
 

 

DEEP LEARNING BASED PHISHING WEB PAGE DETECTION 

 

 

 

 

 

 

 

 

TEVFİK UĞUR BASTEM 

 

 

 

 

 

 

 

 

 

 

JANUARY 2022  



 
 

ÇANKAYA UNIVERSITY 

 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

 

DEPARTMENT OF COMPUTER ENGINEERING 

MASTER’S THESIS IN 

COMPUTER ENGINEERING 

 

 

 

 

 

 

DEEP LEARNING BASED PHISHING WEB PAGE DETECTION 

 

 

 

 

 

TEVFİK UĞUR BASTEM 

 

 

 

 

 

 

 

JANUARY 2022  



iv 
 

ABSTRACT 

 

DEEP LEARNING BASED PHISHING WEB PAGE DETECTION 

 

BASTEM, Tevfik Uğur 

Master of Science in Computer Engineering 

 

 Supervisor: Assist. Prof. Dr. Abdül Kadir GÖRÜR 

Co-Advisor: Assoc. Prof. Dr. Ali Seydi KEÇELİ 

January 2022, 53 pages. 

 

With the increase in the usage of e-commerce, social media and digital 

entertainment services, there is a tremendous increase in phishing activities. In this 

study, based on the observation of phishing activities, a study has been carried out to 

detect phishing websites with deep models and transfer learning. Within the scope of 

the study, a data set containing a total of 2852 screenshots, consisting of real and fake 

screenshots of websites such as adobe, amazon, apple and microsoft etc. was used. The 

results obtained by using transfer learning from AlexNet, VGG16 and RESNET50 

models as well as the proposed multi- input CNN model were analyzed. Promising 

results are obtained from the experiments. The effects of the obtained findings on other 

future studies were discussed.

 

Keywords: AlexNet, VGG16, RESNET50, Transfer learning, Multi-input CNN, 

Phishing 
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ÖZ 

 

DERİN ÖĞRENME TABANLI KİMLİK AVI WEB SAYFASI TESPİTİ 

 

BASTEM, Tevfik Uğur 

Bilgisayar Mühendisliği Yüksek Lisans 

 

                             Danışman: Dr. Öğr. Üyesi Abdül Kadir GÖRÜR 

Ortak Danışman: Doç. Dr. Ali Seydi KEÇELİ 

Ocak 2022, 53 sayfa 

  

E-ticaret, sosyal medya ve dijital hizmetlerin kullanımının artmasıyla birlikte 

oltalama faaliyetlerinde muazzam bir artış yaşanmaktadır. Bu çalışmada, oltalama 

faaliyetlerinin gözlemlenmesinden yola çıkarak, transfer öğrenme yöntemleri ile sahte 

web sitelerinin tespitini yapacak bir çalışma gerçekleştirilmiştir. Çalışma kapsamında, 

adobe, amazon, apple, microsoft gibi web sitelerinin gerçek ve sahte ekran 

görüntülerinden oluşsan toplam 2852 ekran görüntüsü içeren bir veri setinden 

yararlanılmıştır. AlexNet, VGG16, RESNET50 transfer öğrenme yöntemleri yanı sıra 

kendi geliştirdiğimiz çok girişli CNN modelini kullanarak, elde edilen sonuçlar analiz 

edilmiştir. Elde edilen bulguların gelecekte yapılabilecek diğer çalışmalara etkisi 

tartışılmıştır. 

 

Anahtar Kelimeler: AlexNet, VGG16, RESNET50, Transfer öğrenimi, Çok girdili 

sinir ağı, Oltalama   
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CHAPTER I 

 

INTRODUCTION 

 

In working against phishing attacks, phishing prediction heuristics are essential 

in developing solutions. However, phishing attacks continue to increase today and 

reflect the need for higher-precision solutions. It is getting more difficult to detect these 

phishing attacks with traditional methods. Deep learning approaches come to the fore 

in order to overcome this problem.  

The most widely used of these methods are convolutional neural networks 

(CNN). According to the designed architecture, CNN takes the raw images as input 

and learns the attributes at various levels. Moreover, the CNN is classified using 

different machine learning methods and extracting the features obtained from end-to-

end or after the CNN itself. For example, from the amazon screenshots in the dataset, 

the necessary attributes are automatically learned to distinguish which screenshots are 

fake and real. In this thesis, different deep learning approaches have been tested to 

determine the screenshots of fake websites.  

Models using the AlexNet and VGG16 architectures directly, and a multi-input 

CNN model using with ResNet 50 model. In addition, within the scope of the thesis, 

the VGG16 network was used for transfer learning. The general flow diagram of the 

proposed method is given in Figure 1.1. Higher classification success rates are 

obtained by combining the features obtained from the raw images with the multi-input 

network and the features obtained by transfer learning on a single network. 
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     Figure 1.1: Multi-Input CNN Model
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1.1 PROBLEM STATEMENT 

The development of the information technologies has brought many 

conveniences to our lives and has also caused many problems. It also provides 

opportunities for individuals who want to commit crimes. In the World millions of 

credit card information are stolen, are made by software that comes with simple fishing 

e-mails. Malware can be written in many programming or scripting languages and can 

be transported in files. Viruses, Trojans, malicious emails, keyboard listening systems, 

url injection are the most common malwares. In addition to these, there are phishing 

attacks aimed at increasing deception and fraud [1]. According to Jakobsson and 

Meyers (2007), phishing can be used to prevent user-sensitive information through the 

illegitimate website that is entirely similar to the target an action aimed at obtaining 

information (such as personal identification number, password, credit card number) 

defines as [9]. 

 

1.2 AIM OF THE THESIS 

Thesis proposal, develop a deep learning-based phishing web page recognition 

approach. In addition, the classical visual descriptors will be tested for this purpose 

and their performance will be matched with the results obtained from the deep-based 

methods. Deep Learning methods will be tested for web page similarity. A CNN by 

using publicly available datasets will be designed and implemented first [2]. Then, 

transfer learning by using well-known pre-trained models like VGG16 and AlexNet 

[3, 47] are tested. In transfer learning the pre-trained models will be used as feature 

extractor and classical machine learning methods will be employed on deep features 

for recognition. These methods will be applied on both whole image and image 

patches. In addition to classical CNN models, multi-input CNN model is developed, 

and raw images and pre-trained features are taken as inputs by this model. Transferred 

and learned features are combined to detect phishing web pages. 

 

1.3 APWG PHISHING REPORTS 

APWG publishes reports every year to draw attention to phishing activities. 

The main purpose of the group is to analyze phishing attacks and to report phishing 

attacks. In the report for the 4th quarter of 2020, it is observed that increase in phishing 

activities continues throughout the year as shown in Figure 1.2. In the world, the 
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number of phishing attacks web sites between January and December has increased 

from 50,000 to 250,000[10]. 

 

 

  Figure 1.2: Phishing Activity, 2020 [10] 

 

1.4 GOOGLE PHISHING REPORT 

According to another study, in 2020, it was reported by Google that Two 

Million phishing websites were created. It was determined that Figure 1.3 showed an 

increase of 19.91% when compared to 2019. This result showed the effect of the 

increase in cyber-attacks with the onset of the coronavirus epidemic. According to 

research from Google, an average of 46,000 new phishing websites were created every 

week in 2020. According to another result obtained in the study, it was observed that 

there was a very rapid increase in cyber-attacks between February and May. 
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Figure 1.3: Two Million Phishing Websites Created in 2020- Phishing sites detected by 

Google [44] 

 

1.5 THESIS ORGANIZATION  

In the first part of the thesis, basic information, problem situation and the 

purpose of the thesis are given in order to gain a general point of view to the thesis. 

The organization of other departments is presented below: 

In Chapter 2, the concepts of transfer learning and CNN algorithms are defined, and 

each component is explained.  

In Chapter 3, the literature related to the thesis has been examined. 

In Chapter 4, the dataset has been defined. 

In Chapter 5, the tools and libraries have been explained. 

In Chapter 6, the experimental setup has been explained and experimental results have 

been discussed.  

In Chapter 7, whether the research has achieved its purpose has been explained. In 

addition, forward-looking application areas and suggestions have been discussed. 
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CHAPTER II 

 

BACKGROUND 

 

2.1 TRANSFER LEARNING 

Transfer learning approaches are influenced by the human learning model. For 

the solution of the problem, previously obtained solutions are used [24] [25]. In 

summary, it means using a network trained with one dataset for a different dataset. 

Transfer learning approaches gained momentum with the study of Prat (1993) [25]. In 

this study, different data wanted to be classified using the coefficients learned from a 

different dataset. 

 

2.2 CNN 

Convolutional Neural Network (CNN) is one of the popular deep neural 

networks. CNN models are often used in image processing and take images as input. 

This algorithm, which captures the features in the images with different operations and 

classifies them, consists of different layers [26].  It gets its name from the linear 

mathematical operation between matrices. 

 

2.2.1 CNN Architecture 

CNN architecture consists of Input Layer, Convolutional Layer, Activation 

Layer, Pooling Layer, Fully Connected Layer, DropOut Layer, Classification Layer, 

Softmax Layer and Normalization Layer. The CNN architecture is shown in Figure 

2.1 [54]. 
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Figure 2.1: CNN Architecture [54] 

 

2.2.2 Input Layer 

It is the first layer of the convolutional neural network, also called the data 

input layer. The input data resolution and size should be determined according to the 

architecture of the model to be designed [28]. The input data should be chosen well. 

Because of this, data will affect the model's performance, training time, test time, and 

memory requirement. It is necessary to select a large number of input data to increase 

the success rate. It also causes a more extended training and testing time. For this, 

higher processor and memory capacity is needed.  

 

2.2.3 Convolutional Layer 

The primary layer of CNN is the convolution layer. Responsible for detecting 

input image properties. These layer parameters focus on using learnable kernels and 

apply filters to the image to extract features from the image [27]. Filters, which play 

an essential role at this stage, provide a new small matrix from the data [21]. The filter 

to be chosen will affect the success rate of the network and the training process. 

Therefore, an ideal filter should be chosen [29]. Convolution is performed by using 

filters in sizes such as 1x1, 2x2, 3x3, 5x5, 7x7, and at this stage, a feature map is 

created. In this thesis, as an example; the 7*7 filter is used for the AlexNet model. 

Figure 2.2 shows the convolution process. 
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Figure 2.2: Convolution Operation [21] 

 

Each filter contains its edge detection structure. Although the filters are usually 

square matrices, filters with different rows and columns are also used in some studies. 

A tensor is obtained by superimposing each filter on which the convolution process is 

applied to the input image. The number of filters used determines the depth of the 

tensor to be created. The convolution process is calculated according to the formula 

given below [31]. 

 

Wout :The size of the new image to be obtained after the convolution operation.  

Win :The size of the input image.   

F : Filter size.           

Stride-S: Convolution step size. 

Padding-P: Add frame to image. 

 

Wout=
Win-F +2P

S+1
 

(2.1) 

 

2.2.4 Activation Layer 

Activation functions are used when transmitting the output value in neurons 

from one layer to another. The initial value is determined to be able to decide whether 

the output value should be transferred to other layers. Because the neuron may not 

know what the limits of the real value will be and the artificial neuron may be in the 

value range (−∞, +∞). Therefore, activation functions are needed to decide the neuron's 

activation states. Thus, it will be able to control the output value produced by a neuron 
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and it will be possible to decide whether to see the neuron actively or not [32]. 

Activation functions can be linear or non-linear. While choosing the activation 

function, a nonlinear and differentiable function was preferred. Because our model can 

be learned better and the factors that give better performance are taken into 

consideration. For these reasons, the Relu(Rectifier linear unit) activation function is 

preferred in the thesis. Although the ReLu activation function looks linear, it is a non-

linear function. Relu graph shows in Figure 2.3. 

 

g(x)= max(0,x) =
x if x≥0

0 if x<0
    

(2.2) 
 

The ReLu function is as shown above. It gives an output x if x is positive and 

0 otherwise [32].  

 

 
Figure 2.3: ReLu Graph [32] 

  

The range of ReLu is [0, inf). This means it can blow up the activation. 

2.2.5 Pooling Layer 

After the convolution process (2015), reduces the parameter and data size in 

the network. As a result of the pooling process, makes the neural network faster. A 

certain filtering process carries out data size reduction. Pooling Layer operates 



10 
 

independently on each channel of the input. These layers are maximum (maximum 

pooling), minimum (minimum pooling) or average (average pooling) pooling [34]. In 

our study, max pooling, known to give the best results before, was applied for AlexNet 

and VGG16 learning models. Figure 2.4 shows an example of max pooling operation. 

Pooling layer down samples the volume spatially, independently in each depth slice of 

the input volume. Equation [51] shows the extraction pooling feature map formula. 

 

 
Figure 2.4: Example of Max Pooling [52] 

 

Ix= Input shape 

P= Pooling window size 

S= Stride 

Max Pool Output = [
Ix-P

S
] +1  

(2.3) 
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A new output was obtained in the process by choosing the highest value from the 

sections with the same color in the max pooling process using the filter and stride 

value. 

2.2.6 Fully Connected Layer 

This layer takes the feature maps as input and prepares them for the 

classification [35]. The fully connected layer is the layer where learning with artificial 

neural networks. Therefore, as in logistic regression, forward propagation and 

backward propagation are performed in this layer. In the convolutional neural network 

architecture, the fully connected layer comes after the consecutive convolution, ReLu 

and pooling layers. This layer is dependent on all fields of the previous layer. The 

number of layers can vary depending on the architecture. One fully connected layer 

looks for high-level features that have a high degree of association with a class, by 

looking at the neurons with weights indicating these properties, which belongs to the 

class [37]. In convolutional neural network architecture, if the last layer matrix size 

A(x) and the fully connected layer B(x) matrix are selected, the total weight matrix 

AxB is formed. For this reason, this layer is called the fully connected layer. Figure 

2.5 shows fully connected layer structure. 

 

 
  Figure 2.5: Fully connected layer [37] 
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2.2.7 DropOut Layer 

In multi-layer artificial neural networks, while the neural network is being 

trained, the network called overfitting memorization takes place. This is undesirable 

situation. To prevent the network from being memorized, some nodes in the network 

that memorize are eliminated. Thus, network attempts are made to eliminate 

memorization [38]. Hinton et al. suggested, the Dropout layer as an editing layer for 

fully connected layers. In Figure 2.6, the artificial neural network and after the dropout 

structure is shown. 

 

 
Figure 2.6: (a) Artificial neural network (b) Dropout applied neural network (Crossed 

neurons dropped from the network) [38] 

 

2.2.8 Classification Layer 

Classification after fully connected layer, produces as many results as the 

number of items to be classified. Each of these results represents a class. For 

classification, the softmax classifier is generally used, although it is known that there 

are different types of classifiers [39]. 

 

2.2.9 Softmax Layer 

Softmax layer receives the input and performs the classification. Softmax 

indicates which class the probabilistic input data belongs to. In the deep learning 

network, for each class, outputs the probability value. Cross-entropy is used for these 

operations [40]. 
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2.2.10 Normalization Layer 

Training of deep convolutional neural networks takes a serious process 

computationally. Activation of neurons can be normalized to reduce the training time. 

The normalization layer is effective to stabilize the hidden layers. Usually, 

normalization is performed after Relu layer [41]. 

 

2.3 EVALUATION METRICS 

2.3.1 Confusion Matrix 

 In order to evaluate the performance of classification models used in machine 

learning, the confusion matrix is often used, in which the predictions of the target 

attribute and the actual values are compared. 

 

Table 2.1: Confusion Matrix 

Confusion Matrix 

Actual 

Image Detected 

Positive (1) 

Not Detected Negative 

(0) 

Predicted 

Image Exist Positive 

(1) 

TP[1,1]  

True Positive 

FP[1,0]  

False Positive 

Image Not Exist 

Negative (0) 

FN[0,1]  

False Negative 

TN[0,0]  

True Negative 

 

The Table 2.1 is a confusion matrix of the output of a model set up for binary 

classification. Positive and Negative terms in this matrix represent the classes to be 

separated. 

 

2.3.1.1 True Positive 

True positives are values where the true value is 1 and the predicted value is 1. 

 

2.3.1.2 True Negative 

True Negatives are instances where the true value is 0 and the predicted value 

is 0. 
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2.3.1.3 False Positive 

False Positives are instances where the true value is 0 but the predicted value 

is 1. 

 

2.3.1.4 False Negative 

False Negatives are instances where the true value is 1 but the predicted value 

is 0. 

 

2.3.2 Accuracy Rate 

Generally, it is a measure of how often the classifier guesses correctly. 

Accuracy value is a value between 0 and 1. 

 

Accuracy=
TP+TN

TP+FP+TN+FN
 

       (2.4) 

2.3.3 Precision 

It is a measure of how accurately predicted from all classes. 

 

Precision=
TP

TP+FP
 

       (2.5) 

2.3.4 Recall 

It is a metric that shows how many of the predicted transactions is positively 

predicted. 

Recall=
TP

TP+FN
 

       (2.6) 

 

2.3.5 F1-Score 

F1 Score value shows the harmonic mean of Precision and Recall values. 

 

F1 Score=2*
Precision* Recall

Precision + Recall
 

       (2.7) 
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CHAPTER III 

 

LITERATURE REVIEW 

 

Jain and Gupta [5] estimated based on screenshots of suspicious web pages. 

They stated that using image contrast and clustering of key points with the k-means 

algorithm (k-means) makes it possible to predict image similarities. They mentioned 

that visual similarities could also be determined through optical character recognition 

by converting them to text and comparing the results. This method better addresses the 

zero-day phishing issue. However, the similarity classifier must be continuously 

trained for the determined approach to achieve the desired result. 

In another study, Rosiello et al. [6] DOM tree by comparing the HTML tags 

and the fake web sites are aimed to be detected. This method is directly effective 

against phishing websites. For a web page to give the desired result, view uniquely 

with the DOM tree structure should be defined. However, there is an obvious downside 

of this method. Phishing attackers use different HTML tags in case it gets the look of 

the same website, and the fake website will not be detected. 

Bohunsky et al. [7] to detect fake web pages to determine "visually" method 

display fake and original web pages. This method is defined to make screenshots small 

rectangular cut them into pieces. In this way, the visualization of two web pages by 

comparing the box structure, determines its correlation. 

In the study by Gowtham et al. [11], legitimate and phishing web pages were 

researched in depth. Based on the analysis, heuristics are proposed to extract 15 

features from web pages of similar type. In the system created, before applying 

heuristics to the web pages, two pre-scan modules were used. With the help of the 

modules used, unnecessary calculation is reduced. Also, false positive rate has been 

reduced without compromising on false negative. As a result of the study, an accuracy 

rate of over 90% was obtained. The experimental results and the proposed method 

effective for protecting users from online identity attacks.  
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In the study by Li et al [12], the minimum requirement for phishing website 

detection enclosing BVM (Ball Support Vector Machine) is recommended. This 

approach aimed to provide high speed and high accuracy for phishing website 

detection. In order to increase the integrity of the vectors, studies have been carried 

out. First, according to the DOM tree, the topology of the website structure analysis 

was made. Then, the topological features of the website are extracted. Then, feature 

vectors were determined by the classifier. The proposed method is compared with 

SVM. It has been observed that the proposed method has higher detection sensitivity. 

The accuracy of the proposed system and its validity were evaluated. 

Nguyen and Nguyen [13] detect phishing websites using machine learning 

methods by using URL and page content. In the study, obtained from URL and content 

decision tree, random forest, support vector machine, naïve bayes and neural network 

methods have been compared. According to the test results, random forest method is 

the most successful predictor. 

Kazemian and Ahmed [14] for the detection of malicious websites, compared 

k-NN, support vector machine, naïve bayes classifier and kmeans methods. For 

supervised methods, accuracy of over 89% was obtained. 

Mohammad et al. [15] proposed a self-constructed neural network method for 

detecting phishing websites. The proposed automatically creates the network and 

shows a high classification success. 

Abdelhamid et al. [16], [17] proposed a method for relational classification data 

mining to divide websites into three different classes. According to experiments, 

relational classifier method has higher accuracy than other methods. 

Moghimi et al. [18] proposed a method for detection of phishing websites that 

were designed to steal banking information. This method ensures that suspicious 

websites of IP addresses and by detecting URL addresses, in the study, 3066 websites 

were examined, and the recommended method has been successful at a rate of 99.14%. 

Using a heuristic approach is an effective method for website-based phishing 

detection of suspicious websites. Ludl et al. [19] in their study, suggested a method 

that used a heuristic-based approach to detect and classify website-based phishing sites 

specifically targeting HTML and URL. In this study, a data set of 18 different phishing 

websites was used. As a result, it was seen that 16.9% of HTML content and 0.4% of 

URL content were misperceptions. 
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In another study, Yi et al. [42] proposed a method for detecting phishing 

websites that steal identity and credit card information. The study, using the deep 

learning method, aimed to block IP numbers of suspicious websites and these websites 

by detecting the URL address. In the study, as a data set, real data is used. As a result, 

the proposed method has reached 90% accuracy in detecting phishing websites. 

In another study, Pan et al. [43] for phishing detection, proposed to analyze 

websites identity. They hypothesized that websites' title, description, copyright, etc. 

features could change on phishing websites. Contrary to what was predicted in the 

study, 29% recommended method was found to be unsuccessful. 
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CHAPTER IV 

 

EVALUATION 

 

4.1 DATASET 

In the thesis, from 2782 screenshots of 15 websites the resulting dataset was 

used [8]. The distribution of the dataset is as follows in Table 4.1 

 

Table 4.1: Distribution Of Dataset 

 

The dataset weight is illustrated in Figure 4.1.  

NAME OF DATASET NUMBER OF DATA 

Adobe 70 

Amazon 29 

Alibaba 76 

Apple 64 

Boa 116 

Chase 111 

Dhl 109 

Dropbox 115 

Facebook 144 

Linkedin 38 

Microsoft 118 

Paypal 214 

Wellsfargo 134 

Yahoo 114 

Other 1400 
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Figure 4.1: Dataset Weight
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CHAPTER V 

 

TOOLS AND LIBRARIES 

 

In this section, tools, Multi-Input CNN algorithm (our own work) and some 

CNN algorithms are mentioned. These algorithms are AlexNet, VGG16 and 

ResNet50. The reasons why we choose these algorithms and use them in our study are 

that these algorithms get high scores in ILSRVC competitions and bring new features 

to the CNN architecture. 

 

5.1 AlexNet 

AlexNet [20] architecture at the 2012 ImageNet competition educated with 

about a million images that made their name known feature, extremely successful in 

classifying images. It is a CNN model. Figure 5.1 [20] illustrate architecture of 

AlexNet, which consists of eight layers; the first five are convolutional layers, some 

of them maxpooling and the last three layers are fully connected layers. There are also 

input and output layers. AlexNet architecture, 1000 objects designed to classify. In 

Alexnet architecture approximately 60 million parameters were used and the parallel 

pair. It is also the first model to run on a GPU. Table 5.1 shows structural details of 

AlexNet [46]. 

  



21 
 

Table 5.1: AlexNet Parameter Count [46] 

AlexNet Network - Structural Details 

Input Output Layer Stride Pad 
Kernel 

Size 
in out 

# of 

Param 

227 227 3 55 55 96 conv1 4 0 11 11 3 96 34944 

55 55 96 27 27 96 maxpool1 2 0 3 3 96 96 0 

27 27 96 27 27 256 conv2 1 2 5 5 96 256 614656 

27 27 256 13 13 256 maxpool2 2 0 3 3 256 256 0 

13 13 256 13 13 384 conv3 1 1 3 3 256 384 885120 

13 13 384 13 13 384 conv4 1 1 3 3 384 384 1327488 

13 13 384 13 13 256 conv5 1 1 3 3 384 256 884992 

13 13 256 6 6 256 maxpool5 2 0 3 3 256 256 0 

  

fc6     1 1 9216 4096 37752832 

fc7     1 1 4096 4096 16781312 

fc8     1 1 4096 1000 4097000 

Total 62378344 

 

 

 

 
Figure 5.1: An illustration of AlexNet layers [20] 

 

AlexNet uses ReLu as activation in non-linear parts. In previous standard 

neural networks, tanh or sigmoid was used. These function types are shown in Figure 

5.2 [45]. 
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Figure 5.2: Activation Function Types [45] 

 

5.2 VGG16 

VGG16 is a convolutional neural network model proposed by K. Simonyan 

and A. Zisserman from the University of Oxford in the paper “Very Deep 

Convolutional Networks for Large-Scale Image Recognition” [22]. Model, from 14 

million in 1000 classes in ImageNet, a dataset of multiple images 92.7% reaches the 

first 5 test accuracy. VGG16 improves AlexNet by replacing large kernel-sized filters 

(11 and 5 in the first and second convolutional layer, respectively) with multiple 3×3 

kernel-sized filters one after another. The architecture of VGG16 is shown in Figure 

5.3 [23]. If we examine the architecture; The VGG-16 architecture consists of 

convolutional, pool and fully connected layers. A total of 21 main layers occurs [22]. 

This architecture has an increasing network structure. The image input resolution is 

224 × 224 pixels. Convolutional layer filter size is 3 × 3 pixels. In this architecture, the 

last layers which are fully connected are used for feature extraction. Table 5.2 shows 

structural details of VGG16 [46]. 
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Table 5.2: VGG16 Parameter Count [46] 

VGG16 - Structural Details 

# Input Image Output Layer Stride 

Kernel 

Size in out Param 

1 224 224 3 224 224 64 conv3-64 1 3 3 3 64 1792 

2 224 224 64 224 224 64 conv3064 1 3 3 64 64 36928 

  224 224 64 112 112 64 maxpool 2 2 2 64 64 0 

3 112 112 64 112 112 128 conv3-128 1 3 3 64 128 73856 

4 112 112 128 112 112 128 conv3-128 1 3 3 128 128 147584 

  112 112 128 56 56 128 maxpool 2 2 2 128 128 65664 

5 56 56 128 56 56 256 conv3-256 1 3 3 128 256 295168 

6 56 56 256 56 56 256 conv3-256 1 3 3 256 256 590080 

7 56 56 256 56 56 256 conv3-256 1 3 3 256 256 590080 

  56 56 256 28 28 256 maxpool 2 2 2 256 256 0 

8 28 28 256 28 28 512 conv3-512 1 3 3 256 256 1180160 

9 28 28 512 28 28 512 conv3-512 1 3 3 512 512 2359808 

10 28 28 512 28 28 512 conv3-512 1 3 3 512 512 2359808 

  28 28 512 14 14 512 maxpool 2 2 2 512 512 0 

11 14 14 512 14 14 512 conv3-512 1 3 3 512 512 2359808 

12 14 14 512 14 14 512 conv3-512 1 3 3 512 512 2359808 

13 14 14 512 14 14 512 conv3-512 1 3 3 512 512 2359808 

  14 14 512 7 7 512 maxpool 2 2 2 512 512 0 

14 1 1 25088 1 1 4096 fc   1 1 25088 4096 102764544 

15 1 1 4096 1 1 4096 fc   1 1 4096 4096 16781312 

16 1 1 4096 1 1 1000 fc   1 1 4096 1000 4097000 

Total 138423208 

 

 

 

 
Figure 5.3: An illustration of VGG16 Architecture [23] 
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5.3 ResNet 50 

ResNet is a network structure proposed by He Kaiming et al. [48] from 

Microsoft Research Asia in 2015, and was the winner in the ILSVRC-2015 

classification task. The ResNet-50 model consists of 5 stages. Each stage has a 

convolution and identity block. Each convolution block and each identity block has 3 

convolution layers [49]. The ResNet-50 has over 23 million trainable parameters. 

Figure 5.4 shows ResNet 50 architecture. 

 

 
Figure 5.4: RESNET 50 Architecture [50] 

 

 ResNet has emerged to reduce the number of errors that occur as the network 

gets deeper and the number of trains increases. 

 

5.3.1 Vanishing Gradient Problem 

Due to Vanishing/Exploding Gradient problem, training of deep neural 

networks is difficult. In a Convolution Neural network, when we stack multiple layers, 

the training error should decrease in theory, but in practice or reality adding more 

layers to the CNN (making the CNN deeper) causes the training error to increase rather 

than decrease. 

 

5.3.2 Residual Block 

Residual learning framework is used to reduce training and testing errors in a 

deep network [48]. Residual Blocks as part of the ResNet architecture. In a residual 

block, input x is added directly to the output of the network. Figure 5.5 shows a 

building block of resudial learning. 
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       Figure 4.5: Residual learning: a building block [48] 

 

According to the formula, the input x is added directly to the output of the network. 

This F(x)+ x path is known as shortcut connection. 

H(x) :Initial mapping. 

F(x) :Residual function.   

x : Residual block.           

H(x)=F(x)+x 

(5.1) 
 

5.4 MULTI INPUT CNN 

In this section, the CNN model is developed, and the features of the model are 

explained. Multi Input CNN derived from VGG16. A multi-input CNN classifier is 

trained, where features are learned from images activation values of fully connected 

layer of VGG16.  

Network consists of two branches. The first branch has an ordinary CNN 

structure. Raw website entered screenshots and generated deep feature attributes. The 

second entry is already an image given as input to a trained network that takes the 

activation values it creates. The network is illustrated in Figure 5.6. When the 

architecture of the designed multi-input CNN model is examined; There is RESNET50 

model. The part that receives the raw images as input in the design, the first layer is 

the image input layer. 224*224*3 size images are provided as input. In the network, 

ResNet 50 has 5 stages and each stage with a convolutional and identity block. Stage 
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1, the feature map convolutional layer with 2 strides which is followed by Batch and 

Relu. Convolution layers are the main layers and convolutional block has one extra 

layer to match the input and output dimension. Each stage has the same number of 

filters. There are filters for learning the different types of features in these layers. Each 

filter overwrites the input images and convolution is applied. Lastly, two non-residual 

blocks are added to the end.
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            Figure 5.6: Multi-Input CNN Architecture



28 
 

CHAPTER VI 

 

EXPERIMENTS 

 

6.1 EXPERIMENTAL SETUP 

In this thesis, the experiments were compiled using the R2019a MATLAB 

program installed on a 64-bit Windows 10 operating system. Properties of the 

computer used; NVIDIA GeForce GTX950M has a 4 GB graphics card, Intel © i7- 

Core 2.7 GHz processor and 16 GB RAM capacity. 

 

6.2 EXPERIMENTAL STUDIES 

In this part, a study is carried out to obtain the results of AlexNet, VGG16 and 

multilayer CNN models separately. The same dataset was applied for all models and 

the results were compared. In order to carry out the experiments, models were created, 

algorithms were developed, and models were simulated by MATLAB.  

The image dataset for AlexNet and all other models has been added to 

MATLAB as a script. As stated in the pseudocode, for all models, the dataset is defined 

as 70% train and 30% test data. Pseudocode of input datasets are shown in Figure 6.1 

and random dataset example are shown in Figure 6.2. 

 

 

 

 

 

 

 

 

Figure 6.1: Pseudocode of input dataset

Algorithm: Load Dataset 

Initialize Dataset; 

imds = imageDatastore(); 

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,’randomized’); 

numTrainImages = numel(imdsTrain.Labels); 

idx = randperm(numTrainImages,2); 

while index = 1:2 do 

          subplot(2,2,index); 

          readimage(imdsTrain,idx(index)); 

          imshow(index); 

end 
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Figure 6.2: Random dataset example 

 

6.2.1 AlexNet Experimental Studies 

In this part, the AlexNet pre-trained model to the existing dataset is applied. 

Also, it explains how the result was obtained. How the algorithm is implemented. 

AlexNet network trained on the dataset. This syntax is equivalent to net = alexnet. The 

AlexNet network has been analyzed and shown in Table 6.1. 

 

Table 6.1: AlexNet Network Analyze 

 

  

 #  Name  Type  Activation and Lernables 

1 'data'       Image Input                              227x227x3 images with 'zerocenter' normalization 

2 'conv1'   Convolution                             
96 11x11x3 convolutions with stride [4  4] and 

padding [0  0  0  0] 

3 'relu1'      ReLU                                       ReLU 

4 'norm1'   
Cross Channel 

Normalization  

cross channel normalization with 5 channels per 

element 

5 'pool1'     Max Pooling                            
3x3 max pooling with stride [2  2] and padding [0  0  0  

0] 

6 'conv2'   
Grouped 

Convolution              

2 groups of 128 5x5x48 convolutions with stride [1  1] 

and padding [2  2  2  2] 

7 'relu2'      ReLU                                       ReLU 

8 'norm2'   
Cross Channel 

Normalization  

cross channel normalization with 5 channels per 

element 

9 'pool2'     Max Pooling                            
3x3 max pooling with stride [2  2] and padding [0  0  0  

0] 

10  'conv3'  Convolution                             
384 3x3x256 convolutions with stride [1  1] and 

padding [1  1  1  1] 

11  'relu3'     ReLU                                       ReLU 
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Table 6.1: Continuation 

 

In total, AlexNet network has five convolutional layers and three fully 

connected layers. AlexNet algorithm pseudocode shows in Figure 6.3. 

12  'conv4'  
Grouped 

Convolution              

2 groups of 192 3x3x192 convolutions with stride [1  

1] and padding [1  1  1  1] 

13  'relu4'     ReLU                                       ReLU 

14  'conv5'  
Grouped 

Convolution              

 2 groups of 128 3x3x192 convolutions with stride [1  

1] and padding [1  1  1  1] 

15  'relu5'     ReLU                                        ReLU 

16  'pool5'    Max Pooling                            
 3x3 max pooling with stride [2  2] and padding [0  0  

0  0] 

17  'fc6'        Fully Connected                       4096 fully connected layer 

18  'relu6'     ReLU                                        ReLU 

19  'drop6'    Dropout                                    50% dropout 

20  'fc7'        Fully Connected                       4096 fully connected layer 

21  'relu7'     ReLU                                        ReLU 

22  'drop7'    Dropout                                    50% dropout 

23  'fc8'        Fully Connected                       1000 fully connected layer 

24  'prob'      Softmax                                    softmax 

25  'output'  

 Classification 

Output               
crossentropyex with 'tench' and 999 other classes 



31 
 

  Figure 6.3: Pseudocode of Future Extraction AlexNet 

 

The dimensions of all inputs are adjusted to be 227*227*3. All layers are 

extracted, except the last three, from the pre-trained network. The layers are transferred 

to the new classification task by replacing the last three layers with a fully connected 

layer, a softmax layer, and a classification output layer. 

After all the layers are set, the network train process is started. Training 

progress is shown in Figure 6.4. 

Algorithm : AlexNet 

Initialize AlexNet Networks; 

AlexNet      load(); 

features,labels = getbatch(dataset); 

model       createmodel(); 

analyzeNetwork(AlexNet); 

inputSize = net.Layers().InputSize; 

layerTransfer = net Layers();  

numClasses = numel(categories(imdsTrain.Labels)); 

layerTransfer       set(); 

fullyConnectedLayer(); 

pixelRange = [-30 30]; 

imageAugmenter = imageDataAugmenter(); 

augimdsTrain = augmentedImageDatastore(); 

options = trainingOptions(); 

netTransfer = trainNetwork(); 

idx = randperm(); 

while index = 1:2 do 

        subplot(2,2,index); 

        readimage(imdsValidation,idx(index)); 

        imshow(index); 

        YValidation = imdsValidation.Labels; 

        Accuracy = mean(YPred == YValidation); 

End 

[cm,order] = confusionmat(YValidation, YPred); 

tp = sum((YPred == 1) & (YValidation == 1)) 

fp = sum((YPred == 1) & (YValidation == 0)) 

tn = sum((YPred == 0) & (YValidation == 1)) 

fn = sum((YPred == 0) & (YValidation == 0)) 

sensitivity = tp/(tp + fn)  %TPR 

specificity = tn/(tn + fp)  %TNR 

precision = tp / (tp + fp) 

FPR = fp/(tn+fp); 

Accuracy = (TP+TN)./(TP+FP+TN+FN); 

recall = tp / (tp + fn) 

F1 = (2 * precision * recall) / (precision + recall); 
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Figure 6.4: AlexNet Train Progress 

 

After the AlexNet train network progress is complete, used the fine-tuned 

network to classify the validation images. Figure 6.5 and figure 6.6 show the result of 

the image classification process. 

 

 
Figure 6.5: AlexNet Image Classification Result – 1 
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Figure 6.6: AlexNet Image Classification Result - 2 
 

6.2.2 VGG16 Experimental Studies 

In this part, applied the VGG16 pretrained model to the existing dataset and 

explain how the classification result is obtained. How the algorithm is implemented. 

Pretrained VGG16 CNN trained on the dataset. This syntax is equivalent to net = 

vgg16. The VGG16 network has been analyzed and shown in Table 6.2. 
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Table 6.2: VGG16 Network Analyze 

 #  Name  Type  Activation and Learnable 

1 'input'         Image Input                224x224x3 images with 'zerocenter' normalization 

2 'conv1_1'  Convolution                
64 3x3x3 convolutions with stride [1  1] and padding 

[1  1  1  1] 

3 'relu1_1'     ReLU                          ReLU 

4 'conv1_2'  Convolution                
64 3x3x64 convolutions with stride [1  1] and padding 

[1  1  1  1] 

5 'relu1_2'     ReLU                          ReLU 

6 'pool1'        Max Pooling               
2x2 max pooling with stride [2  2] and padding [0  0  0  

0] 

7 'conv2_1'  Convolution                
128 3x3x64 convolutions with stride [1  1] and 

padding [1  1  1  1] 

8 'relu2_1'     ReLU                          ReLU 

9 'conv2_2'  Convolution                
128 3x3x128 convolutions with stride [1  1] and 

padding [1  1  1  1] 

10  'relu2_2'    ReLU                          ReLU 

11  'pool2'       Max Pooling               
2x2 max pooling with stride [2  2] and padding [0  0  0  

0] 

12 
 

'conv3_1' 
Convolution                

256 3x3x128 convolutions with stride [1  1] and 

padding [1  1  1  1] 

13  'relu3_1'    ReLU                          ReLU 

14 
 

'conv3_2' 
Convolution                

256 3x3x256 convolutions with stride [1  1] and 

padding [1  1  1  1] 

15  'relu3_2'    ReLU                          ReLU 

16 
 

'conv3_3' 
Convolution                

256 3x3x256 convolutions with stride [1  1] and 

padding [1  1  1  1] 

17  'relu3_3'    ReLU                          ReLU 

18  'pool3'       Max Pooling               
2x2 max pooling with stride [2  2] and padding [0  0  0  

0] 

19 
 

'conv4_1' 
Convolution                

512 3x3x256 convolutions with stride [1  1] and 

padding [1  1  1  1] 

20  'relu4_1'    ReLU                          ReLU 

21 
 

'conv4_2' 
Convolution                

512 3x3x512 convolutions with stride [1  1] and 

padding [1  1  1  1] 

22  'relu4_2'    ReLU                          ReLU 

23 
 

'conv4_3' 
Convolution                

512 3x3x512 convolutions with stride [1  1] and 

padding [1  1  1  1] 

24  'relu4_3'   ReLU                           ReLU 

25  'pool4'      Max Pooling                
2x2 max pooling with stride [2  2] and padding [0  0  0  

0] 

26 
 

'conv5_1' 
Convolution                 

512 3x3x512 convolutions with stride [1  1] and 

padding [1  1  1  1] 

27  'relu5_1'   ReLU                           ReLU 

28 
 

'conv5_2' 
Convolution                 

512 3x3x512 convolutions with stride [1  1] and 

padding [1  1  1  1] 

29  'relu5_2'   ReLU                           ReLU 

30 
 

'conv5_3' 
Convolution                 

512 3x3x512 convolutions with stride [1  1] and 

padding [1  1  1  1] 
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Table 6.2: Continuation 

31  'relu5_3'   ReLU                           ReLU 

32  'pool5'      Max Pooling                
2x2 max pooling with stride [2  2] and padding [0  0  0  

0] 

33  'fc6'          Fully Connected          4096 fully connected layer 

34  'relu6'       ReLU                           ReLU 

35  'drop6'      Dropout                       50% dropout 

36  'fc7'          Fully Connected          4096 fully connected layer 

37  'relu7'       ReLU                           ReLU 

38  'drop7'      Dropout                       50% dropout 

39  'fc8'          Fully Connected          1000 fully connected layer 

40  'prob'        Softmax                       softmax 

41  'output'     

Classification 

Output   crossentropyex with 'tench' and 999 other classes 

 

 In total, VGG16 CNN has 41 layers. 16 layers learnable weight, 13 layers 

convolutional and 3 fully connected layers. VGG16 experimental future extraction 

pseudocode shows in Figure 6.7. 
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Figure 6.7: Pseudocode of VGG16 Future Extraction 

 

  

Algorithm : VGG16 

Initialize VGG16 Networks; 

AlexNet      load(); 

features,labels = getbatch(dataset); 

model       createmodel(); 

analyzeNetwork(VGG16); 

inputSize = net.Layers().InputSize; 

layerTransfer = net Layers();  

numClasses = numel(categories(imdsTrain.Labels)); 

layerTransfer        set(); 

fullyConnectedLayer(); 

pixelRange = [-30 30]; 

imageAugmenter = imageDataAugmenter(); 

augimdsTrain = augmentedImageDatastore(); 

options = trainingOptions(); 

netTransfer = trainNetwork(); 

idx = randperm(); 

while index = 1:2 do 

        subplot(2,2,index); 

        readimage(imdsValidation,idx(index)); 

        imshow(index); 

        YValidation = imdsValidation.Labels; 

        Accuracy = mean(YPred == YValidation); 

End 

[cm,order] = confusionmat(YValidation, YPred); 

tp = sum((YPred == 1) & (YValidation == 1)) 

fp = sum((YPred == 1) & (YValidation == 0)) 

tn = sum((YPred == 0) & (YValidation == 1)) 

fn = sum((YPred == 0) & (YValidation == 0)) 

sensitivity = tp/(tp + fn)  %TPR 

specificity = tn/(tn + fp)  %TNR 

precision = tp / (tp + fp) 

FPR = fp/(tn+fp); 

Accuracy = (TP+TN)./(TP+FP+TN+FN); 

recall = tp / (tp + fn) 

F1 = (2 * precision * recall) / (precision + recall); 
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The dimensions of all inputs are adjusted to be 224*224*3. All layers are 

extracted, except the last three, from the pre-trained network. The layers are transferred 

to the new classification task by replacing the last three layers with a fully connected 

layer, a softmax layer, and a classification output layer. 

After all the layers are set, the network train process is started. Training 

progress is shown in Figure 6.8. 

 

 
Figure 6.8: VGG16 Train Process 

         

After the VGG16 train network progress is complete, used the fine-tuned 

network to classify the validation images. Figure 6.9 and Figure 6.10 show the result 

of the image classification process. 
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Figure 6.9: VGG16 Image Classification Result - 1 

 

 
Figure 6.10: VGG16 Image Classification Result - 2 

 

6.2.3 Multi-Input CNN Model Experimental Studies 

In this part, applied the Multi-Input CNN pre-trained model to the existing 

dataset and explain how the classification result is obtained. How the algorithm is 

implemented. Multi-Input CNN network trained on the dataset.  

The multi-input CNN model takes the input images data from the VGG16 pre-

trained network FC-8 image classifies. Image classification processes are carried out 
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with the ResNet50 pre-trained model. First, input image is detected by convolution 

layer. After convolution layer is the Batch and ReLu layers. Batch layers by previous 

layers setting the calculated activation values and used to normalize. ReLu layers, 

eliminate the effect of dark areas and provide a nonlinear used to obtain a model. 

Pooling layers, decrease the input sizes to reduce the complexity of calculation. This 

is done by applying a mathematical MAX operation on the values corresponding to 

the filter. 

  In pooling operations, 3x3 filters are used. Fully connected layers are the last 

layers of the CNN model. These layers are the standard layers of neural networks. 

Class values for a specific input are calculated, in fully connected layers. The 

activation values of each layer correspond to a different abstraction.  

The second branch of the model takes the features obtained by transfer 

learning. Machine learning models, which mostly need to be rebuilt when properties 

and data change, were created to work alone. Additionally, previously acquired 

knowledge in machine learning is often similar can be applied to tasks. Usually 

requires a lot of effort transfer learning model instead of rebuilding models, reuse the 

acquired knowledge and similarly model significantly reduce development time and 

isolated. It aims to develop the model efficiency of the learning model. Within the 

scope of the study, VGG16 network was used to extract attributes. By taking the 

activation values created in the Fully Connected-8 layer, it is added to the multi-input 

deep learning network as second input. 

Fully Connected-8 layer generates a vector of 1000 as output. This vector is for 

every image as an input to the network that will receive and perform the actual 

classification. Multi-input CNN experimental future extraction pseudocode shows in 

Figure 6.11, pseudocode of Classification Layer shows in Figure 6.12 and training 

process is shown in Figure 6.13. 
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Figure 6.11: Pseudocode of Transfer Layer Multi-Input Model 

 

 

 

 

 

 

  

Algorithm: Multi-Input CNN 

Input VGG16 Transfer Attributes; 

Initialize RESNET50 Networks; 

RESNET50      load(); 

Features,labels = getbatch(dataset); 

model      createmodel(); 

stage – 1; 

imageInputLayer(); 

convolution2dLayer(); 

batchNormalizationLayer(); 

reluLayer(); 

maxpooling2d(); 

stage – 2; 

convolutionalUnit(); 

additionLayer(); 

reluLayer(); 

convolutionalUnit(); 

additionLayer(); 

reluLayer(); 

stage – 3; 

convolutionalUnit(); 

additionLayer(); 

reluLayer(); 

convolutionalUnit(); 

additionLayer(); 

reluLayer(); 

stage – 4; 

convolutionalUnit(); 

additionLayer(); 

reluLayer(); 

convolutionalUnit(); 

additionLayer(); 

reluLayer(); 

stage – 5; 

averagePooling2dLayer(); 

fullyConnectedLayer(); 

softmaxLayer(); 

classificationLayer(); 
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Figure 6.13: Multi-Input CNN Train Process 

 

In the last parts of the network, attributes obtained by transfer learning and 

activation values from the other branch, are combined in the concatenation layer and 

transferred to the next fully connected layer. The last layers are softmax and are the 

concatenation; 

concatenationLayer(); 

fullyConnectedLayer(); 

softmaxLayer(); 

while index 1:2 do 

          subplot(2,2,index); 

          readimage(imdsValidation,idx(index)); 

          imshow(index); 

          YValidation = imdsValidation.Labels; 

End 

[cm,order] = confusionmat(YValidation, YPred); 

tp = sum((YPred == 1) & (YValidation == 1)) 

fp = sum((YPred == 1) & (YValidation == 0)) 

tn = sum((YPred == 0) & (YValidation == 1)) 

fn = sum((YPred == 0) & (YValidation == 0)) 

sensitivity = tp/(tp + fn)  %TPR 

specificity = tn/(tn + fp)  %TNR 

precision = tp / (tp + fp) 

FPR = fp/(tn+fp); 

Accuracy = (TP+TN)./(TP+FP+TN+FN); 

recall = tp / (tp + fn) 

F1 = (2 * precision * recall) / (precision + recall); 

Figure 6.12: Pseudocode of Classification Layer 
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classification layers. Softmax layer converts the outputs to probability values and 

selects the maximum probability label as the output of the classification layer. 

After the multi-input CNN train network progress is complete, used the fine-

tuned network to classify the validation images. Figure 6.14 and figure 6.15 show the 

result of the image classification process. 

 

 
Figure 6.14: Multi-Input CNN Image Classification Result - 1 

 

 
Figure 6.15: Multi-Input CNN Image Classification Result - 2 
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6.3 EXPERIMENTAL RESULT 

The parameters used in training the models are shown in Table 6.3. 1996 

screenshots corresponding to 70% of the total 2852 screenshots that make up the data 

set were used for training the classifier, and the remaining 856 screenshots were used 

for sample testing. The comparison results obtained by using feature selection methods 

are shown in Table 6.4. 

 

Table 6.3: CNN Training Parameters 

Training Options Training Properties 

Optimizer Sgdm 

Initialize Rate 1e-4 

Min Batch Size 60 

Epoch Count 1000 

Verbose 1 

Execution Environment auto 

Learn Rate Drop Factor 0,2 

Learn Rate Drop Period 5 

Learn Rate Schedule piecewise 

Output Network Last-iteration 

 

Table 6.4: Rates of Feature Selection Methods 

Architecture 
Image 

Size 

Class 

Set 

Validation 

accuracy (%) 

TPR 

(%) 

FNR 

(%) 

F1-Score 

(%) 

AlexNet 227*227 Data Set 83.94 81.3 18.Tem 89.6 

VGG 16 224*224 Data Set 86.50 86.4 13.May 92.8 

Multi Input 

CNN 
227*227 Data Set 91.23 91.2 8.Tem 95.4 

 

The results we obtained when we compared the overall accuracy results of 

VGG16, AlexNet and multi-input CNN transfer learning models; we observed that the 

multi-input CNN model was better at predicting phishing websites than other models. 

It is known that the emergence of this result is due to the use of the ResNet50 transfer 

learning model as a classifier. The ILSVRC results, edited by the ImageNet team since 

2010, are shown in the Figure 6.16 [53]. 
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Figure 6.16: ImageNet Classification Error [53] 
 

It is seen that these results and the results we obtained overlap with each other. 

The best accuracy rate was given by the multi-input CNN model (91.23%), which we 

created using the ResNet50 model, while VGG16 (86.50%) and AlexNet (83.94%) 

gave the lowest rates. In addition, confusion matrix algorithms were used to compare 

the obtained results. The results of some of these algorithms are shown in the Table 

6.4. According to these results, the multi-Input CNN model (91.2%) gave the highest 

TPR rate, the multi-input CNN model (8.7%) gave the lowest FNR rate, and the multi-

input CNN model (95.4%) gave the highest F1-Score rate. 

 

6.4 COMPARISON WITH SIMILAR STUDIES 

In this section, the performance results obtained from similar studies detecting 

phishing websites are compared with the performance results of our study.  

Kaytan and Hanbay [55] used a model they developed to detect phishing 

websites. They named this model the ELM classifier. According to web sites features, 

sample data of websites were collected. 90% of this data is separated as train and 10% 

as test data. Prediction was made with the ELM classifier. According to the result 

obtained, the accuracy rate was 95.93%. When we compare our study with this study, 

similar prediction and performance tests were carried out in both studies. Accuracy 

rates of both studies were high. 
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In another similar study, J. Mao et al. [56] based on auto layout they did 

research on phishing detection techniques using machine learning techniques. They 

propose a learning-based aggregation analysis mechanism to decide page layout 

similarity, which is used to detect phishing pages. They compared the solution method 

with popular machine learning algorithms and achieved scores that were not bad at all. 

The solution method presented in this study, like the other study, was very similar to 

the result we wanted to achieve. In this study, a prediction rate of over 90% was 

obtained. 

Comparison of methods are shown in Table 6.5. 
 

Table 6.5: Comparison of Method Results 

Method Number Of Dataset Accuracy Rate(%) 

Multi-Input CNN 2782 91.23 

ELM Classifier 11055 95.93 

Similarity Of Page Layouts 

And Detect Phishing Pages 

2923 <93 
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CHAPTER VII 

 

CONCLUSIONS AND FUTURE WORKS 

 

Within the scope of the study, an end-to-end deep learning network was 

designed in which the attributes learned with a CNN trained from scratch and attributes 

obtained by transfer learning are combined. Within the scope of the classification of 

phishing websites, it has been shown that better results can be obtained by combining 

the features learned from scratch and the features obtained by transfer learning. As 

detailed in the experimental result, multi-input CNN achieved higher rates on detection 

of phishing websites than AlexNet and VGG16 models. The best result was given by 

the multi-input CNN model (91.23%), which we created using the ResNet50 model, 

while VGG16 (86.50%) and AlexNet (83.94%) gave the lowest score. Moreover, the 

multi-Input CNN model (91.2%) gave the highest TPR rate, the multi-input CNN 

model (8.7%) gave the lowest FNR rate, and the multi-input CNN model (95.4%) gave 

the highest F1-Score rate. 

 Word2vec method can also be used as an additional input within the scope of 

future studies. Word2vec models proposed by Mikolov et al. [4] are often used to learn 

word placement. While the traditional word model represents every word in the corpus 

with large sparse vectors, the word embedding approach adopts the true valued dense 

vector representation where each vector represents a continuous vector space of the 

word. The position of each word in the learned vector is considered embedding. 

Word2Vec has two big advantages. First, contextual similarities between words could 

be inferred, and another is that semantic relationships could be extracted from learned 

vectors. In this context, in the future study, a 3-input network will be developed by 

using the Ocr and word2vec method together, tokenizing the texts to be obtained from 

the website image with ocr and transforming them into vectors with word2vec.  
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