angular_velocity,zone_signal) 
if angular_velocity>=0,  
%the pendulum is returning in counterclockwise direction 
    if zone_signal==1, 
        force_direction=-1;  
%the pendulum is at the upper region so applied_force should  
%be in -x direction 
    else 
        force_direction=1;  
%the pendulum is at the lower region so applied_force should  
%be in x direction 
    end 
else %the pendulum is returning in clockwise direction 
    if zone_signal==1, 
        force_direction=1;  
%the pendulum is at the upper region so  
%applied_force should be in x direction 
    else 
        force_direction=-1;  
%the pendulum is at the lower region so applied_force should  
%be in -x direction 
    end 
end 
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Lower zone-upper zone function 

 

 
function zone_signal = fcn(angle) 
if angle<=pi/2 | angle>=3*pi/2, 
    zone_signal=1; %upper zone 
else 
    zone_signal=0; %lower zone 
end 
 

Appendices 4 

 

 

Upright position detection function 

 

 
function s_z_r = fcn(angle,angle_compare_val) 
s_z_r=or((abs(angle-

2*pi)<=angle_compare_val),angle<=angle_compare_val); 
%s_z_r is the stabilization zone region 
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