

DEEP LEARNING BASED PHISHING WEB PAGE DETECTION

TEVFİK UĞUR BASTEM

JANUARY 2022

ÇANKAYA UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF COMPUTER ENGINEERING

MASTER’S THESIS IN

COMPUTER ENGINEERING

DEEP LEARNING BASED PHISHING WEB PAGE DETECTION

TEVFİK UĞUR BASTEM

JANUARY 2022

iv

ABSTRACT

DEEP LEARNING BASED PHISHING WEB PAGE DETECTION

BASTEM, Tevfik Uğur

Master of Science in Computer Engineering

 Supervisor: Assist. Prof. Dr. Abdül Kadir GÖRÜR

Co-Advisor: Assoc. Prof. Dr. Ali Seydi KEÇELİ

January 2022, 53 pages.

With the increase in the usage of e-commerce, social media and digital

entertainment services, there is a tremendous increase in phishing activities. In this

study, based on the observation of phishing activities, a study has been carried out to

detect phishing websites with deep models and transfer learning. Within the scope of

the study, a data set containing a total of 2852 screenshots, consisting of real and fake

screenshots of websites such as adobe, amazon, apple and microsoft etc. was used. The

results obtained by using transfer learning from AlexNet, VGG16 and RESNET50

models as well as the proposed multi- input CNN model were analyzed. Promising

results are obtained from the experiments. The effects of the obtained findings on other

future studies were discussed.

Keywords: AlexNet, VGG16, RESNET50, Transfer learning, Multi-input CNN,

Phishing

v

ÖZ

DERİN ÖĞRENME TABANLI KİMLİK AVI WEB SAYFASI TESPİTİ

BASTEM, Tevfik Uğur

Bilgisayar Mühendisliği Yüksek Lisans

 Danışman: Dr. Öğr. Üyesi Abdül Kadir GÖRÜR

Ortak Danışman: Doç. Dr. Ali Seydi KEÇELİ

Ocak 2022, 53 sayfa

E-ticaret, sosyal medya ve dijital hizmetlerin kullanımının artmasıyla birlikte

oltalama faaliyetlerinde muazzam bir artış yaşanmaktadır. Bu çalışmada, oltalama

faaliyetlerinin gözlemlenmesinden yola çıkarak, transfer öğrenme yöntemleri ile sahte

web sitelerinin tespitini yapacak bir çalışma gerçekleştirilmiştir. Çalışma kapsamında,

adobe, amazon, apple, microsoft gibi web sitelerinin gerçek ve sahte ekran

görüntülerinden oluşsan toplam 2852 ekran görüntüsü içeren bir veri setinden

yararlanılmıştır. AlexNet, VGG16, RESNET50 transfer öğrenme yöntemleri yanı sıra

kendi geliştirdiğimiz çok girişli CNN modelini kullanarak, elde edilen sonuçlar analiz

edilmiştir. Elde edilen bulguların gelecekte yapılabilecek diğer çalışmalara etkisi

tartışılmıştır.

Anahtar Kelimeler: AlexNet, VGG16, RESNET50, Transfer öğrenimi, Çok girdili

sinir ağı, Oltalama

vi

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to co-advisor, previously my

advisor, Assoc. Prof Dr. Ali Seydi KEÇELİ, who provided me with all kinds of help,

sacrifice during my studies, and expanded my horizons in academic studies for a long

time.

I would like to thank my dear advisor, Assist. Prof Dr. Abdül Kadir GÖRÜR,

who helped me to maintain my research for the rest of the study, cordially for his

valuable comments, guidance, and counseling.

I wish to thank the examining committee for their kindness during the

presentation of this thesis.

I must express my profound sincere and gratitude to my mother, Yıldızhan

BASTEM, my father, Ahmet BASTEM, and my sisters, Pınar GENÇ and Zeynep

YAVUZEKİNCİ who have brought me to where I am today and have always

supported me without sparing their efforts.

Finally, my sincere acknowledgement also goes to my wife, Hatice Nazlı

BASTEM, who stood by me unconditionally during my most stressful times and gave

me support and strength with her presence.

vii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGLARISM ... iii

ABSTRACT ... iv

ÖZ .. v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS ... vii

LIST OF TABLES .. ix

LIST OF FIGURES ... x

CHAPTER I .. 1

INTRODUCTION .. 1

1.1 PROBLEM STATEMENT .. 3

1.2 AIM OF THE THESIS ... 3

1.3 APWG PHISHING REPORTS .. 3

1.4 GOOGLE PHISHING REPORT .. 4

1.5 THESIS ORGANIZATION ... 5

CHAPTER II .. 6

BACKGROUND .. 6

2.1 TRANSFER LEARNING .. 6

2.2 CNN .. 6

2.2.1 CNN Architecture .. 6

2.2.2 Input Layer ... 7

2.2.3 Convolutional Layer .. 7

2.2.4 Activation Layer .. 8

2.2.5 Pooling Layer ... 9

2.2.6 Fully Connected Layer... 11

2.2.7 DropOut Layer ... 12

2.2.8 Classification Layer ... 12

2.2.9 Softmax Layer.. 12

2.2.10 Normalization Layer .. 13

2.3 EVALUATION METRICS .. 13

viii

2.3.1 Confusion Matrix ... 13

2.3.1.1 True Positive .. 13

2.3.1.2 True Negative ... 13

2.3.1.3 False Positive .. 14

2.3.1.4 False Negative .. 14

2.3.2 Accuracy Rate ... 14

2.3.3 Precision .. 14

2.3.4 Recall .. 14

2.3.5 F1-Score .. 14

CHAPTER III .. 15

LITERATURE REVIEW .. 15

CHAPTER IV ... 18

EVALUATION ... 18

4.1 DATASET .. 18

CHAPTER V .. 20

TOOLS AND LIBRARIES ... 20

5.1 AlexNet .. 20

5.2 VGG16 ... 22

5.3 ResNet 50 ... 24

5.3.1 Vanishing Gradient Problem ... 24

5.3.2 Residual Block ... 24

5.4 MULTI INPUT CNN ... 25

CHAPTER VI ... 28

EXPERIMENTS .. 28

6.1 EXPERIMENTAL SETUP .. 28

6.2 EXPERIMENTAL STUDIES .. 28

6.2.1 AlexNet Experimental Studies... 29

6.2.2 VGG16 Experimental Studies ... 33

6.2.3 Multi-Input CNN Model Experimental Studies... 38

6.3 EXPERIMENTAL RESULT ... 43

6.4 COMPARISON WITH SIMILAR STUDIES ... 44

CHAPTER VII ... 46

CONCLUSIONS AND FUTURE WORKS ... 46

REFERENCES ... 47

CURRICULUM VITAE .. 53

ix

LIST OF TABLES

Table 2.1: Confusion Matrix ... 13

Table 4.1: Distribution Of Dataset .. 18

Table 5.1: AlexNet Parameter Count [46] .. 21

Table 5.2: VGG16 Parameter Count [46] ... 23

Table 6.1: AlexNet Network Analyze ... 29

Table 6.2: VGG16 Network Analyze .. 34

Table 6.3: CNN Training Parameters .. 43

Table 6.4: Rates of Feature Selection Methods... 43

Table 6.5: Comparison of Method Results ... 45

x

LIST OF FIGURES

Figure 1.1: Multi-Input CNN Model... 2

Figure 1.2: Phishing Activity, 2020 [10] .. 4

Figure 1.3: Two Million Phishing Websites Created in 2020- Phishing sites detected

by Google[44] .. 5

Figure 2.1: CNN Architecture[54] .. 7

Figure 2.2: Convolution Operation [21] ... 8

Figure 2.3: ReLu Graph [32] .. 9

Figure 2.4: Example of Max Pooling [52] .. 10

Figure 2.5: Fully connected layer [37] .. 11

Figure 2.6: (a) Artificial neural network (b) Dropout applied neural network

(Crossed neurons dropped from the network) [38] .. 12

Figure 4.1: Dataset Weight ... 19

Figure 5.1: An illustration of AlexNet layers [20] .. 21

Figure 5.2: Activation Function Types [45].. 22

Figure 5.3: An illustration of VGG16 Architecture [23] .. 23

Figure 5.4: RESNET 50 Architecture [50] ... 24

Figure 5.5: Residual learning: a building block [48] .. 25

Figure 5.6: Multi-Input CNN Architecture ... 27

Figure 6.1: Pseudocode of input dataset ... 28

Figure 6.2: Random dataset example .. 29

Figure 6.3: Pseudocode of Future Extraction AlexNet ... 31

Figure 6.4: AlexNet Train Progress .. 32

Figure 6.5: AlexNet Image Classification Result -1 ... 32

Figure 6.6: AlexNet Image Classification Result-2 .. 33

Figure 6.7: Pseudocode of VGG16 Future Extraction .. 36

Figure 6.8: VGG16 Train Process .. 37

Figure 6.9: VGG16 Image Classification Result-1 ... 38

Figure 6.10: VGG16 Image Classification Result-2 ... 38

xi

Figure 6.11: Pseudocode of Transfer Layer Multi-Input Model 40

Figure 6.12: Pseudocode of Classification Layer ... 41

Figure 6.13: Multi-Input CNN Train Process ... 41

Figure 6.14: Multi-Input CNN Image Classification Result-1 42

Figure 6.15: Multi-Input CNN Image Classification Result-2 42

Figure 6.16: ImageNet Classification Error [53] .. 44

file:///C:/Users/user/Desktop/TEVFİK_UĞUR_BASTEM_YÜKSEK_LİSANS_TEZİ.docx%2028.01_güncel.docx%23_Toc94355443

xii

LIST OF SYMBOLS AND ABBREVIATIONS

CNN :Convolusional Neural Network

APWG :Anti Phishing Working Group

DOM :Document Object Model

HTML :HyperText Markup Language

BVM :Ball Support Vector Machine

SVM :Support Vector Machine

URL :Uniform Resource Locator

IP :Internet Protocol

ILSRVC :ImageNet Large Visual Recognition Challenge

TN :True Negative

TP :True Positive

FN :False Negative

FP :False Positive

TPR :True Positive Rate

FNR :False Negative Rate

ReLu :Rectified Linear Unit

etc :Et Cetera, Other Similar Things

1

CHAPTER I

INTRODUCTION

In working against phishing attacks, phishing prediction heuristics are essential

in developing solutions. However, phishing attacks continue to increase today and

reflect the need for higher-precision solutions. It is getting more difficult to detect these

phishing attacks with traditional methods. Deep learning approaches come to the fore

in order to overcome this problem.

The most widely used of these methods are convolutional neural networks

(CNN). According to the designed architecture, CNN takes the raw images as input

and learns the attributes at various levels. Moreover, the CNN is classified using

different machine learning methods and extracting the features obtained from end-to-

end or after the CNN itself. For example, from the amazon screenshots in the dataset,

the necessary attributes are automatically learned to distinguish which screenshots are

fake and real. In this thesis, different deep learning approaches have been tested to

determine the screenshots of fake websites.

Models using the AlexNet and VGG16 architectures directly, and a multi-input

CNN model using with ResNet 50 model. In addition, within the scope of the thesis,

the VGG16 network was used for transfer learning. The general flow diagram of the

proposed method is given in Figure 1.1. Higher classification success rates are

obtained by combining the features obtained from the raw images with the multi-input

network and the features obtained by transfer learning on a single network.

2

 Figure 1.1: Multi-Input CNN Model

3

1.1 PROBLEM STATEMENT

The development of the information technologies has brought many

conveniences to our lives and has also caused many problems. It also provides

opportunities for individuals who want to commit crimes. In the World millions of

credit card information are stolen, are made by software that comes with simple fishing

e-mails. Malware can be written in many programming or scripting languages and can

be transported in files. Viruses, Trojans, malicious emails, keyboard listening systems,

url injection are the most common malwares. In addition to these, there are phishing

attacks aimed at increasing deception and fraud [1]. According to Jakobsson and

Meyers (2007), phishing can be used to prevent user-sensitive information through the

illegitimate website that is entirely similar to the target an action aimed at obtaining

information (such as personal identification number, password, credit card number)

defines as [9].

1.2 AIM OF THE THESIS

Thesis proposal, develop a deep learning-based phishing web page recognition

approach. In addition, the classical visual descriptors will be tested for this purpose

and their performance will be matched with the results obtained from the deep-based

methods. Deep Learning methods will be tested for web page similarity. A CNN by

using publicly available datasets will be designed and implemented first [2]. Then,

transfer learning by using well-known pre-trained models like VGG16 and AlexNet

[3, 47] are tested. In transfer learning the pre-trained models will be used as feature

extractor and classical machine learning methods will be employed on deep features

for recognition. These methods will be applied on both whole image and image

patches. In addition to classical CNN models, multi-input CNN model is developed,

and raw images and pre-trained features are taken as inputs by this model. Transferred

and learned features are combined to detect phishing web pages.

1.3 APWG PHISHING REPORTS

APWG publishes reports every year to draw attention to phishing activities.

The main purpose of the group is to analyze phishing attacks and to report phishing

attacks. In the report for the 4th quarter of 2020, it is observed that increase in phishing

activities continues throughout the year as shown in Figure 1.2. In the world, the

4

number of phishing attacks web sites between January and December has increased

from 50,000 to 250,000[10].

 Figure 1.2: Phishing Activity, 2020 [10]

1.4 GOOGLE PHISHING REPORT

According to another study, in 2020, it was reported by Google that Two

Million phishing websites were created. It was determined that Figure 1.3 showed an

increase of 19.91% when compared to 2019. This result showed the effect of the

increase in cyber-attacks with the onset of the coronavirus epidemic. According to

research from Google, an average of 46,000 new phishing websites were created every

week in 2020. According to another result obtained in the study, it was observed that

there was a very rapid increase in cyber-attacks between February and May.

0

50.000

100.000

150.000

200.000

250.000

Phishing Sites

Phishing Sites Trend (Phishing Sites)

5

Figure 1.3: Two Million Phishing Websites Created in 2020- Phishing sites detected by

Google [44]

1.5 THESIS ORGANIZATION

In the first part of the thesis, basic information, problem situation and the

purpose of the thesis are given in order to gain a general point of view to the thesis.

The organization of other departments is presented below:

In Chapter 2, the concepts of transfer learning and CNN algorithms are defined, and

each component is explained.

In Chapter 3, the literature related to the thesis has been examined.

In Chapter 4, the dataset has been defined.

In Chapter 5, the tools and libraries have been explained.

In Chapter 6, the experimental setup has been explained and experimental results have

been discussed.

In Chapter 7, whether the research has achieved its purpose has been explained. In

addition, forward-looking application areas and suggestions have been discussed.

6

CHAPTER II

BACKGROUND

2.1 TRANSFER LEARNING

Transfer learning approaches are influenced by the human learning model. For

the solution of the problem, previously obtained solutions are used [24] [25]. In

summary, it means using a network trained with one dataset for a different dataset.

Transfer learning approaches gained momentum with the study of Prat (1993) [25]. In

this study, different data wanted to be classified using the coefficients learned from a

different dataset.

2.2 CNN

Convolutional Neural Network (CNN) is one of the popular deep neural

networks. CNN models are often used in image processing and take images as input.

This algorithm, which captures the features in the images with different operations and

classifies them, consists of different layers [26]. It gets its name from the linear

mathematical operation between matrices.

2.2.1 CNN Architecture

CNN architecture consists of Input Layer, Convolutional Layer, Activation

Layer, Pooling Layer, Fully Connected Layer, DropOut Layer, Classification Layer,

Softmax Layer and Normalization Layer. The CNN architecture is shown in Figure

2.1 [54].

7

Figure 2.1: CNN Architecture [54]

2.2.2 Input Layer

It is the first layer of the convolutional neural network, also called the data

input layer. The input data resolution and size should be determined according to the

architecture of the model to be designed [28]. The input data should be chosen well.

Because of this, data will affect the model's performance, training time, test time, and

memory requirement. It is necessary to select a large number of input data to increase

the success rate. It also causes a more extended training and testing time. For this,

higher processor and memory capacity is needed.

2.2.3 Convolutional Layer

The primary layer of CNN is the convolution layer. Responsible for detecting

input image properties. These layer parameters focus on using learnable kernels and

apply filters to the image to extract features from the image [27]. Filters, which play

an essential role at this stage, provide a new small matrix from the data [21]. The filter

to be chosen will affect the success rate of the network and the training process.

Therefore, an ideal filter should be chosen [29]. Convolution is performed by using

filters in sizes such as 1x1, 2x2, 3x3, 5x5, 7x7, and at this stage, a feature map is

created. In this thesis, as an example; the 7*7 filter is used for the AlexNet model.

Figure 2.2 shows the convolution process.

8

Figure 2.2: Convolution Operation [21]

Each filter contains its edge detection structure. Although the filters are usually

square matrices, filters with different rows and columns are also used in some studies.

A tensor is obtained by superimposing each filter on which the convolution process is

applied to the input image. The number of filters used determines the depth of the

tensor to be created. The convolution process is calculated according to the formula

given below [31].

Wout :The size of the new image to be obtained after the convolution operation.

Win :The size of the input image.

F : Filter size.

Stride-S: Convolution step size.

Padding-P: Add frame to image.

Wout=
Win-F +2P

S+1

(2.1)

2.2.4 Activation Layer

Activation functions are used when transmitting the output value in neurons

from one layer to another. The initial value is determined to be able to decide whether

the output value should be transferred to other layers. Because the neuron may not

know what the limits of the real value will be and the artificial neuron may be in the

value range (−∞, +∞). Therefore, activation functions are needed to decide the neuron's

activation states. Thus, it will be able to control the output value produced by a neuron

9

and it will be possible to decide whether to see the neuron actively or not [32].

Activation functions can be linear or non-linear. While choosing the activation

function, a nonlinear and differentiable function was preferred. Because our model can

be learned better and the factors that give better performance are taken into

consideration. For these reasons, the Relu(Rectifier linear unit) activation function is

preferred in the thesis. Although the ReLu activation function looks linear, it is a non-

linear function. Relu graph shows in Figure 2.3.

g(x)= max(0,x) =
x if x≥0

0 if x<0

(2.2)

The ReLu function is as shown above. It gives an output x if x is positive and

0 otherwise [32].

Figure 2.3: ReLu Graph [32]

The range of ReLu is [0, inf). This means it can blow up the activation.

2.2.5 Pooling Layer

After the convolution process (2015), reduces the parameter and data size in

the network. As a result of the pooling process, makes the neural network faster. A

certain filtering process carries out data size reduction. Pooling Layer operates

10

independently on each channel of the input. These layers are maximum (maximum

pooling), minimum (minimum pooling) or average (average pooling) pooling [34]. In

our study, max pooling, known to give the best results before, was applied for AlexNet

and VGG16 learning models. Figure 2.4 shows an example of max pooling operation.

Pooling layer down samples the volume spatially, independently in each depth slice of

the input volume. Equation [51] shows the extraction pooling feature map formula.

Figure 2.4: Example of Max Pooling [52]

Ix= Input shape

P= Pooling window size

S= Stride

Max Pool Output = [
Ix-P

S
] +1

(2.3)

11

A new output was obtained in the process by choosing the highest value from the

sections with the same color in the max pooling process using the filter and stride

value.

2.2.6 Fully Connected Layer

This layer takes the feature maps as input and prepares them for the

classification [35]. The fully connected layer is the layer where learning with artificial

neural networks. Therefore, as in logistic regression, forward propagation and

backward propagation are performed in this layer. In the convolutional neural network

architecture, the fully connected layer comes after the consecutive convolution, ReLu

and pooling layers. This layer is dependent on all fields of the previous layer. The

number of layers can vary depending on the architecture. One fully connected layer

looks for high-level features that have a high degree of association with a class, by

looking at the neurons with weights indicating these properties, which belongs to the

class [37]. In convolutional neural network architecture, if the last layer matrix size

A(x) and the fully connected layer B(x) matrix are selected, the total weight matrix

AxB is formed. For this reason, this layer is called the fully connected layer. Figure

2.5 shows fully connected layer structure.

 Figure 2.5: Fully connected layer [37]

12

2.2.7 DropOut Layer

In multi-layer artificial neural networks, while the neural network is being

trained, the network called overfitting memorization takes place. This is undesirable

situation. To prevent the network from being memorized, some nodes in the network

that memorize are eliminated. Thus, network attempts are made to eliminate

memorization [38]. Hinton et al. suggested, the Dropout layer as an editing layer for

fully connected layers. In Figure 2.6, the artificial neural network and after the dropout

structure is shown.

Figure 2.6: (a) Artificial neural network (b) Dropout applied neural network (Crossed

neurons dropped from the network) [38]

2.2.8 Classification Layer

Classification after fully connected layer, produces as many results as the

number of items to be classified. Each of these results represents a class. For

classification, the softmax classifier is generally used, although it is known that there

are different types of classifiers [39].

2.2.9 Softmax Layer

Softmax layer receives the input and performs the classification. Softmax

indicates which class the probabilistic input data belongs to. In the deep learning

network, for each class, outputs the probability value. Cross-entropy is used for these

operations [40].

13

2.2.10 Normalization Layer

Training of deep convolutional neural networks takes a serious process

computationally. Activation of neurons can be normalized to reduce the training time.

The normalization layer is effective to stabilize the hidden layers. Usually,

normalization is performed after Relu layer [41].

2.3 EVALUATION METRICS

2.3.1 Confusion Matrix

 In order to evaluate the performance of classification models used in machine

learning, the confusion matrix is often used, in which the predictions of the target

attribute and the actual values are compared.

Table 2.1: Confusion Matrix

Confusion Matrix

Actual

Image Detected

Positive (1)

Not Detected Negative

(0)

Predicted

Image Exist Positive

(1)

TP[1,1]

True Positive

FP[1,0]

False Positive

Image Not Exist

Negative (0)

FN[0,1]

False Negative

TN[0,0]

True Negative

The Table 2.1 is a confusion matrix of the output of a model set up for binary

classification. Positive and Negative terms in this matrix represent the classes to be

separated.

2.3.1.1 True Positive

True positives are values where the true value is 1 and the predicted value is 1.

2.3.1.2 True Negative

True Negatives are instances where the true value is 0 and the predicted value

is 0.

14

2.3.1.3 False Positive

False Positives are instances where the true value is 0 but the predicted value

is 1.

2.3.1.4 False Negative

False Negatives are instances where the true value is 1 but the predicted value

is 0.

2.3.2 Accuracy Rate

Generally, it is a measure of how often the classifier guesses correctly.

Accuracy value is a value between 0 and 1.

Accuracy=
TP+TN

TP+FP+TN+FN

 (2.4)

2.3.3 Precision

It is a measure of how accurately predicted from all classes.

Precision=
TP

TP+FP

 (2.5)

2.3.4 Recall

It is a metric that shows how many of the predicted transactions is positively

predicted.

Recall=
TP

TP+FN

 (2.6)

2.3.5 F1-Score

F1 Score value shows the harmonic mean of Precision and Recall values.

F1 Score=2*
Precision* Recall

Precision + Recall

 (2.7)

15

CHAPTER III

LITERATURE REVIEW

Jain and Gupta [5] estimated based on screenshots of suspicious web pages.

They stated that using image contrast and clustering of key points with the k-means

algorithm (k-means) makes it possible to predict image similarities. They mentioned

that visual similarities could also be determined through optical character recognition

by converting them to text and comparing the results. This method better addresses the

zero-day phishing issue. However, the similarity classifier must be continuously

trained for the determined approach to achieve the desired result.

In another study, Rosiello et al. [6] DOM tree by comparing the HTML tags

and the fake web sites are aimed to be detected. This method is directly effective

against phishing websites. For a web page to give the desired result, view uniquely

with the DOM tree structure should be defined. However, there is an obvious downside

of this method. Phishing attackers use different HTML tags in case it gets the look of

the same website, and the fake website will not be detected.

Bohunsky et al. [7] to detect fake web pages to determine "visually" method

display fake and original web pages. This method is defined to make screenshots small

rectangular cut them into pieces. In this way, the visualization of two web pages by

comparing the box structure, determines its correlation.

In the study by Gowtham et al. [11], legitimate and phishing web pages were

researched in depth. Based on the analysis, heuristics are proposed to extract 15

features from web pages of similar type. In the system created, before applying

heuristics to the web pages, two pre-scan modules were used. With the help of the

modules used, unnecessary calculation is reduced. Also, false positive rate has been

reduced without compromising on false negative. As a result of the study, an accuracy

rate of over 90% was obtained. The experimental results and the proposed method

effective for protecting users from online identity attacks.

16

In the study by Li et al [12], the minimum requirement for phishing website

detection enclosing BVM (Ball Support Vector Machine) is recommended. This

approach aimed to provide high speed and high accuracy for phishing website

detection. In order to increase the integrity of the vectors, studies have been carried

out. First, according to the DOM tree, the topology of the website structure analysis

was made. Then, the topological features of the website are extracted. Then, feature

vectors were determined by the classifier. The proposed method is compared with

SVM. It has been observed that the proposed method has higher detection sensitivity.

The accuracy of the proposed system and its validity were evaluated.

Nguyen and Nguyen [13] detect phishing websites using machine learning

methods by using URL and page content. In the study, obtained from URL and content

decision tree, random forest, support vector machine, naïve bayes and neural network

methods have been compared. According to the test results, random forest method is

the most successful predictor.

Kazemian and Ahmed [14] for the detection of malicious websites, compared

k-NN, support vector machine, naïve bayes classifier and kmeans methods. For

supervised methods, accuracy of over 89% was obtained.

Mohammad et al. [15] proposed a self-constructed neural network method for

detecting phishing websites. The proposed automatically creates the network and

shows a high classification success.

Abdelhamid et al. [16], [17] proposed a method for relational classification data

mining to divide websites into three different classes. According to experiments,

relational classifier method has higher accuracy than other methods.

Moghimi et al. [18] proposed a method for detection of phishing websites that

were designed to steal banking information. This method ensures that suspicious

websites of IP addresses and by detecting URL addresses, in the study, 3066 websites

were examined, and the recommended method has been successful at a rate of 99.14%.

Using a heuristic approach is an effective method for website-based phishing

detection of suspicious websites. Ludl et al. [19] in their study, suggested a method

that used a heuristic-based approach to detect and classify website-based phishing sites

specifically targeting HTML and URL. In this study, a data set of 18 different phishing

websites was used. As a result, it was seen that 16.9% of HTML content and 0.4% of

URL content were misperceptions.

17

In another study, Yi et al. [42] proposed a method for detecting phishing

websites that steal identity and credit card information. The study, using the deep

learning method, aimed to block IP numbers of suspicious websites and these websites

by detecting the URL address. In the study, as a data set, real data is used. As a result,

the proposed method has reached 90% accuracy in detecting phishing websites.

In another study, Pan et al. [43] for phishing detection, proposed to analyze

websites identity. They hypothesized that websites' title, description, copyright, etc.

features could change on phishing websites. Contrary to what was predicted in the

study, 29% recommended method was found to be unsuccessful.

18

CHAPTER IV

EVALUATION

4.1 DATASET

In the thesis, from 2782 screenshots of 15 websites the resulting dataset was

used [8]. The distribution of the dataset is as follows in Table 4.1

Table 4.1: Distribution Of Dataset

The dataset weight is illustrated in Figure 4.1.

NAME OF DATASET NUMBER OF DATA

Adobe 70

Amazon 29

Alibaba 76

Apple 64

Boa 116

Chase 111

Dhl 109

Dropbox 115

Facebook 144

Linkedin 38

Microsoft 118

Paypal 214

Wellsfargo 134

Yahoo 114

Other 1400

19

Figure 4.1: Dataset Weight

0

200

400

600

800

1000

1200

Dataset Weight

Train Test

20

CHAPTER V

TOOLS AND LIBRARIES

In this section, tools, Multi-Input CNN algorithm (our own work) and some

CNN algorithms are mentioned. These algorithms are AlexNet, VGG16 and

ResNet50. The reasons why we choose these algorithms and use them in our study are

that these algorithms get high scores in ILSRVC competitions and bring new features

to the CNN architecture.

5.1 AlexNet

AlexNet [20] architecture at the 2012 ImageNet competition educated with

about a million images that made their name known feature, extremely successful in

classifying images. It is a CNN model. Figure 5.1 [20] illustrate architecture of

AlexNet, which consists of eight layers; the first five are convolutional layers, some

of them maxpooling and the last three layers are fully connected layers. There are also

input and output layers. AlexNet architecture, 1000 objects designed to classify. In

Alexnet architecture approximately 60 million parameters were used and the parallel

pair. It is also the first model to run on a GPU. Table 5.1 shows structural details of

AlexNet [46].

21

Table 5.1: AlexNet Parameter Count [46]

AlexNet Network - Structural Details

Input Output Layer Stride Pad
Kernel

Size
in out

of

Param

227 227 3 55 55 96 conv1 4 0 11 11 3 96 34944

55 55 96 27 27 96 maxpool1 2 0 3 3 96 96 0

27 27 96 27 27 256 conv2 1 2 5 5 96 256 614656

27 27 256 13 13 256 maxpool2 2 0 3 3 256 256 0

13 13 256 13 13 384 conv3 1 1 3 3 256 384 885120

13 13 384 13 13 384 conv4 1 1 3 3 384 384 1327488

13 13 384 13 13 256 conv5 1 1 3 3 384 256 884992

13 13 256 6 6 256 maxpool5 2 0 3 3 256 256 0

fc6 1 1 9216 4096 37752832

fc7 1 1 4096 4096 16781312

fc8 1 1 4096 1000 4097000

Total 62378344

Figure 5.1: An illustration of AlexNet layers [20]

AlexNet uses ReLu as activation in non-linear parts. In previous standard

neural networks, tanh or sigmoid was used. These function types are shown in Figure

5.2 [45].

22

Figure 5.2: Activation Function Types [45]

5.2 VGG16

VGG16 is a convolutional neural network model proposed by K. Simonyan

and A. Zisserman from the University of Oxford in the paper “Very Deep

Convolutional Networks for Large-Scale Image Recognition” [22]. Model, from 14

million in 1000 classes in ImageNet, a dataset of multiple images 92.7% reaches the

first 5 test accuracy. VGG16 improves AlexNet by replacing large kernel-sized filters

(11 and 5 in the first and second convolutional layer, respectively) with multiple 3×3

kernel-sized filters one after another. The architecture of VGG16 is shown in Figure

5.3 [23]. If we examine the architecture; The VGG-16 architecture consists of

convolutional, pool and fully connected layers. A total of 21 main layers occurs [22].

This architecture has an increasing network structure. The image input resolution is

224 × 224 pixels. Convolutional layer filter size is 3 × 3 pixels. In this architecture, the

last layers which are fully connected are used for feature extraction. Table 5.2 shows

structural details of VGG16 [46].

23

Table 5.2: VGG16 Parameter Count [46]

VGG16 - Structural Details

Input Image Output Layer Stride

Kernel

Size in out Param

1 224 224 3 224 224 64 conv3-64 1 3 3 3 64 1792

2 224 224 64 224 224 64 conv3064 1 3 3 64 64 36928

 224 224 64 112 112 64 maxpool 2 2 2 64 64 0

3 112 112 64 112 112 128 conv3-128 1 3 3 64 128 73856

4 112 112 128 112 112 128 conv3-128 1 3 3 128 128 147584

 112 112 128 56 56 128 maxpool 2 2 2 128 128 65664

5 56 56 128 56 56 256 conv3-256 1 3 3 128 256 295168

6 56 56 256 56 56 256 conv3-256 1 3 3 256 256 590080

7 56 56 256 56 56 256 conv3-256 1 3 3 256 256 590080

 56 56 256 28 28 256 maxpool 2 2 2 256 256 0

8 28 28 256 28 28 512 conv3-512 1 3 3 256 256 1180160

9 28 28 512 28 28 512 conv3-512 1 3 3 512 512 2359808

10 28 28 512 28 28 512 conv3-512 1 3 3 512 512 2359808

 28 28 512 14 14 512 maxpool 2 2 2 512 512 0

11 14 14 512 14 14 512 conv3-512 1 3 3 512 512 2359808

12 14 14 512 14 14 512 conv3-512 1 3 3 512 512 2359808

13 14 14 512 14 14 512 conv3-512 1 3 3 512 512 2359808

 14 14 512 7 7 512 maxpool 2 2 2 512 512 0

14 1 1 25088 1 1 4096 fc 1 1 25088 4096 102764544

15 1 1 4096 1 1 4096 fc 1 1 4096 4096 16781312

16 1 1 4096 1 1 1000 fc 1 1 4096 1000 4097000

Total 138423208

Figure 5.3: An illustration of VGG16 Architecture [23]

24

5.3 ResNet 50

ResNet is a network structure proposed by He Kaiming et al. [48] from

Microsoft Research Asia in 2015, and was the winner in the ILSVRC-2015

classification task. The ResNet-50 model consists of 5 stages. Each stage has a

convolution and identity block. Each convolution block and each identity block has 3

convolution layers [49]. The ResNet-50 has over 23 million trainable parameters.

Figure 5.4 shows ResNet 50 architecture.

Figure 5.4: RESNET 50 Architecture [50]

 ResNet has emerged to reduce the number of errors that occur as the network

gets deeper and the number of trains increases.

5.3.1 Vanishing Gradient Problem

Due to Vanishing/Exploding Gradient problem, training of deep neural

networks is difficult. In a Convolution Neural network, when we stack multiple layers,

the training error should decrease in theory, but in practice or reality adding more

layers to the CNN (making the CNN deeper) causes the training error to increase rather

than decrease.

5.3.2 Residual Block

Residual learning framework is used to reduce training and testing errors in a

deep network [48]. Residual Blocks as part of the ResNet architecture. In a residual

block, input x is added directly to the output of the network. Figure 5.5 shows a

building block of resudial learning.

25

 Figure 4.5: Residual learning: a building block [48]

According to the formula, the input x is added directly to the output of the network.

This F(x)+ x path is known as shortcut connection.

H(x) :Initial mapping.

F(x) :Residual function.

x : Residual block.

H(x)=F(x)+x

(5.1)

5.4 MULTI INPUT CNN

In this section, the CNN model is developed, and the features of the model are

explained. Multi Input CNN derived from VGG16. A multi-input CNN classifier is

trained, where features are learned from images activation values of fully connected

layer of VGG16.

Network consists of two branches. The first branch has an ordinary CNN

structure. Raw website entered screenshots and generated deep feature attributes. The

second entry is already an image given as input to a trained network that takes the

activation values it creates. The network is illustrated in Figure 5.6. When the

architecture of the designed multi-input CNN model is examined; There is RESNET50

model. The part that receives the raw images as input in the design, the first layer is

the image input layer. 224*224*3 size images are provided as input. In the network,

ResNet 50 has 5 stages and each stage with a convolutional and identity block. Stage

26

1, the feature map convolutional layer with 2 strides which is followed by Batch and

Relu. Convolution layers are the main layers and convolutional block has one extra

layer to match the input and output dimension. Each stage has the same number of

filters. There are filters for learning the different types of features in these layers. Each

filter overwrites the input images and convolution is applied. Lastly, two non-residual

blocks are added to the end.

27

 Figure 5.6: Multi-Input CNN Architecture

28

CHAPTER VI

EXPERIMENTS

6.1 EXPERIMENTAL SETUP

In this thesis, the experiments were compiled using the R2019a MATLAB

program installed on a 64-bit Windows 10 operating system. Properties of the

computer used; NVIDIA GeForce GTX950M has a 4 GB graphics card, Intel © i7-

Core 2.7 GHz processor and 16 GB RAM capacity.

6.2 EXPERIMENTAL STUDIES

In this part, a study is carried out to obtain the results of AlexNet, VGG16 and

multilayer CNN models separately. The same dataset was applied for all models and

the results were compared. In order to carry out the experiments, models were created,

algorithms were developed, and models were simulated by MATLAB.

The image dataset for AlexNet and all other models has been added to

MATLAB as a script. As stated in the pseudocode, for all models, the dataset is defined

as 70% train and 30% test data. Pseudocode of input datasets are shown in Figure 6.1

and random dataset example are shown in Figure 6.2.

Figure 6.1: Pseudocode of input dataset

Algorithm: Load Dataset

Initialize Dataset;

imds = imageDatastore();

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,’randomized’);

numTrainImages = numel(imdsTrain.Labels);

idx = randperm(numTrainImages,2);

while index = 1:2 do

 subplot(2,2,index);

 readimage(imdsTrain,idx(index));

 imshow(index);

end

29

Figure 6.2: Random dataset example

6.2.1 AlexNet Experimental Studies

In this part, the AlexNet pre-trained model to the existing dataset is applied.

Also, it explains how the result was obtained. How the algorithm is implemented.

AlexNet network trained on the dataset. This syntax is equivalent to net = alexnet. The

AlexNet network has been analyzed and shown in Table 6.1.

Table 6.1: AlexNet Network Analyze

 # Name Type Activation and Lernables

1 'data' Image Input 227x227x3 images with 'zerocenter' normalization

2 'conv1' Convolution
96 11x11x3 convolutions with stride [4 4] and

padding [0 0 0 0]

3 'relu1' ReLU ReLU

4 'norm1'
Cross Channel

Normalization

cross channel normalization with 5 channels per

element

5 'pool1' Max Pooling
3x3 max pooling with stride [2 2] and padding [0 0 0

0]

6 'conv2'
Grouped

Convolution

2 groups of 128 5x5x48 convolutions with stride [1 1]

and padding [2 2 2 2]

7 'relu2' ReLU ReLU

8 'norm2'
Cross Channel

Normalization

cross channel normalization with 5 channels per

element

9 'pool2' Max Pooling
3x3 max pooling with stride [2 2] and padding [0 0 0

0]

10 'conv3' Convolution
384 3x3x256 convolutions with stride [1 1] and

padding [1 1 1 1]

11 'relu3' ReLU ReLU

30

Table 6.1: Continuation

In total, AlexNet network has five convolutional layers and three fully

connected layers. AlexNet algorithm pseudocode shows in Figure 6.3.

12 'conv4'
Grouped

Convolution

2 groups of 192 3x3x192 convolutions with stride [1

1] and padding [1 1 1 1]

13 'relu4' ReLU ReLU

14 'conv5'
Grouped

Convolution

 2 groups of 128 3x3x192 convolutions with stride [1

1] and padding [1 1 1 1]

15 'relu5' ReLU ReLU

16 'pool5' Max Pooling
 3x3 max pooling with stride [2 2] and padding [0 0

0 0]

17 'fc6' Fully Connected 4096 fully connected layer

18 'relu6' ReLU ReLU

19 'drop6' Dropout 50% dropout

20 'fc7' Fully Connected 4096 fully connected layer

21 'relu7' ReLU ReLU

22 'drop7' Dropout 50% dropout

23 'fc8' Fully Connected 1000 fully connected layer

24 'prob' Softmax softmax

25 'output'

 Classification

Output
crossentropyex with 'tench' and 999 other classes

31

 Figure 6.3: Pseudocode of Future Extraction AlexNet

The dimensions of all inputs are adjusted to be 227*227*3. All layers are

extracted, except the last three, from the pre-trained network. The layers are transferred

to the new classification task by replacing the last three layers with a fully connected

layer, a softmax layer, and a classification output layer.

After all the layers are set, the network train process is started. Training

progress is shown in Figure 6.4.

Algorithm : AlexNet

Initialize AlexNet Networks;

AlexNet load();

features,labels = getbatch(dataset);

model createmodel();

analyzeNetwork(AlexNet);

inputSize = net.Layers().InputSize;

layerTransfer = net Layers();

numClasses = numel(categories(imdsTrain.Labels));

layerTransfer set();

fullyConnectedLayer();

pixelRange = [-30 30];

imageAugmenter = imageDataAugmenter();

augimdsTrain = augmentedImageDatastore();

options = trainingOptions();

netTransfer = trainNetwork();

idx = randperm();

while index = 1:2 do

 subplot(2,2,index);

 readimage(imdsValidation,idx(index));

 imshow(index);

 YValidation = imdsValidation.Labels;

 Accuracy = mean(YPred == YValidation);

End

[cm,order] = confusionmat(YValidation, YPred);

tp = sum((YPred == 1) & (YValidation == 1))

fp = sum((YPred == 1) & (YValidation == 0))

tn = sum((YPred == 0) & (YValidation == 1))

fn = sum((YPred == 0) & (YValidation == 0))

sensitivity = tp/(tp + fn) %TPR

specificity = tn/(tn + fp) %TNR

precision = tp / (tp + fp)

FPR = fp/(tn+fp);

Accuracy = (TP+TN)./(TP+FP+TN+FN);

recall = tp / (tp + fn)

F1 = (2 * precision * recall) / (precision + recall);

32

Figure 6.4: AlexNet Train Progress

After the AlexNet train network progress is complete, used the fine-tuned

network to classify the validation images. Figure 6.5 and figure 6.6 show the result of

the image classification process.

Figure 6.5: AlexNet Image Classification Result – 1

33

Figure 6.6: AlexNet Image Classification Result - 2

6.2.2 VGG16 Experimental Studies

In this part, applied the VGG16 pretrained model to the existing dataset and

explain how the classification result is obtained. How the algorithm is implemented.

Pretrained VGG16 CNN trained on the dataset. This syntax is equivalent to net =

vgg16. The VGG16 network has been analyzed and shown in Table 6.2.

34

Table 6.2: VGG16 Network Analyze

 # Name Type Activation and Learnable

1 'input' Image Input 224x224x3 images with 'zerocenter' normalization

2 'conv1_1' Convolution
64 3x3x3 convolutions with stride [1 1] and padding

[1 1 1 1]

3 'relu1_1' ReLU ReLU

4 'conv1_2' Convolution
64 3x3x64 convolutions with stride [1 1] and padding

[1 1 1 1]

5 'relu1_2' ReLU ReLU

6 'pool1' Max Pooling
2x2 max pooling with stride [2 2] and padding [0 0 0

0]

7 'conv2_1' Convolution
128 3x3x64 convolutions with stride [1 1] and

padding [1 1 1 1]

8 'relu2_1' ReLU ReLU

9 'conv2_2' Convolution
128 3x3x128 convolutions with stride [1 1] and

padding [1 1 1 1]

10 'relu2_2' ReLU ReLU

11 'pool2' Max Pooling
2x2 max pooling with stride [2 2] and padding [0 0 0

0]

12

'conv3_1'
Convolution

256 3x3x128 convolutions with stride [1 1] and

padding [1 1 1 1]

13 'relu3_1' ReLU ReLU

14

'conv3_2'
Convolution

256 3x3x256 convolutions with stride [1 1] and

padding [1 1 1 1]

15 'relu3_2' ReLU ReLU

16

'conv3_3'
Convolution

256 3x3x256 convolutions with stride [1 1] and

padding [1 1 1 1]

17 'relu3_3' ReLU ReLU

18 'pool3' Max Pooling
2x2 max pooling with stride [2 2] and padding [0 0 0

0]

19

'conv4_1'
Convolution

512 3x3x256 convolutions with stride [1 1] and

padding [1 1 1 1]

20 'relu4_1' ReLU ReLU

21

'conv4_2'
Convolution

512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

22 'relu4_2' ReLU ReLU

23

'conv4_3'
Convolution

512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

24 'relu4_3' ReLU ReLU

25 'pool4' Max Pooling
2x2 max pooling with stride [2 2] and padding [0 0 0

0]

26

'conv5_1'
Convolution

512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

27 'relu5_1' ReLU ReLU

28

'conv5_2'
Convolution

512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

29 'relu5_2' ReLU ReLU

30

'conv5_3'
Convolution

512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

35

Table 6.2: Continuation

31 'relu5_3' ReLU ReLU

32 'pool5' Max Pooling
2x2 max pooling with stride [2 2] and padding [0 0 0

0]

33 'fc6' Fully Connected 4096 fully connected layer

34 'relu6' ReLU ReLU

35 'drop6' Dropout 50% dropout

36 'fc7' Fully Connected 4096 fully connected layer

37 'relu7' ReLU ReLU

38 'drop7' Dropout 50% dropout

39 'fc8' Fully Connected 1000 fully connected layer

40 'prob' Softmax softmax

41 'output'

Classification

Output crossentropyex with 'tench' and 999 other classes

 In total, VGG16 CNN has 41 layers. 16 layers learnable weight, 13 layers

convolutional and 3 fully connected layers. VGG16 experimental future extraction

pseudocode shows in Figure 6.7.

36

Figure 6.7: Pseudocode of VGG16 Future Extraction

Algorithm : VGG16

Initialize VGG16 Networks;

AlexNet load();

features,labels = getbatch(dataset);

model createmodel();

analyzeNetwork(VGG16);

inputSize = net.Layers().InputSize;

layerTransfer = net Layers();

numClasses = numel(categories(imdsTrain.Labels));

layerTransfer set();

fullyConnectedLayer();

pixelRange = [-30 30];

imageAugmenter = imageDataAugmenter();

augimdsTrain = augmentedImageDatastore();

options = trainingOptions();

netTransfer = trainNetwork();

idx = randperm();

while index = 1:2 do

 subplot(2,2,index);

 readimage(imdsValidation,idx(index));

 imshow(index);

 YValidation = imdsValidation.Labels;

 Accuracy = mean(YPred == YValidation);

End

[cm,order] = confusionmat(YValidation, YPred);

tp = sum((YPred == 1) & (YValidation == 1))

fp = sum((YPred == 1) & (YValidation == 0))

tn = sum((YPred == 0) & (YValidation == 1))

fn = sum((YPred == 0) & (YValidation == 0))

sensitivity = tp/(tp + fn) %TPR

specificity = tn/(tn + fp) %TNR

precision = tp / (tp + fp)

FPR = fp/(tn+fp);

Accuracy = (TP+TN)./(TP+FP+TN+FN);

recall = tp / (tp + fn)

F1 = (2 * precision * recall) / (precision + recall);

37

The dimensions of all inputs are adjusted to be 224*224*3. All layers are

extracted, except the last three, from the pre-trained network. The layers are transferred

to the new classification task by replacing the last three layers with a fully connected

layer, a softmax layer, and a classification output layer.

After all the layers are set, the network train process is started. Training

progress is shown in Figure 6.8.

Figure 6.8: VGG16 Train Process

After the VGG16 train network progress is complete, used the fine-tuned

network to classify the validation images. Figure 6.9 and Figure 6.10 show the result

of the image classification process.

38

Figure 6.9: VGG16 Image Classification Result - 1

Figure 6.10: VGG16 Image Classification Result - 2

6.2.3 Multi-Input CNN Model Experimental Studies

In this part, applied the Multi-Input CNN pre-trained model to the existing

dataset and explain how the classification result is obtained. How the algorithm is

implemented. Multi-Input CNN network trained on the dataset.

The multi-input CNN model takes the input images data from the VGG16 pre-

trained network FC-8 image classifies. Image classification processes are carried out

39

with the ResNet50 pre-trained model. First, input image is detected by convolution

layer. After convolution layer is the Batch and ReLu layers. Batch layers by previous

layers setting the calculated activation values and used to normalize. ReLu layers,

eliminate the effect of dark areas and provide a nonlinear used to obtain a model.

Pooling layers, decrease the input sizes to reduce the complexity of calculation. This

is done by applying a mathematical MAX operation on the values corresponding to

the filter.

 In pooling operations, 3x3 filters are used. Fully connected layers are the last

layers of the CNN model. These layers are the standard layers of neural networks.

Class values for a specific input are calculated, in fully connected layers. The

activation values of each layer correspond to a different abstraction.

The second branch of the model takes the features obtained by transfer

learning. Machine learning models, which mostly need to be rebuilt when properties

and data change, were created to work alone. Additionally, previously acquired

knowledge in machine learning is often similar can be applied to tasks. Usually

requires a lot of effort transfer learning model instead of rebuilding models, reuse the

acquired knowledge and similarly model significantly reduce development time and

isolated. It aims to develop the model efficiency of the learning model. Within the

scope of the study, VGG16 network was used to extract attributes. By taking the

activation values created in the Fully Connected-8 layer, it is added to the multi-input

deep learning network as second input.

Fully Connected-8 layer generates a vector of 1000 as output. This vector is for

every image as an input to the network that will receive and perform the actual

classification. Multi-input CNN experimental future extraction pseudocode shows in

Figure 6.11, pseudocode of Classification Layer shows in Figure 6.12 and training

process is shown in Figure 6.13.

40

Figure 6.11: Pseudocode of Transfer Layer Multi-Input Model

Algorithm: Multi-Input CNN

Input VGG16 Transfer Attributes;

Initialize RESNET50 Networks;

RESNET50 load();

Features,labels = getbatch(dataset);

model createmodel();

stage – 1;

imageInputLayer();

convolution2dLayer();

batchNormalizationLayer();

reluLayer();

maxpooling2d();

stage – 2;

convolutionalUnit();

additionLayer();

reluLayer();

convolutionalUnit();

additionLayer();

reluLayer();

stage – 3;

convolutionalUnit();

additionLayer();

reluLayer();

convolutionalUnit();

additionLayer();

reluLayer();

stage – 4;

convolutionalUnit();

additionLayer();

reluLayer();

convolutionalUnit();

additionLayer();

reluLayer();

stage – 5;

averagePooling2dLayer();

fullyConnectedLayer();

softmaxLayer();

classificationLayer();

41

Figure 6.13: Multi-Input CNN Train Process

In the last parts of the network, attributes obtained by transfer learning and

activation values from the other branch, are combined in the concatenation layer and

transferred to the next fully connected layer. The last layers are softmax and are the

concatenation;

concatenationLayer();

fullyConnectedLayer();

softmaxLayer();

while index 1:2 do

 subplot(2,2,index);

 readimage(imdsValidation,idx(index));

 imshow(index);

 YValidation = imdsValidation.Labels;

End

[cm,order] = confusionmat(YValidation, YPred);

tp = sum((YPred == 1) & (YValidation == 1))

fp = sum((YPred == 1) & (YValidation == 0))

tn = sum((YPred == 0) & (YValidation == 1))

fn = sum((YPred == 0) & (YValidation == 0))

sensitivity = tp/(tp + fn) %TPR

specificity = tn/(tn + fp) %TNR

precision = tp / (tp + fp)

FPR = fp/(tn+fp);

Accuracy = (TP+TN)./(TP+FP+TN+FN);

recall = tp / (tp + fn)

F1 = (2 * precision * recall) / (precision + recall);

Figure 6.12: Pseudocode of Classification Layer

42

classification layers. Softmax layer converts the outputs to probability values and

selects the maximum probability label as the output of the classification layer.

After the multi-input CNN train network progress is complete, used the fine-

tuned network to classify the validation images. Figure 6.14 and figure 6.15 show the

result of the image classification process.

Figure 6.14: Multi-Input CNN Image Classification Result - 1

Figure 6.15: Multi-Input CNN Image Classification Result - 2

43

6.3 EXPERIMENTAL RESULT

The parameters used in training the models are shown in Table 6.3. 1996

screenshots corresponding to 70% of the total 2852 screenshots that make up the data

set were used for training the classifier, and the remaining 856 screenshots were used

for sample testing. The comparison results obtained by using feature selection methods

are shown in Table 6.4.

Table 6.3: CNN Training Parameters

Training Options Training Properties

Optimizer Sgdm

Initialize Rate 1e-4

Min Batch Size 60

Epoch Count 1000

Verbose 1

Execution Environment auto

Learn Rate Drop Factor 0,2

Learn Rate Drop Period 5

Learn Rate Schedule piecewise

Output Network Last-iteration

Table 6.4: Rates of Feature Selection Methods

Architecture
Image

Size

Class

Set

Validation

accuracy (%)

TPR

(%)

FNR

(%)

F1-Score

(%)

AlexNet 227*227 Data Set 83.94 81.3 18.Tem 89.6

VGG 16 224*224 Data Set 86.50 86.4 13.May 92.8

Multi Input

CNN
227*227 Data Set 91.23 91.2 8.Tem 95.4

The results we obtained when we compared the overall accuracy results of

VGG16, AlexNet and multi-input CNN transfer learning models; we observed that the

multi-input CNN model was better at predicting phishing websites than other models.

It is known that the emergence of this result is due to the use of the ResNet50 transfer

learning model as a classifier. The ILSVRC results, edited by the ImageNet team since

2010, are shown in the Figure 6.16 [53].

44

Figure 6.16: ImageNet Classification Error [53]

It is seen that these results and the results we obtained overlap with each other.

The best accuracy rate was given by the multi-input CNN model (91.23%), which we

created using the ResNet50 model, while VGG16 (86.50%) and AlexNet (83.94%)

gave the lowest rates. In addition, confusion matrix algorithms were used to compare

the obtained results. The results of some of these algorithms are shown in the Table

6.4. According to these results, the multi-Input CNN model (91.2%) gave the highest

TPR rate, the multi-input CNN model (8.7%) gave the lowest FNR rate, and the multi-

input CNN model (95.4%) gave the highest F1-Score rate.

6.4 COMPARISON WITH SIMILAR STUDIES

In this section, the performance results obtained from similar studies detecting

phishing websites are compared with the performance results of our study.

Kaytan and Hanbay [55] used a model they developed to detect phishing

websites. They named this model the ELM classifier. According to web sites features,

sample data of websites were collected. 90% of this data is separated as train and 10%

as test data. Prediction was made with the ELM classifier. According to the result

obtained, the accuracy rate was 95.93%. When we compare our study with this study,

similar prediction and performance tests were carried out in both studies. Accuracy

rates of both studies were high.

0

5

10

15

20

25

30

ImageNet Classification Error(Top 5)

ImageNet Classification Error(Top 5)

45

In another similar study, J. Mao et al. [56] based on auto layout they did

research on phishing detection techniques using machine learning techniques. They

propose a learning-based aggregation analysis mechanism to decide page layout

similarity, which is used to detect phishing pages. They compared the solution method

with popular machine learning algorithms and achieved scores that were not bad at all.

The solution method presented in this study, like the other study, was very similar to

the result we wanted to achieve. In this study, a prediction rate of over 90% was

obtained.

Comparison of methods are shown in Table 6.5.

Table 6.5: Comparison of Method Results

Method Number Of Dataset Accuracy Rate(%)

Multi-Input CNN 2782 91.23

ELM Classifier 11055 95.93

Similarity Of Page Layouts

And Detect Phishing Pages

2923 <93

46

CHAPTER VII

CONCLUSIONS AND FUTURE WORKS

Within the scope of the study, an end-to-end deep learning network was

designed in which the attributes learned with a CNN trained from scratch and attributes

obtained by transfer learning are combined. Within the scope of the classification of

phishing websites, it has been shown that better results can be obtained by combining

the features learned from scratch and the features obtained by transfer learning. As

detailed in the experimental result, multi-input CNN achieved higher rates on detection

of phishing websites than AlexNet and VGG16 models. The best result was given by

the multi-input CNN model (91.23%), which we created using the ResNet50 model,

while VGG16 (86.50%) and AlexNet (83.94%) gave the lowest score. Moreover, the

multi-Input CNN model (91.2%) gave the highest TPR rate, the multi-input CNN

model (8.7%) gave the lowest FNR rate, and the multi-input CNN model (95.4%) gave

the highest F1-Score rate.

 Word2vec method can also be used as an additional input within the scope of

future studies. Word2vec models proposed by Mikolov et al. [4] are often used to learn

word placement. While the traditional word model represents every word in the corpus

with large sparse vectors, the word embedding approach adopts the true valued dense

vector representation where each vector represents a continuous vector space of the

word. The position of each word in the learned vector is considered embedding.

Word2Vec has two big advantages. First, contextual similarities between words could

be inferred, and another is that semantic relationships could be extracted from learned

vectors. In this context, in the future study, a 3-input network will be developed by

using the Ocr and word2vec method together, tokenizing the texts to be obtained from

the website image with ocr and transforming them into vectors with word2vec.

47

REFERENCES

[1] M. Jakobsson and S. Myers, Phishing and countermeasures: Understanding the

increasing problem of identity theft. Introduction to Phishing. Hoboken, N.J.: Wiley-

Interscience, 2007, pp. 1-2.

[2] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning", Nature, vol. 521, no. 7553,

pp. 436-444, 2015.

[3] H. Qassim, A. Verma and D. Feinzimer, Compressed residual-VGG16 CNN model

for big data places image recognition. In 2018 IEEE 8th Annual Computing and

Communication Workshop and Conference (CCWC), pp. 169-175, 2018.

[4] F. Zhang, "A hybrid structured deep neural network with Word2Vec for

construction accident causes classification", International Journal of Construction

Management, pp. 1-21, 2019. Available: 10.1080/15623599.2019.1683692.

[5] A. Jain and B. Gupta, "Phishing Detection: Analysis of Visual Similarity Based

Approaches", Security and Communication Networks, vol. 2017, pp. 1-20, 2017.

Available: 10.1155/2017/5421046.

[6] A. P. E. Rosiello, E. Kirda, C. Kruegel, and F. Ferrandi. A layout-similarity-based

approach for detecting phishing pages. In SecureComm 2007, pp. 454–463, 2007.

[7] P. Bohunsky and W. Gatterbauer, Visual structure-based web page clustering and

retrieval, In Proceedings of the 19th International Conference on World Wide Web,

WWW ’10, pp. 1067–1068, New York, NY, USA, 2010. ACM.

[8] F. Dalgıç, A. Bozkır and M. Aydos, "Phish-IRIS: A New Approach for Vision

Based Brand Prediction of Phishing Web Pages via Compact Visual

Descriptors", 2018 2nd International Symposium on Multidisciplinary Studies and

Innovative Technologies (ISMSIT), 2018. Available: 10.1109/ismsit.2018.8567299.

[9] M. Jakobsson and S. Myers, Phishing and countermeasures: Understanding the

increasing problem of identity theft. Introduction to Phishing. Hoboken, N.J.: Wiley-

Interscience, 2007, pp. 1-2.

48

[10] "Phishing activity trends report", Docs.apwg.org, 2020. [Online]. Available:

https://docs.apwg.org/reports/apwg_trends_report_q4_2020.pdf. [Accessed: 15- Jan-

2021].

[11] R. Gowtham and I. Krishnamurthi, "A comprehensive and efficacious architecture

for detecting phishing webpages", Computers & Security, 40, pp.23-37, 2014.

[12] Y. Li, L. Yang and J. Ding, "A minimum enclosing ball-based support vector

machine approach for detection of phishing websites", Optik, 127(1), pp.345- 351,

2016.

[13] H. Nguyen and D. Nguyen, "Machine Learning Based Phishing Web Sites

Detection", AETA 2015: Recent Advances in Electrical Engineering and Related

Sciences, pp. 123-131, 2016. Available: 10.1007/978-3-319-27247-4_11.

[14] H. Kazemian and S. Ahmed, "Comparisons of machine learning techniques for

detecting malicious webpages", Expert Systems with Applications, vol. 42, no. 3, pp.

1166-1177, 2015. Available: 10.1016/j.eswa.2014.08.046.

[15] R. Mohammad, F. Thabtah and L. McCluskey, "Predicting phishing websites

based on self-structuring neural network", Neural Computing and Applications, vol.

25, no. 2, pp. 443-458, 2014. Available: 10.1007/s00521-013-1490-z.

[16] N. Abdelhamid, A. Ayesh and F. Thabtah, "Phishing detection based Associative

Classification data mining", Expert Systems with Applications, vol. 41, no. 13, pp.

5948-5959, 2014. Available: 10.1016/j.eswa.2014.03.019.

[17] N. Abdelhamid, A. Ayesh, F. Thabtah, “Associative classification mining for

website phishing classification”. Proceedings of the International Conference on

Artificial Intelligence, Las Vegas, USA, 22-25 July 2013.

[18] M. Moghimi, A. Y. Varjani, New rule-based phishing detection method. Expert

Systems with Applications, 53, 231-242, 2016. doi:10.1016/j.eswa.2016.01.028.

[19] C. Ludl, S. Mcallister, E. Kirda, C. Kruegel. On the effectiveness of techniques

to detect phishing sites. In DIMVA ’07: Proceedings of the 4th International

Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,

Springer, Berlin, Heidelberg, 4579, 20-39, 2007. doi:10.1007/978-3- 540-73614-1_2.

[20] Z. Zhao, Y. Zhang, Z. Comert, and Y. Deng, “Computer-aided diagnosis

system of fetal hypoxia incorporating recurrence plot with convolutional neural

network”, Front. Physiol., vol. 10, pp. 255, 2019. DOI: 10.3389/fphys.2019.00255.

(PDF) Subclass Separation of White Blood Cell Images Using Convolutional Neural

Network Models. Available from:

49

https://www.researchgate.net/publication/336389582_Subclass_Separation_of_Whit

e_Blood_Cell_Images_Using_Convolutional_Neural_Network_Models [accessed

Apr 11 2021].

[21] A. Krizhevsky, I. Sutskever, and G.E. Hinton, 25th International Conference on

Neural Information Processing Systems. ImageNet Classification with Deep

Convolutional, pp. 1097–1105. Lake Tahoe, Nevada: NIPS’12 Proceedings, 2012.

[22] K.Simonyan, A. Zisserman, Very deep convolutional networks for large-scale

image recognition. arXiv. 2014 arXiv.1409.1556

[23]"VGG16 - Convolutional Network for Classification and Detection",

Neurohive.io, 2021. [Online]. Available: https://neurohive.io/en/popular-

networks/vgg16/. [Accessed: 24- Apr- 2021].

[24] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Trans. Knowl.

Data Eng., vol. 22, no. 10, 2010.

[25] B. Koçer, “Transfer Öğrenmede Yeni Yaklaşımlar”, Selçuk Üniversitesi, Doktora

Tezi, 2012.

[26] S. Albawi, T. Mohammed and S. Al-Zawi, "Understanding of a convolutional

neural network", 2017 International Conference on Engineering and Technology

(ICET), 2017. Available: 10.1109/icengtechnol.2017.8308186 [Accessed 13 May

2021].

[27] K. Shea, R. Nash, “An introduction to convolutional neural networks”, ArXiv e-

prints. Retrieved from https://www.researchgate.net/publication/285164623, 2015.

[28] X. Zhang, Y. Wang, N. Zhang, D. Xu and B. Chen, "Research on Scene

Classification Method of High-Resolution Remote Sensing Images Based on

RFPNet", Applied Sciences, vol. 9, no. 10, p. 2028, 2019. Available:

10.3390/app9102028.

[29] D. Cireşan, U. Meier, J. Masci, L. Gambardella and J. Schmidhuber, "Flexible,

High Performance Convolutional Neural Networks for Image Classification", IDSIA,

USI and SUPSI Galleria 2, 6928 Manno-Lugano, Switzerland, 2011.

[30] L. Hui-bin, W. Fei, C. Qiang and P. Yong, "Recognition of individual object in

focus people group based on deep learning", 2016 International Conference on Audio,

Language and Image Processing (ICALIP), 2016. Available:

10.1109/icalip.2016.7846607 [Accessed 4 June 2021].

https://www.researchgate.net/publication/285164623

50

[31] G. Altan, "DeepGraphNet: Grafiklerin Sınıflandırılmasında Derin Öğrenme

Modelleri", European Journal of Science and Technology, pp. 319-327, 2019.

Available: 10.31590/ejosat.638256.

[32] A. Sharma V, "Understanding Activation Functions in Neural Networks",

Medium, 2017. [Online]. Available: https://medium.com/the-theory-of-

everything/understanding-activation-functions-in-neural-networks-9491262884e0.

[Accessed: 30- Jun- 2017].

[33] M. Castelluccio, G. Poggi, C. Sansone, & L. Verdoliva, “Land use classification

in remote sensing images by convolutional neural networks”, arXiv preprint

arXiv:1508.00092, 2015

[34] E. Karakullukçu, "Yanık Görüntülerinin Çok Değişkenli İstatistiksel Yöntemler

Ve Derin Öğrenme Yaklaşimlari İle Analizi", 2020. [Accessed 27 June 2021].

[35] A. Adler, M. Elad, and M. Zibulevsky, "Compressed Learning for Image

Classification: A Deep Neural Network Approach", Handbook of Numerical Analysis,

vol. 19, pp. 3 - 17, 2018. Available:

https://linkinghub.elsevier.com/retrieve/pii/S1570865918300024. [Accessed 27 June

2021].

[36] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,

"Dropout: a simple way to prevent neural networks from overfitting." Journal of

machine learning research, 15(1), pp. 1929- 1958, 2014.

[37] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time

series.” The handbook of brain theory and neural networks, 3361(10), 1995.

[38] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,

"Dropout: a simple way to prevent neural networks from overfitting." Journal of

machine learning research, 15(1), pp. 1929- 1958, 2014.

[39] D.C. Ciresan, U. Meier, J. Masci, L. Maria Gambardella, and J. Schmidhuber,

“Flexible, high performance convolutional neural networks for image classification.”

In IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol.

22, no. 1, p. 1237, 2011.

[40] Y. Tang, Deep learning using linear support vector machines. arXiv preprint

arXiv:1306.0239, 2013.

51

[41] H. Li, Z. Lin, X. Shen, J. Brandt and G. Hua, "A convolutional neural network

cascade for face detection", 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 5325-5334, 2015. Available: 10.1109/cvpr.2015.7299170.

[42] P. Yi, Y. Guan, F. Zou, Y. Yao, W. Wang, T. Zhu, Web phishing detection using

a deep learning framework. Wireless Communications and Mobile Computing, 9, 1-9,

2018. doi:10.1155/2018/4678746.

[43] Y. Pan, X. Ding, Anomaly based web phishing page detection. In ACSAC ’06:

Proceedings of the 22nd Annual Computer Security Applications Conference, IEEE

Computer Society. 1, 381-392, 2006. doi:10.101 9/ACSAC.2006.13.

[44] S. Chandler, Google Registers Record Two Million Phishing Websites In 2020.

Retrieved 3 November 2021, from

https://www.forbes.com/sites/simonchandler/2020/11/25/google-registers-record-

two-million-phishing-websites-in-2020/?sh=4188f8101662.

[45] Activation Function - AI Wiki. (2021). Retrieved 4 November 2021, from

https://docs.paperspace.com/machine-learning/wiki/activation-function

[46] AlexNet, VGGNet, Inception ve ResNet Nedir?. (2021). Retrieved 7 November

2021, from https://frightera.medium.com/alexnet-vggnet-inception-ve-resnet-nedir-

bddc7482918b

[47] P. Ballester, and R. M. Araujo, On the performance of GoogLeNet and AlexNet

applied to sketches. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[48] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image

Recognition. Microsoft Research, 2015

[49] MLK - Machine Learning Knowledge. 2021. Keras Implementation of ResNet-

50 (Residual Networks) Architecture from Scratch - MLK - Machine Learning

Knowledge. [online] Available at: <https://machinelearningknowledge.ai/keras-

implementation-of-resnet-50-architecture-from-scratch/> [Accessed 12 December

2021].

[50] S. Poudel, Y. Kim, D. Vo, and S. Lee, Colorectal Disease Classification Using

Efficiently Scaled Dilation in Convolutional Neural Network. IEEE, 2020, Access, 8,

pp.99227-99238.

[51] Cs.colby.edu, 2021. [Online]. Available:

https://cs.colby.edu/courses/F19/cs343/lectures/lecture11/Lecture11Slides.pdf.

[Accessed: 14- Dec- 2021].

52

[52]"CS231n Convolutional Neural Networks for Visual

Recognition", Cs231n.github.io, 2021. [Online]. Available:

https://cs231n.github.io/convolutional-networks/. [Accessed: 14- Dec- 2021].

[53] videantis - processors for deep learning, computer vision and video coding.

2021. Deep learning in five and a half minutes - videantis - processors for deep

learning, computer vision and video coding. [online] Available at:

<http://www.videantis.com/deep-learning-in-five-and-a-half-minutes.html>

[Accessed 18 December 2021].

[54] T. Ergin, "Convolutional Neural Network (ConvNet yada CNN) nedir, nasıl

çalışır?", Medium, 2021. [Online]. Available:

https://medium.com/@tuncerergin/convolutional-neural-network-convnet-yada-cnn-

nedir-nasil-calisir-97a0f5d34cad.

[55] M. KAYTAN and D. HANBAY, "Effective Classification of Phishing Web Pages

Based on New Rules by Using Extreme Learning Machines", vol. 2, no. 2548-1304,

pp. 15-36, 2017.

[56] J. Mao et al., "Phishing page detection via learning classifiers from page layout

feature", EURASIP Journal on Wireless Communications and Networking, vol. 2019,

no. 1, 2019. Available: 10.1186/s13638-019-1361-0.

