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ABSTRACT

APPLICATION OF CUBICALLY CONVERGENT ITERATIVE METHOD
FOR ZERO - POLE ANALYSIS OF HIGH ORDER FILTER CIRCUITS

HAMAD DAKHEEL, Taha
M.Sc¢., Department of Electronics and Communication Engineering
Supervisor: Assist. Prof. Dr. Goker SENER

April 2015, 40 pages

In this thesis, a new method is proposed to find the roots of filter circuit transfer
function using on iterative method. This method is very fast and simple iterative with
cubically convergent. Additionally, this new method can find only one real root of
the complex initial estimates. As the coupling coefficient changes (or root locus)
shows how to move the pole-zero dynamics of poles and zeros in the complex
frequency plane. The proposed method is compared to various methods in the

literature, and it is concluded that the new method is more accurate and time efficient

than the existing numerical methods.

Keywords: Cubically Convergent, Filter Circuit, High Order, Zero-Pole Analysis.
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YUKSEK DERECE FILTRE DEVRELERIN DIREK ANALIZi - SIFIR ICIN
KUBIK YAKINSAK ITERATIF YONTEMI UYGULAMASI

HAMAD DAKHEEL, Taha
Yiiksek Lisans, Elektronik ve Haberlesme Miihendisligi Anabilim Dali
Tez Yoneticisi: Yrd. Dog. Dr. Goker SENER
Nisan 2015, 40 sayta

Bu yazida yeni bir yontem kiibik yakinsak iteratif ydntemi kullamlarak vyiksek
geciren filtre transfer fonksiyonu kéklerini bulmak i¢in &nerilmistir. Bu yéntem cok
hizli ve kiibik yakinsak ile tekrarli basittir. Ayrica, bu yeni yontem, sadece bir gercek
baglangi¢ tahmin karmagik koklerini bulabilirsiniz. Kavramanm katsayisi degisir gibi
kutuplar ve sifirlar karmagik frekans diizleminde nasil hareket kutup-sifir dinamikleri
(veya kok yer efrisi) gosterir. Onerilen yontem literatiirde cesitli yontemlerle
kargilastinldiginda, ve yeni bir yontem meveut sayisal yéntemlere gore etkin daha

dogru ve zaman sonucuna varilmustir,

Anahtar Kelimeler: Kiibik Yakmsak, Devre Filtre, Yiiksek Derece, Sifir-Kutup
Analizi.
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CHAPTER 1

INTRODUCTION

1.1. Poles and Zeros

Poles and Zerés are commonly employed by analog designers to characterize the
linear behavior of analog integrated circuits [1]. Guerra et. al. introduces a
methedology for symbolic pole/zero extraction based on the formulation of the time-
constant matrix of the circuits. This methodology incorporates approximation
techniques specifically devoted to achieve an optimum trade-off between accuracy

and complexity of the symbolic root expressions.

Another approach allowing the determination of the approximate symbolic
expressions for all poles/zeros of an arbitrary circuit is presented in [10]. This
procedure uses the LR algorithm [11] converging to the eigenvalues of a circuit

matrix (the state matrix in the case of pole computation).

The symbolic LR algorithm using simplification during LR iterations introduced in
[3] for the computation of the approximate symbolic pole/zero expressions. It is
shown that this approach is competitive or better with respect to the best known

approaches. A two transistor amplifier is redesigned using these formulas.

In [4] they present a new matrix-based simplification before generation (SBG)
method for pole/zero analysis which simplifies a symbolic generalized eigenvalue

problem with respect to a selected root. The method uses a fast linear error

estimation formula based on eigenvalue sensitivities to obtain a term ranking.




Accurate and efficient error control is achieved by tracking eigenvaluc shifts
numerically using an iterative generalized eigenvalue solver. The new algorithm is
capable of computing real and complex dominant as well as unobservable poles and

ZEros.

Khodabakhshian [5] proposed an adaptive power system stabilizer New able to
provide acceptable damping over a wide range of operating points. A new technique
called adaptive control strategy is the zero-pole assignment control (PZAC) where
the fransfer function of the system (G,(s)=AS8/AP,) to a standard form of

identification systems based on explicit correction. The controller design is mainly
due to the continuous-time system using delta operator instead of the more usual

operator. Simulation studies have been conducted in several models.
1.2.  FIR Filter

The primary concern in FIR filter design is to find the minimum length finite filter
coctficients for a given set of specifications. However, several other properties of
FIR filters such as minimum phase, linear phase, maximally flat pass band, and
equiripple frequency response arc as important as primary concern in certain
applications. Minimum phase FIR filters are desired in data communication systems,
where the minimum delay is essential [13]. Maximally flatness of pass band response
is desired in radar applications, where periodic amplitude modulations would be .
produced in case there exist ripples in the pass band [14]. Though these ripples are
usually undesired in many applications, in applications requiring low complexity
with less precision, ripples can be acceptable up to a specific limit. In those cases,
equiripple filters provide the worst acceptable performance with minimal cocfficient
length [15, 16]. However, by all means, the linearity of phase is the mostly desired
property in many filtering applications since linear phase systems provide constant
group delay, which in return prevents any phase distortion caused by the filtering
[15, 16, 13, 17]. A related property, group delay of an FIR filter is important in real
time applications such as speech coding, digital modem synchronization [18] since

the group delay of a linear phase FIR filter increases with the number of filter
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coefficients [19]. In addition, linear phase filters with sharp transition regions that are
usually used in narrow frequency band selection applications can have unacceptably
high group delays. Thus, there has been a growing interest in finding filter
coefficients with low group delays [20]. Since, in real time applications low group
delay is required; group delay constraints arc more desired compared to phase

constraints in these applications.
1.2.1 Windowing Based FIR Filter Design

Windowing based FIR filter design techniques make use of frequency response of an
ideal filter [21]. The design procedure starts with the selection of a desired frequency
response, which is typically realizable by inﬁrﬁte length filter coefficients. Since in
reality, only finite length coefficients can be used, a finite subset of infinite number
of coefficients is selected using a window function in time domain. Hence, resulting
frequency response becomes an approximation of desired frequency response.
Though windowing based filter design techniques are fast, they do not satisfy any
optimality criteria and filter coefficients satisfying the predefined specifications are
found in an ad-hoc manner. Other than windowing, there exist different tools as
Chebyshev approximation, FFT, least squares error design, and convex optimization,
which can be combined to obtain filter design techniques with improved robustness

and efficiency.

Unified linear phase FIR filters design, i.e., Parks-McClellan technique, relies on
Chebyshev approximation and is one of the milestone techniques in terms of its
cfficiency and robustness [16]. In Parks-McClellan technique, well-known
Chebychev approximation and Remez exchange algorithm are combined to propose
a unified equiripple linear phase FIR filter design procedure [22,23,24,25]. However,
due to underlying Remez exchange algorithm, Parks-McClellan technique can not
achieve the optimal filter response even though it can obtain the best equitipple
approximation to the desired response [16]. In [26], METEOR, a technique based on

limit approach is proposed. FIR filter design problem for a given set of mask

constraints is formulated as a linearly constrained linear program and solved using




simplex algorithm. Hence, METEOR is capable of finding locally optimum solutions
for any given set of constraints. Around the time METEOR was developed, it was
considered a versatile technique as it is capable of designing linear phase, minimum
phase, and flat pass band filters. On the other hand, METEOR is not capable of
designing nonlinear phase filters and is not able to obtain globally optimal solutions.
In [27, 14], Chebyshev approximation is used to model FIR filter design problem and
solved using a multiple exchange algorithm, which is derived directly from Kuhn-
Tucker conditions. In this formulation, objective is chosen to be the minimization of
least-squares approximation error for given set of linear constraints. Hence, the
technique is named as peak-constrained least-squares (PCLS) approach. Similar to
Remez exchange algorithm, PCLS lacks the optimality. However, efficiency of
PCLS outperformed the Parks-McClellan technique since Reméz exchange algorithm
is replaced with a multiple exchange algorithm. Even though, PCLS is capable of
implementing phase and group delay constraints, for the convergence of PCLS,
appropriate choice of its parameters is essential. In [15], based on projection on
convex sets (POCS) [28], an efficient FFT based equiripple FIR filter design
technique is proposed. In the proposed approach, iterations are performed between
time and frequency domains using efficient FFT algorithm. Since Fourier transforms
preserves convexity, algorithm is guaranteed to converge to a design that satisfies

predefined constraints if a solution exists.

1.3.  Butterworth Filter

Butterworth filter frequency response of the signal processing filter designed as flat
as possible in the pass band. This is also called a flat maximum size filter. This is the
first time in 1930 by English engineer and physicist Stephen Batrvrs in his article
entitled "The Theory of Filter Amplifiers," described [6].

1.4. Radio Frequency Filter

Radio frequency (RF) filter is a two-port network used to control the frequency

response of a high frequency system. In the literature there exist different approaches
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of filter design for high frequency applications. Most commonly used design
methods are known as the image parameter method and the insertion loss method.
Image parameter method consists of cascade of two-port filter sections to provide
desired cutoff frequencies. Image filter design method is simple, however it must be
iterated many times to achieve desired values. Second method is the insertion loss
based design. This method uses network synthesis technique to design filter for
specified frequency response. The design is simplified by low-pass filter prototypes.
Transformation can be then applied to convert the other types of filters such as high-
pass, band-pass and stop-band.

1.5. Schedule of Thesis

In chapter 2 of the thesis, some fundamental theoretical concepts of filters are

reviewed in a brief manner. Insertion loss based filter design for Butterworth and

Chebyshev filters with only lumped and distributed elements are studied.
In the chapter 3 the method of finding root is described.

In the fourth section, the result and discussion is given. A conclusion is given in the

last section.




CHAPTER 2

THE HIGH ORDER OF LOW-PASS FILTERS

2.1 Fundamental Concepts on Filters

Input filter function to separate the different frequency components of the signal
passes through a filter. Filters may be classified in a number of ways. For example,
analog filters are used to process analog signals, which are a function of a continuous
time variable. Digital filters, on the other hand, process digitized continuous
waveforms. Analog passive filters may be classified as lumped element or distributed
element devices. We may also classify filters as passive or active depending on the
type of elements used in their construction. Five basic types of selective networks are
commonly referred to in filter design. These band-stop, band pass, high pass, and
low-pass filters includes all transition. Network capabilities p = q Laplace transfer
function representing the complex frequency defined for the conversion of H (p) is
determined by. The transfer function of the input signal, voltage or current output

signal is the ratio of:

H(j0) =~ = (jw)e " @1

o

Network input signal passes through a filter frequency and some others will stop and
be linear circuit, this function is performed by add or creat a new frequency element.
Ideal without loss, through identifying the passband frequency band, and ideally
infinite loss, frequency of stops group, called the stop band. A passband corner in

Figure 1. shows these losses represent an ideal low-pass filter. The frequency o, is

called the cut-off frequency of the filter. This element of the passband to stop due to
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that separates.

physical tape circuit requires a number of ideal low-pass filter is not infinite sudden
changes that may take place. A real filter transfer characteristic, make a minimum

loss passband transition to the maximum passband and stop band frequency range

As the selectivity defined by the transition band approaches the ideal steep
characteristic, more complex and expensive filters. Similar considerations linear
phase and / or group delay may be applied in the design of filters using plain.
Passband, transition band and stop band of the concept of the transmission behavior

of the filter as shown in Figure 1. are five main types of features allow.

| Hifer | 4 | R | | Hjes |
Ho Hy Hy,
g oy W o £y S I
Low Pass High Pass Band Pass
LR |Hifei g
Hy — Hy
it 0] L] i)
Band Stop All Pass

Figure 1 Transfer function characteristics for major filter types

So small it can easily be converted lost time frequency domain transfer function

p = jo. The filter transfer function of the input signal voltage (or current) and can

be written as a ratio of two polynomials output signal voltage ratio:

_Pp) 4 taptap +..+a, p"

H(p)

T O(p)  byrhptbpt 4o tb D"

22)




polynomials P (p) and S (p) where m and n, is order respectively. Within these
polynomials, numerator and denominator polynomial order m n must be equal to or

less are Hurwitz stable.

Polynomial Q(p) as well as the order of the filters. Polynomial Q (p) and p (p) can be

written as a-factor and

H(py=L= 2P =2, 0P =2). (p=z,)
P-k)p-k)p—k)(p-k,)

(2.3)

Values, 23,72, 71. . . Z transfer function, or simply called zero-zero transmission. Q
(s), K1, K2, K3 radicals. ., Kn, a transfer function poles. Poles and zeros, real or
complex, but it should bappen in case of complex conjugate pair of poles and may be
zero. Represents loss or attenuation of the voltage transfer function of filter circuit

size plot and given in dB.
L, =20log|H(p) 2.4)

Poles and zeros realizable passive network, you must follow certain rules:
* The left half of all phases of a transfer function occurs in the p-plane. Left half-

plane contains the imaginary -Axis jow.

* Available in pairs of complex conjugate complex poles and zeros. Therefore, on the

imaginary axis, zeros and poles could be single [31].

Insertion loss in the passband and a systematic method of control over amplitude and
phase bandstop characteristics allow to synthesize highly desired response.
Considered to meet the requirements necessary to design best practices. For example,
the most important is the loss of at least one insert used a binomial response.
Chebyshev response, 1 would like to meet the requirements for sharp cuts. The
attenuation rate of the victim it is possible, a better phase response may be obtained

using the linear phase filter design. In any case, the high-order filter insertion loss

8




filter performance method enables improved in a simple manner. Adding loss
method, a filter response is well-defined by the additional power defeat or loss ratio

Pir,

1

——— (2.5)
1-I' (o)

5
7

where; Pi = Power distributed to the capacity, Ps = Power available from the source

and I' = the reflection coefficient at the input port. The insertion loss (IL.) in dB is

IL =10log P, (2.6)

We know that JF (a))l2 is an even function of @, therefore it can be expressed as a

polynomial in @®. We can write

M(o?)
M@0 )+ N(o?)

o) = (2.7)

Where M and N are real polynomials in @”. If we substitute this form in power loss

ratio gives following form.

N M(w?)
N(o")

(2.8)

LR

For a filter to be physically realizable its power loss ratio must be given in this form.

2.1.1 Maximally Flat

This property is also called binomial or Butterworth response. Provides the fastest

possible response for a given passband filter complexity or order. For a low-pass

9




filter is indicated by
P =1+t (0/0,)"" (2.9)

The filter is of the order and @, cutoff frequency. Passband band @ =0 to @ = @,

power loss rate 1+k* extends to the edges. If you choose this -3 dB point, we have k
=1.

For w>wm,, the aitenuation increase monotonically with frequency. For

w>>0m, Ppz=k’(w/o,)" which shows that the insertion loss increases at the rate

of 20 dB /decade.
2.1.2 Equal Ripple

This characteristic is also called the Chebyshev response. If the degree as a

Chebyshev polynomials are used to determine the insertion loss of the low-pass filter

Py =1+ET (0/@,) (2.10)

Ta(x) oscillates between +1 since [x] <1 passband response amplitude will have the

1 + K2 waves. Thus k* determines the pass band ripple levels. For very large x,

T,(x)=1/2(2x)" so for w>>a_, would insertion loss

K 2o

Fp =€ )7 (2.11)

a)(.'

The insertion loss for the Chebyshev case is (22%)/4 greater than Butterworth

response, at any given frequency where @ >> o, .

10




2.2 Low-Pass Filter

Insertion loss based design method is fully specified with a frequency response of a
filter design uses network synthesis techniques. Impedance and frequency
normalized design is simplified with respect, starting with a low-pass filter prototype.
After low-pass prototype is obtained, after conversion into the desired frequency
range and the impedance level is applied to convert the prototype design. Two
fundamental Iow-bass characteristics are commonly preferred for the prototype filter

design. These are Butterworth and Chebyshev type filters.
2.2.1 Butterworth Filter

The Butterworth, or “maximally flat” response Provides the fastest possible response
for a given passband filter complexity. More closely approximate location of a filter
with a very reactive element filter can be expected to have a right-angled shape with
less reactive elements. N polarity (the reactive components) to a filter, low pass,

Butterworth approach involves a transition-band maximum plateau close @ =0.

Trnad

T I
&n

Y™y .

g2 _flL\gi %% %ﬂm %i}"na

Figure 2 Low-pass filter network topology

BAAAE —*\%;W
SH P
j

¢ 5 8

Function to obtain this type of filter is
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N _ H,
H(jo) =Gy =2 oo 2.12)

Here Hp is less than and equal one. The first 2n-1, the denominator of all derivatives
of this function Zero @ =0, it implies that the maximum level. Pole of this function
are all One size and are separated on the radiant unit circle. It also has no poles on

the axis.

It is usually arranged in the transition-band minimum requirements. Herein For

example, a small amount of poles required for yield the desired properties

_ log[(10%19 ~1)(10%="" 1]
2log(w, /mp)

(2.13)

Maximum passband attenuation in this expression 0<w <@, is o, . Minimum

diminution in stopband, m, <@ <0, is o, .

Passband edge of time, will weaken the power of the filter ¥ or -3 dB.
Iteration formulation for such filter fundamentals is shown in Figure 2. These

reactions can produce a variety of references [29].

(2k-Dx

1]

g(] = gnﬂ :15 gk :2S]n|: :| k:1,2,3,...,n7 (214)

Where is the source for the normalized low-pass design and load terminations are

13, if the cutoff frequency is set as @, =1 rad/s and passband ripple is assumed 3

dB, the element values are calculated as in Table 1 [29].

It is possible to scale the response to have other attenuation levels at w =1 rad/s. For

an attenuation of K, in dB:

12




01K,

@, =107 =1e” (2.15)

In order for the filter to have K, attenuation at w =1 rad/s , the 3 dB case pole

positions or component values must be scaled @, value.
' P

Table 1 Normalized Low Pass Butterworth Filter Element Values (@, =1 rad/s ; 3

dB Passband Ripple)
& ga Ha g s He 7 Hn g Hip
2.000 ' ;
1.414 | 1.414 |

1.000 | 2.000 | 1.000
0.765 [ 1.847 | 1.847 | 0.765
0.618 [ 1.618 | 2.000 [ 1.618 | 0.618
0517 [ 1.414 | 1.931 ] 1.931 | 1.414 | 0517
0.445 | 1.246 | 1.801 | 2.000 | 1.801 | 1.046 | 0.445
0.390 | 1.111 | 1.662 | 1.961 | 1.961 [ 1.662 | 1.111 | 0.390
0.347 | 1.000 | 1.532 [ 1.879 [ 2.000 | 1.879 | 1.532 | 1.000 | 0.347
0.312 1 0.907 | 1.414 [ 1.782 | 1.975 | 1.975 [ 1.782 | 1.414 | 0.907 | 0.312
L, | € | Ly | € | Ly | € | L, | € | Ly | €

o|wlce|a|njun| s wie|—]Z

Referring to Figure 2, where resources for normalized low-pass design and load i
terminations are 1Q, the cutoff frequency is @, =1 rad/s and passband ripple 1 dB,

the element values are calculated as in Table 2 [29]. !

Table 2 Normalized Low Pass Butterworth Filter Element Values (@, =1 rad/s; 1

dB Passband Ripple)
4 Ha B3 Bs &z e b= Hg Hs F1p
1.01
1.008 | 1.008

0.798 | 1.596 | 0.798
0.646 | 1.560 | 1.560 | 0.646
0.539 | 1.413 | 1.747 | 1.413 | 0.539
0562 | 1.263 | 1.726 | 1.726 | 1.263 | 0.562
0.404 | 1.132 | 1.636 | 1.815 | 1.636 | 1.132 | 0.404
0.358 | 1.021 | 1.528 | 1.802 | 1.802 | 1.538 | 1.021 | 0.358
03221 0.927 | 1421 | 1.743 | 1.855 | 1.743 | 1.421 | 0.927 | 0.322
0.292 1 0.848 | 1.321 | 1.665 | 1.846 | 1.846 | 1.665 | 1.321 | 0.848 | 0.292

il

o|wico| || Wi ~|2Z

-]




2.3 Fifth Order of Butterworth Low-Pass Filter

Butterworth filter's frequency response in the passband (ie there are no fluctuations)
at the maximum Ievel and stop band [7] right off the roll to zero. When viewed on a
logarithmic Bode plot linearly in response to negative infinity to the right off the
slopes. A first order filter response (All firstorder lowpass filter has same normalized
frequency answer) -6 dB per octave (-20 dB per ten) roll off. -12 DB per octave
second order filter, -18 dB, and therefore reduces the third order. Butterworth filter
passband and / or.non-stop band ripple monotonous, monotonous function of varying
size with @ Unlike other filter types. A Chebyshev Type II / Type T compared to
filter or elliptical filter, Butterworth has slow roll-off (figure 4), thus requiring a
higher order to implement a specific stop-band characteristics; but Butterworth pass
filters, Chebyshev Type Iis / Type II and elliptic filter passband can achieve a more

linear phase response. In this study, five degree used this filter.

Figure 3 Butterworth is a discrete-time filter in addition to other common filter types

an image showing the gain. All of these filters are of fifth order.

‘B m%

—20 ¥

\
0 | \\

_10_0001 L PR ....é-:i x P ..“.1 s s s ..10 5 X ‘.nlﬁ‘)

w/rad s}

[

Figure 3 Order with cut-off frequency from 1 to 5 Butterworth lowpass filters gain
plot @, =1.

14




In figure 3, The filter order where the slope dB / on 20N note. Butterworth filter,
Chebyshev filter or roll around slower than elliptic filter cutoff frequency, but

without surge. This roles is illustrated in figure 2.

Butterworth Chebyshev type |

Chebyshev type 2 Efliptic

1 -~ i Y !
0.8 — 08 - =
0.6 0.6 |- =
04 - 04 - —
02 -] 02 - : —
0 i 0 ]

0 0.2 04 06 0.8 i 0 0.2 04 06 08 1

Figure 4 Butterworth filter, Chebyshev type 1 filter, Chebyshev type 2 filter, Elliptic
filter.

Example 2.1
Here we are going to calculate the root of low-pass Butterworth filter. According to

Table 1 normalized Butterworth filter structure and element values for order 5 are

given in Figure 5.
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Figure 5 Low-pass Butterworth filter network topology for order 5

2.3.2 The Chebyshev Filter

Chebyshev filter design function provides a given passband ripple or the maximum
bandwidth possible for possible low-pass band ripple for a given bandwidth.

Chebyshev converter gain low-pass filter function

Hﬂ
1+ THw/o,)

H(jo) =G, = (2.16)

which @, is low-pass cutoff frequency. An integer value of ¢ is less than 1 and is a

measure of the transition waves. His argument is no axis least lie on an ellipse with
the poles of the transfer function is 1-pole Chebyshev function Ta(x) oscillates
between +1 and -1. Chebyshev function could be written in a method clearly

indicating this feature:
T (x)=cos[nx arccos(x)] 0<x<«l 2.17)
T, (x) = cosh| nxarccos A(x)] x>1
Then Tn(x) is less than 1 in the passband, passband transfer function is
<|H (o) <1 (2.18)

1+
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For an attenuation of K, in dB, £ can be calculated as

g =~10""% _1 (2.19)

Outside the passband, Ta(x) Almost exponenﬁal increase. Chebyshev functions could

be find in terms of a polynomial formula to repeat his argument:
T, (6) =207, (0) T, , () - (2.20)

The formula begins by setting To(x) = 1 and Ti(x) = x. Also for n odd Tn{0) = 0 and
T, (£1)==+1, while for n even 7,(0) = (-1)""* and 7, (+1y=1.

The next few Chebyshev functions are shown below:

T,(x)=2x* -1

T,(x) =4x" —3x

T,(x)=8x"—8x? +1

Ti(x)=16x" —20x> + 5x

To(x) =32x" —48x" +18x> -1

T,(x)=64x" —112x° +56x° — 7x

T,(x) =128x" —256x° +160x" —=32x> +1
T,(x) =256x" = 576x" + 432x° —120x" + 9x

(2.21)

Just like Butterworth approach has a number of iteration formula for Chebyshev
filter. Filter first iteration formulas for g values find expression requires expanding
the Chebyshev function with its own set. Correlation is made between the circuit and
the function and so on (a certain number n of the reactive component) low-pass

prototype filter structure is then th order filter functions are synchronized.

Butterworth and Chebyshev approach is a significant difference between the gnt 1.
Uneven levels even order Chebyshev impedance termination impedance is usually

prevented by limiting the choices for the Chebyshev functions only one value. After

17




identifying these two filter functions pole transfer function of the circuit element
values are found using the network synthesis techniques.
The recursive element value expression for Chebyshev filters with prescribed ripple

and order are calculated as given below [30]

2a,
1T T,
sich SI2N
2
B E A+
VI+E® -1
by =sih > Py gin? ¥T. 2.22)
2N N
. 2k-1
a, =sin ——r,
N
g, = m k=123,..n
by 18

For different passband ripple levels (which is a function of £) there exist tabularized
filter element values for a Chebyshev response [31]. A typical ripple case with 1 dB
passband ripple is given in Table 3 [31].

Table 3 Normalized Low Pass Chebyshev Filter Element Values(wc =1 rad/s; 1 dB

Pass Band Ripple)
By &3 B3 G Hz e 87 s Hs Gy
1.017
1.821 | 0.685

2.023 | 0.994 | 2.023

2.099 | 1.064 | 2.831 | 0.789

2.134 1 1.091 | 3.000 | 1.091 | 2.134

2.154 1 1.104 | 3.063 | 1.157 | 2.936 | 0.810

2,166 | 1.111 | 3.093 | 1.173 | 3.093 | 1.111 | 2.166

2174 11.116 | 3.110 | 1.183 | 3.148 ! 1.169 | 2.968 | 0.817

2179 | 1.119 1 3,121 | 1.189 [ 3.174 | 1.189 | 3.121 | 1.119 | 2.179

Sie|se<|a|ulslwi=Z

3.538 | 0.777 | 4.676 | 0.813 [ 4.742 | 0.816 | 4.726 | 0.805 | 4.514 | 0.609
Ly | & | ks | ¢ | Lo | € |1, | € | s | €y

If the passband frequency is maximum and the minimum stopband frequency yonder

which the diminution is always larger than «_, , is @,, than the required number of

poles of the function is:
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arccos h{ ! (10%mx"10 _ 1)'”2}
£

n=

(2.23)
arccos h(m_ /@)

Example 2.2

In this example the Chebyshev Low — pass filter is shown. Here we used fifth order
of Chebyshef filter. According to Table 3 normalized Chebyshev element values for

order 5 are given in Figure 2.5

L1 L3 L5

2 e (4

_D =

Figure 6 Low pass Chebyshev filter network topology for order 5

2.4 The 10-th Order FIR Filter

An FIR filter of length L is typically characterized by either its impulse response hy,

0 <n <L -1 orits frequency response as:
-l )
H({w)= Zh”e"”” Ve [— 7.?,7!] (2.24)
=0

where @ is the normalized frequency. In optimization based FIR filter design, filter

coefficients are typically obtained by imposing desired constraints on the magnitude

response of the filter as in the following feasibility problem:
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Jind h eR 0<n<l-|,
subject to|H(w) <M, (0), Vo el0,7] (2.25)

[H(o) 2 M, (0),Voe,o |

where Muy(w) and Mi(w) are the upper and lower magnitude response masks shown in
Fig. 7.

e wy ' ' ' ' : 1
0 TP
= m e i {[ﬂ}
| I
_1p|05 1
)
B
~§ —20} .
& [§]
&
= -30f -
0.5
—40F o 0.1 0.2
1 i I

i ] 1 i i 1
t] .05 &1 015 g2 0.25 43 435 0.4 045 0.5
@ {(Normalized Frequency)

Figure 7 A typical set of mask constraints on the magnitude response of an FIR
filter. Mu(®) and Mi{w) = 1/1.1 are the upper and lower mask constraints on the
magnitude response with transition band w, = 0.16 < ® < 0.20 = o, respectively.

Mu(®) = 1.1 in the pass band and Mu(e) = 0.0001 in the stop band.

The passband and stopband of the filter are defined as [0, wp] and [ws, =],
respectively. Since the magnitude response of an FIR filter with real coefficients is
an even function, design constraints can be imposed on the nonnegative part of the

spectrum. Then, (2.25) can be written in vector form as:

find heR",
subject to h A(@)h< M, (o), Vo <[0,7] (2.26)

W A)hz My(@), Vo elo,o,]
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Here, h = [hy, h, ..., hi~1]" and A(w) is given as:

A®) ”@ v (@ . (2.27)

v(w) = [l,ef‘”,..., ej‘”(L_l)]l
Since its inception, digital finite impulse response (FIR) filters have been one of the
prominent building blocks in digital signal processing (DSP) because of their
benefits on hardware implementation in terms of cost, efficiency and design
flexibility [12-13]. Accordingly, a diverse class of FIR filter design techniques
including windowing, Fast Fourier Transform (FFT), Chebyshev approximation,
least squares error, and convex optimization based techniques have been proposed in
the literature {14-15]. Among prominent techniques, optimization based FIR filter
design methods significantly flourished compared to others with the progression in
computing resources in last 2 decades {12, 16]. Development of efficient convex
optimization solvers, i.e., interior-point solvers, and introduction of flexible convex
formulations such as Semidefinite Programming (SDP) and Second-Order Cone
Programming (SOCP) triggered new possibilities in FIR filter design via convex

optimization [17-18].

10-th degree transfer function of the FIR impulse response of the filter by z-

transform Found:

10
H(z) =Y h(n)z™" =0-0.0127z" —0.024857 +

h=0
0.0638z7° +0.2761z™* + 0.4z7° + 0.2761z" (2.28)
+0.0638z7" —0.0248z~% —0.01272°

Using the following expression:

X(e')= ix(n)e_ﬂ” =X(z=e") (2.29)

MN=—a0
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It is possible to obtain a constant frequency normalized transfer function. If for

example @ = 0.2z than:

H(e’"*")=—0.012727""" —0.0248 77" 4
0063827/ +0.2761z7°% + 0477 + 02761z (2.30)
+0.06382771% —0.0248z 1" —0.012757 %+

An example of a hardware implementation of this filter is shown in Figure 8.

Pole and zero of thé transfer function are very essential for analysis and synthesis of
discrete-time systems. According to their position, this is a discrete-time system
stability test equipment due to rounding filter coefficients encountered during the
implementation of the filter software application as well as mistakes made possible

to detect errors.




xim) v(n) N

Tg
p.4
T

¥ ” o - :f:} |
z ~..0.0638 Ji
¥ g ,/;;;ﬂ_"—*{”i- }

o *
z .. 0.0638 1
: - M’“"»-\,‘ ) (f-ﬂ "'*% ;

W ,@‘*"’”M’ S i

et

Figure 8 FIR filter realization
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CHAPTER 3

PROPOSED METHOD

3.1 Root Finding Algorithm

A non-linear function can be represented by F (x). Thus, non-linear equations can be

written more to hang [8]

F(x)=0; G.1)

with a Taylor, we have G (x) = 0, which will be described later expressed arbitrary

function in terms of a function.

F)= e+ AU G- ()

(32)
+“—zgi)(e(x)_e(xﬂ Vo
Where
a(x, )= gg} (3.3)
a.,(x,)= Z(E;)) i=234,. (3.4)
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Therefore

F)= R+ ) 6~ 6,)

G'(x,)

(3.5) 5
F'(x,) F(x, )G"(x) 2 é
{60y el fow-aty+. i
|
Considering the overhead equation f (x) may be approaching: !
F '(xn )
Flx)~ F(x, )+ ey G)=6(x,) (3.6)
xﬂ )
suppose right hand of equation (3.5) be represented by H(x):
F’(xu ) 3
H) =Pl )+ 3 (G6)-6,) (3.7)
x,)
In order for H(x) to be companionable with F(x) around x = x, 1t must have:
H(x,)=Flx,) (3.8)
Hx,)=F(x,) (3.9)
H'(x,)=F"(x,) (3.10)
Conditions are satisfied up automatically. Last case we should have to satisfy:
) ()
= 2 3.11
Fs)~ 6l,) o

By providing Now, f (x) in Eq = 0. (3.6), we obtain:
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X, = G"{G(xn )-G'(x, )%_))J (3.12)

Note that this equation we have G (x) = x, will be equal to Newton's formula.

xn+[ =X, + Fr(xn)xln I—M !
Fh(xn) F'(x") (313)
n=0,12,..

3.2 Selection of G(x)

G (x) is a function should be closely. In addition, the method of equations. Function
(3.12) opposite G (x) can be obtained. Polynomials and exponential functions are
usually suitable for this purpose. Thus, G (x) forms k* x* or ¢ can be expressed by

one. G (x) = x is from Eq. (3.11) and (3.12) we have:

" _ k=2 "
Fle) _Ge-D0% "y, 5 FG) (3.14)
F(x,) (k)x, Fi(x,)
k-1 ‘ :
xu+l =(x: _kiﬂ{'j_)‘)”k :>xn+1 zxrr X(l_k—fﬁg)_)”k ]’IZO, 1’ 2’ (315) | I
F'(x”) anr(xn) |
If G(x)=k", then:
" Ky 2 F:'(x,,) |
Fr(xn) _k xx(ln(k)) NP (3.16)
F'(x,)  k*(n( k)
X X, F(xn)F"(xn)
xn+1=h](k"—ln(k)><k W) (317)

Therefore:
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Xpp = X, + M X ]n(l - F(xn)F (an)
F'(x,) F(x,)

) n=0,1,2, .. (3.18)
G (x) as an appropriate choice, F(x) note is based. F (x) contains exponential terms,
G (x) = k* convergence can offer a good rate. On the other hand, G (x) = xX, suitable
for polynomial equations over the x*. Also this set, T note (x) to be the same result as

the x,, =@(x,) as G(x)=k* (Eq. 3.18).
Example 1

Also consider the following nonlinear equations to stand on the proposed method:
F(x)=tan{——)xe™ —x +100 (3.19)
x°+1

To calculate the root of the equation, the initial value X0 = 1800 is arbitrary. In this
example, G(x) is x*. Table 4 shows the convergence of the date of the proposed
method. I (x) and H (x) between the comparison procedure also describes the

method shown in Fig. 9.
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Figure 9 Compatibility between F(x) and H(x) around the starting point in each step
for Eq. (3.19).

This form of charts, each step around the start point, F (x) and (x) shows the
compatibility between II. Although this is far from the initial value in step 4 to find

root root algorithm can be seen from Table 4 |F(x, )| = 4.26 x107.

Table 4
For the Convergence of the Proposed Method (3.19).
Step Xi k i Fx, )]
1 1800 5.000000000000000 1.889567¢+016
2 2.504806159963997 4.998552959678708 1.430728223
3 2.512032208495923 4.998581738776183 1.993302¢-008
4 2.512032208395826 4.998581738775789 4.263256e-014
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Example 2. Consider the following nonlincar equation:
F(zy=sin(z)-z=0 (3.20)

Kepler's equation with this equation and M = 0 [21] is a special case. This equation
G (%) ex is set. Set different roots, private complex ones, to determine the ability of
the proposed method to find the initial value for z, this and the real numbers and 1
ranged between increments from -20 to 20 Therefore algorithm 412 = running for
1681 different initial values. Each study is set for stopping by algorithm 13 different
roots (real and complex. roots of twelve) were found in Figure above. Found by
Algorithm 3.20 shows the roots. Figure 3 shows the initial value of 13 different root
zones of convergence. From Fig. 3. different starting values for the single convergent
root can find harmony. The initial value of the field is extended towards the real axis,
therefore, the algorithm (3.20) You can find more complex roots. Only you can find
all the roots of the algorithm related domain actual initial values are interesting. So,
[-20 20] is the first value of the domain before No. 13 different root causes. Do not
forget to examine specific cases of the Kepler equation in this example. E and M

changes related to the initial values of the arca and the roots will find all.

3.2.1 Rate of Convergence

Let &, =7 —x; be the actual error between x; and the root r. By means of Eq. (3.5)

and according to Eq. (3.11) we can write:

F(r) F(x)+gi ))(cr( =G )+ G -Gy =0 32
We have:
£ =G (G) -G ) D) =67 601+ 2 T Gy -y a2)
. ’ F(x,) EWay
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with Taylor series we have:

G(r)-G(x) ~ £,G(x,) (3.23)

Therefore from Eqgs. (3.21) and (3.22) we can conclude:

1 3 G’ i i 3 -1 3 ’ i ! 3
X =660+ 5 R 26 Gop (G ey L 6w
Therefore:
. =g :_(fsk(G'(x;‘))&‘ 1 )8{3 (3'25)

MU R GUG)

3.2.2 Numerical Examples

We now offer some examples to illustrate the effectiveness of the newly developed
management. This section compares the proposed method with the MATLAB
command fsolv, the methods of Sénchez (y,; and ;) [22], the method of Ujevic
[23],

In JeSheng et al [24] and Newton's method, all calculations were performed using
MATLAB. Computer programs used for the following stopping criteria:

F(x,) <& (3.26)

£=35x10"" was used.
The aim is to find the initial value of a large amount of radicals methods to compare
the strength. The following examples NR method specifies the number of Roots

found in the range prescribed initial value. Number indicates that failed, Ave F
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evaluation function for a method to find a root shows the average number. (Note

methods 30- repeat step one takes the punishment he fails to find any root). G
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CHAPTER 4

EXPERIMENTAIL RESULT

Example 1.

For testing of our method in first step we consider the following nonlinear equation:

F(z)=sin(z)—z 4.1

This equation is a special case of the Kepler equation with & =1 and M = 0 [9]. For

this equation G(x) is set to ekx. To determine the ability of the proposed method for

finding different roots, specially complex ones, initial values for z are set to @+ 5 ,

that ¢ and A are real numbers and vary from -20 to 20 with steps of 1. Therefore

the algorithm runs for 412 = 1681 different initial values. The stopping criteria for

each run is set to ’F (x; )J <5x107"*. The algorithm found 13 different roots (one real

and twelve complex roots). Figure 10. shows the roots found by the algorithm. The
roots numbered from 1 to 13.

Also, equation (4.1) is calculate and result is shown in figure 10.
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Figure 10 Roots of Eq. (4.1) found by the algorithm (one real and twelve complex

roots).

Example 2.

Analog filters place in analog interface circuits in digital systems as it can be seen in
many applications. One of them is Bluetooth/Wi-Fi (Wireless Fidelity) receiver.
Literature survey shows that 5th order Butterworth filter is appropriate for
Bluetooth/Wi-Fi receiver [32, 33, 34].

In square root domain, high order filters are designed by cascading first and second
order ones [34]. To design the 5th order Butterworth lowpass filter, its transfer
function is decomposed to first a second order lowpass filters. The transfer function

of normalized 5th order Butterworth lowpass filter is written as;

(s+1)s> +0.61805 +1)s* +1.6180s+1) (4.2)
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According to Equation (4.2), the filter can be designed by cascading one first order

lowpass filter and two second order lowpass filters. The transfer functions of each
part are defined as;

)
@y 5

Hyy(s) = (4.3)
§+m,
0.618]

H, ,(s)= 0 4.4
2 (S) s +0.6180,5 + o} *4)
1.618w2
H s (s) = (4.5)

s +1.618w,5 + m?

A 5th-order, 1dB-ripple Butterworth low pass filter is constructed from two non- |
identical 2nd-order sections and an output RC network (see figure 11). 1

T anarez s ' |

Figure 11 A Sth-order, 1dB-ripple Butterworth low pass filter
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Figure 12 Roots of Eq. (4.2) found by the algorithm

Figure 12. shows the result of equation (4.2).

Example 3.

The transfer function of the cascade elements: Many feedback systems are load

components to each other. Consider the system shown in Figure 13.

N

e VO == e
iy

o . — o

Figure 13 Electrical system

35




The transfer function of figure 13 is:
i
Hl (S) _ RZ (4.6) i
0@y  RCR,C,s* +(RC, +R,C, +R,C)s +1
IR R R R R PR R P PP PR
08k e SRR S U S
1] S R, o e, TSN
] AU PR A R
. | | i s z z
O 02 TP PRREE ........ e RSP PRISTRIRS .............. R TTRERE :
E’ k... e R T
£ ;
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o :
1 T L LTS ............................................ |
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08 b TS SR S
1 1 l 3 1 1
12 10 8 I 4 2 0
o, Real Part :
Figure 14 Roots of Eq. (4.6) found by the algorithm
Example 4.
10-th degree FIR filter design using the Hamming window is impulse response:
h(n)={0,-0.0127,-0.0248,0.0638,0.2761,0.4,0.2761,0.0638,-0.0248,-0.0127,0}

This filter has the impulse response of the transfer function by z transform:
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10
H(z)=) h(mz" =0-0.0127z" - 0.0248z > +

n=0
0.0638z7° +0.2761z™* +0.4z7° +02761z"°
+0.0638z77 —0.0248z° —0.0127z"°

i For finding of the poles of this filter we apply the method and then we get the result !
I (see figure 15). :
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Figure 15 Roots of FIR filter found by the algorithm
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Table 5 Comparison Between Some Methods

Methods Iteration Iteration [teration Iteration
Example 1 Example 2 Example 3 Example 4
Newton 217778 19.3580 6.4000 9.6790
Our method 4.9136 93086 3.9600 8.0741

In this chapter we did show the result of root finding method for a lot of example. As

seen in the result our method is good to find the roots.for example in example 1, the

clasic Newton method get in 4.9136 average iteration value, but in our method same

example is get in 21.7778 iteration average value. This show the rubustness of or

method than the other method.
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CHAPTER 5
CONCLUSIONS

In this thesis, algorithms cubic nonlinear equations convergent iterative methods for
calculating the compiex roots modified, then we wrote down their programs by
Matlab applications version 2014a by taking complex initial point to get the complex
roots if it exists if not we real initial point to get real root. In this thesis we study
initial point have real and imaginary part, as future work we modified these
algorithm to compute the complex roots if the initial point is complex.

Finite impulse response filters have been one of the primary topics of digital signal
processing since their inception. Consequently, diverse class of design techniques
including Chebyshev approximation, Fast Fourier Transform and optimization based
methods had been proposed in the literature. With developments in computational
tools, new root finding technique tools and formulations on filters including interior-
point solvers and semidefinite programming, emerged. Since FIR filter design
problem can be modelled as a quadratically constrained quadratic program, filter
design problem can be solved via interior-point based convex optimization methods
such as semidefinite programming.

This thesis, presente a new, simple, effective and flexible method Butterworth filter
to calculate the real and complex roots. You can find more roots compared to other
existing methods proposed method numerical examples (especially complex roots)
shows. The location of the initial value as the initial value so you can find the root of
the method is pretty solid. In addition, the proposed method can handle complex

starting values of other more efficient methods.
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Future Work;

1. In the future we can to employee this algorithm on hardware the advantage of

our method is fast and also the complexity of our method is very low, for this !
reason we can use in hardware systems. |
2. We used cubically éonvergent iterative method for zero — pole analysis of f
high order filter circuits method, in the future we will test and use the other
methods for compression.
3. We used FIR filter, Butherworth, Chebishev in future we will use other low
pass filter, and We will try to get high accuracy.
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