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Commerce is highly affected by technological improvements, like every other 

field. Today, all businesses who want to reach end-users, such as manufacturers, 

retailers, or service providers, can reach their customers quickly over the internet 

through methods such as e-commerce sites and mobile applications. On the other side, 

customers now have the opportunity to choose from many options. While deciding, 

users generally benefit from the comments of other users who have shared the same 

experience before. In this respect, user comments contain very valuable information. 

However, on heavily used sites, so many comments accumulate that a person cannot 

review them one by one. In this study, we focused on a certain feature of the products, 

namely their defective features, and we propose a method to filter related comments 

from millions of comments containing the ones that include only defect information. 

A simple solution may be manually creating a word list related to defects and filtering 

the comments that contain these words. But manually creating the word list will not 

be efficient. For this, we trained our own word-embedding model using only the 

comments of the relevant product groups and created a more efficient list of defect 

words list by using word similarities using this model. We downloaded a ready-to-use 

pre-trained word-embedding model and compared it with our own model. We 

observed that the pre-trained model is more successful in general tasks, while our own 

model is more successful in creating a word list on a context-specific task. 



 

v 

 

 

Keywords: Artificial Intelligence, Machine Learning, Natural Language Processing, 

Sentiment Analysis, Defect Detection, Word Embeddings



 

vi 

 

 

 

 

ÖZ 

 

AMAZON ÖRNEĞİ İLE MÜŞTERİ İNCELEMELERİNDEN KUSURLU 

ÜRÜN TAHMİNİ 

 

EYERCİ, Tarkan 

Bilgisayar Mühendisliği Yüksek Lisans 

 

 Danışman: Dr. Öğretim Üyesi Roya CHOUPANI 

Ortak Danışman: Doç. Dr. Kasım ÖZTOPRAK  

Ocak 2022, 54 sayfa 

 

Teknoloji her alanı etkilediği gibi ticareti de çok etkiledi. Günümüzde artık, 

üreticiler, perakendeciler, hizmet sağlayıcılar gibi son kullanıcıya hitap eden tüm 

işletmeler e-ticaret siteleri ve mobil uygulamaları gibi yöntemlerle internet üzerinden 

müşterilerine hızlıca ulaşabiliyorlar. Diğer yandan, müşteriler ise artık birçok seçenek 

arasından seçim yapma şansına sahipler. Kullanıcılar genellikle seçimlerini yaparken 

daha önce aynı tecrübeyi paylaşmış diğer kullanıcıların yorumlarından faydalanırlar. 

Bu açıdan kullanıcı yorumları çok değerli bilgiler içerir. Fakat yoğun kullanılan 

sitelerde bir insanın tek tek inceleyemeyeceği kadar çok yorum birikir. Biz bu 

çalışmada, ürünlerin belli bir özelliğine, yani kusurlu özelliklerine odaklandık. Kusur 

bilgisi içeren milyonlarca yorum içinden ilgili yorumları filtre edebilmek için bir 

yöntem öneriyoruz. Kusur ile ilgili kelimeleri sözlük yardımı ile elle oluşturup bu 

kelimeler geçen yorumları filtrelemek bir çözüm önerisi olabilir. Fakat bu kelime 

listesini elle oluşturmak verimli olmayacaktır. Bunun için sadece ilgili ürün gruplarına 

ait yorumları kullanarak kendi kelime temsil modelimizi eğitip, bu modelle birlikte 

kelime yakınlıklarını kullanarak daha verimli bir kusur kelimeleri listesi oluşturduk. 

Kullanıma hazır önceden eğitilmiş bir kelime temsil modelini indirip, bu modelle 

kendi modelimizi kıyasladık. Genel konularda hazır modelin daha başarılı olurken, 

özel bir konuda kendi modelimizin kelime listesi oluşturmada daha başarılı olduğunu 

gördük. 



 

vii 

 

 

Anahtar Kelimeler: Yapay Zekâ, Makine Öğrenmesi, Doğal Dil İşleme, Duygu 

Analizi, Kusur Tespiti, Kelime Temsilleri 



 

viii 

 

ACKNOWLEDGEMENT 

 

I wish to thank my supervisors Assist. Prof. Dr. Roya CHOUPANI and Assoc. 

Prof. Dr. Kasım ÖZTOPRAK for their motivation and guidance, and to my thesis 

committee members Assist. Prof. Dr. Abdül Kadir GÖRÜR and Assist. Prof. Dr. Erdal 

ERDAL for their valuable contributions.  

I also would like to thank my colleagues Mr. Sedat AKEL, Mr. Engin TÜRELİ, 

and Mr. Y. Kürşat TUNCEL for their motivation and support.  

Finally, special thanks to my family, my wife, and two daughters. It would not 

be possible without their understanding and support.  

 

 

 

 

 

 

 

 

 



 

ix 

 

 

 

 

TABLE OF CONTENTS 

 

STATEMENT OF NONPLAGIARISM ................................................................. iii 

ABSTRACT . ............................................................................................................. iv 

ÖZ …………. ............................................................................................................. vi 

ACKNOWLEDGEMENT ...................................................................................... viii 

TABLE OF CONTENTS .......................................................................................... ix 

LIST OF TABLES ................................................................................................... xii 

LIST OF FIGURES ................................................................................................ xiii 

LIST OF ABBREVIATIONS ................................................................................ xiv 

CHAPTER I:  INTRODUCTION ............................................................................ 1 

1.1 PROBLEM DEFINITION ................................................................................ 2 

1.2 RESEARCH QUESTION ................................................................................. 2 

1.3 HYPOTHESIS ................................................................................................... 2 

CHAPTER II:  BACKGROUND ............................................................................. 4 

2.1 ARTIFICIAL INTELLIGENCE (AI) ............................................................... 4 

2.2 MACHINE LEARNING (ML) ......................................................................... 5 

2.3 DEEP LEARNING (DL) ................................................................................... 6 

2.4 NATURAL LANGUAGE PROCESSING (NLP) ............................................ 6 

2.4.1 Challenges in NLP ..................................................................................... 8 

2.4.1.1 Representation of Human Language .................................................. 8 

2.4.1.2 Changing Nature of Language with Environment ............................. 9 

2.4.1.3 Uncertainty of Meaning ..................................................................... 9 

2.4.1.4 Common Knowledge ......................................................................... 9 

2.4.2 Common NLP Tasks ................................................................................. 9 

2.4.3 NLP Methods ........................................................................................... 11 

2.5 DATA PREPROCESSING ............................................................................. 12 

2.5.1 Case Normalization ................................................................................. 12 

2.5.2 Stop-Words Removal............................................................................... 13 



 

x 

 

2.5.3 Removing Punctuations ........................................................................... 13 

2.5.4 Stemming ................................................................................................. 13 

2.5.5 Lemmatization ......................................................................................... 14 

2.5.6 Tokenization ............................................................................................ 14 

2.5.7 Handling N-Grams................................................................................... 14 

2.5.8 Further Normalizations ............................................................................ 14 

2.6 REPRESENTATION OF LANGUAGE ......................................................... 15 

2.6.1 One-Hot Representation of Words (One-Hot-Encoding) ........................ 15 

2.6.2 Bag of Words Model (BOW) .................................................................. 16 

2.6.3 Term Frequency-Inverse Term Frequency (TF-IDF) .............................. 17 

2.6.4 Word Embeddings ................................................................................... 19 

2.6.4.1 Word2vec ......................................................................................... 20 

2.6.4.2 GloVe ............................................................................................... 21 

2.6.4.3 FastText............................................................................................ 22 

2.6.5 Advanced Word Embedding Methods..................................................... 22 

2.6.6 Similarity of Word-Embedding Vectors .................................................. 23 

2.6.6.1 Cosine Similarity ............................................................................. 23 

2.6.6.2 Euclidean Distance........................................................................... 23 

2.6.7 Evaluation of Word-Embeddings ............................................................ 24 

2.6.7.1 Intrinsic evaluation........................................................................... 24 

2.6.7.2 Extrinsic evaluation ......................................................................... 25 

2.7 EVALUATION OF CLASSIFICATION TASKS .......................................... 25 

2.8 LITERATURE REVIEW ................................................................................ 27 

CHAPTER III:  PROPOSED METHOD .............................................................. 32 

3.1 PROPOSED SOLUTION................................................................................ 32 

3.2 DATASET ....................................................................................................... 32 

3.3 METHODOLOGY .......................................................................................... 33 

3.3.1 Feature Selection ..................................................................................... 33 

3.3.2 Data Preprocessing .................................................................................. 34 

3.3.3 Testing Dataset Reliability ...................................................................... 34 

3.3.3.1 Data Representation ......................................................................... 35 

3.3.3.2 Model Selection ............................................................................... 35 



 

xi 

 

3.3.3.3 Evaluation ........................................................................................ 35 

3.3.4 Training Word-Embeddings .................................................................... 35 

3.3.5 Re-labeling Dataset as Non-Defected/Defected ...................................... 35 

3.3.6 Training Models for Defect Detection Task ............................................ 36 

CHAPTER IV:  EXPERIMENTS AND RESULTS ............................................. 37 

4.1 PROGRAMMING ENVIRONMENT AND LIBRARIES ............................. 37 

4.2 TRAINING ENVIRONMENT ....................................................................... 37 

4.3 INSPECTING AND PRE-PROCESSING DATASET ................................... 37 

4.4 TESTING DATASET WITH ML MODELS ................................................. 39 

4.5 TRAINING AND EVALUATING WORD-EMBEDDINGS ........................ 41 

4.6 POPULATING DEFECT RELATED WORDS LIST .................................... 45 

4.7 MAKING INFERENCES USING DEFECT RELATED WORDS LIST ...... 46 

CHAPTER V:  CONCLUSIONS ............................................................................ 49 

REFERENCES ......................................................................................................... 50 

CURRICULUM VITAE .......................................................................................... 54 



 

xii 

 

LIST OF TABLES 

 

Table 2.1:  One-Hot Representations of Words ........................................................ 16 

Table 2.2:  BOW Representations of Documents ..................................................... 16 

Table 2.3:  Code for TF-IDF Vector Representations ............................................... 18 

Table 2.4:  TF-IDF Representations of Documents .................................................. 18 

Table 2.5:  Word-Embeddings Example ................................................................... 20 

Table 2.6:  Confusion Matrix .................................................................................... 25 

Table 3.1:  An Example Review ............................................................................... 33 

Table 4.1:  Sentiment Analysis ML Performances ................................................... 40 

Table 4.2:  Analogy Using Pre-Trained Model ......................................................... 41 

Table 4.3:  Analogy Using Self-Trained Model ........................................................ 41 

Table 4.4:  Top 10 Most Similar Words ................................................................... 43 

Table 4.5:  Analogy Using Self-Trained Model ........................................................ 44 

Table 4.6:  Analogy Using Pre-Trained Model ......................................................... 44 

Table 4.7:  Defect Related Words List ...................................................................... 46 

Table 4.8:  Two Positive Reviews with Defect Words ............................................. 47 

 



 

xiii 

 

LIST OF FIGURES 

 

Figure 2.1: Machine Learning Flowchart ................................................................... 5 

Figure 2.2: Machine Learning Taxonomy .................................................................. 5 

Figure 2.3: Performance and Amount of Data ............................................................ 6 

Figure 2.4: CBOW and SG Architectures ................................................................. 21 

Figure 2.5: BERT, OpenAI GPT, and ELMo Architectures ..................................... 23 

Figure 2.6: Sentiment Analysis Approach Enabling Negation Identification .......... 24 

Figure 2.7: Customer Sentiment Analysis Flowchart ............................................... 27 

Figure 2.8: Data Pre-Processing Flowchart .............................................................. 28 

Figure 2.9: Sentiment Analysis Approach Enabling Negation Identification .......... 29 

Figure 4.1: Dataset (First 5 Lines) ............................................................................ 38 

Figure 4.2: Dataset Statistics (Grouped By Labels) .................................................. 38 

Figure 4.3: Dataset Statistics (Labeled 0/1) .............................................................. 38 

Figure 4.4: Text Lengths and Word Counts .............................................................. 39 

Figure 4.5: Short Reviews ......................................................................................... 39 

Figure 4.6: ML Models Performances - Accuracy ................................................... 40 

Figure 4.7: ML Models Performances - F1 Score .................................................... 40 

Figure 4.8: Countries and Capitals ............................................................................ 42 

Figure 4.9: Man to King, Woman to Queen Analogy ............................................... 42 

Figure 4.10: Top Most Similar Words to ‘Malfunctioning’ ..................................... 45 

Figure 4.11: Positive Reviews Containing Defect Words ........................................ 46 

Figure 4.12: Performances of ML Models for Defect Detection .............................. 48 

Figure 4.13: Performances of DL Models for Defect Detection ............................... 48 

 



 

xiv 

 

LIST OF ABBREVIATIONS 

 

AI : Artificial Intelligence 

DL : Deep Learning 

ML : Machine Learning 

NLP : Natural Language Processing 

TF-IDF : Term Frequency-Inverse Term Frequency 

NB     : Naive Bayes 

GB     : Gradient Boosting 

LR     : Logistic Regression 

SVM    : Support Vector Machine 

RF     : Random Forest 

DT     : Decision Tree 

NN     : Neural Network 

ANN    : Artificial Neural Network 

KNN    : K-Nearest Neighbors 

PCA    : Principal Component Analysis 

LSTM   : Long Short-Term Memory 

BiLSTM : Bidirectional LSTM 

CNN    : Convolutional Neural Network 

LDA    : Latent Dirichlet Allocation  

TP     : True Positive 

TN     : True Negative 

FP     : False Positive 

FN     : False Negative 

OOV : Out-of-Vocabulary 

  



 

1 

 

 

 

 

1CHAPTER I 

 

 INTRODUCTION 

 

Customer ratings and reviews on e-commerce sites contain valuable 

information that helps to reach an impression about the product, and people usually 

consult user reviews and ratings before deciding to purchase a product. But, it is a 

time-consuming process and impossible for a human to digest all necessary 

information about products manually from a large size of unstructured data like the 

customer reviews. There are many challenges while extracting any specific 

information from text data. One challenge is, data size is big, unstructured, and in text 

format. Too much storage space, memory, and computing power are needed to handle 

such big data. Traditional rule-based algorithms are usually not efficient for most of 

the tasks, so smarter techniques are needed. One other challenge is, if data is in a 

specific context, general rules cannot be applied successfully. Or it may be the 

opposite, maybe, the data is not bound to any specific context, and it cannot be applied 

to a specific context-based task. One other challenge is about language. Each human 

language has different rules, uses cases, variations, and different ways of expressing 

meanings. A method for a language may not be applied to another language with the 

same success. One other challenge is data integrity. Generally, unstructured data is not 

clean and should be pre-processed, cleaned from outliers, classified, labeled, inspected 

to contain useful information, and verified to be used for a specific task reliably. Some 

of these challenges still need manual operations like the need of manual labeling. 

Google’s reCAPTCHA and Amazon’s MTurk are examples of smart solutions for such 

labeling tasks used by big companies. Most of the other challenges are welcomed by 

the data engineering, data science, AI, ML, and NLP skills. 
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1.1 PROBLEM DEFINITION 

There is many useful information about products hidden in user reviews such 

as quality, usability, or durability. It may be possible to reach defect information or 

chronic problems of the products or product families from the customer reviews. There 

may be a relation between the products, that have similar defects or durability 

problems, that use the same components. Defected products may also have different 

relations like the seller or product version. But such information is lost in a large 

number of reviews. A solution is needed to filter reviews that contain hidden 

information about product defects. 

 

1.2 RESEARCH QUESTION 

Finding reviews of products that contain specific information such as 

weaknesses, poor quality, or chronic defects can be defined as an NLP problem. The 

simplest solution to this problem is manually constructing a defect-related words list 

like ‘defect’, ‘broken’, ‘nonfunctioning’, and searching reviews if they contain these 

words. But defect-related words are context-specific, a word for a product group may 

not be used in the same meaning for another product group, so the list cannot be 

successfully constructed manually. Our research question is; Is it possible to populate 

a defect-related words list automatically using NLP techniques, and specifically using 

word similarities in word embeddings? We also try to see if a self-trained word-

embedding model using data in a specific context and with specific sentiment performs 

better than a pre-trained word-embedding model. 

 

1.3 HYPOTHESIS 

Our primary task is populating an effective defect-related words list specific to 

electronic products. This list can later be used to filter reviews. For this purpose, a 

simple solution is downloading a publicly available pre-trained word-embedding 

model and by using word similarities, populating defect-related words list. But we 

argue that, although this solution works, it does not perform very well. Since pre-

trained models are trained with a wide range of data that is not context-specific. For 

our purpose, we suggest training our own model with the reviews of a specific product 
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group and with only negative sentiments to increase the precision of defect-related 

words. 

As a pre-task, before word-embedding training, we propose to test the 

reliability of our dataset, to see if the reviews contain enough information to judge the 

sentiments correctly or if the labels (ratings) are consistent with the reviews. For this 

purpose, we suggest training ML models for a simple sentiment classification task and 

evaluating the performances. This way we will be confident when using the dataset for 

word-embedding training. 
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2CHAPTER II 

 

 BACKGROUND 

 

2.1 ARTIFICIAL INTELLIGENCE (AI) 

AI is a branch of computer science that deals with human intelligence requiring 

tasks being carried out by smart machines that mimic human intelligence with 

problem-solving and decision-making abilities. Alan Turing who is referred as the 

father of computer science published a paper named ‘Computing Machinery and 

Intelligence’ [1] and asked the question, ‘Can machines think?’. The term AI is defined 

as machines thinking and acting like humans since. In 1990, Kurzweil defined AI as 

‘The art of creating machines that perform functions that require intelligence when 

performed by people’. In 1993, Luger and Stubblefield defined AI as ‘The branch of 

computer science that is concerned with the automation of intelligent behavior’. 

Russell & Norvig published ‘Artificial Intelligence: A Modern Approach’ in 2009, 

argued to this definition, and replaced the definition ‘thinking humanly’ with ‘acting 

rationally’. Acting rationally is possible with intelligent agents, which perceive 

through sensors and act in an environment while maximizing their performance 

according to predefined performance measures, adopting a goal and searching for the 

best path to reach that goal using their knowledge base.   

It is believed that there were two AI Winters which were between 1973-1980 

and 1980-2010s that led by unmet expectations and hypes. After the 2010s, with the 

aid of big data and increased computing power, training bigger networks became 

possible and AI spring began. As a result, concrete examples reached end-users like 

Google Translate and Google Image Search. At present, there are many use cases, 

successful, even astonishing examples of AI like speech-to-text applications, which 

decodes sound waves into text form, search engine ranking systems, which help 

retrieve the closest content according to the given query, autonomous, self-driving 

cars, image, sound and video generation, language translation and chatbots 
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2.2 MACHINE LEARNING (ML) 

Machine Learning (ML) is a subset of Artificial Intelligence. In classical 

computer programs, algorithms are designed and developed by humans to get the 

expected outputs with the given inputs. In ML the case is quite the opposite, the 

algorithm is developed by the computer itself to get the expected result using data. 

This process is also called training the model with data. The parameters of the model 

are learned from data. A typical flowchart of a Machine Learning System is shown in 

Figure 2.1. 

 

Figure 2.1: Machine Learning Flowchart  

 
Du et al. [2] 

 

In one type of ML which is called Supervised Learning, already existing inputs 

and outputs, which also are called features and labels, are used to develop the 

algorithm. In another type of ML which is Unsupervised Learning, no outputs (labels) 

are present and the ML model tries to extract the patterns out of data. In ML the 

quantity and quality of data used to train the model are critical for the performance of 

the model. Kumar et al. [3] ‘s figure demonstrates the  taxonomy of common ML types 

as shown in Figure 2.2. 

Figure 2.2: Machine Learning Taxonomy 

 
Kumar et al. [3] 
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2.3 DEEP LEARNING (DL)  

An Artificial Neural Network (ANN) is one of the many Machine Learning 

methods. It is also called as Neural Networks (NN). It is inspired by the interconnected 

nature of neurons of human brains. An ANN is a collection of neurons connected to 

each other that can transmit signals. A unit transmits a signal processes it and sends 

the signal to another connected unit.  

Deep Learning is an extension of ANNs which use very large networks. 

Traditional ML models' performance saturates at a point such that increasing the data 

quantity does not help anymore. In DL it is possible to increase the performance of the 

model as the quantity of the data increases. Hain et al. [4]’s work shows the 

relationship between data and performance of ML and DL techniques as seen in Figure 

2.3. 

 

Figure 2.3: Performance and Amount of Data 

 
Hain et al. [4] 

 

2.4 NATURAL LANGUAGE PROCESSING (NLP)  

Natural Language Processing (NLP) is a branch of Artificial Intelligence trying 

to construct systems to understand human language which is in text or sound wave 

formats, manipulate it and respond in text or sound format like humans communicate. 
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NLP can be classified as a study area of Computer Science, Linguistics, and 

Artificial Intelligence. NLP uses a wide range of techniques including computational 

linguistics, statistics, machine learning, and deep learning. 

Linguistics is the scientific study area of language which approaches the 

language in means of phonetics, phonology, morphology, syntax, semantics, and 

pragmatics [5]. Phonetics is the study of speech and sound in a physical aspect while 

Phonology studies sound in a mental aspect. Phonemes are the smallest pieces of 

sounds in a language. Morphology is the study of words. Morphemes are the smallest 

unit of words that has a meaning while lexemes are all words related to each other in 

meaning (like walk, walking, walked). Syntax studies phrases and sentences to define 

the ruleset to construct sentences from words. To represent the syntax of sentences 

parse tree approach can be used. While semantics studies the meaning of a word, 

phrase, or text, Pragmatics is the study of meaning in language focusing on the context. 

The first studies over language were performed by linguists. They tried to 

define the rules and tried to model the languages, and they achieved continual success 

for more than 50 years. With the development of computers, the term ‘computational 

linguistics’ started to be used widely in the area of linguistics.  

Later after the 1990s, with the growth of data and computer power, data-driven 

methods became possible. Statistical approaches started to be used instead of classical 

rule-based approaches with success. Still to this day, statistical methods are widely 

used in NLP. 

After the 2010s Artificial Neural Networks became more popular in the field 

of NLP. One major advantage of deep learning techniques over statistical methods is 

feature engineering is less critical in deep learning methods.  

Today NLP has also an important place in computer science. The need for 

interaction between humans and computers forced this area to grow and develop 

quickly. With the dizzying technological developments both in hardware and software 

means, NLP gains power and success. Today many previous challenging problems 

have successful solutions with the help of this rapid development. 
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2.4.1 Challenges in NLP 

If we stop for a moment and think about how humans use the language, we 

realize that it is so natural and easy to speak for us forming words from sounds, words 

followed by words, forming sentences, absorbing meaning, emotions in a way like 

without thinking, and so smoothly. Even a child can express herself/himself easily. 

How about listening, we hear, decipher and understand the voices without any effort. 

Reading is one other hard task. To see the letters and digits, form words from letters, 

form sentences from words, and grasp the meaning. These are all kinds of processing 

tasks performed by humans casually and seamlessly like with near-zero effort. In 

reality, there are computational efforts performed by the brain and we realize this when 

the task is computationally difficult. Like trying to communicate in another language 

that we are not fluent in, or like reading a heavy text like a scientific paper. Reading 

the text and understanding the words is one thing, understanding the meaning is a much 

harder task. But in daily usage of language, the common tasks are so simple that we as 

humans can handle them very easily and quickly like real-time background jobs. 

Similar tasks must be accomplished by computers for interaction and communication 

with humans. NLP tries to solve these types of problems. But most of these tasks are 

too complicated and not easy for computers. NLP has many challenges which can be 

mainly grouped as syntactic and semantic problems. 

 

2.4.1.1 Representation of Human Language  

There are no easy rules to define a language. It is complicated and full of 

exceptions. There is no single human language on earth and every language has its 

own properties, representations, and structures. So a method used for a particular 

language may not be applicable to another language with equal success. Computers 

understand numbers and the input data are represented as numbers for the use of 

algorithms and programs. But how to represent a language, words, characters, 

sentences? More than that how to represent the meaning of a word or a sentence? A 

word may have different meanings according to the context. How to process idioms, 

proverbs? How about emotions, sarcasm, or irony? All these are challenges about 

representing the language. 
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2.4.1.2 Changing Nature of Language with Environment 

Human language is not static, it grows, changes, new words come by, new 

forms of expressions appear, usage and style constantly evolve. There is no direct 

mapping between languages and languages also have variations according to the 

environment. A formal language is very different from a literature language or a 

language used in social media or any other internet environment. It is so that, the 

language used differs even in between to different social media platforms. 

 

2.4.1.3 Uncertainty of Meaning 

There are several situations that make it difficult to grasp the meaning of a text. 

Some cases are,  

 A minor word change or a change of word order in a sentence may change the 

meaning completely. 

 The use of language does not have standard procedures and humans do not follow 

strict rules.  

 Different styles, dialects, inaccurate word selection. 

 Usage of proverbs, idioms, humor, sarcasm, irony, symbolic or emotional elements, 

metaphors. 

 

2.4.1.4 Common Knowledge 

Humans have some knowledge that are assumed to be known by every human 

by default. So that they do not need to be learned or explained explicitly. Like ‘fish 

swims’ or ‘bird flies’. To tell computers all the common knowledge that they are lack 

of is another challenge. 

 

2.4.2 Common NLP Tasks 

NLP has many applications in action today. Some are visible, some are 

invisible to us like everything is happening behind the scenes. We knowingly or 

unknowingly use the results and products of NLP technologies. Common NLP tasks 

are; 
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 Speech-to-text (Speech recognition) and text-to-speech:  Converting voice data into 

text form and text data into human voice. Examples are Amazon Alexa, Apple Siri, 

Microsoft Cortana. 

 Classification Tasks: Classifying reviews, emails, tweets, or images like spam 

filtering, sentiment analysis, or benign/malignant tumor classification tasks. 

 Optical Character Recognition (OCR) Tasks: Extracting text data from handwritten 

or hard-printed text. 

 Text Segmentation: The process of dividing the text into smaller units like 

sentences (Sentence Boundary Disambiguation), words, or topics (Topic detection). 

 Morphological Analysis: Techniques including tokenization, normalization, 

stemming, and lemmatization to process language data are usually used as a pre-stage 

before other NLP tasks.  

 Part-of-Speech Tagging: Determining the use case of a word in a text based on the 

context. 

 Syntactic Analysis: Parsing and analyzing the language using formal grammar 

rules. 

 Named Entity Recognition: Identifying the words or phrases as entities. Like 

‘Ankara’ as a city and, ‘cat’ as an animal in a text like ‘I live in Ankara. I have a cat’ 

 Word Sense Disambiguation: Determining the meaning of a word that has different 

meanings according to the context.  

 Text Summarization: Generating a smaller text from a large text while capturing 

the meaning. 

 Natural Language Generation: Generating human language from information like a 

context, idea, style, or any other entity. 

 Recommendation Systems: Predicting user preferences to suggest relevant items. 

Nearly all of the well-known companies working with a business-to-customer (B2C) 

model like e-commerce companies and streaming companies like Amazon, eBay, 

Netflix, and Spotify use recommendation engines to predict the ratings and preferences 

of users. 

 Chatbots and Dialogue Systems: Interacting and carrying forward conversations 

with humans and responding to user requests. Widely used as first-level call center 
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agents and digital assistants like Apple's Siri, in Google Assistant, and Amazon's 

Alexa. 

 Word and Grammar Error Correction: Auto-correction or correction suggestion 

capabilities of document editors and more advanced grammatical correction services 

like Grammarly are possible with error correction systems. 

 Machine Translation: Automatic translation from a language into another language. 

The examples are well-known public translation services from Google, Microsoft, and 

Amazon. 

 

2.4.3 NLP Methods 

Current NLP methods are mainly classified under 3 categories; 

 Rule-Based Methods  

 Statistical/Probabilistic Methods  

 Machine Learning and Deep Learning Methods 

While some tasks like spell checking, synonym suggestion, or keyword-search 

are possible with rule-based methods or mathematical calculations, some tasks like 

classifying documents, extracting information, predicting sentiments, or predicting the 

most likely word while making queries are possible with ML and DL methods. Even 

more complicated tasks like machine translation and chatbots are solved by more 

complicated DL models like CNNs, RNNs, and LSTMs.  

It is possible to solve a task with different approaches. A method is preferred 

according to aspects of task complexity, performance expectations, and data quantity 

and quality. A chatbot may be developed by a rule-based model. But the task is so 

complicated that it is very hard to implement the task and the performance of the model 

will be low. On the other hand, for a simple spam classification task, statistical 

methods may give reasonably good performance near to ML or DL models. As a 

general rule, simple tasks may be solved with simpler models without high 

performance expectations. Similarly, with a small amount of data, simpler models 

should be used. Complicated or big models are useful when there is comparably big 

data. 
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2.5 DATA PREPROCESSING 

Generally, language data is not useable directly as input for an NLP task 

without preprocessing it. The language text is not a standard text following strict rules. 

Data usually is not in a clean and standard format and it is pre-processed before use. 

Related steps are also called data cleaning or data normalization. Text data includes 

punctuations, it is in different letter case forms, there are abbreviations, emoji, 

emoticons and there are also occurrences of the same word in many different forms. 

There are some words called stop-words that occurred frequently in the text usually do 

not have much impact on the meaning. All these issues should be cared to increase the 

performance of the model. There is not any strict single correct method to preprocess 

the text. For each task, data type and quantity, or the complexity of the model, the pre-

processing steps may differ. For example, for a sentiment analysis task, the emoji or 

emoticons should not be cleaned directly and the information should be kept in the 

text. 

Each pre-processing task results in a loss of information. If the data is small 

and simple, preprocessing tasks will improve the performance but as a general rule, 

the preprocessing steps and the quantity of data are inversely proportional. More the 

quantity of data, less keen the preprocessing steps should be applied. One other issue 

is, heavy and more processing steps require more computing power and operations 

would be more time-consuming. More the size of the data, and heavier the processing 

tasks, more processing power and time are required. So there is a trade-off between 

the performance gain and processing time and computing power used.  

 

2.5.1 Case Normalization 

‘Book’, ‘BOOK’, ‘book’, ‘BOok’ or any other combinations of a word are all 

different words for the computer. By converting all text to lowercase (or uppercase), 

each different combination of a word becomes the same word. There may be rare 

occasions that case normalization process is avoided. Upper case letters may be 

abbreviations, resemble special meanings, or such forms may resemble emotions like 

frustration. These types of information are lost after case normalization. 

 



 

13 

 

2.5.2 Stop-Words Removal 

All languages include words that are used frequently and most of the time stop 

words do not contribute to the meaning of the text. But because these words are 

frequent, they may have a higher weight in the input space that may mislead the 

models. The words in English like ‘he’, ‘she’, ‘our’, ‘that’, ‘in’, ‘up’, ‘to’, ‘the’, ‘and’, 

‘but’ considered as stop-words. If the NLP task is a sentiment-analysis task, only a 

delicate stop-words removal process may help to increase the performance, otherwise, 

it may decrease the model performance. For example, removing the stop-word ‘not’ 

with all other stop-words, the text may lose the very important negative sentiment from 

the text. ‘I am not happy’ becomes ‘I am happy’ after removing ‘not’, which resembles 

the opposite sentiment. In more complex tasks like machine translation or chatbots, 

stop-words removal may not be helpful at any means. Each word resembles or refers 

to an entity, like ‘Janet plays volleyball, she is good at it’. After a strict stop-words 

removal, the reference information of ‘she’ to ‘Janet’, and ‘it’ to ‘volleyball’ are all 

lost for the model. Removing high frequency or low frequency words is a similar 

technique to stop-words removal that can be applied to normalize the text. 

 

2.5.3 Removing Punctuations 

Punctuations like ",-.!+:;?^$%_’”#&'()*/@[\]{|}" are heavily used in written 

texts. The usage of punctuations helps the grammar and the meaning but this increases 

the input space. If there is a need to decrease the input space for a less complex model 

and a task, the punctuations may be removed while some of them may be held 

purposefully in text like ‘!’, ‘?’, or the characters resembling emoticons or currency 

characters like ‘$’, ‘€’ or ‘₺’ to keep the relevant information. 

 

2.5.4 Stemming 

Stemming is the process of truncating words into their stems. In this way, all 

different forms of words transformed to their original stem. The words, ‘fly’, ‘flying’, 

‘flied’ are all transformed to their stem which is ‘fli’. The disadvantage of this process 

is losing tense, grammar, and part of speech information. 
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2.5.5 Lemmatization 

Lemmatization is a similar method to stemming but is more sophisticated and 

as a result, a more time-consuming approach. It requires the use of reference 

vocabulary. The words, ‘fly’, ‘flying’, ‘flied’ are all transformed to their lemma which 

is ‘fly’. Similar results are achieved from both stemming and lemmatization methods. 

The choice is made according to the nature of the data and the type of the NLP task. 

 

2.5.6 Tokenization 

Tokenization is the task of splitting texts into smaller pieces, commonly 

sentences into words. So that each word is an input for the NLP model. There are also 

character-based models, in this case, the text is split into the character level. Characters 

or words form a meaningful sentence when they are in a particular order. When the 

text is tokenized the original order of words may be preserved. If it is a complicated 

task like machine translation, the order is important. But for a simpler sentiment 

analysis task, even unordered tokens with simpler models may give decent 

performances. 

 

2.5.7 Handling N-Grams 

Some words are commonly used together to form a special meaning or a phrase 

like ‘New York City’, ‘United Kingdom’ or ‘Prime Minister’. Such words can be 

treated separately or these words can be concatenated to be treated as a single word. 

Bi-gram is a length of two words, tri-gram is a length of three words. 

 

2.5.8 Further Normalizations  

More preprocessing steps may be helpful according to the text used. 

Abbreviations like ‘Mr.’, ‘Mrs.’ or ‘FYI’ which is used for ‘For Your Information’ 

and ‘ASAP’ which is used for ‘As Soon as Possible’, numerical data, different usages 

of languages, and special uses of characters or character groups like URLs and Html 

Tags should be inspected, considered and processed accordingly. 

All, some or none of the data processing tasks may be used, depending on the 

dataset and problem. Stemming, lemmatization, and lowercasing are helpful for small 

datasets but unhelpful for large datasets. Different meanings can be captured from 
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different forms of words in a large corpus. Emotions can be captured with the help of 

punctuations. Negations may be important and this may be lost with removing stop-

words. As in their work, Maas et al. [6] did not apply the stop word removal step not 

to lose negative sentiment indicating words, did not apply stemming, and did not 

remove some of the punctuations like ‘!’ and ‘:-)’ because of their sentiment indicating 

nature. 

 

2.6 REPRESENTATION OF LANGUAGE 

After necessary pre-processing steps, the text data is transformed and ready for 

the use of language models. But one more task should be accomplished before use, 

which is representing the data. The computers understand the numeric data, but the 

language is in the text form. The data cannot be used as it is and should be converted 

into a numeric format. There are several methods for representing the language. The 

first step is representing the tokens, and the second step is representing the sentences 

or sentence groups using token representations. 

 

2.6.1 One-Hot Representation of Words (One-Hot-Encoding) 

The first method is constructing a vocabulary from all the tokens in the corpus 

(the collection of all the documents), sorting and representing each word with its index 

value. For an example small corpus with two sentences; ‘The cat runs’ and ‘The dog 

and the cat sleep’. The vocabulary, which is built by all the unique words in the corpus 

is [‘and’, ‘cat’, ‘dog’, ‘runs’, ‘sleep’, ‘the’], and the words in the corpus may be 

represented numerically as their index values which are 0:’and’, 1:’cat’, 2:’dog’, 

3:’runs’, 4:’sleep’, 5:’the’. This easy method has a problem. The index values have a 

greater-smaller relationship in between each other, which mislead the models. The 

inputs must be represented independently so that any unwanted relation should not be 

implied to the model.  

These types of inputs are also called categorical inputs in many other machine 

learning problems. If we take a simple linear regression problem of predicting house 

prices as an example, the inputs such as the number of rooms and size of the house are 

among numeric features, and the inputs like the location, city, or district are among the 

categorical features. If the categorical features are treated just like the numerical 
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features, the model will make wrong inferences. For representing the categorical 

features, the simplest method is one-hot-encoding.     

The same approach can also be applied to NLP tasks. In one-hot-encoding, a 

word is represented with a vector of length equal to the vocabulary size, with all zeros 

and a single one at the index position same as the word's index in the vocabulary. These 

types of vectors representations are called one-hot-vectors as shown in Table 2.1. 

 

Table 2.1:  One-Hot Representations of Words 

Corpus: [‘the cat runs’, ‘the dog and the cat sleep’] 

Vocabulary: {0:’and’, 1:’cat’, 2:’dog’, 3:’runs’, 4:’sleep’, 5:’the’} 

 Vocabulary \ Index 0 1 2 3 4 5 One-Hot-Vectors 

‘and’ 1 0 0 0 0 0 [1, 0, 0, 0, 0, 0] 

‘cat’ 0 1 0 0 0 0 [0, 1, 0, 0, 0, 0] 

‘dog’ 0 0 1 0 0 0 [0, 0, 1, 0, 0, 0] 

‘runs’ 0 0 0 1 0 0 [0, 0, 0, 1, 0, 0] 

‘sleep’ 0 0 0 0 1 0 [0, 0, 0, 0, 1, 0] 

‘the’ 0 0 0 0 0 1 [0, 0, 0, 0, 0, 1] 

 

2.6.2 Bag of Words Model (BOW) 

This representation is also called count vectorization. The simplest form of 

representing collections of words or tokens, which are also called as documents or 

sentences, is the Bag-of-Words model (BOW). In BOW, the first document is split into 

words, and then converted into one-hot-vectors and finally, all words are summed up 

to get the vector representation of the document. It is called as bag of words because 

the word ordering or word's contribution to the meaning are ignored, and all words are 

treated independently like throwing them into a bag and counting at the end. So the 

BOW representations of the two sentences in the previous example are as in Table 2.2. 

 

Table 2.2:  BOW Representations of Documents 

 BOW Representations 

‘the cat runs’ [0, 1, 0, 1, 0, 1] 

‘the dog and the cat sleep’ [1, 1, 1, 0, 1, 2] 

 

BOW representation has two major problems. The first one is because no order 

is preserved, there is a loss in meaning. So while the model is effective for simple tasks 

and simple data with decent performance, this representation is not sufficient for 
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complex tasks. The second problem is for a large vocabulary; the vector 

representations of documents will consist of large number of zeros which need too 

much storage space. These types of vectors are called sparse vectors. Programming 

language libraries use memory-efficient methods to handle the sparse vectors and 

sparse matrices to save space.  

 

2.6.3 Term Frequency-Inverse Term Frequency (TF-IDF) 

TF-IDF is a method widely used in information retrieval and text mining areas. 

This statistical method is used to determine the importance of a word for a document 

and for an entire corpus. If a word appears more frequently in a document, the word 

becomes more important. However, it becomes less important if it appears in more 

documents in the corpus. This method is used for scoring content in search engines 

and to match the query with the most relevant content. 

The intuition behind TF-IDF is, some common words like ‘the’, ‘and’, ‘I’ 

appear frequently in most of the documents in a corpus and these types of common 

words are less distinctive between documents, so they should be represented less 

heavily. On the other hand, rare words like ‘football’, ‘dog’, ‘coffee’ across an entire 

corpus are more distinctive and these should be represented more heavily if they 

appear in specific documents more frequently than others. 

TF-IDF method can be interpreted as an enhanced version of BOW. In BOW, 

frequent words in a document are represented more heavily according to their count. 

But the word vectors can be represented better with the TF-IDF method. TF-IDF is 

formed by two sub-components which are Term Frequency (TF) and Inverse 

Document Frequency (IDF).  

Term Frequency (TF) is the count of a term in a document divided by the total 

number of words in that document just like the normalized version of the count 

vectorization/BOW model. Normalization is required because every document has a 

different length and some words may appear more times than the other words in long 

documents.  For a specific document TF is calculated as, 

 

 Tf(t,d)= 
Term t count

Total term count
 (2.1) 
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Inverse Document Frequency (IDF) decreases the weight of terms that occur 

very frequently in all documents and increases the weight of terms that occur rarely. It 

is calculated by applying the logarithm function to the total number of documents 

divided by the count of documents in which the term appears. IDF is calculated as, 

 

Idf(t,D)=log (
N

df(t)
) (2.2) 

 

Where, N is the total number of documents, and df(t) is the count of documents 

containing the term across all the corpus. TF-IDF becomes as, 

 

Tf(t,d).log (
N

df(t)
) (2.3) 

 

where, 

 Tf(t,d): number of occurrences of term t in document d, 

 df(t): number of documents containing term t, 

 N: total number of documents. 

Using TfidfVectorizer class from the scikit-learn library, a simple python code 

as given in Table 2.3, helps us to calculate TF-IDF vector representations of the same 

example.  

Table 2.3:  Code for TF-IDF Vector Representations 

from sklearn.feature_extraction.text import TfidfVectorizer 

corpus = [‘the cat runs’, ‘the dog and the cat sleep’] 

tf = TfidfVectorizer() 

tfidf = tf.fit_transform(corpus) 

print(tfidf.toarray()) 

 

The output of the given code is the vector representations of two sentences as 

shown in Table 2.4. 

 

Table 2.4:  TF-IDF Representations of Documents 

 ‘and’ 

 

‘cat’ ‘dog’ ‘runs’ ‘sleep’ ‘the’ 

‘the cat runs’ 0. 0.50 0. 0.70 0. 0.50 

‘the dog and the cat sleep’ 0.43 0.30 0.43 0. 0.43 0.60 
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As seen, in the second sentence, the word ‘the’ appears more than others so has 

a larger weight. The word ‘cat’ has less weight than others because it appears in two 

documents while ‘and’, ‘dog’ and ‘sleep’ only appear in one document. In the first 

sentence ‘runs’ has a higher weight because it appears in only one document and ‘cat’ 

and ‘the’ have less weight because they appear in two documents. In TF-IDF, words 

weights are represented more precisely compared to BOW, but the order of words in 

a document is also ignored as in BOW, so this model also suffers from the problem of 

misrepresentation of the meaning. 

 

2.6.4 Word Embeddings 

Word Embeddings are also called Word Vectors or Vector-Space Embeddings. 

There are cases that two sentences having almost exact same words except for a minor 

difference, which may have different meanings. Like: ‘I am going to come’ and ‘I am 

going to go’. Or two sentences may have similar meanings while their almost every 

word are different. ‘Never mind’, ‘No harm done’, ‘That's all right’, ‘It's okay’, ‘Forget 

about it’, ‘No worries’, ‘No problem’ are all sentences for accepting apologies with 

different words but in similar meaning.  

BOW and TF-IDF models may be ineffective to deal with these types of 

complex situations. Alternative methods should be used to represent the words with 

their meanings. This can be accomplished by examining the word groups which are 

used frequently together. As in a well-known saying: ‘Tell me who your friends are, 

and I will tell you who you are’, the same idea may be applied to derive relations 

between words by examining their co-occurrence in the corpus. Firth, J.R. (1957:11) 

approves this idea with his famous saying; ‘You shall know a word by the company it 

keeps’. The process of representing words with their relative meanings to other words 

can be achieved through using statistical or ML approaches, and these types of words 

representations are called word embeddings. 

For intuition, an imaginary example is shown in Table 2.5. Assuming that the 

columns are embeddings of several properties, the word embeddings are manually 

created as word vectors of length 6. ‘Kitten’ is represented as the vector [0.96 0.93 

0.87 0.02 0.12 0.95], and as seen, it is strongly represented to have the properties of 

Baby, Animal, Pet, and Four-Legs. ‘Cat’ is similar to ‘Kitten’ with one difference that, 
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it is not strongly represented as Baby. On the other hand, words ‘Ankara’ and ‘Turkey’ 

have very light representations in embeddings related to the animal properties. And 

they are strongly represented with the embeddings of Place and Big. 

 

Table 2.5:  Word-Embeddings Example 

Vocabulary\Embeddings Baby Anima

l 
Pet Place Big Four-Legs 

Kitten 0.96 0.93 0.87 0.02 0.12 0.95 

Cat 0.45 0.95 0.79 0.01 0.54 0.92 

Dog 0.56 0.93 0.89 0.05 0.65 0.89 

Ankara 0.19 0.09 0.02 0.85 0.79 0.08 

Turkey 0.14 0.04 0.01 0.78 0.85 0.12 

Elephant 0.56 0.94 0.24 0.05 0.96 0.87 

 

Creating word embeddings is not a manual process as in the example. 

Statistical or ML models are used to derive word relations automatically as word-

embeddings which capture information about word relations from context. Compared 

to sparse vectors in one-hot-representation of words, word embeddings are dense 

representations. The lengths of the word embedding vectors are not as big as the 

vocabulary size. When training word embeddings, to represent all the words 

successfully, as one of the many hyperparameters, the size of the embedding vector is 

selected between 50 and 300 according to the size of the corpus. It is possible to capture 

more details using more data and bigger word-embedding sizes, but higher values need 

higher processing power. There are three widely used techniques for word embeddings 

which are, Word2vec, GloVe, and FastText. The training of word embeddings for a 

large corpus is a computationally expensive and time-consuming process. There are 

various pre-trained models that can be downloaded and used directly. Pre-trained word 

embeddings are useful for general purpose tasks, but self-trained word-embeddings 

give better results for special corpus types. 

 

2.6.4.1 Word2vec 

Since word2vec was proposed by Mikolov et al. [7] in 2013, it became very 

popular and widely used for its efficiency in representing words in vector space. There 

are two underlying model architectures for Word2vec as shown in Figure 2.4. In 

Continuous Bag of Words (CBOW), the model is trained to predict the target word 

from its surrounding (context) words. In Skip-Gram (SG), it is the opposite; the model 
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is trained to predict the surrounding (context) words from a given target word. While 

CBOW model implies ‘Tell me who your friends are, and I will tell you who you are’, 

SG model implies ‘Tell me who you are, and I will tell you who your friends are’. For 

context words, a window size of ‘n’ is determined and, ‘n’ words before and ‘n’ words 

after are considered as context words.  

 

Figure 2.4: CBOW and SG Architectures 

 
  Mikolov et al. [7] 

 

If the syntax was cared for, the order of the words should be important, but the 

purpose is to represent a word with its meaning. So the context words can be treated 

like a bag-of-words model. Both Word2vec architectures produce similar results with 

slight differences. For a small corpus, SG performs better, and rare words can be 

represented well. CBOW is much more computationally efficient than SG, and so is 

better for a large corpus. Relatively to SG, CBOW represents frequent words better. 

 

2.6.4.2 GloVe 

Global Vectors for Word Representation (Glove) [8] is developed by Stanford 

in 2014.  GloVe method takes into account the word co-occurrence statistics over the 

corpus. It is based on both the matrix factorization technique and the local context 

window. 
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2.6.4.3 FastText 

FastText [9] is created by Facebook in 2016. It is based on the skip-gram 

approach of the word2vec model. It operates on a sub-word level and supports words 

that do not exist in the vocabulary. Each word in the corpus is split into n-grams of 

characters and treated as bag-of-characters. A vector of an unknown word can be 

constructed with its n-gram vector representations. So, problems about infrequent 

words and out-of-vocabulary (OOV) words are addressed better. It is also faster 

compared to the word2vec model. 

 

2.6.5 Advanced Word Embedding Methods 

Instead of pre-training word-embeddings, in DL networks, Embedding Layers 

can be used as the first hidden layer for NLP tasks. After encoding the words in 

documents into integers, the lengths of the documents are normalized to be all in same 

length, and normalized documents are given as inputs to the DL model, Embedding 

Layer act as successfully as other common embedding methods, learning word vectors 

as the model trains.  

There are also large-scale pre-trained language models using advanced DL 

networks. These pre-trained models can be used for NLP tasks as an alternative of self-

training word embeddings. ELMo (Embeddings from Language Model) was 

developed by Allen Institute for AI in 2018 [10]. BERT (Bidirectional Encoder 

Representations from Transformers) was developed by Devlin et al. [11] from Google 

in 2018. MASS (Masked Sequence to Sequence pre-training) was proposed in 2009 

by Song et al. [12] from Microsoft for encoder-decoder based language generation. 

They achieved state-of-the-art accuracy with a 37.5 BLEU score. In 2020 OpenAI 

developed GPT-3 (Generative Pre-trained Transformer) [13]. It was trained with the 

‘Common Crawl’ dataset containing 500 billion words. It has 175 billion parameters 

which is 100 times bigger than the preceding GPT-2 model. Huang et al. [14] 

compared the architectures of the three models as in Figure 2.5. 
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Figure 2.5: BERT, OpenAI GPT, and ELMo Architectures 

 
Huang et al. [14] 

 

2.6.6 Similarity of Word-Embedding Vectors 

The word ‘meaning’ is commonly used for word-embeddings. In reality, it is 

referred to the relation between words, not the real meaning of a word. The relation is 

the relative meaning and similarity between words. As ‘baby’ and ‘mother’ or ‘cat’ 

and ‘dog’, some words are similar/close to each other because they are usually used in 

the same context. Word-Embeddings inherit these types of closeness/similarity 

relationships and word vectors of close words are close to each other in vector space. 

To calculate the similarity or closeness of vectors there are two methods, which are, 

measuring the angle between vectors or calculating the distance between vectors. 

 

2.6.6.1 Cosine Similarity 

Cosine Similarity measure is the cosine of the angle () between the vectors. It 

can be calculated by the Euclidean dot product formula. The value can be between -1 

and 1. If it is close to -1, the vectors are dissimilar and if the cosine similarity value is 

close to 1, the vectors are close to each other and accepted as similar. Cosine similarity 

is generally used when the magnitudes of the vectors are not important. 

 

cos(θ) =  
A . B

‖A‖‖B‖ 
=

∑ Ai x Bi
n
i=1

√∑ Ai
2n

i=1  + √∑ Bi
2n

i=1

 
(2.4) (2.5) 

 

2.6.6.2 Euclidean Distance 

Euclidean Distance is the length of a line between the two vectors. To find the 

distance between two points, the Euclidean distance formula is used. 
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d= √∑(Ai-Bi)2

n

i=1

 (2.6) (2.7) 

 

2.6.7 Evaluation of Word-Embeddings 

To evaluate the performance of the word-embedding training process, there are 

two methods, intrinsic evaluation and extrinsic evaluation. 

 

2.6.7.1 Intrinsic evaluation 

Analogies can be tested to evaluate the performance of word embedding 

training. Like the vector operation of ‘Turkey - France + Ankara’ should give a vector 

very close to the vector of ‘Paris’.  

Clustering is another approach that can be used for intrinsic evaluation. Similar 

vectors can be tested if they are in the same clusters. 

Visualization methods also are helpful to demonstrate the similarity between 

vectors. But human brains are not capable to comprehend or visualize more than 3 

dimensions. To visualize the word vectors in 2 or 3 dimensional spaces, dimensionality 

reduction methods like t-distributed Stochastic Neighbor Embeddings (t-SNE) and 

Principal Component Analysis (PCA). Butnaru et al. [15] generated 2D representation 

of 300-dimensional word embeddings by applying the PCA algorithm as seen in Figure 

2.6. 

 

Figure 2.6: Sentiment Analysis Approach Enabling Negation Identification 

 

Butnaru et al. [15] 
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2.6.7.2 Extrinsic evaluation 

Word embeddings can be tested on external tasks like sentiment analysis, 

named-entity-recognition, or parts-of-speech tagging and the performance is observed 

comparing the existing results. Extrinsic evaluation is more time-consuming and more 

difficult to troubleshoot compared to intrinsic evaluation. 

 

2.7 EVALUATION OF CLASSIFICATION TASKS 

Evaluation is the key step to judge the performance of any trained model. For 

a classification task, first, data is split into train and test sets. The model is trained with 

train set, and after training, test data is fed into the model, and predicted labels are 

compared with the actual labels of the test data. 

Regardless of the model used, whether it is a rule-based model, a statistical 

model, an ML, or a DL model, the outputs of classification tasks are predictions of 

classes. While for a multi-class classification problem, there may be any number of 

possible classes, for a binary classification task, there may be only two possible classes 

(e.g., 1/0, Yes/No, Positive/Negative, Spam/Ham, Malignant/Benign, Good/Bad, 

Cat/Dog). 

The most commonly used method for evaluating the performance of 

classification tasks is the Confusion Matrix (Table 2.6). After training the model with 

the train data, Confusion Matrix shows how well the model performs running the 

model with the test data. There are four possible values in the matrix for a two class 

(logistic) classification task. 

 

Table 2.6:  Confusion Matrix 

  Predicted 

 

 Positive Negative 

A
ct

u
al

 Positive TP FN 

Negative FP TN 

 

where, 

 TP: True Positive 
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 TN: True Negative  

 FP: False Positive (Type I error) 

 FN: False Negative (Type II error) 

With the test data, the model predicts the class as Positive or Negative. If the 

prediction matches the actual class then it is a True prediction, else it is a False 

prediction. Correct predictions are predicting Positive and Negative classes ‘True’ly 

(TP + TN). Incorrect predictions are predicting classes ‘False’ly. (FP + FN). True 

predictions should be high for the model to perform well. There are several metrics 

derived from the Confusion Matrix to calculate the performance. Each metric has its 

own use cases and weaknesses according to the task and the dataset. 

Accuracy is the basic metric that shows the ratio of true (correct) predictions 

to all predictions.  

 

 Accuracy = 
(TP+TN)

(TP+TN+FP+FN)
 (2.8) (2.9) 

 

Accuracy is not a reliable metric when negative and positive classes are 

unbalanced in the dataset. For such cases, other metrics are used to evaluate the 

performance. 

Precision is the ratio of correctly predicted positive observations (TP) to the 

total number of positive predictions (TP + FP). 

 

 Precision = 
TP

(TP+FP)
 (2.10) (2.11) 

 

Recall (Sensitivity) is the ratio of correctly predicted positive observations (TP) 

to the total number of actual positives. (TP + FN). 

 

 Recall = 
TP

(TP+FN)
 (2.12) (2.13) 

 

F1-Score (F-Measure) is the weighted average of Precision and Recall. 
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 F1-Score = 
2 * (Recall * Precision)

(Recall + Precision)
 (2.14) (2.15) 

 

2.8 LITERATURE REVIEW 

Zhang et al. [16] used online reviews of air purifiers from t-mall.com for 

customer preferences extraction using aspect-level sentiment analysis. They used the 

Kano model to extract consumer demands from sentiment orientation. To identify 

multi-word product attributes they used the part-of-speech method and used k-means 

and word-embedding techniques to group synonyms of the product attributes. 

Jain et al. [17] conducted a literature review on customer sentiment analysis in 

the tourism domain using ML techniques including Clustering, SVM, DT, LR, LSTM, 

BiLSTM, KNN, NB, Regression, CNN, RF, LDA, GB, and NN. The literature review 

includes 68 research papers from Jan 2017 to July 2020. They proposed a sentiment 

analysis with ML framework (Figure 2.7) with four phases which are, online reviews 

collection, data pre-processing and visualizations, ML techniques, and customer 

sentiment analysis phases. 

 

Figure 2.7: Customer Sentiment Analysis Flowchart 

 
 Jain et al. [17]  
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Rathor et. al [18] extracted Amazon online reviews with Amazon API and used 

both unigrams and weighted unigrams to train 3 supervised ML techniques which are 

SVM, NB, and ME for the sentiment classification task. It is a multi-class classifier, 

with three classes which are, positive, neutral, and negative. maximum accuracy score 

with weighted unigrams is achieved by SVM method with 81.20% while the accuracy 

of Maximum Entropy (ME) is 70.35% and Naive Bayes (NB) is 77.42% 

Cataltas et al. [19] first clustered customer reviews with the Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) algorithm to find common 

defects of a product. Then defects are used to find opinion words using Part-of-Speech 

patterns. They achieved to find the product defects using commonly reviews product 

features with negative opinion tendency. They argue that the proposed method may 

guide customers while making purchase decisions and also producers to improve their 

products. They also demonstrate a flowchart of the data pre-processing steps that they 

performed in their study as shown in Figure 2.8. 

 

Figure 2.8: Data Pre-Processing Flowchart 

 
Cataltas et al. [19] 

 

Mukherjee et al. [20] worked on the sentiment analysis problem with including 

the negation (Figure 2.9). They trained Naive Bayes, Support Vector Machines, 

Artificial Neural Network (ANN), and Recurrent Neural Network (RNN) models on 

cell phone reviews data from Amazon. They prove that handling negations improve 

the performance of the models. DL models give the highest accuracy scores, where 

ANN with negation has an accuracy of 96.32% and RNN with 95.97%. 
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Figure 2.9: Sentiment Analysis Approach Enabling Negation Identification 

 
Mukherjee et al. [20] 

 

Zhang et al. [21] proposed a recurrent attention LSTM model for document-

level sentiment analysis that is capable of locating regions more accurately about 

sentiments and demonstrated that the proposed method achieved better results than the 

state-of-the-art models. 

Dey et al. [22] analyze the sentiments of Amazon product reviews by using two 

ML algorithms which are linear SVM and NB and compares the performance of the 

models. SVM model achieves better results which are, f1-score of 84% and accuracy 

of 84% for SVM, and f1-score of 82.67%, accuracy 82.88% for Naive Bayes.  

Fry et al. [23] studied two unsupervised clustering algorithms which are K-

means and Peak-searching, using Amazon product review data for a Samsung Galaxy 

smartphone. They used manually determined topics and they compared the results. K-

means performed slightly better but neither of the models helped to achieve their goal. 

Katić et al. [24] used Amazon review dataset to study sentiment analysis task 

to compare several document representation methods like bag-of-words, bag-of-

ngrams, their tf-idf versions, pre-trained word embeddings; word2vec and GloVe, and 

several learning models like Logistic Regression, SVM, ConvNets, and LSTM. They 

concluded that DL models perform better than traditional models as the dataset size 

increases as expected. DL models need more data to generalize well. They proved that 

deep learning models perform better than traditional models on the large dataset. 

LSTM resulted in the best accuracy of 95.56%. Among traditional models, Linear 

SVM with bag-of-ngrams and TF-IDF has the highest accuracy score with 92.9%. 



 

30 

 

Dogan et al. [25] used Twitter data to detect influencers or possible speculators 

to evaluate their effect on stock markets. They focused on the largest companies on 

the NASDAQ stock exchange market. They used sentiment analysis dictionaries from 

Loughran and McDonald and trained several ML models to identify possible 

speculators or influencers who have too many positive or negative effects. They found 

that it was not possible to find a correlation of individual tweets with the stock market 

without noise reduction, and they achieved better results with RBF Kernel and SVM 

methods. 

Mutlu et al. [26] used Twitter data to identify troll accounts using three 

supervised machine learning algorithms, which are KNN, NB, and C4.5 Decision Tree. 

They manually examined collected tweets from 2605 accounts and set rules like 

sending more than 50 tweets/day, follower/following rate less or equal to 0.4, retweet 

rate of 70%, and profile images to decide if a user is a troll or not. They got the best 

result with the C4.5 model with an accuracy score of 89% 

Rao et al. [27] studied on detection of sarcasm on Amazon reviews using SVM, 

KNN, and Random Forest algorithms. The study uses tokenization, polarity 

identification, stemming, and lemmatization steps for feature extraction. They reached 

accuracy levels of 67.58% with SVM, 62.34% with Random Forest, and 61.08% with 

KNN models. 

Uysal et al. [28] conducted a sentiment analysis task using tweets containing 

political keywords which are collected just before the Turkish General Elections held 

in 2015. They classified 93,653 tweets, and first created an emotion-specific dictionary 

in Turkish containing 1543 emotion words and 120 emoticons. They used Zemberek, 

which is a Turkish NLP framework, for word suggestions, suffix removal, and 

negative verbs detection, and SentiStrength library for sentiment analysis. They 

analyzed the polarity of tweets in three categories, which are part leaders, party names, 

and ideologies, and compared with the election results. They got better results with 

leaders and party names categorizations. 

Ejaz et. [29] al proposed a lexicon dictionary-based approach with ngrams for 

sentiment analysis on Amazon product reviews and compared their model with three 

ML models which are, Random Forest with word vector, Decision Tree learner with 

document vector, and Random Forest with n-gram. The accuracy of each model is 
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calculated by using the ROC curve and their proposed model outperformed all with an 

accuracy score of %89.5 while the next best score is %85 with Random Forest with n-

grams model. 

Haque et al. [30] compared CNN, LSTM, and LSTM-CNN architectures for 

sentiment analysis tasks using IMDB movie reviews. They reached the F-Score results 

of 91% for CNN, 86% for LSTM, and 88% for LSTM-CNN. 

Almjawel et al. [31] worked on visualization of sentiments using Amazon book 

reviews. They presented four techniques, Interactive Packed bubbles, Linear chart, 

Stacked bars, and Word-cloud that enable users to explore relationships between 

different objectives.  

Saranya et al. [32] proposed word cloud and word plot generation to find the 

most frequently used words in the YELP clothing reviews dataset. Latent Dirichlet 

Allocation (LDA) is used as a probabilistic generative model to generate topics from 

words in the corpus.  
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3CHAPTER III 

 

 PROPOSED METHOD 

 

3.1 PROPOSED SOLUTION 

Pre-trained word-embedding models like Word2Vec and GloVe are available 

for public use, trained with big datasets in strong computing environments. It is not 

possible to accomplish similar large-scale training tasks on our local computers. Pre-

trained models are trained with non-specific context data, and are very useful for a 

wide range of general-purpose tasks. But pre-trained models contain many unrelated 

words and unwanted relations between words that do not serve our purpose. For 

specific context and specific types of tasks like our case, training own word-

embeddings should be more efficient. We propose a method of detecting ‘defect’ 

related words using our self-trained word-embedding model and using populated 

defect related words, to be able to classify reviews that contain information about 

defected products.  

We train our word-embedding model using only the negative reviews as 

corpus, which is possible with our own modest computing environment. And after 

training using word vector similarities, we populate a set of words or phrases that are 

related with ‘defect’. The set of defect words can be used later to judge if a review is 

complaining about a defect of a product or not. 

 

3.2 DATASET 

In this study, we use the Amazon Review Dataset by Ni et al. released in 2019 

[33]. The dataset is high volume, shared, and ready to use. Full dataset includes total 

233.1 million amazon reviews between May 1996 and October 2018.  Raw data is 

34GB in size. A subset of the full data was also prepared with the name ‘5-core’ 

selecting only the reviews with users and items that have at least 5 reviews.  The 5-

core dataset includes 75.26 million reviews. The dataset is divided into 29 different 
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product categories and served as per-category compressed files. We selected the 

Electronic category for our study. The full size of Electronic reviews consists of 

20,994,353 reviews. We experimented on the 5-core subset of the same category that 

has 6,739,590 reviews with 1.2 GB compressed and 4 GB uncompressed size. An 

example review and related field information is shown in Table 3.1. 

 

Table 3.1:  An Example Review 

{ "overall": 4.0, 

 "vote": "5", 

 "verified": true, 

 "reviewTime": "05 18, 2000", 

 "reviewerID": "A2BDENVIRDTXVP", 

 "asin": "B00000JYVT", 

 "reviewerName": "*****", 

 "reviewText": "I use this recorder every day to make notes and record to-do items 

while driving, etc.  It works very well and the recording quality is decent enough for what I 

use it for.  There is one large design flaw, though.  The  record button is MUCH too easy to 

press.  At least 4 times a week, I'll try  to record a message only to find a 70+ minute recording 

of me walking  around with this in my pocket.  All I do is delete that message and I'm  back in 

business, but it's annoying.", 

 "summary": "Great item with one flaw", 

 "unixReviewTime": 958608000 } 

reviewerID: ID of the reviewer, e.g. A2SUAM1J3GNN3B 

asin: ID of the product, e.g. 0000013714 

reviewerName: name of the reviewer 

vote: helpful votes of the review 

style: product metadata, e.g., "Format" is "Hardcover" 

reviewText: text of the review 

overall: rating of the product 

summary: summary of the review 

unixReviewTime: time of the review (unix time) 

reviewTime: time of the review (raw) 

image: images that users post after they have received the product 

 

3.3 METHODOLOGY 

3.3.1 Feature Selection 

The dataset includes many informative fields about reviews. For our case, we 

only used the three features that serve our purpose; ‘overall’ for the rating (sentiment) 

information, ‘reviewText’ and ‘summary’ for the text review heading and body.  

 The text fields ‘summary’ (header) and ‘reviewText’ (body) are concatenated and 

obtained a single feature ‘text’ in text format.    
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 Reviews that have 1 and 2 ratings are filtered and labeled as negative (0). Reviews 

that have 5 ratings are filtered and labeled as positive (1). Reviews with 3 and 4 ratings 

are neglected that do not resemble strong sentiments. 

 The character lengths and the word counts of the text fields are calculated, and this 

information is used for normalizing the text features.  

 

3.3.2 Data Preprocessing 

As the text parts of the reviews are unstructured data, basic NLP methods are 

applied and tested if they help the performance of the models.  

 Text features are lowercased and all punctuations are cleared, so that they only 

contain characters [a-z] and digits [0-9].  

 On the contrary, stop-words removal, stemming and lemmatization steps are not 

applied. The dataset is quite big, so these steps do not contribute to the performance. 

One other reason is; these steps are very time-consuming.  

 The words with lengths smaller than 2 and larger than 20 characters are deleted.  

 Too short reviews would not contain enough information to judge the review, so 

with reviews length less than 10-character and word count less than 3 are deleted. 

 1% of data is split for later manual tests. 

 Negative and Positive reviews are not balanced. This may be misleading when 

evaluating the performance of the models. So they are balanced by reducing positive 

reviews to be 10% more of the negative reviews. 

 Positive and negative reviews are split to train and test datasets with a ratio of 0.9 

to 0.1 

 

3.3.3 Testing Dataset Reliability 

Before moving further, we wanted to test our dataset and confirm if the data 

includes enough information for a classification task and also see if labels (ratings) of 

the reviews are reliable or not. We trained and evaluated several ML models with 

several smaller sets of our cleaned and split data, observed the high accuracy and F1 

scores, approved that the labels (ratings) truly represent negative and positive 

sentiments and the dataset includes enough information for a sentiment analysis task. 
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This step also helped us to observe the relationship between performance and the 

dataset sizes. 

 

3.3.3.1 Data Representation  

BOW and TFIDF representation methods are used to represent words for the 

base ML training task. 

 

3.3.3.2 Model Selection 

Several ML models (Logistic Regression, NB, and Random Forest) are trained 

for testing dataset reliability. 

 

3.3.3.3 Evaluation 

Since the problem is simplified to a classification task, we make use of 

Confusion Matrix and compare Accuracy, F1 scores to evaluate the performance of 

the trained models. 

 

3.3.4 Training Word-Embeddings 

Using only selected and cleaned negative reviews, the Word2Vec model is 

trained using python gensim library to obtain word-embeddings specific to negative 

sentiments. Bi-gram model is preferred instead of the unigram model to obtain also 

two word phrases like ‘already broken’ or ‘falling apart’. After training, defect-related 

words list is populated using vector similarities. Auto populated list contains some 

phrases that are not related to defects like ‘unique’, ‘fully functional’ or ‘innovative’ 

are cleared manually to prevent misleading inferences. 

 

3.3.5 Re-labeling Dataset as Non-Defected/Defected 

Non-defect/defect dataset which is a subset of positive-negative sentiment 

dataset is produced by; 

 Negative reviews that contain any words from the defect-related words list are 

labeled as defected (0) 

 Positive reviews that do not contain any words from the defect word list are labeled 

as non-defected (1) 
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 Test and train datasets are balanced again to contain non-defected labeled reviews 

to be not more than %10 of defected labeled reviews. 

 

3.3.6 Training Models for Defect Detection Task 

The final dataset which is labeled as non-defected/defected is used to train 2 

ML models (LR, NB) and two DL models (CNN, RNN). 
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4CHAPTER IV 

 

 EXPERIMENTS AND RESULTS 

 

4.1 PROGRAMMING ENVIRONMENT AND LIBRARIES 

 Python 3.9.5 is used as the programming language.  

 Numpy, Pandas libraries for data handling. 

 Mathplotlib, seaborn, WordCloud libraries for visualization. 

 Gensim library for Word2Vec word-embedding training. 

 Sklearn library for vectorization, train/test split, ML models, and evaluation tasks. 

 Tensorflow, Keras libraries for DL models. 

 

4.2 TRAINING ENVIRONMENT 

Models are trained on a local laptop with 16 GB of RAM, 4th gen i7 CPU with 

4 cores, equipped with Nvidia Geforce 850M GPU unit. Several DL models that use 

Keras and Tensorflow libraries are tested on Google Colab environment supplying 

Tesla-K80 GPU, which performs better than the local 850M GPU unit for DL models. 

 

4.3 INSPECTING AND PRE-PROCESSING DATASET 

To save memory, while loading gzip-compressed JSON formatted dataset 

(Electronics_5.json.gz) into pandas dataframe object, only the necessary fields are 

selected ('reviewText', 'summary', 'overall'), reviews with overall scores 1, 2 (for 

negative reviews) and 5 (for positive reviews) are filtered, and long reviews are 

truncated to 2000 characters. The resulting dataframe has 3 columns and 5.097.416 

rows. The first 5 lines of the dataset are shown in Figure 4.1. 
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Figure 4.1: Dataset (First 5 Lines) 

 

 

'reviewText' and 'summary' columns are dropped after concatenated to create 

the new single ‘text’ column. 'text_length' and 'word_count' columns are calculated 

and inserted into the dataframe to get more information about the text column. Reviews 

with labels 1 and 2 (773.834) are much less than reviews with labels 5 (4.323.582). 

The statistics of the dataset grouped by labels are shown in Figure 4.2. 

 
Figure 4.2: Dataset Statistics (Grouped By Labels) 

 

 

Reviews with ratings 1 and 2 are re-labeled as negative (0), and reviews with 

rating 5 are re-labeled as positive (1) as seen in Figure 4.3. Negative reviews are longer 

in size and also contain more words compared to positive reviews as shown in Figure 

4.4.  

 

Figure 4.3: Dataset Statistics (Labeled 0/1) 
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Figure 4.4: Text Lengths and Word Counts 

 
 

 There are 794 negative and 13873 positive reviews that have 

text_length smaller than 10 and word_count smaller than 3. These short reviews do 

not contain enough information as seen in Figure 4.5, so are deleted.  

 

Figure 4.5: Short Reviews 

 
  

1% of the dataframe is split for later manual tests. And for the remaining part, 

the first positive reviews are reduced to 110% of negative reviews to balance the 

dataset. Later it is split into train and test sets with a ratio of 0.1 to 0.9. The resulting 

dataframes are of shape; Test Data (Negative/Positive): (76530, 4) (84182, 4), and 

Train Data (Negative/Positive): (688765, 4) (757642, 4).  

 

4.4 TESTING DATASET WITH ML MODELS 

In order to be confident about the dataset, we performed a base sentiment 

analysis task by training 3 ML models with two word-representations and with 5 

different data sizes, as stated in 3.3.3. Accuracy and F1 scores are shown in Table 4.1, 

Figure 4.6, and Figure 4.7. 

 



 
 

40 

 

Table 4.1:  Sentiment Analysis ML Performances 

F1 Score 480 2400 12K 60K 228K 

BOW_LR 0.8296  0.8774  0.9382  0.9521 0.9584 

BOW_NB 0.8361  0.894  0.9243  0.9335 0.9358 

BOW_RandomForest 0.8455  0.8383  0.8989  0.9187 0.9336 

TFIDF_LR 0.8462  0.8964  0.9327  0.9502 0.9601 

TFIDF_NB 0.8489  0.8911  0.9262  0.9326 0.9341 

TFIDF_RandomForest 0.7846  0.8666  0.8961  0.917 0.9354 

Accuracy 480 2400 12K 60K 228K 

BOW_LR 0.8083  0.87  0.935  0.9493 0.9563 

BOW_NB 0.8333  0.8917  0.9213  0.9302 0.9326 

BOW_RandomForest 0.8417  0.8367  0.8967  0.9165 0.9315 

TFIDF_LR 0.8333  0.8933  0.9304  0.9477 0.9582 

TFIDF_NB 0.825  0.89  0.925  0.9307 0.9324 

TFIDF_RandomForest 0.7667  0.865  0.8938  0.9147 0.9334 

 

Figure 4.6: ML Models Performances - Accuracy 

 
 

  Figure 4.7: ML Models Performances - F1 Score 
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We reached the following judgements after performing this step; 

 Performance of the models increases with the growth of the dataset. 

 High F1 and Accuracy scores tell us that the labels are accurate for reflecting 

sentiments of the reviews. And also, reviews contain enough information so that, 

models can successfully predict the reviews as positive or negative. 

 Both BOW and TFIDF models represent the words with similar success for the 

sentiment analysis task. 

 Although all models performed well for the task, the LR model is slightly better 

than the others.  

 

4.5 TRAINING AND EVALUATING WORD-EMBEDDINGS 

We trained our own Word2Vec model using only the negative train set. To 

evaluate our self-trained model, we also downloaded a pre-trained model (glove-wiki-

gigaword-300) which is trained by Wikipedia data, and used analogies and 

visualizations to compare the performances, strengths, and weaknesses of both models. 

Pre-trained models can be used successfully for generic analogies like ‘Man’ 

to ‘King’ is ‘Woman’ to ‘Queen’ as shown in Table 4.2. 

 

Table 4.2:  Analogy Using Pre-Trained Model 

> wiki.most_similar(positive=['woman', 'king'], negative=['man'], topn=1) 

[('queen', 0.6713)] 

 

When we run the same analogy with our pre-trained model as shown in Table 

4.3, the 3 most similar words are ‘vp’, ‘pr’, and ‘warrentech’, which are all unrelated 

words. This output shows that our self-trained model is performing badly for a 

different context which is an expected result. 

 

Table 4.3:  Analogy Using Self-Trained Model 

> wv.most_similar(positive=['woman', 'king'], negative=['man'], topn=3) 

[('vp', 0.5546),  ('pr', 0.5102),  ('warrentech', 0.4977)] 

 

Visualization is a well know intrinsic evaluation method used for word-

embeddings. To visualize how well a pre-trained model performs for generic tasks, we 



 
 

42 

 

used the analogy of countries and capitals. Word vector dimensions are reduced into 

two dimensional space using PCA and the graphic is drawn as shown in Figure 4.8. 

 

Figure 4.8: Countries and Capitals 

 

We tested one more analogy as seen in Figure 4.9. 

 

Figure 4.9: Man to King, Woman to Queen Analogy 

 
 

 

These two examples show that a pre-trained model performs well for a generic 

task. This is a strength of a pre-train model over a self-trained model. The same 

analogies cannot be tested on the self-trained model because most of the words are not 

even in the vocabulary.  

For our use case, which is a specific task and a specific context related to 

electronic product defects, we evaluated the performance of the self-trained model by 

using word similarities. The top 10 most similar words for three example words 

(‘broken’, ‘defect’, and ‘malfunctioning’) are shown in Table 4.4. As seen, words 
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derived from the pre-trained model contain words from a different context like ‘bones’, 

‘heater’ or ‘valve’. Our self-train model is trained with only negative reviews of a 

specific product group (Electronics), so related words are all in the same context. 

 

Table 4.4:  Top 10 Most Similar Words 

Self-Trained Word2Vec Model Pre-Trained GloVe Model 

Most Similar Words to ‘broken’ 

('busted', 0.7576), 

('cracked', 0.7313), 

('damaged', 0.7233), 

('torn', 0.7211), 

('bent', 0.6819), 

('chipped', 0.6535), 

('rusted', 0.64), 

('broke', 0.6236), 

('falling_apart', 0.6159), 

('glued_together', 0.6048) 

('broke', 0.647), 

('fractured', 0.6322), 

('breaking', 0.6321), 

('shattered', 0.583), 

('cracked', 0.5597), 

('break', 0.5278), 

('bones', 0.5269), 

('collarbone', 0.5242), 

('damaged', 0.5034), 

('apart', 0.4933) 

Most Similar Words to ‘defect’ 

('manufacturing_defect', 0.8454), 

('flaw', 0.7665), 

('design_flaw', 0.7519), 

('defects', 0.7431), 

('factory_defect', 0.6787), 

('issue', 0.6698), 

('problem', 0.6375), 

('faulty', 0.6286), 

('manufacturing_flaw', 0.6281), 

('defective', 0.6177) 

('defects', 0.7401), 

('congenital', 0.5468), 

('flaw', 0.4827), 

('abnormality', 0.4824), 

('defective', 0.4752), 

('abnormalities', 0.47), 

('bifida', 0.4299), 

('deformity', 0.4208), 

('defected', 0.4013), 

('anomalies', 0.398 

Most Similar Words to ‘malfunctioning’ 

('faulty', 0.7439), 

('failing', 0.7099), 

('acting_up', 0.685), 

('defective', 0.6612), 

('malfunction', 0.6402), 

('malfunctioned', 0.6286), 

('nonfunctional', 0.6274), 

('operable', 0.6226), 

('dying', 0.6105), 

('inoperative', 0.5982) 

('malfunctioned', 0.6457), 

('faulty', 0.6185), 

('malfunction', 0.6054), 

('malfunctions', 0.5464), 

('balky', 0.5113), 

('defective', 0.5082), 

('heater', 0.4747), 

('valve', 0.4353), 

('transponder', 0.4318), 

('glitch', 0.4292) 

Most Similar Words to ‘fall_apart’ (bi-gram) 

('break', 0.8036), 

('disintegrate', 0.7919), 

('fray', 0.765), 

('crumble', 0.7392), 

('deteriorate', 0.7236), 

('unravel', 0.7146), 

('falling_apart', 0.7131), 

('break_easily', 0.6981), 

('fall_off', 0.698), 

('falls_apart', 0.6779) 

Not in vocabulary 
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On the other hand, if we test a context-specific analogy with our self-trained 

model, this time, for the analogy; ‘good’ – ‘bad’ + ‘malfunctioning’, 3 possible words 

are ‘operable’, ‘acting_up’ and ‘functioning’ (Table 4.5), which is expected since all 

three are opposites of ‘malfunctioning’. 

 

Table 4.5:  Analogy Using Self-Trained Model 

> wv.most_similar(positive=['good','malfunctioning'],negative=['bad'],topn=3) 

[('operable', 0.5438),  ('acting_up', 0.5084),  ('functioning', 0.4940)] 

 

If the same test is performed on the pre-trained model the resulting three most 

related words are ‘malfunctioned’, ‘heater’, and ‘ventilation’ (Table 4.6), which shows 

the weakness of pre-trained models for context-specific tasks. 

 

Table 4.6:  Analogy Using Pre-Trained Model 

> wiki.most_similar(positive=['good','malfunctioning'],negative=['bad'],topn=3) 

[('malfunctioned', 0.4599),  ('heater', 0.4532),  ('ventilation', 0.3955)] 

 

For the word ‘malfunctioning’, the graphics of the top 10 most similar words 

are visualized as shown in Figure 4.10 for both word embedding models. As seen, pre-

trained model contains unrelated words while self-trained model is more precise. This 

shows for a specific context and for a specific task pre-trained models perform better. 

This is the strength of pre-trained models over self-trained models. 
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Figure 4.10: Top Most Similar Words to ‘Malfunctioning’ 

  
 

4.6 POPULATING DEFECT RELATED WORDS LIST 

Using own self-trained model which proved to be reliable for defect-specific 

context using analogies and word similarities experimented in 4.5, we populated the 

defect-related words list iteratively in three steps. 

 In the first step, we constructed our base list with 10 defect related-words. (‘broken’, 

‘broke’, ‘cracked’, ‘fall_apart’, ‘malfunctioning’, ‘nonfunctional’, ‘defected’, 

‘non_functioning’, ‘faulty’, ‘flawed’).  

 In the second step, for each word in the base list we find the top 20 words that have 

a similarity score greater than 0.6. Resulting list is checked manually and 11 words 

which are not directly related to defects are removed from the list ('last_long', 

'questionable', 'inexcusable', 'unravel', 'acting_up', 'unique', 'fell', 'shotty', 'operable', 

'innovative', ‘top_notch’).  This resulted in 90 new words.  

 In the third step, the same process is repeated for the second words list, but this time 

words that have a similarity score greater than 0.75 are selected. Resulting list is 

checked manually and 9 words which are not directly related to defects are removed 

from the list again ('superb', 'unraveled', 'corners', 'covering', 'quit', 'outstanding', 

'elegant', 'abysmal', 'protective_film').  This resulted in 63 new words.  

After combining all three lists, we ended up with 163 words that are strongly 

related to defects as shown in Table 4.7. 
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Table 4.7:  Defect Related Words List 

broken, broke, cracked, fall_apart, malfunctioning, nonfunctional, defected, non_functioning

, faulty, flawed, utterly_useless, break, dreadful, disintegrate, unusable, stopped_working, ba

d_batch, disintegrated, useless, falling_apart, seriously_flawed, non_functional, inoperable, 

defect, snapped, inoperative, wears_out, shoddy, hairline_crack, fundamentally_flawed, lem

on, poor, break_easily, completely_nonfunctional, shattered, coming_apart, deficient, hinge_

broke, badly_designed, fell_apart, deffective, came_apart, peeling_off, unuseable, unglued, c

hipped, busted, halfbaked, fray, malfunctioned, defective, doa, crumbled, die, tear, screen_sh

attered, started_falling, stop_working, poorly_designed, snapped_off, unlucky, lackluster, tor

n, rusted, dented, poorly_engineered, fluke, come_undone, nonworking, fell_off, ripped, bec

ame_loose, deteriorate, peeled_off, nonfunctioning, cracks, fall_off, damaged, wore_out, ma

nufacturing_defect, completely_useless, chipped_off, totally_useless, bent, glued_together, t

ore, started_tearing, substandard, breaks, malfunction, dud, popped_off, failing, dying, starte

d_cracking, crumble, zipper_broke, falls_apart, dysfunctional, crack, peeling, pleather, frayi

ng, died, slightly_bent, glued, brake, separated_from, flaking_off, started_chipping, crapped

_out, stained, deformed, dismal, completely_unusable, design_flaw, basically_useless, stopp

ed_functioning, stoped_working, flaw, unraveling, scuffed, separated, chipping_off, hairline

_cracks, cracking, peels_off, crushed, already_fallen, poorly_constructed, split_open, twisted

, started_fraying, half_baked, virtually_useless, fake_leather, rusty, warped, an_anomaly, wo

rthless, horrendous, totally_unusable, faux_leather, fail, started_flaking, dents, came_unglue

d, subpar, literally_fell, peel_off, lousy, atrocious, horrific, dent, started_peeling, fractures, c

oming_loose, discolored, stains, sheared_off, quit_working, horrid, coming_undone 

 

4.7 MAKING INFERENCES USING DEFECT RELATED WORDS LIST 

Defect-related words can be used to filter reviews that contain defect-related 

information. Usually, reviews complaining about defects of products have negative 

reviews as expected. But positive reviews may also contain such words. We inspected 

and filtered such positive reviews which have more than 3 defect words in the same 

review as shown in Figure 4.11. 

 

Figure 4.11: Positive Reviews Containing Defect Words 
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Two examples of positive reviews that contain information about defective 

products are shown in Table 4.8. 

 

Table 4.8:  Two Positive Reviews with Defect Words 

Defect words in the review : [broken, broke, cracked, breaks, cracking] 

'update to my review think its only fair to update my review of the mushkin 32gb atom wa

s disappointed that the little plastic part of the drive was cracking but mushkin has offered 

to replace them and these little flash drives are really great in every other respect so id like 

to give them five with minor point deductions for the plastic i was in love with these they 

are great but of the i bought the corner of the plastic cap not the removable cover where th

e lanyard attaches broke off on one and another is cracked across the same area and the c

aps just pulled completely off two others since receiving them in july\nwhen the first cap c

ame off just put tiny dab of all purpose crazy glue in it and stuck it back on but the cracke

d and broken ones are disappointing\notherwise they are great wonderful fit for insertion 

great performance use them with linux for portable operating system and the debianubuntu 

versions mint zorin emmabuntus uberstudent lxle all boot in less then minute and perform 

nicely when run from these flash drives\nmaybe should give them four stars id like to give 

them five\nmushkin please make better cap plastic part breaks and pulls off but otherwise 

great' 

Defect words in the review : [broke, fall apart, break, poor, fell off] 

'love this charger and the price is amazing 6 or right around there when the same one at ve

rizon is 40 never buy cheap off brand car charger as they fall apart and break so easy and 

can potentially harm your phone this is perfect charger durable charges fast and looks ama

zing the blue glowing logo in the middle looks great when it is plugged in and also lets yo

u know it is being powered i bought 2nd one for my girlfriend as she broke her cheap one 

without even knowing it the tip just fell off as it was poor construction i bought her this o

ne and she loves it i have had mine for over years now use it every day and it still works a

nd looks like new the only charger you should buy' 

 

 As seen in the two examples above, defect-related information can be found 

even in positive reviews.  

It is also possible to label reviews as defected/non-defected using the defect 

words list. After labeling any classification models can be trained.  

As a final experimentation, we used a smaller defect word list containing only 

17 words which are ['dead', 'died', 'broken', 'broke', 'cracked', 'fall_apart', 

'malfunctioning', 'nonfunctional', 'defected', 'non_functioning', 'faulty', 'flawed', 

'badly_designed', 'poorly_engineered', 'undependable', 'deficient', 'substandard'], and 

filtered negative reviews that contain defect words, re-labeled them as defected (0), 

filtered positive reviews that do not contain any of the defect-related words, and re-

labeled them as non-defected (1). That resulted train and test datasets with sizes 

8924/9816 (defect/non-defect) and 80292/88321 respectively. Later we trained several 



 
 

48 

 

ML and DL models with 4 different subsets of the same dataset and evaluated the 

performances for a defect estimation task (Figure 4.12, Figure 4.13). 

 

Figure 4.12: Performances of ML Models for Defect Detection 

 

 

Figure 4.13: Performances of DL Models for Defect Detection 

 

 

The accuracy and f1 scores are very high. Both reach almost 100% for the full 

dataset. But, this result must not be misleading. We only labeled reviews if they 

contain several words as the criteria. The trained models looked if such words exist in 

the review or not for prediction. 
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5CHAPTER V 

 

 CONCLUSIONS 

 

To filter reviews that contain any defect-related information we used word-

embeddings and populated a word list that is related to defects. We observed that a 

self-trained word-embedding model performs better for specific data and a specific 

context. We also completed a sentiment analysis task before our main task to be sure 

of the reliability of our dataset and observed the effectiveness of this approach. 

We believe that such context and sentiment-specific word lists trained with 

specific datasets can be useful for later tasks. For example, for a defect detection 

problem, using defect word lists, reviews can be labeled as ‘defected’ and ‘non-

defected’ automatically. Or this approach can be used to ease manual labeling 

processes by filtering possible defect-related reviews and reducing the dataset for 

manual operations. After that, the problem becomes a simple text classification task 

with two possible labels. 

As a future study, product groups or product versions can be examined that 

have reviews with similar defect information which may indicate chronic problems of 

a product. This task may serve as a defect risk alert application. 

The same approach can also be applied to different datasets with different 

keywords to extract specific types of information. 

Today’s world has many successful solutions to difficult NLP tasks like 

chatbots, machine translation, and text generation. NLP is still evolving rapidly 

parallel to other improvements in science and technology, so it will not be surprising 

to see many other successful solutions and applications in the near future. 
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