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ABSTRACT 

 

HYBRID HYPERSPECTRAL IMAGE COMPRESSION METHOD BY USING 
ONLINE DICTIONARY LEARNING BASED ON SPARSE CODING 

 

 

ÜLKÜ, İrem 

PhD, Electronic and Communication Engineering Department 

Supervisor: Prof. Dr. Halil Tanyer EYYUBOĞLU 

 

 

October 2017, 100 pages 

 

In this thesis a hybrid method is proposed, where an online dictionary learning approach 

based on the sparse coding scheme is adapted to compress hyperspectral images for the 

first time in the literature. In this method, various sparse representation algorithms are 

used to solve the sparse coding problem. Rate-distortion performances of different sparse 

representation algorithms are compared to those of the other compression algorithms. The 

information preservation performances are also evaluated by the anomaly detection 

application. The experimental results verify that compression performances of proximity 

based optimization algorithms and blind compressive sensing algorithms are superior to 

those of other algorithms as the bit rate increases. 

Keywords: Sparse Coding, Compressive Sensing, Online Dictionary Learning, 

Hyperspectral Image Compression  
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ÖZ 

 

SEYREK KODLAMA VE ÇEVRİMİÇİ SÖZLÜK ÖĞRENME KULLANILARAK 
HİBRİT HİPERSPEKTRAL GÖRÜNTÜ SIKIŞTIRMASI  

 

 

ÜLKÜ, İrem 

Doktora, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Prof. Dr. Halil Tanyer EYYUBOĞLU 

 

Ekim 2017, 100 sayfa 

 

Bu tezde, seyrek kodlama tabanlı çevrimiçi sözlük öğrenme yaklaşımını literatürde ilk kez 

hiperspektral görüntülerin sıkıştırılması için adapte eden hibrit bir yöntem önerilmiştir. 

Seyrek kodlama tabanlı çevrimiçi sözlük öğrenme kullanılarak hiperspektral görüntülerin 

sıkıştırılması için hibrit bir yöntem olarak isimlendirilmiştir. Bu yöntemde, çeşitli seyrek 

temsil algoritmaları seyrek kodlama problemini çözmek amacıyla kullanılmıştır. Farklı 

seyrek temsil algoritmaları ile diğer sıkıştırma algoritmaları oran-bozulma performansları 

açısından karşılaştırılmışlardır. Bilgi koruma performansları da anomali sezimi 

uygulaması ile ayrıca ölçülmüştür. Deneysel sonuçlar kanıtlıyor ki bit hızı arttıkça 

yakınlık bazlı eniyileme ve kör sıkıştırmalı örnekleme algoritmalarına ait sıkıştıma 

performansları diğer algoritmalardan üstün olmaktadır. 

Anahtar Kelimeler: Seyrek Kodlama, Sıkıştırmalı Örnekleme, Çevrimiçi Sözlük 

Öğrenmesi, Hiperspektral görüntü sıkıştırılması  
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CHAPTER 1 

INTRODUCTION 

 

Hyperspectral images are obtained from hyperspectral sensors. They are composed of 

hundreds of contiguous narrow (0.010 µm) spectral bands from the visible (0.4-0.7 µm) 

region through the near-infrared (about 2.4 µm) region of the electromagnetic spectrum. 

Each pixel of the hyperspectral image has a corresponding spectral signature that enables 

objects on earth to be uniquely defined [1]. Thanks to this spectral signature, hyperspectral 

images provide effective usage in fields where remote sensing applications are 

implemented such as agriculture, military and astronomy. 

Hyperspectral images have huge image sizes since they have the additional spectral 

dimension. Fortunately, hyperspectral images have a high spectral inter-band correlation 

that ensures high rates of compression without any significant information loss [2]. During 

the downlink operation from satellite to ground, the available transmission bandwidth 

should be captured by applying compression [3]. Therefore, hyperspectral images are 

often compressed before storing and transmitting. Hyperspectral image compression is 

composed of two types: Lossy and lossless. 

Although the lossless compression techniques are able to ensure full image quality, they 

cannot achieve high compression ratios. On the other hand, their lossy compression 

counterparts can transmit huge amounts of hyperspectral data with fast data rates despite 

the information loss disadvantage [4]. Indeed, suitable performance measurement tools 

can capture the quality degradation in the compressed image. 

Compression methods are classified as prediction-based methods, transformation-based 

methods and vector quantization (VQ)-based methods. Indeed, transformation-based 

methods are the most popular ones. Principal component analysis (PCA) is a 
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transformation-based method which is based on the usage of spectral correlation 

characteristics. PCA realizes lossy compression based on the decorrelation of spectral 

bands [5]. However, the computational burden of the PCA scheme is huge. Compressive-

projection principal component analysis (CPPCA) is the new version of the PCA method. 

CPPCA is compatible particularly with satellite-borne remote sensing applications [6]. 

There are some other transformation-based methods that utilize the decorrelation of 

spectral bands, such as Karhunen-Loeve transform (KLT), discrete wavelet transform 

(DWT) and discrete cosine transform (DCT) [7-10]. 

Instead of utilizing fixed filter coefficients in the decorrelation process, data-specific 

methods can also be used. Data-dependent methods perform the compression by using 

sparse representation based compression approach. By using such methods, compression 

performance improvement is achieved by considering the inherent characteristics of the 

data. 

Dictionary learning is a data-specific method which recently became popular for 

hyperspectral image compression. Rather than using a pre-defined one, dictionary learning 

methods learn the dictionary directly from the hyperspectral image [11]. Dictionary 

learning is based on the solution of sparse coding problem. Indeed, the sparse 

representation is achieved by the iterative solution of dictionary learning and sparse 

coding problems [12-14]. This sparse representation aims to find the sparsest solution that 

requires solving non-deterministic polynomial-time hard (NP-hard) l0-norm minimization 

problem [15]. Although it is difficult to obtain the optimal solution in NP-hard problems, 

the problem can be solved by convex optimization methods when the non-convex l0-norm 

function is replaced by the convex l1-norm function [16].  

According to the technique used in the process, dictionary learning is classified into two 

categories, namely the batch methods and the online learning methods. By exploiting the 

singular value decomposition (SVD), K-SVD algorithm is a typical example of batch 

methods.    
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Batch processing algorithms require to reach the entire dataset at each iteration to perform 

learning, which makes them unsuitable for large datasets [17]. In order to cope with such 

an issue, online dictionary learning approach is developed, which is based on stochastic 

approximations during the learning process [18]. 

Using sparse coding methods along with dictionary learning for the purpose of 

hyperspectral image compression has been reported in the literature [15]. In the reference 

[15], a lossy hyperspectral image compression scheme is presented, which imposes a non- 

negativity condition on both the dictionary elements and the sparse coefficients. A similar 

approach is followed in this study which imposes a non- negativity condition on the 

dictionary elements and coefficients since it is based on the hyperspectral image 

compression as well. Even though the work in the reference [15] uses batch-mode 

gradient-type method, this study realizes the learning process by applying stochastic 

gradient descent-based online learning scheme [19, 20]. Another method [20] presents the 

idea of utilizing stochastic gradient descent-based online learning model for the purpose 

of the spatial-spectral joint classification of hyperspectral images. A similar model is 

practiced in this study to compress the hyperspectral images for the first time [21, 22]. 

Sparse representation algorithms are exploited to solve the sparse coding problem. In the 

literature, various categorizations are presented for the classification of sparse 

representation algorithms [13, 16]. In this study, sparse representation algorithms are 

analyzed in three categories. These are; greedy pursuit algorithms, lp-norm regularization 

based algorithms and Bayesian algorithms. 

Greedy pursuit algorithms find the sparsest solution which can be obtained by the 

minimization of the cost function with l0-norm regularization [13]. The first and most 

basic algorithm in this category is the matching pursuit (MP) algorithm [23, 24]. This 

algorithm finds a solution by selecting the best dictionary element at each iteration 

according to a specific criterion until a desired termination condition is reached. 

Orthogonal matching pursuit (OMP) algorithm is the enhanced version of the MP 

algorithm that is based on orthogonal projection [25, 26]. Moreover, OMP algorithm is 

also enhanced to reduce the complexity corresponding mostly to the identification step. 
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This improved algorithm is called the generalized OMP (gOMP) algorithm that is 

associated with the approach of selecting multiple indices at each iteration [27]. The OMP 

algorithm is a special case of the gOMP algorithm that produces the solution with fewer 

iterations by selecting multiple indices [27]. Stagewise orthogonal matching pursuit 

(StOMP), regularized OMP (ROMP) and compressive sampling matching pursuit 

(CoSaMP) algorithms also fall under this category [28-30].  

lp-norm regularization algorithms are composed of two types, namely, p ≥ 1 and 0 < p < 

1. In the p ≥ 1 case, only l1-norm minimization is sufficiently sparse [13]. The l1-norm 

minimization algorithms are classified as constrained based optimization algorithms, 

proximity based optimization algorithms, coordinate descent based optimization 

algorithms and homotopy based optimization algorithms. 

Constrained based optimization algorithms are based on transforming a non-differentiable 

unconstrained problem into a differentiable constrained problem [13]. One example of 

such algorithms is gradient projection sparse reconstruction (GPSR) algorithm [31]. 

Interior-point method is another example that implements Newton's method to solve 

problems with moderate size data effectively [32]. Since the interior-point algorithm is 

somewhat time consuming for problems with large-scale data, the more efficient truncated 

Newton based interior-point method (TNIPM) was developed [33]. The alternating 

direction method (ADM) algorithm also belongs to this category [13]. Alternating 

direction method of multipliers (ADMM) algorithm is an ADM algorithm that handles a 

large scale problem by dividing it into smaller pieces [34]. The final example is the active-

set algorithm that can be divided into two parts, namely, primal and dual [35, 36]. In this 

study, ADMM algorithm is used to solve Least Absolute Shrinkage and Selection 

Operator (LASSO) sparse coding problem and a dual active-set algorithm is utilized to 

solve a basis pursuit (BP) sparse coding problem. 

Proximity based optimization algorithms are primarily based on reformulating the original 

sparse optimization problem by using a proximal operator such as a soft thresholding or 

hard thresholding operator [37, 38]. They are suitable for non-smooth and constrained 

problems, especially in significantly large-scale [38]. Many proximity algorithms can be 
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analyzed in this category. One of them is the iterative shrinkage thresholding algorithm 

(ISTA) [39]. An improved algorithm is fast iterative shrinkage thresholding algorithm 

(FISTA) [40, 41]. According to the literature, the global rate of convergence 

corresponding to FISTA is shown to be better while keeping the computational simplicity 

of ISTA [40]. Another algorithm is known as the sparse reconstruction by separable 

approximation (SpaRSA) [42]. The SpaRSA algorithm uses the Barzilai-Borwein (BB) 

spectral method and worm-starting technique to optimize the problem [13]. Additionally, 

two-step IST (TwIST) algorithms are considered in this category [43, 44]. The General 

Iterative Shrinkage and Thresholding (GIST) algorithm is proposed to efficiently solve 

the non-convex optimization problems for large-scale data sets and also belongs to this 

category [45, 46]. This algorithm iteratively solves a proximal operator problem and uses 

BB rules to identify a step size [45]. Augmented Lagrangian method (ALM) algorithm 

uses Lagrange multiplier to turn an equality constrained problem into an unconstrained 

problem [41]. The ALM algorithm is analyzed in two types as the primal augmented 

Lagrangian method (PALM) and the dual augmented Lagrangian method (DALM) 

according to whether a primal or dual l1-minimization problem is solved, respectively 

[47].  

Coordinate descent based optimization algorithms perform the optimization with respect 

to only one variable by fixing all other variables. All the variables are optimized iteratively 

in a cyclic manner until the convergence. The Shooting algorithm is classified in this 

category [48]. If the regularization term is generalized such that a partition is realized by 

groups, then the coordinate descent based optimization algorithms are generalized as 

block coordinate descent (BCD) based algorithms. 

Non-convex lp-norm (0 < p < 1) regularized problems can be solved by algorithms such 

as the generalized iterated shrinkage algorithm (GISA) [49] and the focal underdetermined 

system solver (FOCUSS) algorithm [50, 51].  

Homotopy based algorithms follow a procedure by tracing solutions along the continuous 

parameterized path while altering parameters to solve optimization problems [52]. The 
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LASSO homotopy algorithm is proposed to solve LASSO problems [53]. Moreover, the 

basis pursuit denoising (BPDN) homotopy algorithm also falls into this category. [54]. 

Bayesian compressive sensing algorithms category has one main example as the sparse 

Bayesian learning (SBL) algorithm [55].  

In literature, variety of algorithms relying on the block compressed sensing (BCS) are 

proposed which are given as; smoothed projected Landweber (BCS-SPL) [56, 57], 

projected Landweber based on three-dimensional bivariate shrinkage (BCS PL-3DBS), 

3D wavelet packet transform (BCS PL-3DBS + 3DWPT) [58]. 

The blind compressed sensing (BCS) algorithm aims to solve the sparse coding problem 

without prior knowledge of the sparsity basis. In this case, to guarantee the unique 

solution, some constraints are considered on the sparsity basis [59]. The algorithm used 

in the process is called an orthogonal block diagonal BCS (OBD-BCS) algorithm. Each 

iteration consists of an OMP algorithm and SVD algorithm. The OBD-BCS algorithm is 

indeed a compressive sensing framework. In addition to the sparse coding step, it also 

includes the dictionary learning step by utilizing a batch method. Here, the sparse 

coefficients are obtained by finding the corresponding basis with the help of this learning 

process. 

Anomaly detection can measure the information preservation capability of different sparse 

representation algorithms; a popular method in the literature is to use Reed-Xiaoli (RX) 

anomaly detection algorithm [60]. RX Anomaly detection used in this study is to 

strengthen the obtained rate-distortion performance results. The detection performance of 

the original hyperspectral image is compared to that of the reconstructed hyperspectral 

image.  

This study makes the following contributions: 

1) This is the first study in the literature which adapts the online dictionary learning 

method proposed by Mairal et. al. [19] to the hyperspectral image compression. 
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2) A hybrid hyperspectral image compression method by using online dictionary 

learning based on sparse coding is proposed by adapting different sparse 

representation algorithms to the solution of the sparse coding problem. 

The sparse representation algorithms which are utilized in this study are as follows; gOMP 

algorithm, LASSO by using ADMM algorithm, BP by using dual active-set algorithm, 

SpaRSA algorithm, FISTA algorithm, TwIST algorithm, GIST algorithm, PALM 

algorithm, BPDN homotopy algorithm, TNIPM algorithm, GISA algorithm, OBD-BCS 

algorithm, SBL algorithm, FOCUSS algorithm and Shooting algorithm. This is the first 

hybrid study in the literature which adapts these different sparse representation algorithms 

to the case of online dictionary learning method proposed by Mairal et. al. [19].  

As comparison of the proposed hybrid hyperspectral image compression method by using 

online dictionary learning based on sparse coding to the other compression algorithms, 

BCS PL-3DBS + 3DWPT algorithm and CPPCA algorithm are used. Additionally, as a 

state-of-the-art compression scheme, RLPHCS_Cov algorithm is exploited in the rate-

distortion comparison.  

3) Particularly, the most recent sparse representation algorithms in the literature such 

as those classified as proximity based optimization algorithms (SpaRSA 

algorithm, FISTA algorithm, TwIST algorithm, GIST algorithm and PALM 

algorithm) and blind compressive sensing algorithms (OBD-BCS algorithm), are 

analyzed further. The experimental results reveal that these algorithms offer better 

rate-distortion performance over the other sparse representation algorithms when 

they are adapted to solve the sparse coding problem in the first step of the 

algorithm.  

4) In addition to the rate-distortion performance analysis, the quality of the 

reconstructed hyperspectral images is further evaluated by the anomaly detection 

application. Anomaly detection essentially measures the information preservation 

capability of the algorithms.  
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CHAPTER 2 

RELATED WORK AND CONTRIBUTIONS 

 

In this section, image compression techniques are introduced. Additionally, dictionary 

learning and sparse coding terms are explained with corresponding examples. 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is developed by NASA's Jet 

Propulsion Laboratory. AVIRIS sensor collects hyperspectral data that can be used for 

earth remote sensing. The data size is roughly higher than 500 Megabytes per flight which 

exceeds the available transmission bandwidth [61].  

Efficient hyperspectral data compression methods are necessary to reduce the storage at 

the ground and match the available transmission bandwidth. Hyperspectral image 

compression techniques are divided into two categories, namely lossless and lossy 

compression.  

In lossless compression, original image can be reconstructed from the compressed image. 

Since the compression ratio is low in lossless compression, it is generally not suitable for 

real-time transmission of the hyperspectral data [62].  

Although much higher compression ratios can be achieved in lossy compression, some 

information loss is observed. Therefore, the distortion in the hyperspectral data should be 

measured to obtain an acceptable image quality. The basic quality evaluation tools are the 

statistical distortion measures such as signal-to-noise ratio (SNR) or peak signal-to-noise 

ratio (PSNR). The best way to evaluate the quality is to perform a real application both on 

the original and the compressed data [9].  
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In this study, lossy compression is considered. PSNR is used as the main quality 

measurement tool. As a real application, anomaly detection is applied. Consequently, a 

comprehensive benchmarking is performed to evaluate the image quality.  

Hyperspectral image acquisition has a number of limitations such as the storage capacity 

of the satellite and the bandwidth capacity of the transmission line. Lossless compression 

techniques are not sufficient to allow real-time acquisition. These techniques are more 

suitable for the distribution of the data to the end users [9].  

In real-time transmission of the hyperspectral data, lossy image compression techniques 

should be utilized to cope with the restrictions [62]. Most recent satellites, namely SPOT 

4 and IKONOS both utilize the on-board lossy compression of hyperspectral data before 

the down-linking from satellite to ground [3]. 

Lossy and lossless compression methods are divided into three categories depending on 

the implementation. These are prediction-based methods, transformation-based methods 

and the VQ-based methods. 

2.1 PREDICTION-BASED METHODS 

The main idea behind the prediction-based methods is the usage of the correlation among 

the image pixels [62]. At first, data is decorrelated through a predictor which seeks the 

correlation between spectral bands. Prediction error is coded with the help of an entropy 

coder afterwards [9].  

One basic example is the differential pulse modulation (DPCM). Other examples are the 

lookup tables (LUT) and the usage of context-based, adaptive, lossless image coding 

(CALIC) [9]. In general, lossless compression techniques employ prediction-based 

methods [63]. 

Similar to the prediction-based methods for 2D images, some modifications are devised 

for hyperspectral image compression [64-66]. In order to match the low complexity 

requirement of the onboard compression, a lossy hyperspectral image compression 
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algorithm based on prediction is proposed [63]. It is called predictive lossy compression 

algorithm.  

2.2 TRANSFORMATION-BASED METHODS 

Transform-based methods have two steps, namely the transform step and the coding step. 

In the transform step, data is transformed in a less correlated domain. In the coding step, 

data is encoded [9]. Transformation-based methods use a dictionary that can be either a 

DCT or a wavelet dictionary [67]. Most common examples are PCA which is also named 

as KLT, DCT and DWT. The joint photographic experts group (JPEG) compression 

standard is based on DCT and JPEG 2000 standard is based on DWT [68].  

DCT mainly employs the linear combination of weighted basis functions by exploiting the 

frequency components in order to represent the input signal. DWT, on the other hand, 

realizes a decorrelation by splitting the data into two parts, namely a very significant part 

and a least significant part [3]. A generalization of DWT is called the discrete wavelet 

packet transform (DWPT).  

In general, lossy compression techniques utilize transformation-based methods [63]. 

Since, each method has a different definition of the main steps, a detailed discussion is 

useful.    

2.2.1 Transform step 

Methods rely on the utilization of spatial and spectral correlation prior to a quantization 

[3]. The most effective transform method is considered to be the KLT. However, the 

computational cost in this case is high. The modifications on the KLT method are studied 

to reduce this complexity. A new strategy, namely SubPCA, is also tested where only a 

subset of the principal components are used in compression rather than all components 

[69]. However, the PCA-based compression methods have the heavy encoder side burden. 

The bulk of the computation in the encoder side is transformed to the decoder side by 

employing the process based on projections-onto-convex-sets (POCS) optimization. This 

new method, namely CPPCA relies on conducting a data-specific PCA basis by using the 

random projections [6].  
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Wavelet family is accepted as another effective transform. The most popular ones are 9/7 

and 5/3 wavelets. They are also adopted in the JPEG 2000 standard [9]. Hyperspectral 

image compression requires a 3D transform. Therefore, it is important to decide which 

combination of transforms would be better for hyperspectral data [63]. A typical 3D 

compression algorithm scheme follows the steps of coupling a spectral transform with a 

spatial wavelet transform in addition to applying a suitable coding algorithm [70]. 

Recently, a popular approach in the literature is to combine a 1D spectral de-correlator 

such as PCA, DWT or DCT with a spatial de-correlator such as JPEG 2000 standard [3]. 

Indeed, JPEG 2000 is well suited to the 3D hyperspectral image compression [70]. 

Using PCA together with JPEG 2000 in hyperspectral image compression provides a 

superior rate-distortion performance [69]. Indeed, the compression performance of 

PCA+JPEG2000 outperforms that of the DWT+JPEG2000 for hyperspectral data [70]. 

Therefore, in hyperspectral image compression, PCA provides a better compression 

performance than DWT according to the literature [69]. A new compression approach 

proposes the anomaly-adjusted (AA) algorithm to solve PCA+JPEG2000 which utilizes 

the anomalous pixels in the compression process [71]. An improved version of AA 

algorithm, which is called anomaly removal (AR)-based algorithm, is to compress the 

anomalous pixels by using a lossless scheme and to compress the remaining part of the 

image by using PCA+JPEG2000 or SubPCA+JPEG2000 [69].  

2.2.2 Coding step 

The reduced number of coefficients are coded by several methods. It is aimed to obtain a 

long stream of zeros. The idea is to exploit the behavior of wavelength coefficients. Zero-

tree algorithms such as the embedded zero-tree wavelet (EZW) algorithm, set partitioning 

in hierarchical trees (SPIHT) algorithm and set partitioned emgbedded block coder 

(SPECK) algorithm utilize this strategy which are used in hyperspectral data compression 

as well [72, 73]. SPIHT can be useful for onboard hyperspectral data compression.  

Wavelet-based lossy compression methods defined for 2D images are also extended to 3D 

counterparts such as 3D SPIHT and 3D SPECK [70]. A simplified version of 3D SPECK 
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algorithm is proposed in the literature which is designed particularly for the lossy 

compression of hyperspectral images [74]. Instead of using one, generally compression 

techniques are realized by the combination of these steps. One example is using JPEG 

2000 with 3D SPIHT [9].  

2.3 VQ-BASED METHODS 

These methods directly quantize the data block. Decorrelation process is not performed 

[62]. A two-step process is carried out as a training step and a coding step. In the training 

step, the codebook is formed. In the coding step, an assignment between vectors and code-

words is realized. One popular example is the generalized Lloyd algorithm (GLA) [9]. 

Due to the computational burden, this method is not effective for the hyperspectral data 

compression. In literature, several studies are conducted to exploit the vector quantization-

based methods in hyperspectral image compression [75-77].  

2.4 SPARSE REPRESENTATION-BASED METHODS 

Besides the mentioned compression techniques so far, another way to achieve 

hyperspectral image compression is by using sparse representation based compression 

approach [78]. Pre-designed dictionaries are often not suitable for the real natural data. 

Therefore, data-dependent dictionaries which are adapted to the observed data are 

becoming popular, especially for the hyperspectral data compression. In order to adapt the 

dictionary to specific data, dictionary learning should be conducted which is based on the 

sparse representation. Indeed, exploiting the learned dictionary to model the data is an 

important research direction in machine learning and signal processing, as well as in 

hyperspectral image compression recently. Sparse coding and dictionary learning 

concepts are discussed in the following sections. 

2.4.1 Sparse coding 

Sparse coding is the problem of finding a sparse coefficient vector α when the signal 

measurement x and the dictionary D are given [78] and it can be formulated as; 
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                                                           2
0 2min  s.t. .k� d

α
α x Dα                                   (1) 

The sparse coding problem in (1) is so called the l0-norm minimization problem. The 

sparsity of a vector comes from the l0-norm which represents the number of nonzero 

elements. However, as the l0-norm minimization is NP-hard, the l1-norm relaxations are 

often considered. Indeed, the l1-norm relaxation of the sparse coding problem (1) is 

convex such that it can be solved by linear programming technique [27].  

Although both the l0-norm and l1-norm minimization problems are assumed to be sparse, 

that of the l2-norm minimization cannot satisfy the condition of sparsity [13]. Indeed, l2-

norm measures the signal energy, it is not a measure of sparsity. The definitions of l0-

norm, l1-norm and l2-norm are as follows, where u is a vector of length n.  

 2 1/2
0 1 20 1 21 1

norm : #( 0),    norm : ,   norm : ( )  
n n

i i i
i i

l i l l
  

�  z �  �  ¦ ¦u u u u u u (2) 

In this study, sparse coding scheme is generalized as sparse representation of the data. 

Here, the sparse representation methods are categorized into three groups, namely greedy 

pursuit based algorithms, lp-norm regularization based algorithms and Bayesian 

algorithms. These algorithms have different strategies to solve the sparse coding equation 

in (1) and the ones which are used in this study will be explained. 

2.4.1.1 Greedy pursuit based sparse coding algorithms 

The solution of the sparse coding equation (1) is considered as NP-hard, since the sparsest 

solution so-called l0-norm turns it into a nonconvex combinatorial problem [79]. Greedy 

approaches aim to solve this original NP-hard sparse coding problem by approximate 

methods. Here, the exact l0-norm problem is solved approximately.  

As an example of greedy algorithms, gOMP is used in this study. It is the generalization 

of the OMP algorithm in such a way that multiple indices are chosen in each iteration [27]. 

The indices of the maximally correlated dictionary columns are included in a set. This set 

is composed of the estimated positions of the nonzero dictionary elements. 
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2.4.1.2 lp-norm regularization based sparse coding algorithms 

The NP-hard sparse coding problem in (1) is replaced with the convex relaxation 

counterpart which is easier to solve. Here, the approximation of l0-norm problem is solved 

exactly. Among the lp-norm regularization based sparse coding equations, particularly the 

l1-norm relaxation is considered in this study, since it is the only norm that induces sparsity 

as well as being convex [79]. 

The l1-norm regularization problems are categorized as constraint based optimization 

algorithms, homotopy based optimization algorithms, coordinate descent based 

optimization algorithms and proximity based optimization algorithms. Each of these 

categories will be summarized with examples. 

2.4.1.2.1 Constraint based optimization algorithms 

In constraint based optimization algorithms, some basic examples can be given as TNIPM 

algorithm, ADMM algorithm for solving LASSO problem and dual active-set algorithm 

for solving BP problem. The strategy is to transform the non-differentiable unconstrained 

sparse coding problem into a smooth differentiable constrained sparse coding problem.  

The l1-regularized least squares problem is defined as follows, where the first part 

represents the least squares problem and the second part is the l1-norm regularization term; 

                                                                2
2 1min O� �Dα x α                                       (3) 

This is the l1-norm relaxation of the sparse coding equation in (1).  

2.4.1.2.1.1 TNIPM algorithm 

In order to solve the l1-regularized least squares problem in (3), it is transformed into a 

convex quadratic problem with linear inequality constraints [33] such that it can be 

rewritten as; 

                                                     2
2 1

min   s.t.  ,
k

i i i i
i

O
 

� � � d d¦Dα x u u α u                (4) 
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where i = 1, …, k with αϵRk and uϵRk. Since the problem in (3) is converted to a convex 

quadratic counterpart as in (4), the resulting quadratic problem can be solved by using one 

of the convex optimization methods such as the interior-point method. In this study, the 

convex quadratic problem in (4) is solved via TNIPM algorithm, which a specialized 

interior-point method for solving relatively large scale problems [33]. TNIPM algorithm 

computes the search direction as an approximation to the Newton systems. This strategy 

is named as truncated Newton method in general. Here such a truncated Newton method 

is applied to the interior-point method [33]. 

2.4.1.2.1.2 ADMM algorithm for solving LASSO problem  

In order to solve the sparse coding equation in (1), ADMM can be used as well. Indeed, 

ADMM is very effective in solving the distributed convex optimization problems 

particularly the large scale ones [34]. The ADMM strategy is introduced briefly. The 

equality-constrained convex optimization problem is written as; 

                                                                       min ( )  s.t.  f  α Dα x                               (5) 

where αϵRk and DϵRmxk.The Lagrangian of the problem in (5) can be defined as; 

                                                                 ( , ) ( ) ( )TL f � �α y α y Dα x                           (6) 

and the corresponding augmented Lagrangian is as follows; 

                                                    2
2( , ) ( ) ( ) ( / 2)TL fU U � � � �α y α y Dα x Dα x         (7) 

where ρ>0 is the penalty parameter. The method of multipliers can be used to solve the 

problem in (7) and it has the following steps as; 

                                                                 
1
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α
α α y

y y Dα x
                              (8) 

where v represents the number of iterations [34]. Throughout the method, the optimality 

is achieved when the primal residual (Dαv+1-x) converges to zero. Along with the method 
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of multipliers, ADMM can also be defined which aims to solve the following type of 

problems; 

                                                               min ( ) ( )  s.t. .f g� �  α z Dα Bz x                     (9) 

The difference between problem (5) and problem (9) is that the variable α in (5) is now 

split into two parts, namely α and z in the latter problem. The objective function is also 

separated into two [34]. Note that the functions f and g are assumed to be convex. The 

augmented Lagrangian of the problem in (9) is written in the form of; 

                         2
2( , , ) ( ) ( ) ( ) ( / 2)TL f gU U � � � � � � �α z y α z y Dα Bz x Dα Bz x    (10) 

and the iterations of ADMM can be defined similar to those in (8) as; 
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                    (11) 

which includes the minimization steps for α and z variables together with a dual variable 

update step. The term alternating in ADMM comes from updating the variables α and z in 

alternating fashion. The method is well suited to the problems that split into two distinct 

parts. Since the sparse coding problem is in this form of a loss function together with a 

regularization term, ADMM can be used to solve sparse coding equation in (1) when it is 

relaxed with l1-norm. LASSO problem is the l1-regularized sparse coding problem and 

defined as follows; 

                                                               2
2 1

1min + .
2

O�Dα x α                                  (12) 

LASSO problem can be re-written in ADMM form similar to (9) as; 

                                                    2
2 1

min ( ) ( )  s.t. 0
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and the problem in (13) can be solved by using the ADMM iterations given in (11). This 

procedure is the solution of the LASSO sparse coding equation by using ADMM method.  

2.4.1.2.1.3 Dual active-set algorithm for solving BP problem  

Another constraint based optimization method to solve the l1-norm relaxation form of the 

sparse coding equation (1) is by using dual active-set algorithm [35]. First, a primal 

problem is considered as follows; 

                                                       2 2
2 2,

1min +  s.t. .
2
O O�  

α z
α z Dα z x                        (14) 

When λ=0, the primal problem in (14) turns into a BP sparse coding problem. If λ>0, it 

becomes the form of BPDN sparse coding problem. The dual of the problem in (14) can 

be written as; 

                                                         2
2

1max  s.t. -e
2

T T eO� d d
z

x z z D z                      (15) 

where e corresponds to the vector of ones. The relation between primal and dual problems 

in (14) and (15) is such that the optimal α values of the former are the optimal Lagrange 

multipliers for the inequality constraint of the latter [35]. Since the dual problem in (15) 

is a convex quadratic problem, it is favorable to exploit active-set methods to solve the 

dual problem. Active-set method updates the primal variables while maintaining the dual 

feasibility in (15) until an optimality condition is reached [35]. 

2.4.1.2.2 Homotopy based optimization algorithms 

The idea behind the homotopy based strategy is to change the parameters while tracing a 

parameterized path of solutions [13]. One main example of the homotopy based 

optimization algorithms is the BPDN homotopy algorithm.  

2.4.1.2.2.1 BPDN homotopy algorithm  

The BPDN sparse coding problem is formulated as follows: 
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2
2 1

1min .
2

O� �Dα x α
                            

(16) 

The approach is to trace the solution path by changing the parameter λ while hopping from 

one optimization scheme to another [54]. When following the path, some optimality 

conditions should be maintained. If a vector α* is the solution to the BPDN problem in 

(16), it must satisfy the following condition; 

                                                                        
*( ) .T O

f
� dD Dα x

                             
(17) 

The condition in (17) is indeed a set of different constraints for each DT(Dα*-x). In 

addition to the necessary condition in (17), a sufficient condition for having an optimal α* 

is to equate the set of locations when the constraints in (17) are equal to λ and the set of 

locations when α* is nonzero [54]. This set is denoted by S. A vector z is also defined 

which contains the signs of α* on S. By exploiting S and z, it is possible to find α* as 

follows;     

                                                         

1
* ( ) ( )   on    

0                                    otherwise

T T O� �° ®
°̄

S S SD D D x z Sα
          

(18) 

Solution is achieved by changing the parameter λ while moving along the direction 

(DT
SDS)-1 until any critical point is found [54]. At the critical points, both the set S and the 

direction of the path are changed. Starting with a large value of λ, it is reduced to the 

desired level by changing from one critical point to the next. One element is added or 

removed from the set S at each critical point along the solution path. This is a type of soft-

thresholding approach which will be explained in detail later.  

2.4.1.2.3 Proximity based optimization algorithms 

Proximity based optimization algorithms aim to solve non-smooth, constrained convex 

optimization problems by exploiting the proximity algorithm [13]. Since the sparse 

representation with l1-norm regularization is a non-smooth convex optimization problem, 

this type of algorithms can be used to effectively solve such sparse coding problems. 
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Proximity algorithms rely on the proximal operator. This proximal operator is utilized to 

solve the computationally efficient sub-problem iteratively [13]. Before examining the 

example algorithms, a brief discussion about the proximal algorithms will be introduced. 

A simple constrained optimization problem can be defined as follows; 

                                                                   
^ `min ( ) .mh R�α α

                                    
(19) 

By using the proximal algorithm, the constrained convex optimization problem in (19) 

can be re-written as; 

                                                        

2
arg min ( )

2
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(20)

 

where τ and αt are known. The simple problem in (19) can also be extended, and the linear 

constrained convex optimization problem is given as follows; 

                                                                    
^ `min ( ) ( ) .mF G R� �α α α

                       
(21) 

Again by using the proximity algorithm, the problem in (21) can be re-written as; 
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(22)

 

Particularly for the sparse representation problem with l1-norm regularization case, the 

problem definition in (21) is re-arranged as follows; 

                                                            
^ `2

1 2min ( ) .mP RO � � �α α Dα x α
           

(23) 

It is now possible to define the soft thresholding function and employ it in the solution. A 

general sparse coding problem in the form of; 

 2* 2
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and it has the solution that can be written by exploiting the soft thresholding function as 

follows [13]; 
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The solution in (25) can also be expressed as α*=shrink(s, λ) such that the operator 

shrink(.) is the proximal operator. After summarizing the proximal algorithm in a general 

sense, it is now time to introduce some example algorithms. 

2.4.1.2.3.1 FISTA algorithm  

One important example of the proximity based optimization algorithm is FISTA which is 

the fastest version of ISTA. In this case, the following sparse coding problem is considered 

as; 

                                            

2
2 1

1arg min ( ) ( ) ( )
2

F f gO O � �  �α Dα x α α α
         

(26) 

such that it is difficult to find out a solution to (26). Therefore, the sparse coding problem 

in (26) is converted to a more easy problem by employing second order Taylor expansion 

to approximate f(α) at a point of αt and by approximating the corresponding Hessian 

matrix [13], as follows; 
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where the solution of the problem in (27) is formulated by exploiting the proximal 

algorithm and it is in the form of; 
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In order to solve the problem in (28), the shrinkage operator in (25) is exploited in FISTA 

algorithm [13].  
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2.4.1.2.3.2 SpaRSA algorithm  

A proximity based optimization algorithm, namely SpaRSA, forms a general framework 

for solving the l1-norm relaxation of the sparse coding equation in (1). The sparse coding 

problem in (26) is also considered in this case. First contribution of the SpaRSA algorithm 

is that it uses the worm-starting technique in order to optimize the parameter λ in problem 

(26) [13]. Additionally, the Hessian matrix is approximated by employing the BB spectral 

method which ensures a more reliable approximation. The Hessian matrix of f(α) at αt is 

as follows; 

                                                                      ( ) .T
fH  α D D                                         (29) 

2.4.1.2.3.3 PALM algorithm  

The Lagrange multiplier is utilized to transform an equality constrained problem into an 

unconstrained problem by producing an additional penalty function [13]. It is common to 

employ the ALM in the solution of sparse coding equations. Assume that the sparse coding 

problem of interest is in the following form; 

                                                         1ˆ arg min   s.t.  .  
α

α α x Dα                                (30) 

The corresponding augmented Lagrangian function of the sparse coding problem in (30) 

can be written by adding an equality constrained function as follows; 

                                                     2
1 2( , ) +   s.t.  0.

2
L OO  � �  α α x Dα x Dα            (31) 

The Lagrangian function form of the problem in (31) can be re-arranged in the form of; 

                                                  2
1 2arg min ( , ) + ( )

2
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O
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where zϵRn is the Lagrange multiplier vector [13]. The problem in (32) is indeed a joint 

optimization problem where it can be solved via the optimization of α and z alternatively 

and it is written as; 
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The final form of the problem in (33) is solved by using FISTA algorithm [13].  

At each iteration, the parameter z is updated until the convergence. Here, the method, so-

called PALM, exploits ALM to solve the problem in (32). 

2.4.1.2.3.4 TwIST algorithm  

The TwIST algorithm is also a proximity based optimization algorithm. In order to solve 

the sparse coding problem, two-step TwIST algorithm is defined as follows [43], where a 

and b are convergence rate parameters; 
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and updating approach relies on two previous values, leading to a two-step algorithm. 

2.4.1.2.3.5 GIST algorithm   

The sparse coding equations in the form of non-convex problems with large class of non-

convex penalties can be solved by using a general framework so-called GIST algorithm 

[45]. GIST is itself a proximity based optimization algorithm that solves a proximal 

operator problem iteratively.  

At each iteration, a line search is performed which is initiated by the BB rule. Therefore, 

this algorithm can efficiently obtain the step size. The solution is summarized as follows; 
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where 1/st is the step size of gradient descent, ( )tl�� α  is the direction of gradient descent, 

r(α) is the regularizer and l(α) is the loss function. GIST performs a gradient descent 

followed by a proximal operator problem solution.  

Since different sparse coding problems have different regularizers, GIST constitutes a 

general framework for solving various types of sparse coding problems either convex or 

non-convex [45]. 

2.4.1.2.4 Coordinate descent based optimization algorithms 

Another way to solve the sparse coding problem is by utilizing the coordinate descent 

algorithms. These algorithms follow the strategy that optimization is performed to only 

one variable while all other variables are fixed [79]. Until reaching the convergence, the 

procedure iterates over all variables in a cyclic sense.   

Coordinate descent algorithms cannot generate the solution path itself, indeed the solution 

path can only be approximated by employing warm-restart scheme.  

2.4.1.2.4.1 Shooting algorithm   

Shooting algorithm is a coordinate wise optimization approach and it is designed for the 

solution of l1-regularized sparse coding problem. The LASSO sparse coding problem can 

be solved by employing this shooting algorithm which aims to minimize the term (x-

Dα)T(x-Dα) subject to the following constraint [48, 80]; 

                                                                      ,  where 0j t td t¦ α                              (36) 

At each iteration, the shooting algorithm uses the current value of α(-j) to solve the 

following problem from 1 to k; 
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As the number of iterations goes to infinity, then algorithm converges to the co-ordinate 

wise minimum [80]. 

2.4.1.2.4.2 BCS PL-3DBS + 3DWPT algorithm 

When the regularization term is generalized as the l1/lq-norm with groups constituting a 

partition, then the coordinate descent based algorithms are generalized as BCD algorithms 

[81]. The l1/lq-norm penalty is defined as follows; 
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where q>1, G represents the partition of variables into groups and cj is for varying group 

sizes [79]. 

The BCS-SPL algorithm is a very effective block based approach. Based on this 

algorithm, a similar BCS PL-3DBS algorithm is proposed where 3D WPT is also adapted 

into the procedure to obtain a better sparsity [82, 83].  

The BCS PL-3DBS + 3DWPT algorithm is indeed a general compressive sensing 

framework rather than just solving the sparse coding problem. In this algorithm, a 

hyperspectral image of size nl x ns x nb is partitioned into small non-overlapping 3D blocks 

of size Bnl x Bns x Bnb. BCS PL-3DBS + 3DWPT algorithm employs biorthogonal 9/7 

wavelet as the dictionary. Therefore, dictionary learning is not applied. Sparse coding is 

realized for each block by using projected Landweber onto the convex set and the soft 

thresholding algorithm [83]. The main concern here is to obtain a good reconstruction 

performance and the algorithm has a better performance in low bit rates.  

2.4.1.2.4.3 OBD-BCS algorithm 

Classical compressive sensing approaches rely on the prior knowledge of the sparsity 

basis. On the other hand, a new compressive sensing scheme is introduced so-called blind 

compressive sensing. The term “blind” comes from the fact that this framework does not 

require the prior knowledge of the sparsity basis for sampling and reconstruction steps 

[59].  
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In order to guarantee the uniqueness of the solution in this case, some conditions are 

imposed on the sparsity basis. The unknown basis is called P and it is assumed to be block 

diagonal such that the signals belonging to each channel are sparse under separate bases 

[59].  

Here, A is the measurement matrix that includes orthogonal bases. The number of blocks 

in P is assumed to be an integer multiple of the number of orthogonal bases in A. Another 

imposed condition is that P should be orthogonal.  

In the blind compressive sensing framework, which consists of both the sparse coding and 

the dictionary learning steps, a simple algorithm is proposed, namely OBD-BCS [59]. 

Algorithm has two alternating steps and it aims to find out the sparse coefficients as 

follows, without the knowledge of the sparsity basis; 

                                                                            . α PS                                               (39) 

It is assumed that α is sparse under a basis P such that the sparse vector S satisfies (39). 

In the first step, OBD-BCS algorithm computes S by solving the corresponding sparse 

coding equation via OMP while P is fixed.  

In addition to the OMP, block coordinate relaxation (BCR) algorithm is also applied. It is 

implemented by dividing the elements of S into blocks. Then, one block of S is updated 

via soft thresholding at each iteration while the others are fixed. This sparse coding 

problem is given as follows and it is assumed that the maximum number of non-zero 

elements in S is equal to k; 

                                                  2
2 0arg min   s.t.  k � dS x DPS S                                   (40) 

The main aim is not to find out the sparse basis P and the sparse vector S exactly, the 

algorithm is interested in finding the sparse coefficients α in (39). It is assumed that P is 

an orthogonal 2-block diagonal matrix [59]. 
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Second step follows the dictionary learning scheme by updating P when S is fixed by 

using SVD [59]. Here, the measurement vector x is known and the structure of P is 

imposed as block diagonal. 

Any training set is not necessary in the OBD-BCS algorithm such that it is efficient to the 

cases when there is no access to the overall signals.  

In this study, OBD-BCS algorithm is employed in order to find out the sparse coefficients 

α which are the solutions of the sparse coding equation. According to (39), sparse 

coefficients are obtained from P and S. By using this vector α, the online dictionary update 

step is performed afterwards. 

2.4.1.2.5 lp-norm sparse coding (0≤p≤1) algorithms 

The l1-minimization problem is equivalent to that of l0-minimization with high probability 

under certain conditions on the dictionary D [49].  If the required conditions on D are not 

satisfied, then l1-minimization problem yields suboptimal solution.  

Besides from the l1-norm regularization type of sparse coding problems, lp-norm sparse 

coding problems (0≤p≤1) can also be used. Indeed, lp-norm problems (0≤p≤1) are sparser 

than those of l1-norm and the corresponding sparse coding problem can be written as; 

                                                                    2
2

1min .
2

p
pO� �

α
x Dα α                           (41) 

2.4.1.2.5.1 GISA algorithm 

The problem in (41) is an lp-norm non-convex sparse coding problem. An algorithm so-

called GISA can be exploited in the solution that uses soft thresholding [49].  

First a simple type of lp-minimization problem is taken into account as; 

                                                                        21min ( ) .
2

pO� �
α

x α α                           (42) 

In order to solve the lp-norm sparse coding problem in (42), a generalized soft thresholding 

(GST) function is used such as; 
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In (43), the following additional definitions are required as; 
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when Sp
GST(α;λ) is the root of the equation gp(θ;λ)=|α|. GISA algorithm iteratively 

performs a gradient step and then a generalized thresholding step which can be defined as 

follows [49]; 

                                               2 2( 1) ( )( ( ); ).t GST t T
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2.4.1.2.5.2 FOCUSS algorithm 

Another way to solve lp-norm problems (0≤p≤1) is by using the FOCUSS algorithm which 

is itself an iterative reweighted least squares (IRLS) approximation [50, 84]. The loss 

function in FOCUSS is defined as; 

                                                                   2
2( ) .p

FOCUSS pl O � �α x Dα α               (45) 

The p-pseudo norm of α is expressed as such; 

                                                                                   ( )p T
p W α α α α                         (46) 

If the current estimate of α is employed, then the p-pseudo norm is approximated by a 

weighted l2-norm as follows [84]; 

                                                                           2( ) ( )p
iW diag � α α                          (47) 
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where i is from 1 to m. FOCUSS algorithm updates the diagonal matrix at each iteration 

based on the previous values.  

2.4.1.3 Bayesian sparse coding algorithms 

Bayesian approaches are used for solving sparse coding problem in (1) efficiently by 

assuming a prior distribution and maximizing the resulted joint probability to obtain the 

sparse coefficients [79].  

2.4.1.3.1 SBL algorithm 

A typical example of the Bayesian sparse coding algorithm is SBL which seeks a 

probabilistic approach to solve a sparse coding problem [85]. It is aimed to find out the 

sparse coefficients αϵRm for the following general case which corresponds to a sparse 

coding problem; 

                                                                                  �x Dα ε                                      (48) 

where ε is an n dimensional vector. By utilizing form the Bayesian statistics, first the 

conditional probability P(α|x) is calculated. It is assumed that the noise ε in the data is 

normally distributed with zero mean and variance σ². The likelihood of the data x is then 

defined as;  

                             1/22 /2 1( , ) (2 ) exp( ( ) ( ))
2

n TP BV S � � � �x α B x Dα x Dα              (49) 

where B=σ-2I. The Bayes’ theorem is given as follows [85] such that h1 and h2 are the 

hyper-parameters of a Gamma distribution; 
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SBL algorithm employs an iterative approach to calculate the hyper-parameters, then 

sparse coefficients are estimated accordingly. Indeed, SBL algorithm is equivalent to the 

iterative weighted solution of the l1-norm minimization sparse coding problem [68]. 
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2.4.1.3.2 RLPHCS_Cov algorithm 

Recently, a novel reweighted Laplace prior based hyperspectral compressive sensing 

(RLPHCS) method, namely, RLPHCS_Cov algorithm is proposed in the literature and it 

outperforms several state-of-the-art hyperspectral compressive sensing algorithms (OMP, 

StOMP, LASSO, Bayesian compressive sensing (BCS), reweighted l1-norm based 

compressive sensing (RCS) and low rank/joint sparsity based hyperspectral compressive 

sensing (LRJS) ) in terms of the reconstruction performance [86]. Therefore, throughout 

this study RLPHCS_Cov algorithm is assumed to be a state-of-the-art hyperspectral 

compression algorithm and it is used for comparison. RLPHCS_Cov is indeed a 

compressive sensing framework which employs a hierarchical reweighted Laplace prior 

to model the distribution of sparsity together with a variable-based Bayesian model to 

obtain the optimal configuration of the prior to carry out the sparse coding step [86]. Haar 

wavelet based orthogonal dictionary is used. Therefore, dictionary learning is not 

performed.  

In many compressive sensing algorithms in the literature, sparsity regularization terms 

such as l0-norm or l1-norm cannot take into account the structure information among the 

sparse coefficients and they cannot adapt themselves to the unknown noise. The 

motivation behind the state-of-the-art RLPHCS_Cov algorithm is that the distribution of 

structured sparsity is modeled and adapted to the unknown noise [86]. The structured 

sparsity is modeled by utilizing a full covariance matrix. It is aimed to improve the 

reconstruction performance. The sparse signal α is represented by a normal distribution 

for a hyperspectral image of size nl x ns x nb as follows; 
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where diag(γ) is the γ-dependent diagonal matrix, γ=[γ1, …, γnb]T is used to control the 

variation of each row in vector α. Gamma distribution is assumed on the unknown γ and 

the proposed reweighted Laplace prior can capture the structure in the sparse signal [86]. 
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Then, in order to obtain the optimal configuration of the reweighted Laplace prior together 

with the noise variance, a Bayesian model is exploited.  

2.4.2 Dictionary learning 

In classical dictionary learning problems, the aim is to minimize the following empirical 

cost function; 

                                                      � � � �
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i

f l
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where X = [x1, …, xn] in Rmxn is the finite training set of signals and DϵRmxk is the 

dictionary. Here, n represents the number of samples, k refers to the number of columns 

in the dictionary, m is the signal dimension and l(x,D) is the loss function. This loss 

function is defined as the optimal value of the l1-regularized sparse coding problem in the 

literature [19] as; 
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where λ is the regularization parameter. In this case, the sparse solution comes from the l1 

penalty. The loss function in (53) can be different depending on the learning approach, as 

an example the one used in the reference study [19] is considered.  

Dictionary learning is a typical example of the implementation of sparse coding. The first 

stage of the dictionary learning relies on the solution of sparse coding equation to obtain 

sparse coefficients.  

2.4.2.1 Online learning methods vs batch methods 

It is important to point out the differences between online learning and batch methods.  

Batch methods use the overall dataset at each iteration, yielding a huge amount of memory 

requirement [19]. Batch approaches learn a dictionary directly from the entire dataset [79]. 

If N training samples are used, then batch mode would perform the update only once [87]. 

In the case of sequentially arriving samples, such methods are not effective [88].  
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Online learning methods draw and process one sample from the entire dataset at a time. 

The learning process can continue by updating the current dictionary whenever a new data 

sample arrives. Therefore, these methods are suitable for large datasets. As an example, if 

N training samples are used, then online learning mode would perform the update N times 

[87]. It is assumed that the training set includes a set of i.i.d samples of a distribution p(x) 

and the method draws one element xn at a time [19]. Algorithm alternates between sparse 

coding and dictionary update steps afterwards. It is very common in online algorithms that 

i.i.d sampling of the unknown distribution p(x) is simulated by cycling over a randomly 

permutated training set, since the same data sample can be used several times [18].  

The empirical loss function fn(D) in (52) is indeed the batch version where it is obtained 

at once by solving the sparse coding problem using all the samples. On the other hand, the 

surrogate function f̂n(D), which will be defined later in this section, is the online version 

where it uses the sparse coefficients from the earlier iterations [79]. This surrogate cost 

function upper-bounds the empirical cost function. The key contribution of the online 

dictionary learning method proposed by Mairal et. al. is to show that  both the function in 

fn(D) and in f̂n(D) converge almost surely to the same limit [19].  

Employing dictionary learning with iterative batch processing scheme is proven to be 

inefficient for hyperspectral data [89]. In such large scale data, using dictionary learning 

based on online learning approach is more efficient. 

In literature various examples can be found for online learning methods and batch 

methods. In this study, the online dictionary learning method proposed by Mairal et. al. 

and K-SVD are selected as the examples of online learning methods and batch methods, 

respectively. Now, these example methods will be explained in detail.  

2.4.2.1.1 K-SVD algorithm 

K-SVD is considered as an iterative algorithm. The dictionary learning problem in (52) is 

solved in two stages. In the first stage, the dictionary D is fixed and α is minimized by 

solving the following sparse coding problem n times; 
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Here, l0-norm penalty is employed which yields the sparsest solution [13]. In the second 

stage, at each iteration α is fixed and dictionary D is optimized, where i = 1, …, n. K-SVD 

algorithm updates one column of the dictionary D at a time while fixing the other columns 

[90]. It is a simple problem and based on SVD approach.  

This learning approach is related to the minimization of the empirical cost function on the 

training data. K-SVD is considered as a batch method which corresponds to accessing the 

whole training set in the learning process.  

As an example of the usage of batch method dictionary learning for hyperspectral image 

compression, an algorithm is proposed in the literature [78]. The method is the faster 

version of the joint orthogonal matching pursuit (JOMP) algorithm. According to the 

experimental results, this proposed method, namely fast joint orthogonal matching pursuit 

(FJOMP), outperforms the wavelet based compression algorithms at low bit rates in terms 

of the compression performance. FJOMP includes dictionary learning, sparse coding and 

entropy coding. Dictionary learning is employed by using K-SVD and sparse coding is 

realized by OMP algorithm [78]. 

2.4.2.1.2 Online dictionary learning algorithm 

In the work [19], an online dictionary learning algorithm is proposed which is suitable for 

large datasets. At each iteration, new sample xn is drawn from the data distribution and 

the dictionary is updated accordingly. The sample xn at iteration n is utilized to update 

previous dictionary Dn-1. At the end of iteration n, Dn is obtained. This alternating process 

is repeated until a stopping criterion is realized.  

Online dictionary learning is itself an iterative process which has two stages. In the first 

stage, the following sparse coding problem is solved; 
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In the second stage, coefficients obtained from (55) are fixed and previous dictionary Dn-

1 is updated to find the new dictionary Dn at iteration n. Therefore, the following 

optimization problem should be solved; 
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Since the coefficients are fixed, they can be removed and the objective function in (56) is 

adjusted as; 
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If the matrix notation of the square-loss function in (57) is considered, then it can be 

rewritten as; 
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If An and Bn are defined as; 
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and the first term is discarded since it does not depend on D, then the final form is 

reorganized as follows; 
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The problem in (59) can be solved via the so-called block coordinate descent (BCD) 

algorithm by using Dn-1 as the warm restart for Dn. The optimization problem (59) is only 

considered over the j-th column dj of Dn-1 while all other columns are fixed such that dj is 

updated by the following formula; 
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                      (60) 

If ║dj║2 > 1 is obtained, then it is necessary to normalize the value to unit norm. 

Sequentially all the columns of D are updated by changing j. The updated columns are 

employed to update the remaining ones [90]. The BCD algorithm used in the dictionary 

update stage solves (60) until convergence of D, such as; 
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Here using (61), each column dj of the dictionary is updated. Each time when all the 

columns (blocks) are updated, the difference between D and Dn-1 is calculated. If this 

difference is smaller than a specified threshold value, then the updated dictionary D is 

utilized for the next iteration.  Since Dn-1 is used as a warm restart for obtaining D at the 

current iteration, a single iteration is empirically proven to be enough for updating the 

dictionary [19].  

The study in the literature [19] follows the same strategy up to now in order to realize the 

online learning algorithm based on stochastic approximations. This study states that when 

the training set size goes to infinity in theory, then the expected cost f(D) is minimized 

instead of the empirical cost fn(D): 
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The objective function is defined as; 
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The quadratic function f̂n(D) in (63) aggregates the previous αi values. Therefore, it is the 

surrogate of the empirical cost function fn(D) in (52) [19]. Online dictionary learning 

approach is quite different than the batch methods such as K-SVD, since it utilizes one 

sample at a time without accessing the overall data set. This is why online dictionary 

learning approach is suitable for large scale datasets such as hyperspectral data. Dynamic 

datasets such as video sequences are also compatible with this approach. 

2.5 CONTRIBUTIONS 

The online dictionary learning method proposed by Mairal et.al. is chosen to be applied 

in this study due to its ability to efficiently solve large scale problems with millions of 

training samples. Hyperspectral images are inherently classified as large scale datasets 

and this method is well suited to the case of hyperspectral image compression task. The 

various solution strategies of sparse representation algorithms have different effects on 

the overall compression performance. This study mainly focuses on this aspect such that 

online dictionary learning method is adapted with many different sparse representation 

algorithms to solve the sparse coding equation in the first stage. 

Up to now, the online dictionary learning method proposed by Mairal et.al. [19] is 

explained. Additionally, various dictionary learning and sparse coding algorithms are 

introduced briefly. It is now useful to summarize the main contributions as well as the 

novelties of this study to the literature.  

The contribution of this study is twofold; 

1-To the best of our knowledge, this is the first piece of work that adapts online dictionary 

learning method proposed by Mairal et. al. to the case of hyperspectral image 

compression. 

2-Additionally, a hybrid hyperspectral compression method is proposed such that the 

sparse coding stage of the method is employed by many different sparse coding schemes. 

The effect of sparse coding problem on the general hyperspectral compression framework 

is investigated. This is the first time that online dictionary learning method proposed by 

Mairal et. al. is used with many different sparse coding algorithms.    
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CHAPTER 3 

HYBRID HYPERSPECTRAL IMAGE COMPRESSION METHOD BY USING 

ONLINE DICTIONARY LEARNING BASED ON SPARSE CODING 

 

In this section, hybrid hyperspectral image compression method by using online dictionary 

learning based on sparse coding is explained. Here, the adaptation of online dictionary 

learning method proposed by Mairal et. al. to the case of hyperspectral image compression 

is introduced. The online dictionary learning method relies on stochastic approximations 

and it is suitable for large scale datasets such as hyperspectral images [18, 19]. In this 

study, the iterative online dictionary learning algorithm is used, which minimizes the 

surrogate function of the empirical cost under particular constraints at each iteration [18]. 

Then, various sparse coding algorithms are implemented to constitute a hybrid method.   

3.1 PROBLEM STATEMENT 

The online dictionary learning method proposed by Mairal et. al. which is explained in 

Chapter 2 is adapted to the case of hyperspectral image compression. Here, the 

corresponding notation and adaptation will be presented.  

The number of bands in the hyperspectral image is represented by nb, the number of lines 

in the hyperspectral image is represented by nl, the number of samples in the hyperspectral 

image is represented by ns and the number of columns in the dictionary is defined as k. 

The initial dictionary is expressed as D0ϵRnbxk. The auxiliary matrices for updating the 

dictionary are defined as A0ϵRkxk and B0ϵRnbxk. The number of iterations is defined as T, 

the error is expressed as EϵRkx1, the regularization parameter is defined as λϵR, and the 

sparse coefficients are expressed as αϵRk.  
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In the dictionary learning process, optimization is performed on the empirical cost by 

considering a finite training set X = [x1,…,xT] in RnbxT containing all bands at some pixel 

[92]. The empirical cost is given as 
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where DϵRnbxk represents the dictionary and l expresses the loss function. This loss 

function corresponds to the optimal value of l1-norm sparse coding [19] given as 
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where λ represents the regularization parameter, xt expresses the training sample at 

iteration t and αt defines the coefficient set at iteration t. In (65), l1 regularization ensures 

the sparsity. 

A convex set of matrices C is defined to avoid arbitrarily large elements in D = [d1,…,dk]  

as well as arbitrarily small values of αt. This convex set C is given as 

                                             ^ ` : 1, 1,..., .bn xk
jR j k� d �  C D d                            (66) 

The minimization of the empirical cost fT(D) with respect to D is not convex. Therefore, 

it is modified as a joint optimization problem. The modified optimization problem is 

convex when the sparse coefficients Γ = [α1,…,αT]ϵRkxT are fixed, while the optimization 

is performed with respect to D, and when D is fixed while the optimization is performed 

with respect to sparse coefficients Γ. This joint optimization problem is as follows: 
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Equation (67) is solved as a convex optimization problem such that D is minimized when 

Γ is fixed, and Γ is minimized when D is fixed, respectively. 
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Instead of minimizing the empirical cost fT(D), minimizing the expected cost f(D) is much 

more computationally efficient [17]. This expected cost is given as 

                                                       � � � � � �, lim ,x T
T

f E l f
of

 ª º¬ ¼D x D D                      (68) 

where the unknown probability distribution of the data is utilized to find out the 

expectation. In the literature, it has been proved that the equality in (68) converges with 

the probability one [19]. 

For large scale data sets such as hyperspectral images, stochastic gradient algorithms 

provide a better rate of convergence [17, 19]. Therefore, in this study dictionary learning 

is realized by using projected first order stochastic gradient descent algorithm. According 

to this algorithm, dictionary D is updated sequentially and is shown as [93]; 
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where Dt represents the optimal dictionary at iteration t, ρ presents the gradient step, and 

ΠC shows the orthogonal projector on C. It is assumed that the training set X has i.i.d. 

samples of the unknown distribution of the particular data [19]. 

3.2 ALGORITHM 

In this study, an algorithm which consists of two parts is used. These two parts are solved 

alternately.  

The sparse coding equation is solved by using xt from the current iteration, and Dt-1 from 

the previous iteration. When αt is found, the following f̂t(D) function is minimized over 

set C to obtain an updated dictionary Dt: 

                                                       � � 2
2 11

1 1ˆ ,
2

t
t i i i

i
f

t
O

 
� �¦D x Dα α                      (70) 

where αi values are obtained. 
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In the literature, it has been proven that the empirical cost ft(D) and the function f̂t(D), 

which is quadratic in the D, converge almost surely to the same limit [18]. Therefore, the 

function f̂t is the surrogate for the function ft.  

For the large values of t, the function f̂t is close to f̂t-1 function. In these circumstances, Dt 

is also close to Dt-1 such that it is effective to use Dt-1 as a warm restart for finding Dt. 

Now, Algorithm 1 and Algorithm 2 will be discussed. These two algorithms are solved 

alternatingly.  

3.2.1 Algorithm 1 

In the first part of the algorithm, the sparse coding is performed. The minimization of (65) 

corresponds to the sparse coding operation of the l1-regularized linear least squares 

problem.  

TNIPM algorithm is utilized to solve this problem in the online dictionary learning method 

proposed by Mairal et. al. Since the function can be different than (65), in general, the 

optimization function is called sparse coding equation throughout this study. Various 

sparse coding equations belonging to different sparse representation algorithms are 

presented in Table 1 and Table 2.  

Online learning takes place in this algorithm where at each iteration a random training 

sample is chosen from the hyperspectral data. At the end, only T number of samples are 

selected from the overall data to obtain the final learned dictionary. The corresponding 

error is calculated at each iteration when a new sample arrives. Therefore, if a new data 

sample arrives, the algorithm can update the error and the dictionary accordingly, without 

processing the whole dataset. The advantage of this online fashion is that large datasets as 

well as the dynamic ones can be processed effectively.  

The initial value of the dictionary is computed randomly on set C. At each iteration from 

1 to T, sparse coding problem is solved via one of the different sparse coding algorithms. 

By using the obtained sparse coefficients, the parameters A and B are updated. Algorithm 
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2 is performed afterwards. After T number of iterations, the final learned dictionary is 

obtained. Algorithm details are depicted below. 

3.2.2 Algorithm 2 

In the second part of the algorithm dictionary is updated by utilizing the block-coordinate 

descent with the warm restart. Dt-1 is used as a warm restart. Each column of the dictionary 

Dt is updated by employing step 4 in Algorithm 2 which is indeed equivalent to solving 

the problem in (70) [19]. The calculations from (57) to (61) from the previous chapter 

show the detailed description of this equality.  

 

Algorithm 1 
1: Construct initial dictionary D0 randomly 
2: Initial values of matrices A0 and B0 are set to zero 
3: for t = 1 to T do 
4:      Choose random xtϵRn

b values from the hyperspectral image 
5:      Solve “sparse coding equation” (cf. Table 1 and Table 2) 
6:      Update 1

T
t t t t� �A A α α  and 1

T
t t t t� �B B x α  

7:      Using Algorithm 2 find Dt 
8: end for 
9: Acquire the final learned dictionary DT 

Algorithm 2 
1: repeat 
2: for j = 1 to k  do 
3:      Update jth column of Dt                      

> @ > @ > @1 1 1,..., , ,...,  and ,...,b bn xk n xkkxk
k k kR R R �  �  �D d d A a a B b b                                            

4:     
� � � � � �2

1 1 and  and 
, max ,1

j j j j j j
j

A j j
 � �  u b Da d d u

u
 

5:     
21

b

t t
j j j

n
E � �¦ d d  

6: end for  

7: 
1

1 k
j

j
E E

k  
 ¦  

8: until E < Threshold 
9: Use updated dictionary D in Algorithm 1 
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This is the algorithm where the dictionary updating part proposed by Mairal et.al. actually 

takes place. The steps from 2 to 6 should continue until the desired threshold value is 

greater than that of the error E. The learned dictionary is then used in Algorithm 1 as the 

dictionary at that particular iteration. The details of Algorithm 2 can be found below. 

Here, compression is realized by finding a learned dictionary which is adapted particularly 

to the data. Linear combination of dictionary elements and sparse coefficients will 

represent the real data. 

The algorithm which is explained up to now is indeed a framework and this framework is 

named as the hybrid hyperspectral image compression method by using online dictionary 

learning based on sparse coding throughout this study. The term “hybrid” comes from 

the fact that various sparse coding problems are adapted to solve the sparse coding 

problem in Algorithm 1. 

The following set of constraints are utilized in this study: 

1 – To prevent from large dictionary elements, a convex set in equation (66) is applied. 

2 –Non-negativity constraint is imposed on the sparse coefficients and dictionary elements 

[15]: 0,     0,     1,...,    and  1,...,k ij bi n j kt t �  �  α d  

Table 1 and Table 2 present sparse coding equations of various sparse representation 

algorithms, where t = 1,…,T, θ > 0, ΨϵRkx1 and 0 < p ≤ 1. Indeed, sparse representation 

algorithms discussed in Chapter 2 in detail are summarized in Table 1 and Table 2. 

Sparse representation algorithms are divided into two tables: Table 1 contains more recent 

algorithms such as those classified as blind compressive sensing and proximity based 

optimization algorithms.  Table 2, contains the older versions of the sparse representation 

algorithms in the literature. It is important to note that, the online dictionary learning 

method proposed by Mairal et. al. employs only TNIPM algorithm as the sparse 

representation algorithm to solve the sparse coding problem. In this study, in addition to 

this TNIPM algorithm, various different sparse representation algorithms are exploited to 
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find out the most effective sparse representation algorithm for the case of hyperspectral 

image compression.   

Table 1 Sparse representation algorithms (OBD-BCS, TwIST, FOCUSS, Shooting, PALM, 

SpaRSA, GIST and FISTA) with corresponding sparse coding equations (this table contains the 

most recent sparse representation algorithms in the literature) 

ALGORITHM SPARSE CODING EQUATION 
OBD-BCS 2

1 02
1arg min  s.t. 
2k

t t t
R

k�
�

 � d
α

α x D α α                    

TwIST 
2

1 12
1arg min
2k

t t t
R

O�
�

 � �
α

α x D α α  

 
FOCUSS 1arg min  s.t.  

k

p
t t tp

R
�

�
  

α
α α D α x                                   

Shooting 
2

1 12arg min
k

t t t
R

O�
�

 � �
α

α x D α α                                    

PALM 11arg min  s.t.  
k

t t t
R

�
�

  
α

α α D α x
 

 
SpaRSA 2

1 12
1arg min
2k

t t t
R

O�
�

 � �
α

α x D α α
 

GIST � �2
1 2 1

1arg min min ,
2k

k
t t t j

jbR n
O T�

 �
 � � ¦

α
α D α x α

     

FISTA 

    

2
1 12

1arg min
2k

t t t
R

O�
�

 � �
α

α D α x α
                                          

 

The hybrid hyperspectral image compression method by using online dictionary learning 

based on sparse coding which is described in this chapter is based on the online dictionary 

learning method proposed by Mairal et. al. It is indeed the adaptation of online dictionary 

learning method proposed by Mairal et. al. to the hyperspectral image compression case. 

Then, by adapting different sparse representation algorithms to solve the sparse coding 
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problem, a hybrid method is constructed. It is aimed to use different sparse representation 

algorithms from each category. The most basic and recent ones are selected. 

Table 2 Sparse representation algorithms (SBL, gOMP, LASSO (ADMM), BP (Dual active-set), 

BPDN (Homotopy), GISA and TNIPM) with corresponding sparse coding equations (this table 

contains the older versions of the sparse representation algorithms in the literature) 

ALGORITHM SPARSE CODING EQUATION 
SBL � �2 2

1 2 1

1 1arg min
2 2k

k
t t t j j

jR
�

 �
c � � ¦

α
α x D α Ψ α                    

gOMP 1 2
1arg min
2k

t t t
R

�
�

 �
α

α x D α  

 
LASSO (ADMM) 2

1 12
1arg min
2k

t t t
R

O�
�

 � �
α

α D α x α                                   

BP  (Dual active set) 11arg min  s.t. 
k

t t t
R

�
�

  
α

α α D α x                                    

BPDN (Homotopy) 2
1 12

1arg min
2k

t t t
R

O�
�

 � �
α

α x D α α            

   

                       

GISA 2
1 2

1arg min
2k

p
t t t p

R
O�

�
 � �

α
α x D α α  

TNIPM 2
1 12

1arg min
2k

t t t
R

O�
�

 � �
α

α x D α α  

 

3.3 RATE-DISTORTION RESULTS 

In this section, rate-distortion results of the hybrid hyperspectral image compression 

method by using online dictionary learning based on sparse coding are provided [64]. 

Different sparse representation algorithms are adapted to solve the sparse coding problem 

in the first step of the method. The rate-distortion performances of those different hybrid 

cases are compared with each other and with that of the other compression algorithms 

such as BCS PL-3DBS + 3DWPT, and CPPCA. Additionally, the results are compared 
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with a state-of-the-art hyperspectral compression algorithm so-called RLPHCS_Cov 

algorithm. The quality metric tool is the PSNR. The bit rate r is calculated in terms of the 

bits per sample (bps), and the formulation is as follows 

                                                                  .( ),  ,d
b

zr b z k
n

 �                                        (71) 

where, z = ║α║0 represents the number of sparse coefficients, k defines the size of the 

dictionary D, nb is the number of bands in X, and bd represents the bit depth of X. 

3.3.1 Datasets 

The information about hyperspectral datasets used in this study which are taken from the 

AVIRIS, HYPERION, and ROSIS sensors can be found in Table 3. The grayscale images 

of some of these datasets are illustrated in Figure 1. 

 
 

  

  

   

Figure 1 Grayscale image illustrations of (a) Lunar Lake (b) Low Altitude (c) Jasper Ridge (d) 

Mt. St. Helens (e) Lake Monona (f) Erta Ale hyperspectral datasets 

(a) (b) (c) 

(d) (e) (f) 
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AVIRIS is an airborne hyperspectral sensor. It aims to analyze the structure of the Earth 

surface and that of the atmosphere which has been flown by NASA/Jet Propulsion 

Laboratory (JPL) since 1984 [94]. Most of the AVIRIS hyperspectral images are archived 

by the NASA which are publicly available covering the years from 1999 to 2008 [95].  

Table 3 Information about the hyperspectral datasets used in this study which are taken from 

AVIRIS, HYPERION and ROSIS sensors 

AVIRIS SENSOR - HYPERSPECTRAL DATA 

Name No. 

Samples 

No. 

Lines 

No. 

Bands 

Bit 

depth 

Flight Number Year 

Jasper Ridge 614 2587 224 16 f970403t01p02_r03 1997 

Lunar Lake 614 1432 224 16 f970623t01p02_r07 1997 

Low Altitude 614 3689 224 16 f960705t01p02_r05 1996 

Salinas-A 83 86 204 12 f980717t01p02_r06 1998 

Indian Pines 145 145 220 12 f920612t01p02_r03 1992 

Yellowstone 
(uncalibrated 

scene 0) 
680 512 224 16 f060925t01p00r12 2006 

Cuprite 614 512 224 16 f970619t01p02r02 1997 

Moffett 
Field 

753 1924 224 16 f080611t01p00r07 2008 

Lunar Lake 781 6955 224 16 f090819t01p00r06 2009 

HYPERION SENSOR - HYPERSPECTRAL DATA 

Name No. 

Samples 

No. 

Lines 

No. 

Bands 

Bit 

depth 

Flight Number Year 

Lake 

Monona 

256 3176 242 12 EO1H0240302009166110PF 2009 

Mt. St. 

Helens 

256 3242 242 12 EO1H0460282009231110KF 2009 

Erta Ale 256 3187 242 12 EO1H1680502010057110KF 2010 

ROSIS SENSOR - HYPERSPECTRAL DATA 

Name No. 

Samples 

No. 

Lines 

No. 

Bands 

Bit 

depth 

Flight Number Year 

Pavia 

University 

200 200 103 12 - 2002 
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The specifications concerning the AVIRIS hyperspectral datasets are as follows:  

The AVIRIS datasets are stored in two bytes. The band interleaved by pixel, the (BIP) 

format is used. The AVIRIS datasets have a large endian byte order. They may have either 

16 bits or 12 bits of bit depth. They can be expressed with the 10 nm spectral resolution 

and 0.4 - 2.5 µm spectral range coverage [94]. In this study, the AVIRIS images are 

cropped as 512 lines by 512 samples by 224 bands. 

Eventually, NASA launched an imaging spectrometer EO-1 HYPERION sensor in 

November 2000. HYPERION is a satellite hyperspectral sensor [94] and its specifications 

are listed as follows:  

The HYPERION datasets are stored in two bytes. The BIP format is used. The byte order 

is the little endian. They have 12 bits of bit depth. The spectral resolution of the 

HYPERION datasets is 10 nm together with a spectral range coverage of 0.4 - 2.5 µm 

[64]. In this study, the HYPERION images are cropped as 512 lines by 256 samples by 

242 bands. 

Reflective Optics Systems Imaging Spectrometer (ROSIS-03) optical sensor is used for 

the University of Pavia, Italy [96]. The spectral resolution is 4 nm, while the spectral range 

is from 0.43 to 0.86 µm [97]. This Pavia University hyperspectral image has 1.3 m per 

pixel spatial resolution. It originally has 610 lines by 340 samples by 103 bands [96]; 

however the cropped version yielding 200 lines by 200 samples by 103 bands is utilized 

in this study.  

3.3.2 The rate-distortion results of AVIRIS and ROSIS datasets 

In this section, three different experiments with different AVIRIS datasets are conducted 

to investigate the rate-distortion performance of the hybrid hyperspectral image 

compression method by using online dictionary learning based on sparse coding.  

The results of these experiments are examined under three different scenarios for the ease 

of presentation. 
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3.3.2.1 Experiment 1 - Comparison with transformation-based, prediction-based or 

batch mode learning based lossy compression methods 

Experiment 1 consists of the rate-distortion performance comparison between the hybrid 

hyperspectral image compression method by using online dictionary learning based on 

sparse coding and the transformation-based, prediction-based or batch mode learning 

based lossy compression methods. [63, 69, 70, 74, 78, 86]. TNIPM algorithm is used to 

solve the sparse coding problem since this is used in the online dictionary learning method 

proposed by Mairal et. al. The hyperspectral datasets utilized in the experiments are 

Yellowstone (uncalibrated scene 0), Cuprite, Moffett Field and Lunar Lake.  

It is important to note that, the rate-distortion performances of the lossy compression 

methods that are used in the comparison are gathered directly from the authors [21, 63, 

69, 70, 74, 78, 86]. These methods are not re-evaluated in this study. Therefore, instead 

of using only one graph to compare all methods, separate graphs are introduced. At each 

graph, the same PSNR values stated in literature are utilized. Each graph consists of 

different lossy compression methods by employing different datasets. The rate-distortion 

results of the hybrid hyperspectral image compression method by using online dictionary 

learning based on sparse coding are placed on these different graphs. Throughout the 

experiments, the compression methods exploit either a fixed dictionary or learn it 

particularly from the data. If dictionary learning is performed, it will be stated. 

Figure 2 shows the rate-distortion performances, where the performance of the proposed 

sparse coding with online learning method is compared with those of the predictive lossy 

compression algorithm and JPEG2000 part 2 algorithm [63]. Yellowstone (uncalibrated 

scene 0) AVIRIS dataset is used in this experiment (cf. Table 3) and it is processed without 

cropping as stated in the literature [63]. The compression performance of the proposed 

sparse coding with online learning method, which is measured in terms of PSNR value is 

superior to those of the other two algorithms when the bps value is higher than 0.4 (cf. 

Figure 2). Here, compression methods used in the comparison are not depending on the 

dictionary learning. Therefore, our proposed hybrid method which depends on the online 

learning outperforms the others. 
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Figure 2 Rate-distortion curves of the proposed sparse coding with online learning algorithm, 

predictive lossy compression algorithm and JPEG2000 part 2 algorithm for Yellowstone 

(uncalibrated scene 0) dataset [63] 

Figure 3 depicts the rate-distortion curve of the proposed sparse coding with online 

learning method as well as those of the PCA+JPEG2000 and DWT+JPEG2000 methods 

for the Cuprite AVIRIS dataset [70]. Dataset is cropped as the size of 512x512x224. These 

lossy compression approaches are comprised of PCA or DWT applied to the image, 

followed by the application of JPEG2000 based compression scheme. They are not 

depending on dictionary learning. The rate-distortion performance of the proposed sparse 

coding with online learning scheme is superior to those of the other state-of-the-art 

methods at all compression ratios as expected.  

In Figure 4 rate-distortion performance of the proposed sparse coding with online learning 

algorithm is compared to those of the 3D-SPIHT algorithm, JOMP algorithm with n = 

1024 and FJOMP algorithm with n = 256 [78]. Cuprite AVIRIS hyperspectral dataset is 

used. It is cropped as the size of 512x512x32. This comparison is particularly important 

and slightly different than others since some of the used compression algorithms are based 

on dictionary learning. Indeed, JOMP algorithm with n = 1024 and FJOMP algorithm 

with n = 256 are depending on dictionary learning, where the learning is performed by a 
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batch method, namely K-SVD. The proposed sparse coding with online learning algorithm 

yields rate-distortion performance that is superior to those of the other methods for all bps 

values from 0.1 through 0.5. Since online dictionary learning is more efficient in large 

datasets than batch counterparts, the proposed method which uses online dictionary 

learning is better than others. 

 

Figure 3 Rate-distortion curves of the proposed sparse coding with online learning algorithm, 

PCA+JPEG2000 algorithm and DWT+JPEG2000 algorithm for the Cuprite dataset cropped as 

512x512x224 [70] 

According to the results in Figure 4, the type of dictionary learning, such as the batch 

methods or the online learning methods, has a significant effect on the rate-distortion 

performance. Learning can increase the rate-distortion performance. Online learning can 

increase the performance even further.  

Figure 5 presents the rate-distortion curves of the proposed sparse coding with online 

learning algorithm, AR-based algorithm in conjunction with PCA algorithm plus 

JPEG2000 (JP2K) algorithm and AR-based algorithm in conjunction with SubPCA 

algorithm plus JP2K algorithm [69]. Moffett Field hyperspectral dataset is cropped to the 

size of 512 lines, 512 samples and 224 bands. PSNR values of the proposed sparse coding 
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with online learning algorithm outperform those of the other state-of-the-art compression 

algorithms from 0.1 bps to 0.3 bps values.  

The result is again reasonable due to the fact that the lossy compression methods used in 

the comparison are not depending on the dictionary learning. Since learning is not 

performed, these methods cannot be accurate enough in representing the dataset compared 

to the proposed sparse coding with online learning algorithm. 

 

Figure 4 Rate-distortion curves of the proposed sparse coding with online learning algorithm, 

FJOMP, with n = 256, JOMP, with n = 1024 and 3DSPIHT for Cuprite dataset cropped as 

512x512x32 [78] 

Rate-distortion performance comparison tests can be extended further by observing the 

performances of the proposed sparse coding with online learning method together with 

the state-of-the-art 3D SPECK algorithm and the modified 3D SPECK algorithm, as 

shown in Figure 6 [74]. AVIRIS hyperspectral scene from the 2009 acquisition, namely, 

Lunar Lake is cropped, yielding 256 lines, 256 samples and 32 band (cf. Table 3).  
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Figure 5 Rate-distortion curves of the proposed sparse coding with online learning algorithm, 

AR+SubPCA+JP2K algorithm and AR+PCA+JP2K algorithm for Moffett Field dataset [69] 

 

Figure 6 Rate-distortion curves of the proposed sparse coding with online learning algorithm, 3D 

SPECK algorithm and modified 3D SPECK algorithm for Lunar Lake dataset [74] 
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The superior rate-distortion performance of the proposed sparse coding with online 

learning method over the state-of-the-art compression algorithms from 0.1 bps through 1 

bps can be seen from Figure 6. The result is expected due to the learning effect in the 

proposed method. All other methods exploited in the comparison are not depending on the 

dictionary learning. 

3.3.2.2 Experiment 2 - Comparison of different sparse representation algorithms 

exploited in the hybrid method and comparison with transformation-based or sparse 

representation-based methods 

In experiment 2 section, the hybrid hyperspectral image compression method by using 

online dictionary learning based on sparse coding is formulated with many different sparse 

representation algorithms to solve the sparse coding problem. Experiments are conducted 

to identify which sparse representation algorithm strategy has the best rate-distortion 

performance for hyperspectral image compression. To this end, AVIRIS and ROSIS 

hyperspectral datasets are used. The rate-distortion performances corresponding to these 

different sparse representation algorithms are compared with each other as well as with 

those of the other lossy compression algorithms. Rate-distortion performances of sparse 

representation algorithms, especially the ones that have recently been very popular in the 

literature such as blind compressive sensing algorithms and proximity based optimization 

algorithms, are analyzed further. Moreover, other compression algorithms in the literature 

such as CPPCA as the transformation-based method and BCS PL-3DBS + 3DWPT as the 

sparse representation-based method are utilized in the comparison [54]. 

In Table 4, the rate-distortion performances of different sparse representation algorithms 

adapted to the hybrid hyperspectral image compression method by using online dictionary 

learning based on sparse coding are presented. Other lossy compression algorithms used 

in the comparison are also shown. Low Altitude, Lunar Lake, and Jasper Ridge are used 

as the AVIRIS datasets (cf. Table 3).   

The quality metric tool, which reflects the rate-distortion performance, is PSNR in terms 

of dB. The PSNR values are calculated against the compression ratios in terms of the bps. 
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The lossy compression algorithms BCS PL-3DBS + 3DWPT and CPPCA, which are 

given in Table 4, are used for the comparison [54]. These compression algorithms are not 

depending on the dictionary learning. PCA compression algorithm is indeed the most 

basic and widely used one in the literature. Since, CPPCA algorithm is the improved 

version of PCA, the computationally efficient CPPCA is selected for comparison. 

Moreover, block based compression algorithms are also very popular and considered more 

efficient for large datasets. Since BCS PL-3DBS + 3DWPT is a block based compression 

algorithm, it is also chosen for comparison. The highest three PSNR values per each 

compression ratio are marked in boldface.    

In Table 4, the best rate-distortion performance for Low Altitude image at 0.1 bps bit rate 

belongs to OBD-BCS algorithm. BCS PL-3DBS + 3DWPT algorithm has the highest 

PSNR value for the Lunar Lake image at 0.1 bps bit rate. At the same rate, SpaRSA 

algorithm shows the best performance in terms of PSNR value for the Jasper Ridge 

dataset. 

Compression performances at 0.3 bps bit rate in Table 4 indicate that the gOMP algorithm 

is superior for the Low Altitude dataset. OBD-BCS algorithm has the highest PSNR value 

for the Lunar Lake image and the CPPCA algorithm outperforms for the Jasper Ridge 

image. 

At 0.5 bps bit rate, the OBD-BCS algorithm is superior for the Low Altitude image as 

seen from Table 4. The CPPCA algorithm has the highest PSNR value for both the Lunar 

Lake and Jasper Ridge datasets. 

According to Table 4, SpaRSA and GIST algorithms from the proximity based 

optimization algorithms category performed very well on all of the datasets such that they 

are ranked among the top five algorithms for compression ratio values of 0.3 bps and 0.5 

bps. On the other hand, FISTA and TwIST algorithms which are also classified in the 

category of proximity based optimization approaches cannot be located among the best 

five algorithms. 
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If Table 4 is analyzed at the compression ratio of 0.1 bps, the GISA with p=0.5 algorithm 

and OBD-BCS algorithms are involved among the top three algorithms with the highest 

PSNR values for at least two datasets. At the 0.3 bps case, the same situation is valid for 

BP by using dual active set and OBD-BCS algorithms. At the highest compression ratio 

of 0.5 bps, only the OBD-BCS algorithm involves among the algorithms with the best 

three PSNR values for all datasets. 

According to Table 4, the OBD-BCS algorithm involves among the top three algorithms 

with the best compression performances at the highest compression ratio of 0.5 bps for all 

the datasets.  

Since other sparse representation algorithms cannot show similar behavior at the 0.5 bps 

ratio, the OBD-BCS has a better performance than other algorithms at high compression 

ratios. The OBD-BCS algorithm belongs to the algorithms with the highest three PSNR 

values at all the compression ratios for the Low Altitude dataset. Moreover, it involves 

among the best three algorithms at 0.3 bps and 0.5 bps levels for the Lunar Lake image. 

For the Jasper Ridge dataset, the OBD-BCS algorithm is situated among the algorithms 

with the top three PSNR values at 0.1 and 0.5 bps ratios. Consequently, the OBD-BCS 

algorithm shows a better compression performance than all other sparse representation 

algorithms as well as the other lossy compression algorithms (BCS PL_3DBS + 3DWPT 

and CPPCA) at high compression ratio values. 

Although, the typical PSNR values for lossy compression are in 30dB-50dB range, higher 

values are better [98]. In this study, PSNR values observed in the rate-distortion 

performances are in the range of 40dB-80dB. Due to the learning step which fits the 

dictionary particularly to the data, such high PSNR values are obtained. Here, 

hyperspectral data is accurately represented by the learned dictionary.  

PSNR is indeed a simple and widely used performance measurement tool, yet human 

visual system cannot perceive the difference between the original image and the 

reconstructed one with a high PSNR value. However, this does not mean that high PSNR 

values are meaningless.  
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Table 4 Compression performances of sparse representation algorithms and other compression algorithms (BCS PL_3DBS + 3DWPT 

and CPPCA) [54] (The highest three PSNR values (in dBs) are shown in boldface for each bps value) 

 
Low Altitude Image 

Sparse Representation Algorithms 

BPS 
BCS 

PL_3DBS 
+ 

3DWPT 

BP  
(Dual 
active 
set) 

gOMP LASSO 
(ADMM) CPPCA SpaRSA GIST BPDN 

(Homotopy) 
GISA 
p=0.4 

GISA 
p=0.3 

GISA 
p=0.5 

OBD-
BCS SBL FOCUSS Shooting FISTA TwIST TNIPM 

0.1 54.74 59.96 59.79 59.59 47.47 59.88 59.85 59.82 59.74 59.35 59.98 60 59.97 59.93 59.79 48.23 59.4 58.34 

0.3 61.74 70.16 70.28 68.85 60.98 69.78 69.79 69.04 67.64 67.72 66.81 69.99 68.15 68.52 69.73 50.39 63.63 66.18 

0.5 67.08 73.24 72.68 73.52 70.01 72.82 73.21 72 71.9 69.32 68.41 73.56 72.74 73.09 71.81 56.53 67.01 71.20 

 

 
Lunar Lake Image 

Sparse Representation Algorithms 

BPS 
BCS 

PL_3DBS 
+ 

3DWPT 

BP  
(Dual 
active 
set) 

gOMP LASSO 
(ADMM) CPPCA SpaRSA GIST BPDN 

(Homotopy) 
GISA 
p=0.4 

GISA 
p=0.3 

GISA 
p=0.5 

OBD-
BCS SBL FOCUSS Shooting FISTA TwIST TNIPM 

0.1 61.34 59.55 58.37 59.54 48.43 59.51 59.68 59.57 59.58 59.43 59.98 59.22 59.6 59.54 59.57 43.23 59.17 58.86 

0.3 69.38 73.85 73.84 73.34 72.19 73.89 73.62 68.58 69.41 69.11 66.81 73.97 72.07 73.16 69.87 47.44 65.67 70.71 

0.5 72.62 76.55 74.92 75.2 76.82 75.07 75.37 71.81 71.57 70.88 68.41 75.45 75.01 74.19 74.47 53.85 67.46 72.39 

 

 
Jasper Ridge Image 

Sparse Representation Algorithms 

BPS 
BCS 

PL_3DBS 
+ 

3DWPT 

BP  
(Dual 
active 
set) 

gOMP LASSO 
(ADMM) CPPCA SpaRSA GIST BPDN 

(Homotopy) 
GISA 
p=0.4 

GISA 
p=0.3 

GISA 
p=0.5 

OBD-
BCS SBL FOCUSS Shooting FISTA TwIST TNIPM 

0.1 56.78 59.41 59.4 59.3 30.2 59.47 58.83 59.32 59.28 59.39 59.38 59.44 58.6 59.37 59.42 47.58 59.03 58.06 

0.3 64.21 69.23 70.01 70.67 71.31 70.69 70.15 69.56 68.45 66.94 68.66 70.57 70.74 70.83 70.73 54.54 64.77 66.74 

0.5 69.95 71.71 71.14 73.17 76.4 72.49 72.24 72.44 70.46 69.58 69.86 72.54 72.46 72.17 72.27 55.55 67.15 71.34 
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Since PSNR is dimensionless, it has no sense to define an acceptable range for it. PSNR 

is employed only for comparing the performances of different lossy compression 

algorithms [99]. From this point of view, the PSNR values observed in this study are only 

for comparing the performances of various methods.    

3.3.2.3 Experiment 3 - Comparison with a state-of-the-art method 

For further comparison, reconstruction performance of the state-of-the-art RLPHCS_Cov 

algorithm is also compared to those of the different sparse representation algorithms based 

on online dictionary learning. According to the previous chapter, RLPHCS_Cov 

algorithm is considered as the state-of-the-art compression algorithm, since it is already 

outperforms all the-state-of-the-art compression algorithms recently in the literature [86]. 

The signal to noise ratio (SNR) is fixed at 20dB. AVIRIS image of Pavia University and 

ROSIS image of Indian Pines datasets are used (cf. Table 3). Figure 7 and Figure 8 show 

PSNR values of different algorithms at various bps levels when Pavia University and 

Indian Pines datasets are used, respectively. Algorithms solved by the proposed sparse 

coding with online learning method are denoted by the abbreviation online dictionary 

learning (ODL). Algorithms solved by several hyperspectral compressive sensing 

methods given in the literature [86] are denoted by the abbreviation hyperspectral 

compressive sensing (HCS). 

Figure 7 and Figure 8 indicate that the reconstruction performance of the OBD-BCS 

(ODL) algorithm is superior to those of the other algorithms at 0.5 bps level. Although for 

0.5 bps compression level the OBD-BCS (ODL) algorithms is better for both datasets, 

setting the compression ratio to moderate levels such as 0.3 bps yields better state-of-the-

art RLPHCS_Cov performance for Pavia University dataset. 

Even the most recent well-performed state-of-the-art hyperspectral compression 

algorithm, namely, RLPHCS_Cov algorithm [86] does not achieve the performance of the 

proposed sparse coding with online learning when OBD-BCS algorithm is implemented.  
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Figure 7 Rate distortion curves of several sparse representation algorithms (ODL) and several 

hyperspectral compressive sensing algorithms (HCS) for Pavia University dataset when SNR is 

20dB 

 

Figure 8 Rate distortion curves of several sparse representation algorithms (ODL) and several 

hyperspectral compressive sensing algorithms (HCS) for Indian Pines dataset when SNR is 

20dB 
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The OBD-BCS algorithm is indeed a compressive sensing framework rather than just 

solving the sparse coding equation. An additional dictionary learning scheme is applied 

in order to find out the sparse coefficients in OBD-BCS algorithm which increases the 

accuracy. When these almost exact coefficients are used in the dictionary updating step in 

this study, it is expected to obtain much better results. According to the results, this 

expectation is realized, since OBD-BCS algorithm outperforms the others in terms of the 

rate-distortion performance. 

3.3.3 The rate-distortion results of HYPERION datasets 

In this section, three different experiments are conducted using the HYPERION 

hyperspectral datasets. Because the approaches in the experiments are different, each one 

is presented in separate sections. In the first experiment only the basic sparse 

representation algorithms are compared, in the second one proximity based optimization 

algorithms are compared. For the third experiment, the comparison is performed by 

concerning the OBD-BCS algotihm which is a blind compressive sensing algorithm. 

3.3.3.1 Experiment 1 - Comparison of the basic sparse representation algorithms 

exploited in the hybrid method 

Experiment 1 comprises the comparison between the rate-distortion performances of basic 

sparse representation algorithms such as TNIPM algorithm, gOMP algorithm, LASSO by 

using ADMM algorithm and BP by using dual active-set algorithm [64]. Each of these 

sparse representation algorithms are adapted to the hybrid hyperspectral image 

compression method by using online dictionary learning based on sparse coding.  

Figure 9 shows the rate-distortion performances of TNIPM algorithm, gOMP algorithm, 

LASSO by using ADMM algorithm and BP by using dual active-set algorithm. Erta Ale 

hyperspectral dataset is used. It is cropped into a sub-image of size 512 lines by 256 

samples by 242 bands (cf. Table 3).  

For the bit rate values smaller than 0.45 bps, BP by using dual active-set algorithm shows 

the best performance among the sparse representation algorithms. For the bit rate values 

greater than 0.45 bps, the rate-distortion performance of TNIPM algorithm seem to be 



59 
 

better than the other sparse representation algorithms. The performance of gOMP 

algorithm is very poor beginning from roughly the 0.13 bps level. 

 

Figure 9 Rate-distortion curves of several sparse representation algorithms for Erta Ale 

hyperspectral dataset (cf. Table 3) 

 

Figure 10 Rate-distortion curves of several sparse representation algorithms for Mt. St. Helens 

hyperspectral dataset (cf. Table 3) 



60 
 

 

Figure 11 Rate-distortion curves of several sparse representation algorithms for Lake Monona 

hyperspectral dataset (cf. Table 3) 

Figure 10 gives the rate-distortion curves of TNIPM algorithm, gOMP algorithm, LASSO 

by using ADMM algorithm and BP by using dual active-set algorithm for Mt. St. Helens 

dataset, while Figure 11 illustrates those for Lake Monona dataset. In Figure 10, LASSO 

by using ADMM algorithm has the best rate-distortion performance starting nearly from 

0.3 bps bit rate; meanwhile in Figure 11 similar performance behavior is observed for 

gOMP algorithm.  

3.3.3.2 Experiment 2 - Comparison of the sparse representation algorithms exploited 

in the hybrid method which are based on proximity based optimization method 

Although experiment 2 introduces the rate-distortion curves of different sparse 

representation algorithms, the main goal here is to detect the performances of several 

proximity-based optimization algorithms such as SpaRSA, GIST and PALM in 

comparison to other existing algorithms. Rate-distortion comparisons are illustrated in 

Figure 12, Figure 13 and Figure 14. PSNR values in dBs are plotted against three different 

compression ratios in bps as bar graphs. The highest three PSNR values for each bit rate 

are marked with small black circles below the corresponding algorithms. Other sparse 
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representation algorithms used in this experiment include BP by using dual active-set 

algorithm, gOMP algorithm, LASSO by using ADMM algorithm, TNIPM algorithm and 

BPDN homotopy algorithm. 

 

Figure 12 Rate-distortion performances of several sparse representation algorithms for Erta Ale 

hyperspectral dataset (cf. Table 3) 

HYPERION datasets such as Erta Ale, Mt. St. Helens and Lake Monona are tested. All 

hyperspectral datasets that are used in the experiment are cropped into 512 lines by 256 

samples by 242 bands (cf. Table 3). 

TNIPM and SpaRSA algorithms are among the best three algorithms at 0.1 bps bit rate 

for Erta Ale and Lake Monona images as seen in Figure 12 and Figure 14. At 0.3 bps bit 

rate, BP by using dual active-set, SpaRSA and GIST algorithms are consistently ranked 

as the top three algorithms for all HYPERION datasets.  

According to 0.5 bps bit rate results, SpaRSA algorithm is among one of the top three 

algorithms for all datasets. This algorithm is followed by GIST algorithm, which is among 

the best three algorithms for Mt. St. Helens and Lake Monona datasets as seen from Figure 

13 and Figure 14. 

As a result of this experiment, SpaRSA algorithm which is one of the key proximity based 

optimization scheme shows superior rate-distortion performance compared to those of the 

other sparse representation algorithms. 
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Figure 13 Rate-distortion performances of several sparse representation algorithms for Mt. St. 

Helens hyperspectral dataset (cf. Table 3) 

In sparse coding, the final learned dictionary has highly correlated columns. Therefore, 

the sparse coding approaches that consider all possible values of the parameter λ such as 

proximity based optimization algorithms including soft thresholding strategy can provide 

more accurate solution than the others [19]. This is why the proximity based optimization 

algorithms such as SpaRSA and GIST that are used in the sparse coding stage provide 

better results. 

 

Figure 14 Rate-distortion performances of several sparse representation algorithms for Lake 

Monona hyperspectral dataset (cf. Table 3) 
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3.3.3.3 Experiment 3 - Comparison of several sparse representation algorithms with 

OBD-BCS sparse representation algorithm which are all exploited in the hybrid 

method 

The aim of this experiment is to compare the rate-distortion performance of the OBD-

BCS algorithm which is one of the blind compressive sensing approach to those of the 

other sparse representation algorithms. SpaRSA algorithm is also included in this section 

since it performed well in the previous experiment. The other sparse representation 

algorithms used in this experiment are BP by using dual active-set algorithm, PALM 

algorithm, LASSO by using ADMM algorithm, TNIPM algorithm, SBL algorithm, BPDN 

homotopy algorithm and FOCUSS algorithm. 

The Erta Ale, Mt. St. Helens, and Lake Monona images, are used as HYPERION datasets 

(cf. Table 3). In Figure 15, Figure 16 and Figure 17, the PSNR values of these datasets 

against 0.1, 0.3, and 0.5 bps compression ratios for all sparse representation algorithms, 

are given. The compression performances of all the sparse representation algorithms are 

compared at different compression ratios.  

The PSNR values are expressed in terms of dB, and they are plotted against the 

compression ratios in terms of bps. The corresponding compression ratios of the 

algorithms with highest three PSNR values are shown in circles. 

 

Figure 15 Rate-distortion performances of several sparse representation algorithms for Erta Ale 

hyperspectral dataset (cf. Table 3) 
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As seen from Figure 15, Figure 16 and Figure 17, BP by using the dual active set and 

TNIPM algorithms are among the best three algorithms for all the datasets at the 0.1 bps 

level. Similarly, the SpaRSA and OBD-BCS algorithms are involved among the 

algorithms with the highest three PSNR values for all the datasets at the 0.3 bps ratio.  

At the highest compression ratio of 0.5 bps, the SpaRSA algorithm appears among the 

best three algorithms for all the datasets, while the OBD-BCS algorithm is situated among 

the top three algorithms for the Mt. St. Helens and Lake Monona datasets. Therefore, at 

high compression ratios, the SpaRSA and OBD-BCS algorithms show better compression 

performances. 

In Figure 15, Figure 16, and Figure 17, the OBD-BCS algorithm belongs to the top three 

algorithms with the highest PSNR values at the compression ratio of 0.5 bps for the Mt. 

St. Helens and Lake Monona datasets. 

At the moderate compression ratio of 0.3 bps, the OBD-BCS algorithm involves among 

the best three algorithms for all the datasets. At the lowest ratio of 0.1 bps, it is among the 

best three algorithms for the Erta Ale dataset only. The results indicate that the OBD-BCS 

algorithm shows a better compression performance when the compression ratio gets 

higher. 

 

Figure 16 Rate-distortion performances of several sparse representation algorithms for Mt. St. 

Helens hyperspectral dataset (cf. Table 3) 
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Figure 17 Rate-distortion performances of several sparse representation algorithms for Lake 

Monona hyperspectral dataset (cf. Table 3) 
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CHAPTER 4 

 ANOMALY DETECTION RESULTS 

 

In lossy data compression task, it is important to concern the usefulness of the 

reconstructed image which corresponds to the information preservation performance apart 

from the rate-distortion performance [70].  

One great strategy to evaluate the information preservation capability is to perform 

anomaly detection, since small yet important objects in the hyperspectral image may be 

disappeared in the compression. In addition to measure the distortion by employing PSNR 

in the previous chapter, the information preservation performance can also be evaluated 

by applying the anomaly detection in this chapter. It can be considered as a different tool 

for measuring the image quality.  

Anomaly detection is exploited to make a further comparison between various sparse 

representation algorithms. Only the algorithms which performed well in the previous 

chapter are included in this anomaly detection analysis. Therefore, by applying a real 

application such as anomaly detection, more realistic comparison can be achieved.  

Reed-Xiaoli (RX) anomaly detection algorithm is used for anomaly detection application 

[60]. Spectral signature which belongs to the input signal is compared with the mean 

values of each spectral band by using Mahalanobis distance, 

                                                       � � � � � �1T
RX i i iG � � �x x M Cov x M                                             (74) 

where xiϵRnb, M represents the mean of each spectral band and Cov indicates the spectral 

covariance matrix.  
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Anomalous region is assumed to be present if δRX(xi) ≥ η condition is satisfied, where η 

represents the threshold value. The most appropriate threshold value is the one that is 

obtained from the desired false alarm probability. Covariance matrix Cov is as follows: 

                                                                  � �� �
1

1 N T
i i

iN  
 � �¦Cov x M x M                                              (75) 

where, N = nl x ns and i = 1,…,N. 

Anomaly detection is applied on Salinas-A, Pavia University and Low Altitude 

hyperspectral datasets (cf. Table 3). Sparse representation algorithms such as BP by using 

dual active set algorithm, LASSO by using ADMM algorithm, SpaRSA algorithm, GIST 

algorithm and OBD-BCS algorithm are utilized. 

Anomaly detection experiments that are conducted in this study are examined under three 

different titles due to the differences in the used datasets and algorithms.  

4.1 ANOMALY DETECTION EXPERIMENT 1 - Comparison of sparse 

representation algorithms exploited in the hybrid method which have the best rate-

distortion performances 

In this experiment, anomaly detection is applied on Salinas-A and Low Altitude 

hyperspectral datasets. Sparse representation algorithms adapted to the hybrid 

hyperspectral image compression method by using online dictionary learning based on 

sparse coding; such as BP by using dual active set algorithm, LASSO by using ADMM 

algorithm, SpaRSA algorithm and OBD-BCS algorithm are utilized. These algorithms 

have the best rate-distortion performances according to the previous chapter.  

Anomaly detection results are illustrated in Figure 18 for Salinas-A dataset. First, anomaly 

detection is applied on the original hyperspectral dataset whose results are presented in 

Figure 18(a).  
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(a) 

(b) (c) (d) 

(e) (f) (g) 

(h) (i) (j) 

(k) (l) (m) 

 
 

 
 

 
 

 
 

 
  

Figure 18 RX anomaly detection results of the Salinas-A hyp. image: (a) original image (b) 

OBD-BCS with 0.5 bps (c) OBD-BCS with 0.3 bps (d) OBD-BCS with 0.1 bps (e) BP with 0.5 

bps (f) BP with 0.3 bps (g) BP with 0.1 bps (h) SpaRSA with 0.5 bps (i) SpaRSA with 0.3 bps (j) 

SpaRSA with 0.1 bps (k) LASSO with 0.5 bps (l) LASSO with 0.3 bps (m) LASSO with 0.1 bps 
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The desired anomaly is marked with a circle. Figure 18(b), Figure 18(c) and Figure 18(d) 

depict anomaly detection results when OBD-BCS algorithm is used for 0.5 bps, 0.3 bps 

and 0.1 bps bit rates, respectively. If BP by using dual active set algorithm is applied on 

the dataset, results in Figure 18(e), Figure 18(f) and Figure 18(g) are obtained for 0.5, 0.3 

and 0.1 bps levels, respectively. Figure 18(h), Figure 18(i) and Figure 18(j) showing 

results of SpaRSA algorithm while Figure 18(k), Figure 18(l) and Figure 18(m) present 

results of LASSO by using ADMM algorithm. 

None of the algorithms is able to detect the desired anomaly at 0.1 bps bit rate. Among 

the anomaly detection results at 0.5 bps bit rate, OBD-BCS algorithm seems to provide 

the best performance. At 0.3 bps level, the anomaly detection results for BP by using dual 

active set and LASSO by using ADMM algorithms perform worse than the ones for other 

algorithms. 

The PSNR values of each sparse representation algorithms are also presented in Table 5 

for 0.1, 0.3 and 0.5 bit rates in such a way to further strengthen the anomaly detection 

results obtained in Figure 18. The two highest PSNR values are marked in boldface. 

Table 5 Compression performances of sparse representation algorithms (The highest two PSNR 

values (in dBs) are shown in boldface for each bps value) 

BPS 
Salinas-A Hyperspectral Dataset (cf. Table 3) 

BP (Dual active set) OBD-BCS LASSO (ADMM) SpaRSA 

0.1 36.62 36.67 36.65 36.58 
0.3 41.54 41.89 41.16 42.61 
0.5 43.95 43.98 43.74 43.96 

BPS 
Low Altitude Hyperspectral Dataset (cf. Table 3) 

BP (Dual active set) OBD-BCS LASSO (ADMM) SpaRSA 

0.1 59.96 60 59.59 59.88 
0.3 70.16 69.99 68.85 69.78 
0.5 73.24 73.56 73.52 72.82 

 
Anomaly detection performances of different sparse representation algorithms can be 

assessed using receiver operating characteristic (ROC) curves. The ROC curves plot 

detection probability versus false alarm probability. ROC curves are plotted with a 

logarithmic x axis for better illustration. 
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Figure 19 shows the ROC Semi-Log curves of OBD-BCS algorithm at 0.1 bps, 0.3 bps 

and 0.5 bps rates when Salinas-A hyperspectral dataset is used. The probability of 

detection is represented by PD and the probability of false alarm is represented by PFA. 

Anomaly detection result at 0.5 bps rate is significantly better than those of the 0.3 bps 

and 0.1 bps levels. 

 

Figure 19 ROC Semi-Log curves for Salinas-A dataset at 0.1, 0.3 and 0.5 bps by using OBD-

BCS algorithm 

The ROC Semi-Log curves of BP by using dual active set algorithm at 0.1, 0.3 and 0.5 

bps bit rates are depicted in Figure 20, where anomaly detection is conducted on the 

Salinas-A dataset. Here, the ROC performances at 0.5 bps and 0.3 bps rates are close to 

each other. 

For the Salinas-A dataset, the ROC Semi-Log curves of SpaRSA algorithm and LASSO 

by using ADMM algorithm at various bit rates are illustrated in Figure 21 and Figure 22, 

respectively. Figure 21 and Figure 22 present anomaly detection performances that are 

compatible with the performances in Figure 18. In Figure 18(k) and Figure 18(l), there is 

a distinct difference between the performance of LASSO by using ADMM algorithm at 

0.5 bps rate and that at 0.3 bps rate which can also be observed in Figure 22. In Figure 
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18(l), in addition to the desired anomaly part at 0.3 bps, some other parts are also observed 

which may lead to false detection.  On the other hand, in Figure 18(h) and Figure 18(i) the 

performance of SpaRSA algorithm at 0.5 bps and 0.3 bps rates are positioned relatively 

closer to each other as also seen in the Figure 21. 

 

Figure 20 ROC Semi-Log curves for Salinas-A dataset at 0.1, 0.3 and 0.5 bps by using BP by 

using dual active set algorithm 

 

Figure 21 ROC Semi-Log curves for Salinas-A dataset at 0.1, 0.3 and 0.5 bps by using SpaRSA 

algorithm 
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Figure 22 ROC Semi-Log curves for Salinas-A dataset at 0.1, 0.3 and 0.5 bps by using LASSO 

by using ADMM algorithm 

In order to further evaluate the ROC curves, the area under curve (AUC) is employed as 

a performance metric that can be obtained by calculating the area under the ROC curve. 

Calculated AUC values are presented in Table 6. 

In Table 6 for Salinas-A dataset, it can be seen that the best result is from OBD-BCS 

algorithm at 0.5 bps bit rate which is 0.9945. Similarly for the Low Altitude dataset, the 

highest value of the AUC corresponds to OBD-BCS algorithm at 0.5 bps.  

Table 6 Area under curve (AUC) values of Salinas-A and Low Altitude hyperspectral datasets 

Salinas-A Hyperspectral Dataset (cf. Table 3) 
  Area under ROC curve 

BPS 0.1 0.3 0.5 
BP (Dual active set) 0.96 0.9934 0.9943 

OBD-BCS 0.9464 0.9929 0.9945 
LASSO (ADMM) 0.9741 0.9799 0.9928 

SpaRSA 0.9424 0.992 0.9943 
Low Altitude Hyperspectral Dataset (cf. Table 3) 

  Area under ROC curve 
BPS 0.1 0.3 0.5 

BP (Dual active set) 0.9917 0.9932 0.9942 
OBD-BCS 0.9887 0.9936 0.9943 

LASSO (ADMM) 0.9906 0.9932 0.9931 
SpaRSA 0.9896 0.9914 0.9937 
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Results in Table 5, Table 6 and Figure 19-Figure 22 demonstrate that the detection 

performance of OBD-BCS algorithm is better than those of the other algorithms for the 

case where the bit rate is high such as 0.5 bps. The illustrations in Figure 18 also suggest 

that the detection performance of OBD-BCS algorithm is the best of all at 0.5 bps bit rate. 

Anomaly detection is also applied on the Low Altitude hyperspectral dataset whose details 

can be found in Table 3. In Figure 23, anomaly detection results are illustrated. Figure 

23(a) shows the desired anomaly when anomaly detection is applied on the original 

dataset. Figure 23(b), Figure 23(c) and Figure 23(d) indicate anomaly detection results of 

OBD-BCS algorithm at 0.5, 0.3 and 0.1 bps rates, respectively. Results of BP by using 

dual active set algorithm are given in Figure 23(e), Figure 23(f) and Figure 23(g). Results 

of the SpaRSA algorithm are shown in Figure 23(h)-Figure 23(j), while those of the 

LASSO by using ADMM algorithm are shown in Figure 23(k)-Figure 23(m). 

At 0.5 bps bit rate, OBD-BCS algorithm detects the desired anomaly slightly better than 

the other algorithms, while the detection performances of SpaRSA algorithm and BP by 

using dual active set algorithm are almost identical. Despite the misleading anomaly parts 

observed at 0.3 bps rate, the desired anomaly can still be detected. Although all of the 

algorithms are able to detect the desired anomaly at all bit rates, detection performances 

are degraded severely at 0.1 bps level.According to the values in Table 5, OBD-BCS 

algorithm is among the best two algorithms in terms of PSNR values at 0.5, 0.3 and 0.1 

bps rates. Particularly at 0.5 bps level, OBD-BCS algorithm has PSNR value of 73.56 

which is the highest. 

Figure 24 through Figure 27 depict the ROC Semi-Log curves of OBD-BCS, BP by using 

dual active set, SpaRSA and LASSO algorithms at 0.1 bps, 0.3 bps and 0.5 bps levels 

when Low Altitude hyperspectral dataset is employed. In fact, for both of the SpaRSA 

and BP by using dual active set algorithms, ROC Semi-Log curves of 0.5 bps and 0.3 bps 

are pretty close to each other. 
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(a) 

(b) (c) (d) 

(e) (f) (g) 

(h) (i) (j) 

(k) (m) (l) 

 

 

 

 

 

Figure 23 RX anomaly det. results of the Low Alt. hyp. image: (a) original (b) OBD-BCS 0.5 

bps (c) 0.3 bps (d) 0.1 bps (e) BP 0.5 bps (f) 0.3 bps (g) 0.1 bps (h) SpaRSA 0.5 bps (i) 0.3 bps 

(j) 0.1 bps (k) LASSO 0.5 bps (l) 0.3 bps (m) 0.1 bps  
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In this case, evaluating only the ROC Semi-Log curves is not enough to assess the 

information preservation performances of the algorithms. Evaluation of AUC values 

should also be taken into account. The superiority of OBD-BCS algorithm at 0.5 bps rate 

is supported by the results in Table 6. At 0.5 bps, OBD-BCS algorithm has the highest 

AUC value which is 0.9943. 

 

Figure 24 ROC Semi-Log curves for Low Altitude dataset at 0.1, 0.3 and 0.5 bps by using OBD-

BCS algorithm 

 

Figure 25 ROC Semi-Log curves for Low Altitude dataset at 0.1, 0.3 and 0.5 bps by using BP by 

using dual active set algorithm 
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Figure 26 ROC Semi-Log curves for Low Altitude dataset at 0.1, 0.3 and 0.5 bps by using 

SpaRSA algorithm 

 

Figure 27 ROC Semi-Log curves for Low Altitude dataset at 0.1, 0.3 and 0.5 bps by using 

LASSO by using ADMM algorithm 

Two major inferences can be observed from this anomaly detection application. 

Firstly, the hyperspectral image which is compressed by using the hybrid hyperspectral 

image compression method by using online dictionary learning based on sparse coding 

can estimate the original hyperspectral image. This is valid at 0.5 bps and 0.3 bps 

compression rates where considerable PSNR values are achieved. Instead of using the 
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original hyperspectral image to perform applications such as anomaly detection, it is 

effective to use the compressed version of it. This way the computational burden of the 

application is significantly reduced. 

Secondly, as the bit rate increases, the compression performance of the OBD-BCS 

algorithm becomes more likely to outperform that of the other algorithms. Therefore, 

hyperspectral image compression using OBD-BCS algorithm based on online dictionary 

learning performs better particularly at 0.5 bps rate or higher. 

4.2 ANOMALY DETECTION EXPERIMENT 2 - Comparison of the sparse 

representation algorithms which are based on proximity based optimization method 

This section presents anomaly detection scheme which is applied on Pavia University 

hyperspectral dataset (cf. Table 3). BP by using dual active set algorithm, LASSO by using 

ADMM algorithm, SpaRSA algorithm and GIST algorithm are applied. The aim of this 

experiment is to test the information preservation performance of the main proximity 

based optimization algorithms such as SpaRSA algorithm and GIST algorithm.  

Anomaly detection results for the Pavia University hyperspectral image are illustrated in 

Figure 28 in which two anomaly parts are marked with circles. Figure 28(a) displays the 

anomaly detection result of the original image. Figure 28(b), Figure 28(c) and Figure 28(d) 

illustrate the anomaly detection results of SpaRSA at 0.5, 0.3 and 0.1 bps bit rates, 

respectively. SpaRSA is able to detect the anomaly parts both at 0.5 and 0.3 bps levels. 

Anomaly detection results belonging to BP by using dual active set algorithm, GIST 

algorithm and LASSO by using ADMM algorithm at 0.5, 0.3 and 0.1 bps rates are given 

in Figure 28(e)-Figure 28(g), Figure 28(h)-Figure 28(j) and Figure 28(k)-Figure 28(m), 

respectively. As a conclusion, the anomaly detection capabilities of SpaRSA are 

significantly superior to those obtained by other sparse representation algorithms. 
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(a) 

(b) (c) (d) 

(e) (f) (g) 

(h) (i) (j) 

(k) (l) (m) 

 

 

 

 

 

Figure 28 RX anomaly det. results of the Pavia University hyp. image: (a) original (b) SpaRSA 

0.5 bps (c) 0.3 bps (d) 0.1 bps (e) BP 0.5 bps (f) 0.3 bps (g) 0.1 bps (h) GIST 0.5 bps (i) 0.3 bps 

(j) 0.1 bps (k) LASSO 0.5 bps (l) 0.3 bps (m) 0.1 bps 
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In order to assess the robustness of the anomaly detection results given in Figure 28, they 

should be based on the numerical PSNR values. Therefore, the corresponding PSNR 

values of each sparse representation at 0.1, 0.3 and 0.5 bps levels are given in Table 7 for 

Pavia University hyperspectral dataset. The highest two PSNR values are marked in 

boldface.      

Table 7 Compression performances of sparse representation algorithms (The highest two PSNR 

values (in dBs) are shown in boldface for each bps value) – Pavia University Dataset 

 Pavia University Image 
Sparse Respresentation Algorithms 

BPS LASSO 
(ADMM) 

BP 
(Dual active set) SpaRSA GIST 

0.1 50.3037 50.2574 50.28 50.0464 
0.3 60.8013 60.6832 60.9671 60.8486 
0.5 62.7433 62.3752 62.8532 62.7913 

 

Concerning the PSNR values for Pavia University dataset in Table 7, at 0.5 and 0.3 bps 

rates SpaRSA algorithm is the best whereas GIST algorithm is ranked as the second. In 

this case, proximity based optimization algorithms seemed to have a better performance 

when compared to other algorithms. 

Additional analyses are performed to further explore the information preservation ability 

of different sparse representation algorithms at various bit rates. ROC Semi-Log curves 

of BP by using dual active set algorithm, GIST algorithm, SpaRSA algorithm and LASSO 

by using ADMM algorithm are displayed in Figure 29-Figure 32 for the Pavia University 

hyperspectral dataset, respectively. In Figure 29 and Figure 31, ROC Semi-Log curves 

belonging to 0.5 bps and 0.3 bps bit rates are almost overlapping. In Figure 30 and Figure 

32, even though a slight difference between the ROC Semi-Log performances of 0.5 bps 

and 0.3 bps, they are still relatively close to each other. 

Anomaly detection results yield two major implications.  

First, hyperspectral image which is compressed by using the hybrid hyperspectral image 

compression method by using online dictionary learning based on sparse coding can 

effectively estimate the original hyperspectral dataset at 0.5 and 0.3 bps bit rates together 
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with a considerable PSNR values. Therefore, instead of using the original hyperspectral 

image in particular applications, one can use directly the compressed image which has a 

relatively smaller size. 

 

Figure 29 ROC Semi-Log curves for Pavia University dataset at 0.1, 0.3 and 0.5 bps by using BP 

by using dual active set algorithm 

 

Figure 30 ROC Semi-Log curves for Pavia University dataset at 0.1, 0.3 and 0.5 bps by using 

GIST algorithm 
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Second, using SpaRSA algorithm in the hybrid hyperspectral image compression method 

by using online dictionary learning based on sparse coding is slightly superior to the other 

sparse representation algorithms for each datasets.   

 

Figure 31 ROC Semi-Log curves for Pavia University dataset at 0.1, 0.3 and 0.5 bps by using 

SpaRSA algorithm 

 

Figure 32 ROC Semi-Log curves for Pavia University dataset at 0.1, 0.3 and 0.5 bps by using 

LASSO by using ADMM algorithm 
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4.3 ANOMALY DETECTION EXPERIMENT 3 - The application of anomaly 

detection by using only TNIPM sparse representation algorithm exploited in the 

hybrid method 

The three curves in Figure 33 are for three different RX anomaly detection results. Moffett 

Field with f970620t01p02r03sc02 flight number is used in the experiment which is an 

AVIRIS hyperspectral dataset.  This test image was taken in the year 1997. It is a 

reflectance data with 10,000 reflectance factor. Dataset is stored as 16-bit signed integers. 

Although Moffett Field dataset in BIP notation has 512 lines by 614 samples by 224 bands, 

only the first 100 lines are utilized in this study. In Table 8, the corresponding PSNR 

values are presented for 0.2 bps and 0.4 bps bit rates. In this experiment only TNIPM 

algorithm is used as the sparse representation algorithm, since the reference method 

proposed by Mairal et. al. employs only TNIPM algorithm as the sparse representation 

algorithm [19]. 

Table 8 Compression performances of sparse representation algorithms  

BPS 
Moffett Field Hyperspectral Dataset (cf. Table 3) 

TNIPM algorithm 

0.2 39.94 
0.4 41.35 

BPS 
Cuprite  Hyperspectral Dataset (cf. Table 3) 

TNIPM algorithm 

0.1 41.45 
0.5 49.75 

 

Figure 33(a) introduces the results when RX anomaly detection is applied on the original 

Moffett Field dataset. The desired anomaly parts are marked with dashed circles. Figure 

33(b) shows the anomaly detection results at 0.4 bps rate, while Figure 33(c) shows those 

at 0.2 bps rate. Even the hyperspectral dataset compressed at 0.2 bps rate can still be able 

to detect the desired anomalies. Further anomaly detection tests are performed by using 

Cuprite hyperspectral dataset (cf. Table 3). A sub-scene of 101 lines by 101 samples by 

170 bands is cropped from the Cuprite hyperspectral dataset. PSNR values of this dataset 
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is summarized in Table 8 for 0.1 bps and 0.5 bps bit rates. The results of the RX anomaly 

detection tests which are applied on Cuprite dataset are summarized in Figure 34. 

 

 

  

 

 

 

 

Figure 33 RX anomaly detection results of the Moffett Field hyperspectral image: (a) original 

image (b) reconstructed image with 0.4 bps (c) reconstructed image with 0.2 bps 

(a) 

(b) 

(c) 
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Figure 34 RX anomaly detection results of the Cuprite hyperspectral image: (a) reconstructed 

image with 0.5 bps (b) reconstructed image with 0.1 bps  

(a) 

(b) 
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Figure 34(a) shows the result in which dataset is compressed with 0.5 bps rate, while 

Figure 34(b) shows that of the 0.1 bps rate. Desired anomaly detection parts are marked 

with solid lines. 

Although the anomaly parts marked with circles in Figure 34(a) can be detected in Figure 

34(b) as well, the anomaly part marked with rectangle in Figure 34(a) cannot be detected 

in Figure 34(b). 

The results of this experiment indicate that even the compressed hyperspectral image at a 

rate as low as 0.1 bps is able to detect the desired anomaly parts substantially. Since the 

aim of this experiment is to understand the detection performance of the proposed sparse 

coding with online learning approach rather than comparing the detection performances 

of different sparse representation algorithms, only TNIPM algorithm is used as a sparse 

representation algorithm. 
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CHAPTER 5 

CONCLUSION 

 

In this study, the online dictionary learning method proposed by Mairal et. al. [19] is 

adapted to the compression of hyperspectral images for the first time in the literature. 

Additionally, various sparse representation algorithms are utilized for the solution of the 

sparse coding problem in the algorithm which forms a hybrid approach. According to the 

rate-distortion performance results, this hybrid hyperspectral image compression method 

by using online dictionary learning based on sparse coding outperforms other compression 

methods in the literature including the state-of-the-art one.  

Among the sparse representation algorithms used in this hybrid method, the proximity 

based optimization algorithms and blind compressive sensing algorithms which are the 

most recent and popular ones in the literature are analyzed further. The rate-distortion 

performances of these algorithms are superior to those based on other sparse 

representation algorithms. In addition to the rate-distortion measure, anomaly detection is 

also applied to test the information preservation performance of these algorithms.  

Further analysis revealed that the rate-distortion performance of the OBD-BCS algorithm 

which is a blind compressive sensing scheme is superior to those of the other sparse 

representation algorithms when the bps value is greater than or equal to 0.5. Following 

the OBD-BCS, the second best performing algorithm is the SpaRSA algorithm at 

compression rates higher than 0.5 bps which belongs to the category of proximity based 

optimization approaches.    

Since OBD-BCS exploits the learning process, the corresponding sparse coefficients are 

more accurate. These sparse coefficients are also subjected to an online learning process 
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in this hybrid method. Therefore, it is reasonable to observe that OBD-BCS algorithm has 

the best performance. On the other hand, the proximity based methods consider all 

possible parameter values by performing soft thresholding such that it is expected to 

obtain accurate results. Since SpaRSA is a computationally efficient proximity based 

algorithm, the observed results are reasonable.  

The rate-distortion performances in terms of PSNR of both OBD-BCS algorithm and 

SpaRSA algorithm become higher as the bit rate gets higher. High bit rate lossy 

compression is valid for many earth observation missions. For instance, earth remote 

sensing which is performed by Pleiades (Optical Imaging Constellation of CNES) is 

realized by lossy compression at high bit rates up to 3 bps [63]. Therefore, the approach 

proposed in this study is promising to be employed in real hyperspectral data compression 

applications, since it performs well at high compression rates.
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