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ABSTRACT 

 

OPTIMIZING THE TRAINING ALGORITHMS OF MACHINE LEARNING 

USING GENERATIVE ADVERSARIAL NETWORKS 

 

AKEL, Sedat 

Computer Engineering Master 

Supervisor: Assist. Prof. Dr. Roya CHOUPANI 

January 2022, 68 pages 

 

Artificial intelligence has started to be a part of our lives in many aspects over 

the past few decades. Developing new products without features using artificial 

intelligence is not reasonable in the contemporary world. It would not be possible if 

we were not using the deep learning techniques in machine learning algorithms. 

Traditional machine learning needs clever human design code that transforms raw data 

into input features for machine learning algorithms. But with deep learning, learning 

features from raw data directly are possible and this eases the requirement for subject-

matter expertise. GANs are very recent advancement in the field of deep learning. 

They were not presented before 2014. Their capacity and quality of generating are far 

better than the other generative techniques in machine learning. Their philosophy is 

based on self-criticizing techniques for automatically learning representation of 

features. GANs can be used for generating photorealistic images, colorization, turning 

a simple sketch into a photorealistic image, increasing the resolution of an image, 

replacing photo defects with realistic patterns, predicting the next frames in a video, 

data augmentation, generating text, audio etc. data and more. GANs’ architecture is 

very original in deep learning. They are made up of two neural networks that compete 

during training.   Their structures are very clever and interesting but that leads us to

very difficult training sessions. GANs are known as difficult to train, prone to failure 

and very difficult to hyper-tune.
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In this thesis we focused on the optimization of some of the GANs. Their 

philosophies are the key reason to difficulties. For this we first explain the potential 

difficulties of GANs’ trainings. After we retrain some known GANs and compare the 

results. We propose some structural designs and some optimization parameters to 

achieve better performant GANs.  

 

Keywords: Generative Adversarial Networks (GANs), GANs’ Optimization, 

Generative Models, Machine Learning, Neural Networks, Deep Learning
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ÖZ 

 

ÇEKİŞMELİ ÜRETİCİ AĞLAR İÇİN MAKİNE ÖĞRENMESİ EĞİTİM 

ALGORİTMALARINDA OPTİMİZASYON 

 

AKEL, Sedat 

Bilgisayar Mühendisliği Yüksek Lisans 

Danışman:, Dr. Öğretim Üyesi Roya CHOUPANI 

Ocak 2022, 68 sayfa 

 

Yapay zekâ, son birkaç on yılda hayatımızda çok farklı yönleriyle yer bulmaya 

başladı. Bazı özelliklerinde yapay zekanın yer almadığı yeni bir ürün, günümüz 

dünyasında pek yer edinemez durumdadır. Bu, makine öğrenmesi algoritmalarında 

derin öğrenme tekniklerinin kullanılması ile mümkün olmuştur. Geleneksel makine 

öğrenmesi, ham veriyi algoritmalarda kullanılabilecek özelliklere çevirebilmek için 

insan akılının yer aldığı tasarım ve kodlamalara ihtiyaç duymaktadır. Fakat derin 

öğrenme ile doğrudan ham veriyi kullanarak özellikleri öğrenmek mümkündür. Bu da 

makine öğrenmesi sırasında alan uzmanı ihtiyacını oldukça azaltmaktadır. GANlar 

derin öğrenme alanında oldukça yeni bir ilerleme alanıdır. GANlar 2014’ten önce 

yoklardı. Onların makine üretmesi alanındaki kapasiteleri ve üretimdeki kaliteleri 

diğer üretici makine öğrenmesi tekniklerinden çok daha iyi durumdadır. Felsefeleri, 

verideki özellikleri tanımlamayı otomatik olarak öğrenen ve kendi kendini eleştirerek 

bunu yapan bir mantığa dayanmaktadır. GANlar, fotoğraf kalitesinde resimler 

üretmek, siyah-beyaz resimleri renklendirmek, basit bir çizimi gerçekçi bir resime 

dönüştürmek, resimlerin çözünürlüğünü artırmak, resimlerdeki hatalı-eksik yerleri 

onarmak, videolarda sonraki kareyi tahmin etmek, makine öğrenmesinde kullanmak 

üzere veri üretmek, geçekçi yazılar üretmek, gerçekçi müzik ve sesler üretmek için 

kullanılabilmektedir. GANların mimarisi derin öğrenme teknikleri arasında oldukça 
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orijinaldir. Temel olarak birbiriyle yarışan iki sinir ağından oluşmaktadır. Yapıları 

oldukça zeki tasarlanmış ve oldukça ilginçtir. Fakat bu durum makine öğrenmesini 

oldukça zorlu ve kırılgan yapmaktadır. GANlar oldukça zor öğretilen, hataya açık ve 

optimizasyonu oldukça zor olarak tanınmaktadır. 

Bu tezde GANların optimizasyonuna odaklandık. GANların felsefeleri 

zorluklarda anahtar konumdadır. Bu sebeple öncelikle GANların eğitimindeki 

potansiyel zorlukları açıkladık. Daha sonra iyi olarak bilinen bazı GAN mimarilerini, 

bazı veri setleri ile eğitim sonuçlarını karşılaştırdık. Son olarak bazı temel yapısal 

öneriler ve optimizasyon parametreleri önerdik. 

 

Anahtar Kelimeler: Çekişmeli Üretici Ağlar, GANların Optimizasyonu, Üretici 

Modelle, Makine Öğrenmesi, Yapay Sinir Ağları, Derin Öğrenme 
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1 CHAPTER I 

 

INTRODUCTION 

 

Algorithms for machine learning are very good at classification and regression 

type of problems. Because they are designed to recognize patterns in existing data. But 

if the problem comes to generating new data the whole picture is changed. There are 

numerous techniques in machine learning to generate data, but they are very limited 

in creativity.  This is where the GANs come to the scene.   

GANs are a type of generative training architecture in deep learning. Ian 

Goodfellow et al. proposed GANs in a study published in 2014 [1]. Since then, they 

got very important attention within the field of AI, and their realistic generative 

capacity made them a far most interesting research area.   

Generative Adversarial Networks (GANs) are a type of generative machine 

learning model. GANs are capable of both precise reproduction and approximate 

prediction. They can implicitly learn high-dimensional distributions of any data 

especially image and audio data which are difficult to model. At the start of the GANs’ 

training a very basic latent distribution is given, but at the end of the training this turns 

to a very complicated and plausible data outputs like realistic images. They use two 

competing neural networks to find the real distribution of the data. The generator is 

used to generate fabricated data. On the other hand, the discriminator is used to 

distinguish generated data from actual samples. 

Training GANs is known as very difficult process, because the generator and 

the discriminator interact each other and very sensible to the other’s dynamics. The 

discriminator and the generator in a GAN architecture constantly try to outwit one 

other. This competition based on a zero-sum game. As training advances, the game 

may end up in a state that game theorists call a Nash equilibrium, named after the 

mathematician John Nash: this is when no player would be better off changing their 
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own strategy, assuming the other players do not change theirs. They have many issues 

to think about and decide to achieve a good result in generation paradigm. To generate 

more plausible instances its discriminator must also be as good as its generator. GANs 

have a very simple theoretical philosophy. But finding a balanced training strategy for 

the both neural networks is very difficult. In order to train both the generator and the 

discriminator at the same time, there must be healthy rivalry between them. 

There are many issues to think about and decide to achieve a good result in 

generation paradigm. To generate more plausible instances GAN’s discriminator must 

also be as good as its generator. 

The biggest difficulty in GANs is mode collapse situation. According to Chen, 

H. [2], mode collapse is one of the primary causes of GAN training instability. Mode 

refers to an output distribution. When this happened, the generator starts to produce 

very similar outputs. This type of situation is not a good practice because lack of 

diversity is a barrier in front of advancement. Lack of advancement is a barrier in front 

of good quality outputs. 

Another common failure in GAN training is non-convergence. In a normal 

neural network convergence failing means that the model loss doesn’t go to a lower 

state. But in GANs’ trainings it means very different. We have to find a balance 

between the discriminator and the generator. When this situation happens in the 

training, it may appear to be fine at first, but later begin oscillating or diverging (non-

convergence) [2], and even worst the reason may not be obvious. 

GANs are also very sensitive to the hyper-parameters. The discriminator and 

the generator have to learn at similar pace. If one of them learns more quicker than the 

other, this part of the GAN start to learn nothing. This is called diminished gradient.  

There have been implemented many techniques to improve the quality and 

effectiveness of the GANs. Each of them focused some part of the problem, and none 

of them have achieved the ultimate success. This challenge of getting better results for 

GANs seems to remain quite a while. 

 

1.1 SCOPE OF THE THESIS 

After the introduction of original GAN in 2014, it has got a good attention and 

have proven that they are useful generative models. Since then, many research papers 
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proposed alternative GAN models to address the difficulties and limitations of the 

original GAN. Bhatnagar, S. et. al. in their paper [3] show the progress in GANs in 

human face generation. The results are very impressive. The quality has improved. But 

this is only limited the small images.    

In just three years, advances in GANs made possible to produce high quality 

portrait photographs. But there are far more advances to be made to get adequate 

generative products. In this thesis we aimed to improve some GANs architectures with 

the optimization of training algorithms to get better results. 

We used some types of GANs in this thesis as a base of GANs structures for 

optimization and comparison. One of them is DCGAN [4]. Wasserstein GAN 

(WGAN) [5] which proposes to use a different loss function like Least Squares GAN 

(LSGAN) [6] are two other GAN structures we tried as bases in our experiments.  

One of the early successful implementations of GANs is DCGAN [4] which 

uses ConvNets (CNN) in its implementation.  This approach then has become the de 

facto standard in GANs algorithms. Without the need to modify the underlying GAN 

architecture they use CNN to scale up to the full GAN framework. 

As we said numerous times, GANs are known as very difficult in model 

training. Mode collapse is very common defect in their structures if they are not built 

wisely. When this happens, similar instances are produced by the generator and, it’s 

wrongly assumed that the loss function is optimized. Substituting the GAN loss 

function with the Wasserstein GAN (WGAN)’s proposed loss function [5] is to 

address this problem. But another problem is the quality of the generated images. With 

the Least Squares GAN (LSGAN) [6], not only the mode collapse problem solved but 

also the perceptive quality is also improved. 

This study proposes some optimization to DCGAN, WSGAN and LSGAN 

architectures. Hyperparameters which are subject to be changed are discussed and 

some advises are given for constructing the generator's and discriminator's network 

structures. 

 

1.2 THESIS ORGANIZATION 

Chapter 2 contains fundamental information about GANs to make clear the 

root causes of the potential problems. It also includes other background information 
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about optimization of GANs and a literature review. The structures of examined GANs 

are explained in this chapter. 

In Chapter 3, we propose some optimization architectures and regularization 

tunings for DCGAN, WSGAN and LSGAN architectures.  

In Chapter 4 we explain experiments and discuss the results of the proposed 

GANs’ architectures. To try the architectures, we also introduce data sets used in the 

experiments. All information about experiments’ environment, and experiments’ 

structures are given. Comparison with original architectures and effects of 

optimizations are also explained. 

Conclusions and future studies can be found in Chapter 5. Finally, all 

experiments which are conducted during this thesis are summarized with their GAN 

structures, example outputs during training sessions and loss function’s plots can be 

found in appendices section. 

 



 

 5 

2 CHAPTER II 

 

BACKGROUND 

 

2.1 INTRODUCTION 

GANs are a clever way of training a generative model, instead of using 

unsupervised techniques like other generative models, they both use supervised and 

unsupervised techniques together. In their structures, there are two sub models namely 

the generator and the discriminator. These sub models are seemed to some kind of 

ordinary neural networks. But their objectives conflict with each other. The 

discriminator is a classifier neural network which aims to distinguish the generated 

samples from real (from training sets) samples. On the other hand, the generator aims 

to produce convincing samples from starting a really nonsense noise vector. Training 

sessions are held together until the discriminator is not sure about the classification 

results.  

GANs have many practical application areas like: 

• Generating artificial human face images 

• Generating a cartoon character 

• Image to image translation 

• Human pose estimation 

• Generating 3D objects from 2D images 

• Photograph inpainting 

• Photograph editing 

• Text to image translation 

Before we go into detail, we make some explanation to make GANs definition 

more understandable. What is generative modeling, what we mean by zero-sum game 

and how predictive and descriptive machine learning techniques are related in the 

GANs architecture. 
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2.2 GENERATIVE MODELS 

A generative model is a machine learning model capable of generating random 

instances using a training set. The output is typically similar to it. Generative 

modelling involves automatically discovering and learning patterns in the input set 

using unsupervised techniques. After learning phase, the generative model can 

produce new plausible instances. GANs are models within the deep generative models 

which are aimed to describe the problem area with probability and statistics.  

Naive Bayes, which is more commonly employed as a discriminative model, 

is an example of a generative model. To make a prediction, input and output data are 

generalized with the probability distribution. This classification can be reversed to 

generate independent features which means it is a generative function [7]. 

There are other examples of generative modelling like Latent Dirichlet 

Allocation (LDA), and The Restricted Boltzmann Machine (RBM). It is not in this 

thesis context that we only mention their names. 

Generative modelling can be categorized in various way, but we decided that 

it can be as Variational Autoencoder (VAE) [8], Autoregressive Networks [9], and 

Generative Adversarial Networks (GANs). 

The VAE is a good generative model, but generated samples are very 

dependent of the input samples and novelty is very limited. As Wolternik, J.M. et.al. 

stated their 2019 paper [10], generated samples of VAE are more blurred compared to 

GANs’ outputs.    

There are some autoregressive networks, for example Pixel RNN [11]. In this 

suggested architecture, pixel prediction is made. The generation is satisfactory but the 

prediction period is very long and comparing with the GAN models they are very low 

which means for high resolution problem it is nearly impossible to get good results.  

The main objective of these paper is GANs and its optimization. So, the other 

generative models are only mentioned briefly and we study in detailed on GANs 

architecture. 

 

2.3 PREDICTIVE vs. DESCRIPTIVE  

There is a very common classification for machine learning types as predictive, 

descriptive and reinforcement learning. We are interested in first two types in the 
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concept of GANs.  So, reinforcement learning is out of our scope at the moment. The 

predictive type of learning known as supervised learning which tries to learn from 

given labelled input and output pairs [12]. While the other type of learning which is 

descriptive, can be also called unsupervised learning. This type of learning aims to 

discovery the knowledge with the examination of the patterns in the input data [12].   

The main difference between these two machine learning types is whether there 

are labels in the training data or not. A depict can be seen in Figure 2.1. 

According to Kotsiantis [13], dataset used in a machine learning algorithm can 

have known labels or not, accordingly this algorithm is called supervised or not. 

The predictive machine learning type can classify the given inputs or make 

regression type of predictions. On the other hand, the descriptive type learning learns 

from patterns in the input samples. GANS can be classified as the descriptive type of 

learning but using labelled data in the middle of the training sessions. According to 

Hofmann [14], descriptive type of ML can help to create labels before using in a 

supervised learning task. 

 

                  
Figure 2.1: Unsupervised vs. supervised learning 
 

Generative models are an unsupervised problem which involves the 

summarization of the distribution of input variables. On the other hand, predictive 

modelling is to predict classes with the training of labelled sample set. As it is 
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illustrated in Figure 2.2, differences between discriminative and generative modelling 

can be seen. 

 

                                          
Figure 2.2: Discriminative and generative modeling  

 

As in his book Bishop, C. M. [15] stated that, generative models are approaches 

that explicitly or implicitly represent the distribution of inputs and outputs, allowing 

synthetic data points to be generated in the input space by sampling from them. 

It is not to be surprise that generative model should produce new instances 

which is indistinguishable from problem domain. GANs is a good model approach to 

achieve this goal. 

In GAN algorithms supervised and unsupervised learning paradigm are used 

totally different. The discriminator is trained with fully supervised techniques with 

labeled data in the training set. The generator models are originally unsupervised 

learning models, but supervised techniques are also used in the GAN architecture. It 

can be thought as a decoder in an autoencoder, but is training approach is very 

different. 

Briefly, the generator receives a random noise vector and produce a fake image. 

The discriminator model is fed with generated images in addition to training set. And 

this samples are labelled as fake or real to be trained using supervised learning to 

successfully discriminate fakes from reals. As a subsequent process, the generator 

learns how to convince the discriminator by minimizing its cost. During this process 

the discriminator’s parameters are frozen and the back propagation tunes only the 

generator’s parameter. 
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2.4 ZERO-SUM GAME 

According to merriam-webster dictionary [16] zero-sum game is, in a situation 

only one side can win while at the same time the other side loses. Zero sum game is 

named after the game theory. If one person wins and the other person loses the total 

net gain is zero. In the GANs structures, it can be thought as when the generator 

generates very good samples which cannot be discriminated from real samples then its 

model parameters cannot be changed at all but the discriminator’s model is penalized 

very hugely. In the same philosophy, if the discriminator successfully differentiates 

genuine samples from fakes, then it is rewarded, means that no model parameter 

changes are needed whereas the generator’s model parameters will be penalized 

hugely. This zero-sum game penalization will eventually (and hopefully) reach to a 

point that generated samples by the generator network cannot be differentiated from 

real samples by the discriminator network. 

  

2.5 GAN MODEL ARCHITECTURE 

In this section, we are going to give more detailed information about GANs’ 

structures. GANSs are composed of two trained models that uses a competitive 

dynamic between them. These models are actually neural networks having opposite 

objectives. The generator network aims to generate authentic samples with a given 

domain as training set, but not use these training samples directly. The discriminator 

aims to distinguish the generated samples and training samples from each other as a 

classic classification mission. 

The generated data (instances) will vary depending on the choice of training 

set. For example, if we want to produce new human faces than we train the GAN with 

the samples of real human faces. 

While the generator tries to generate authentic instances, the discriminator tries 

to classify them as real or not. They are trained one-by-one; not at the same time. The 

generator’s input to the neural network is a random noise, On the other hand the 

discriminator’s input to its neural network is samples half from training set half from 

previously generated samples. This process is not a one-time process. The two 
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networks try to outsmart each other until they excel in their jobs. The Generator learns 

through the feedback it receives from the Discriminator’s classifications.  

There are many varieties of GANs.  Depending on the complexity of the 

domain or design of the GAN implementation, two neural networks can be as simple 

as densely connected networks, or they can be complex neural network which are used 

to solve other complex machine learning problems. As Saxena, D. et. al. explained in 

their paper [17] a sample GAN structure can be seen in Figure 2.3. 

 

 
Figure 2.3: Basic GANs Architecture  

 

The generator receives a random noise vector (typically a 2D Gaussian) as an 

input and produces a fake image as an output. During the training the generator is 

never fed with real samples. It receives these random noises as the latent space of the 

desired output domain. The latent space is the characteristics of the desired output 

domain. But it cannot be observed or discovered directly. It is supposed to be get with 

the help of deep learning techniques. At the beginning of the training iterations, 

generated images seem very far from the desired images, but it will gradually learn to 

produce more realistic images. Similarly, the discriminator has no trouble at learning 

to classify real ones from fake ones as the generated samples are far from to be so 

called real. 

The discriminator and the generator are trained in turn. First the discriminator 

is trained. In this phase only its parameters are updated. The classification is ranged 
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between 0.0 to 1.0 in confidence. After this training session, now, it is the generator’s 

turn to be trained. Actually, the generator is not trained alone, but the help of the 

discriminator. The produced images are fed into the discriminator as if they were real. 

At this stage the real samples are not included to the training. And the discriminator’s 

parameters are not changed in this stage, that are frozen.  The generated imaged in this 

stage are fakes but we want the discriminator believe that they are real. The 

backpropagation is applied to the generator only. 

The generator never actually fed with any real images, but it can produce 

convincing images by only getting the gradients from the discriminator during the 

second phase of the GAN training. So, the better discriminator means that the better 

generator. 

The basic algorithm for a GAN as follows: 

Training of the discriminator 

{Generate images with random noise vector as the latent space 

Train the discriminator with real and generated images with equal number 

Classify these images with the range of 0.0 – 1.0 

Compute the classification errors 

(With the aim of minimizing classification error) 

Backpropagate it to only the discriminator} 

Training of the generator 

{Generate images with random noise vector as the latent space 

Label all of them as real (to fool the discriminator) 

Classify them with the help of the discriminator 

Compute the classification errors 

(With the aim of maximizing the discriminator’s errors) 

Backpropagate it to only the generator} 

These two steps are repeatedly continued until the equilibrium is believed to be 

reached. 
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2.6 DIFFICULTIES OF GANs  

As the last sentenced from the previous paragraph is stated, training will 

continue until the belief of the reach of the equilibrium. So, when the training should 

be stopped is a difficult question. The GANs’ philosophy is like in the game theory as 

zero-sum game. If none of the sub networks are getting better by changing their 

situation then the equilibrium is reached. In a GAN, if produced samples and real 

samples have equal probability of (50%) realness, then the training reached its goal.  

This is theoretical situation. In real life the GANs are not perfect enough to reach to 

this state. And the GANs’ difficulties start here.  

One of the biggest difficulties is mode collapse. This is a situation when the 

trainings are continued, the generated samples are started to be similar even with the 

different latent spaces. This can be partial collapse and it can be recovered or totally 

collapsed. The easiest way to understand a mode collapse is to examine the generated 

samples during the training iterations. It can also be discovered by examining the 

model loss graphic. While discriminator’s loss converges, the generator’s is 

oscillating. When this happens, the produced samples are really garbage and the 

discriminator is very good at the classification, its loss value goes to zero. Because it 

is very easy to classify the realness. The experiment number 2 of our experiments 

resulted in such a situation. The results can be seen in Figure 2.4. 
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Losses over epochs (above) and generated images (below) 

 

   

   
Figure 2.4: Suffering from mode collapse. Images are from experiment number 2 

 

The underlying concept of GANs is straightforward. But achieving a stable 

training is very difficult for a GAN. For a normal neural network model loss settles 

down during the training. On the other hand, in a GAN we have not got an explicit 

loss function for the generator and convergence of the discriminator’s loss is not a 

good thing without the loss of generator gets the same achievement. The generator and 

the discriminator should learn at the same pace. If the discriminator learns faster than 

the generator then the generator stars to learn nothing, means failing in the 

convergence. This situation is called non-convergence.  In Figure 2.5 a typical 

convergence failure can be seen. Over the first iterations the loss of the discriminator 

drops significantly. In this stage, the generator is not good enough to generate, and we 
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do not want the discriminator classify them as fake so easily.  These images are from 

experiment 12, and the generated images also can be seen.  

 
Losses over epochs (above) and generated images (below) 

 

  
 

  
 

Figure 2.5: Suffering from non-convergence. Images are from experiment number 12  

 

GANs are also very sensitive to the hyper-parameters. Both the discriminator 

and the generator have to be in a harmony. One of the others parameters can affect the 

others. And for each network each parameter has to be chosen very carefully. 

Sometimes finding the correct parameter is a try and evaluate process. 

Generator can generate a wide range of data. Generating space is so huge that 

starting point of the generation becomes very important in the sense of elimination of 

unrelated distributions. In the real life, meaningful things like an image data, has 

related attributes in it. We fed the generator with a random noise vector as a 
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representation of latent space. So, this noise vector should have a specific distribution. 

We can think of the random numbers as the latent representation of the desired 

generated data. The multivariate normal distribution can be used for a set of 

approximately correlated random values that concentrate around a mean value. 

 

2.7 LITERATURE REVIEW  

Since the introduction of Generative Adversarial Networks in 2014 [1], their 

popularity has rapidly increased. GANs have seen as a very good generative model 

which can produce plausible new data. But their difficulties in training let many 

researchers propose alternative optimization to address the difficulties and limitations 

of the original GAN. They concentrated their studies around changing architecture of 

the GANs’ network structures, finding a new loss function and change it and 

optimizing hyper-parameters of the GANs. 

 

2.7.1 Deep Convolutional Generative Adversarial Networks 

DCGAN [4] was one of the first successful implementations among proposed 

GANs for a better performant implementation. It is based on the original GAN 

architecture. The main difference is using convolutional neural networks in the hidden 

layers of the both generator and the discriminator’s network. The basic idea is to learn 

from high dimensional space for image or image like data can only be achieved using 

convolutional layers in its structure. The common structure of the proposed GAN can 

be seen in Figure 2.6. It gets so high attention that, most of the other GANs are 

constructed on this proposal.   

 

 
Figure 2.6: The proposed model architecture of DCGAN 

 



 

 16 

The convolutional layers are a bit different from the used in a classical 

convolutional layered neural network. Upsample layers are used to double the 

dimensions when generating operation in the generator’s structure. As the same 

manner, when using in the discriminator’s network the reverse paradigm should be 

used which means using transpose convolutional layers. There are some other 

suggestions other than using convolutional layers. These are: 

• Do not use pooling layers instead use strided convolutions 

• Batch normalization should be used 

• In generator use ReLU for the activation layer 

• In discriminator use LeakyReLU 

• Use Tanh for the last activation layer of the generator 

 

2.7.2 The Wasserstein GAN (WGAN) 

The mode collapse situation which is explained in the previous sections, is a one 

of the major difficulties in front of the training of the GANs. Researchers and 

implementors propose many solutions to address this issue in their studies. One of 

them is Wasserstein GAN (WGAN) [5].  Arjovsky, M. et.al. propose a new loss 

function to solve this problem. The main objective with their proposal is improvement 

in the stability on the training process. They also aim to judge the generated samples 

with their quality also. WGAN has a dense mathematical thinking. But with only a few 

minor modifications to the DCGAN architecture is adequate to implement in practice. 

WGAN is a GAN variant that uses a different technique to train the generator 

model. Rather than using a discriminator, it introduces a critic model. This model 

scores the realness of the generated images. This critic model is based on a 

mathematical model that tries to minimize the distance of the distributions of the image 

sets: generated images and images in the training set.  

WGAN implementation is based on the DCGAN, and main differences are 

replacement of the loss function with the Wasserstein loss function and replacing the 

discriminator with a more frequently updated version of critic model.    

There are some differences in the WGAN algorithm. These are: 

• Do not use sigmoid function in the output layer of the critic, use simple linear 

activation 
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• For the critic and the generator models use Wasserstein loss function  

• Use RMSProp gradient descent with very small rates and with no momentum 

• The critic model is updated more often 

• Change the labels of fake and real images with 1 and -1 

 

2.7.3 The Least Squares Generative Adversarial Network  

LSGAN is proposed by Mao, X. et.al. in a 2017 paper [6]. The main motivation 

behind LSGANs is to solve the vanishing gradients problem.  This problem occurs 

when the discriminator learns faster than the generator. To realize about bad samples 

which are produced by the generator, it tries to find unrelated samples by manipulating 

the weights according to the distance from the decision boundary of the discriminator. 

This is very important especially in the beginning of the training iterations. This is a 

kind of regularization. For more distances from decision boundary causes larger 

penalty for the generator.  Least squares loss function is implemented to the output 

layer of the discriminator.   

With these regularizations, LSGAN also leads to a more stable training which 

is very important in GANs’ trainings. There are some differences in the LSGNA 

algorithm. These are: 

• Change the labels of fake and real images with 0.0 and 1.0 

• Apply mean squared error (L2 loss) 

• The output layer of the discriminator should be linear 

The model structure is shown in Figure 2.7. 
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Figure 2.7: The model architectures of a typical LSGAN 

 

2.7.4 Progressive Growing GANs 

An important technique was proposed in a 2018 paper [19] by Nvidia researchers 

Tero Karras et al. The model proposes to start from small images when generating 

samples. For later iteration more convolutional layers are added to generate larger 

images. So that learning gradually can be achieved to get convincing results. They also 

propose a new technique to variate the generated images to avoid mode collapse. The 

generator and the discriminator are trained with a 4x4 pixels. For later iterations 

gradually adding convolutional layers make the training images up to 1024x1024 

resolution. This technique makes the training time less than usual. Because training 

iterations are done mostly with low resolution images. So, the time required for entire 

training is significantly reduced.  

 

2.7.5 Evolutionary GANs 

For a consistent training and more convincing outputs, Wang et al. [20] suggested 

a novel GAN architecture. They called this GAN as Evolutionary GAN (E-GAN). The 

main difference from other GANs is the objective function of the adversarial. The 

others use a non-changing one, during the training. But They use an alternating and 

evolving one.  In their techniques they use different metrics to optimize the objective 
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function. The worst performing generator based on a score is removed and the rest are 

carried forward to the next iteration. They preserve the best generator at every 

iteration.  The various generators are analyzed and selected for optimal generation.
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3 CHAPTER III 

 

OPTIMIZATION OF GANS 

 

3.1 INTRODUCTION 

Since its introduction, many GAN structures have been proposed by many 

researchers and implementors.  In Figure 3.1, a narrow road map can be seen. It is not 

limited to this; there are many numbers of GANs. A main reason for so many different 

GANs is its difficulty to train.  Some of them are focused to the mode collapse 

problem, the others to the speed of the training or quality the output result.  

 

 
Figure 3.1: A road map of GANs. 

 

There is not an agreement on the one “perfect” GAN structure. We also not 

introduced the “perfect” one. We show our experiments on the some known GANs 

and also optimize those algorithms with our hyper-parameters and some structural 

changes.  

As Salimans et al. pointed out in their paper [22], finding an equilibrium is very 

difficult process, because the cost function of the GANs is non-convex and parameters 

are very large. 

 

3.2 SOME OPTIMIZATION BASELINES 

Before proceeding to the optimizations, we introduce some concepts and 

common approaches with related to GANs optimizations.
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3.2.1 Downsampling using strided convolutions 

In a classical deep convolutional network, the pooling layers are used to 

downsample the images. It seems to be natural to use the pooling layers in the 

discriminator part, but instead using strided convolutions are suggested. 

 

3.2.2 Upsampling using strided convolutions 

The generator model should be in a harmony with the discriminator part. So, 

when we use downsampling using strided convolutions, it is not a surprise to use 

opposite in the generator part as upsampling using strided convolutions.  So, the 

generator model can scale a given input to the required output dimensions. 

 

3.2.3 Using Batch Normalization 

It is recommended to use batch normalization [23] after the activation layers of 

the discriminator and the generator models So that stabilization of the training process 

can be achieved. The activations have a zero-mean variance after batch normalization. 

 

3.2.4 Using LeakyReLU  

The rectified linear (ReLU) activation unit is a straightforward calculation that 

returns the input value directly if it is positive, and returns 0 otherwise. In “leaky” 

version of this activation function allows some negative values effect in a small 

negative percentage which makes the network layers much more optimized. For deep 

convolutional neural networks, using ReLU has become a standard protocol. In a 

GAN, instead of ReLU, usage of LeakyReLU makes some negative values take effect. 

Initially, ReLU was suggested for the generator model, while LeakyReLU was 

suggested for the discriminator model. But in our experiments, we also use 

LeakyReLU in both networks. 

 

3.2.5 Using Adam Stochastic Gradient Decent 

Stochastic gradient descent (SGD), takes one data point at random from the entire 

data set at each iteration to drastically simplify computations. Adam is a variant of 

SGD. It can be successfully used in DCGAN training, but with the value of 0.0002 for 

learning rate and 0.5 for the beta1 momentum value. This is recommended for both 
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the discriminator and the generator networks. In our experiments we change the 

parameters to see the results. 

 

3.2.6 Using a Gaussian Latent Space 

The DCGAN suggests to sample using a uniform distribution. But a standard 

Gaussian distribution is suggested to get better results. 

 

3.2.7 Separating Batches of Fake and Real Images 

The original GAN architecture combines fake and real images in the training 

sessions. But separating fake and real images and training them one after another, 

however, appears to be the ideal method. 

 

3.2.8 Using Label Smoothing 

The class label for images in the training set is 1 and for the generated images 

this value is 0. To get a regularization effect on training we can smooth these values 

slightly higher or lower (randomly) values. These are called soft labeling. 

 

3.3 USING DIFFERENT LOSS FUNCTIONS 

Like any other deep learning neural network, the discriminator model is updated. 

But when it comes to the generator it has no loss function explicitly. Its loss function 

comes from the discriminator indirectly. Minimax loss is the original GAN loss 

function. During the advancement of GANs two more loss functions are introduced 

and implemented successfully. These are Wasserstein and least squares loss functions. 

 

3.3.1 Minimax GAN Loss 

The discriminator and the generator models are optimized simultaneously 

according to the minimax loss optimization. In two sided games, minimax loss means 

minimizing the loss for one side while maximizing the others. In our scenario, the 

generator and discriminator are the two sides which take their turns to update their 

model weights. The minimax strategy in the GAN seeks to minimize the generator loss 

while increasing the discriminator loss. As stated in 
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min max (D, G)                                                                                                       (3.1) 

discriminator’s loss: maxlog D(x)+log(1 − D(G(z)))                                             (3.2) 

 

3.3.2 Least Squares GAN Loss 

It is proposed by Xudong Mao, et al. [6]. They experimented that using binary 

cross entropy loss has some limitations. Gradients have gone to disappearing with this 

loss function when created images are considerably different from genuine ones.  To 

correct this problem, they proposed increasing the penalty for larger errors, resulting 

in a significant model correction. 

Their methods indicate that for generated and real photos, the class labels of 0 

and 1 should be kept, and the least squares should be minimized, means L2 loss. 

 

discriminator: min(D(x)−1)
2 

+(D(G(z)))
2 

                                                             (3.3) 

generator: min(D(G(z)) − 1)
2
                                                                                 (3.4) 

L2 loss =Sum(Ypredicted − Ytrue)
2
                                                                      (3.5) 

 

3.3.3 Wasserstein GAN Loss 

It is proposed by Martin Arjovsky, et al. [5]. They observed that in the traditional 

GAN architecture, the Kullback-Leibler divergence, or the difference between the 

actual and projected probability distributions, is not good enough. They proposed to 

change the philosophy to the Earth-Mover’s distance (Wasserstein distance).  Using 

this loss function also changed the role of the discriminator. Now it is updated five 

times more than the original one, and so its name is changed to “critic”. The critic 

model does not use prediction probability, instead give scores to the images. The 

model weights are kept small (hypercube of [-0.01, 0.01]). The Wasserstein loss 

function allows a continuous training of the models. So, it can generate better quality 

images. 
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4 CHAPTER IV 

 

OPTIMIZATION TRIALS 

 

4.1 DATA SET USED 

There are two datasets which are used in our experiments. These are MNIST 

dataset and CELABA dataset.  

The MNIST database is the acronym of Modified National Institute of 

Standards and Technology database. It has a vast library of handwritten digits that is 

frequently used to train image processing systems. In the field of machine learning, 

the database is also commonly utilized for training and testing of training algorithms. 

The dataset contains 70,000 28x28 pixel grayscale images of handwritten digits. The 

mnist.load dataset() function in Keras gives access to the MNIST dataset.  We used 

only 60,000 training set in our experiments. Figure 4.1 shows an example of data. 

 

 

Figure 4.1: 25 sample digits from MNIST data 

 

The CelebFaces Attributes Dataset (CelebA) is a large-scale face dataset with 

over 200K celebrity photos and 40 attribute annotations for each image. It can be 

downloaded from Kaggle webpage [24]. This dataset is very big. Because of the 
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limitations of the computer power, we prepared another version of this dataset using a 

predefined machine learning model which makes face detection [25]. After all we used 

50,000 40x40 pixel colored face images in our experiments. Figure 4.2 shows an 

example of random data. And after face detection, Figure 4.3 shows the prepared data 

sample. 

 

 

Figure 4.2: A sample from CELEBA data  

 

 

 
Figure 4.3: A sample from resampled and face detected CELEBA data 
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4.2 COMPUTING ENVIRONMENT 

During experiments this computing environment is used: 

• MacBook Pro 

• System Memory: 16.00 GB 

• System CPU: 8 Core 

• System GPU: 8 GPU 

• Chip Architecture: M1 

• maxCacheSize: 5.33 GB 

 

4.3 EXPERIMENT ENVIRONMENT  

More than 30 experiments are conducted, but only 20 of them are included in this 

report. Because the rest was not controlled, so they are excluded from evaluations. To 

make experiments comparable, similar code structures are used for all experiments. At 

the same time only maximum 2 of them are run simultaneously. For some of the GANs 

same structure are used with both MNIST and CELEBA datasets. For each experiment 

these files are generated: 

1. Model summary of the discriminator (Example: 

master_gan_mnist_v1_discriminator_modelsummary.txt see Figure 4.4) 

2. Model summary of the generator (Example: 

master_gan_mnist_v1_generator_modelsummary.txt see Figure 4.5) 

3. Model summary of GAN (Example: master_gan_mnist_v1_modelsummary.txt 

see Figure 4.6) 

4. Graphical representation of the whole GAN structure with all layers, connection 

between them and input output layers. (Example: 

master_gan_mnist_v1_model_plot.png see Figure 4.7) 

5. Plot diagram of the discriminator and the generator loss over iterations 

(Example: master_gan_mnist_v1_plot_loss.png see Figure 4.8) 

6. Model parameters and structures are saved every 500 iterations for original 

GAN and LSGAN based models and, every 200 iterations for DCGAN and 

WGAN based models. (Example: 

master_gan_mnist_v1_generator_model_30000.h5) 
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7. Sample images generated with the current generator in training process are 

saved every 500 iterations for original GAN and LSGAN based models and, 

every 200 iterations for DCGAN and WGAN based models. (Example: 

master_gan_mnist_v1_30000.png see Figure 4.9 and 

master_lsgan_celeba_v3_30000.png see Figure 4.10)   

 

 
Figure 4.4: Example of model summary of the discriminator in the experiments 

 

 
Figure 4.5: Example of model summary of the generator in the experiments 
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Figure 4.6: Example of model summary of the GAN in the experiments 
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Figure 4.7: Example of model structure figure of the whole GAN in the experiments 
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Figure 4.8: Example of plot diagram for the discriminator (blue plot) and for the generator 

(orange plot) losses, in a typical training session  

 

 
Figure 4.9: Example of generated images with the generator during experiments 
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Figure 4.10: Another example of generated images with the generator during experiments 

 

 

4.4 EXPERIMENT PARAMETERS 

We used 4 models for the basis of our experiments. With those structures we 

changed some of the parameters and in some experiments, we changed the structure 

of the GANs. The parameters for the experiments are: 

 

1. The GAN’s Overall Parameters 

a. Experiment Number 

b. Derived From (inspiration of the GAN structure) 

c. Dataset Used 

d. Number of Epochs 

e. Dimension of Latent Space 

f. Bach Size 

g. Loss Function of the GAN 

h. Optimizer Name 

i. Optimizer Learning Rate 

j. Optimizer Beta1 Parameter (for Adam optimizer) 

2. The Discriminator’s Parameters 

a. Loss Function of the Discriminator 
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b. Optimizer Name 

c. Optimizer Learning Rate 

d. Optimizer Beta1 Parameter (for Adam optimizer) 

3. The Generator’s Structure Parameters 

a. Activation Functions of Layers 

b. Alpha Value (for leakyReLU) 

c. Whether Batch Normalization is used or not 

d. Momentum Value (for Batch Normalization) 

e. Whether UpSampling2d is used or not 

f. Whether Conv2D is used or not 

g. Kernel Size (for Conv2D) 

h. Last Layer Activation Function 

4. The Discriminator’s Structure Parameters 

a. Activation Functions of Layers 

b. Alpha Value (for leakyReLU) 

c. Whether Batch Normalization is used or not 

d. Momentum Value (for Batch Normalization) 

e. Whether Conv2D is used or not 

f. Number of Strides (for Conv2D) 

g. Kernel Size (for Conv2D) 

h. Name of the Regularization if it is used 

i. Value of the Regularization if it is used 

j. Last Layer Activation Function if it is used 

 

4.5 EVALUATION  

A loss function is used to train deep learning neural networks until they 

approach convergence. On the other hand, in a GAN model the generator learns from 

the discriminator. For the generator, there is no explicit loss function [22]. To achieve 

equilibrium, both the generator and the discriminator are trained together. The 

generated images are used to evaluate a GAN's performance. Manual evaluation of 

generated images is the first step in the evaluation. But there are some other 

quantitative measurements to support the visual inspections. In fact, there is no 



 

 33 

universally accepted method for evaluating a GAN's generator model. This problem is 

still an open research area as Borji, A. [26] stated at his paper. 

When GAN training is in progress, we have to find a way to stop the training 

process. While evaluation of the model is a visual inspection, we should save the 

models in an interval. Actually, we saved the generator models in some steps. These 

saved models can be used when the visual inspection is done, and correspondent saved 

model can be used for the image producing. But it be kept in mind that, this is a 

subjective evaluation and includes biases of the reviewers.  

There are numerous quantitative evaluation metrics which can be used.  As of 

today, there is no agreed technique about GAN’s inspections. But some researchers 

suggest Frechet Inspection Distance (FID) score seems more plausible [26]. In our 

experiments we use FID score as the comparison unit. 

 

4.5.1 Frechet Inception Distance (FID) 

Martin Heusel and his colleagues proposed and applied the FID score technique 

[27].  The distance between feature vectors calculated for real and generated images is 

calculated using the FID. So, the similarity of the generated samples to the training set 

can be determined. Lower scores indicate a closer relationship between the two groups. 

To find the FID score, it is needed computing power. If the number of the samples in 

the compared sets are high in number than the generated score is more reliable, but it 

needs more computing power. In our experiments 5,000 samples from the generated 

images and 5,000 samples from training set are randomly chosen, then their FID scores 

are calculated. For the CelebA image set the FID scores are calculated in low values, 

but for MNIST data set the FID scores may seems to a bit higher. But we only concern 

with the comparison between different models, these scores are acceptable in our 

situation. The score reflects the similarity of the two groups of images calculated with 

the inception v3 image classification model. 

 

4.6 EXPERIMENTS 

Experiments are started by implementing advised algorithms of the GAN [1], 

DCGAN [4], LSGAN [6] and WGAN [5]. While proceeding, we took the visual 

inspection of the generated images in certain intervals. The generator and the 
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discriminator’s losses are kept in a memory object and at the end of the iterations it is 

plotted in a file. After each interval period the generator produced sample images, and 

these images are kept in separate files to inspect. For the same interval the current 

model structure with its weights is kept in separate h5 files. Any time after the 

execution we can regenerate images with those h5 files. All important hyper-

parameters which is subject to change in our experiments are noted in a file. The GANs 

architectures are kept in 4 separate files. One for the discriminator, one for the 

generator and one for overall GAN structure. The fourth structure file is the detailed 

version of overall GAN structure with all layers and activations and interactions 

between layers. The sample files are given in the previous chapter. (From Figure 4.4 

to Figure4.10).  

There are conducted 20 experiments. We used MNIST dataset in 10, and 

CELEBA dataset in the other 10 of the experiments. After implementing and running 

original GANs algorithms, FID scores are calculated and noted. After that the 

structures and hyper-parameters of these GANs are changed and the procedures are 

started from the beginning.  

The complete list of experiments is in Table 4.1. 

 
Table 4.1: Experiments 

Exp. Derived 

From 

Dataset Epochs Latent 

Dimension 

Batch 

Size 

1 GAN MNIST 30000 100 32 

2 DCGAN MNIST 4000 100 32 

3 LSGAN MNIST 30000 100 32 

4 WGAN MNIST 4000 100 32 

5 DCGAN MNIST 4000 100 32 

6 DCGAN MNIST 4000 100 32 

7 LSGAN MNIST 30000 200 32 

8 LSGAN MNIST 30000 200 128 

9 LSGAN MNIST 30000 200 128 

10 WGAN MNIST 5000 100 64 

11 GAN CELEBA 30000 100 32 

12 DCGAN CELEBA 4000 100 32 

13 LSGAN CELEBA 30000 100 32 
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Table 4.1 (continued) 

14 WGAN CELEBA 4000 100 32 

15 DCGAN CELEBA 4000 100 32 

16 DCGAN CELEBA 4000 100 32 

17 DCGAN CELEBA 4000 100 32 

18 DCGAN CELEBA 4000 100 128 

19 LSGAN CELEBA 30000 100 64 

20 LSGAN CELEBA 30000 200 128 

 

As it can be seen from Table 4.1, original GAN is used only two times: one for MNIST 

data set and the other for CELEBA dataset. These can be used as a starting point for 

the rest of the experiments. Latent dimensions are used mostly as 100 dimensions and 

the batch sizes are mostly 32. Number of epochs are 30000 for GAN and LSGAN 

derived algorithms and 4000 and 5000 for DCGAN and WGAN derived algorithms. 

But these parameter changes are not the main differences (versions) of the 

experiments. All structural differences and hyper-parameters of the generators and the 

discriminators are given at Table 4.2, Table 4.3, Table 4.4, and Table 4.5. 

 

Table 4.2: Hyper-parameters of the GANs 

Exp. Loss Function Optimizer 

 
Name Learning 

Rate 

Beta1 

1 binary_crossentropy Adam 0.0002 0.5 

2 binary_crossentropy Adam 0.0002 0.5 

3 Mse Adam 0.0002 0.5 

4 wasserstein_loss RMSprop 0.00005 - 

5 binary_crossentropy Adam 0.0002 0.5 

6 binary_crossentropy Adam 0.0002 0.5 

7 Mse Adam 0.0002 0.5 

8 Mse Adam 0.0002 0.5 

9 Mse Adam 0.0002 0.5 

10 wasserstein_loss RMSprop 0.00005 - 

11 binary_crossentropy Adam 0.0002 0.5 

12 binary_crossentropy Adam 0.0002 0.5 
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Table 4.2 (continued) 

13 Mse Adam 0.0002 0.5 

14 wasserstein_loss RMSprop 0.00005 - 

15 binary_crossentropy Adam 0.0002 0.5 

16 binary_crossentropy Adam 0.0002 0.5 

17 binary_crossentropy Adam 0.0002 0.5 

18 binary_crossentropy Adam 0.0002 0.5 

19 Mse Adam 0.0002 0.5 

20 Mse Adam 0.0002 0.5 

 

Table 4.3: Hyper-parameters of the discriminators 

Discriminator 

Exp. Loss Function Optimizer 
 

Name Learning 

Rate 

Beta1 

1 binary_crossentropy Adam 0.0002 0.5 

2 binary_crossentropy Adam 0.0002 0.5 

3 Mse Adam 0.0002 0.5 

4 wasserstein_loss RMSprop 0.00005 - 

5 binary_crossentropy Adam 0.0002 0.5 

6 binary_crossentropy Adam 0.0002 0.5 

7 Mse Adam 0.0002 0.5 

8 Mse Adam 0.0002 0.5 

9 Mse Adam 0.0002 0.5 

10 wasserstein_loss RMSprop 0.00005 - 

11 binary_crossentropy Adam 0.0002 0.5 

12 binary_crossentropy Adam 0.0002 0.5 

13 Mse Adam 0.0002 0.5 

14 wasserstein_loss RMSprop 0.00005 - 

15 binary_crossentropy Adam 0.0002 0.5 

16 binary_crossentropy Adam 0.0002 0.5 

17 binary_crossentropy Adam 0.0002 0.5 

18 binary_crossentropy Adam 0.0002 0.5 

19 Mse Adam 0.0002 0.5 



 

 37 

 
Table 4.3 (continued) 

20 Mse Adam 0.0002 0.5 

 

 
Table 4.4: Layer structures of the generators and their hyper-parameters 

Generator 

Exp. Layers Activation 

Function 

Batch 

Normalization 

Up 

Sampling 

2D 

Conv 2D Last Layer 

Activation 

Function 

Name Alpha 
 

Momentum 
  

Kernel 

Size 

Name 

1 leakyReLU 0.2 + 0.8 - - - Tanh 

2 Relu - + 0.8 + + 3 Tanh 

3 leakyReLU 0.2 + 0.8 - - - Tanh 

4 Relu - + 0.8 + + 4 Tanh 

5 Relu - + 0.8 + + 3 Tanh 

6 leakyReLU 0.2 + 0.8 + + 3 Tanh 

7 leakyReLU 0.2 + 0.8 - - - Tanh 

8 leakyReLU 0.2 + 0.8 - - - Tanh 

9 leakyReLU 0.2 + 0.8 - - - Tanh 

10 Relu - + 0.8 + + 4 Tanh 

11 leakyReLU 0.2 + 0.8 - - - Tanh 

12 Relu - + 0.8 + + 3 Tanh 

13 leakyReLU 0.2 + 0.8 - - - Tanh 

14 Relu - + 0.8 + + 4 Tanh 

15 Relu - + 0.8 + + 3 Tanh 

16 leakyReLU 0.2 + 0.8 + + 3 Tanh 

17 leakyReLU 0.2 - - + + 4 Tanh 

18 leakyReLU 0.2 - - + + 4 Tanh 

19 leakyReLU 0.2 + 0.8 - - - Tanh 

20 leakyReLU 0.2 + 0.8 - - - Tanh 
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Table 4.5: Layer structures of the discriminators and their hyper-parameters 

Discriminator 

Exp. Layers Activation 

Function 

Batch 

Normaliza

tion 

Conv2D Regularization Last 

Layer 

Act. 

Function 

Name Alpha 
 

Mome

ntum 

 
Strides Kernel 

Size 

Name Value Name 

1 leakyReLU 0.2 - - - - - - - Sigmoid 

2 leakyReLU 0.2 + 0.8 + 2 3 Dropout 0.25 Sigmoid 

3 leakyReLU 0.2 - - - - - - - - 

4 leakyReLU 0.2 + 0.8 + 2 3 Dropout 0.25 - 

5 leakyReLU 0.2 - - + 2 3 Dropout 0.4 Sigmoid 

6 leakyReLU 0.2 - - + 2 3 Dropout 0.4 Sigmoid 

7 leakyReLU 0.2 - - - - - - - - 

8 leakyReLU 0.2 - - - - - - - - 

9 leakyReLU 0.2 - - + 2 3 Dropout 0.4 Sigmoid 

10 leakyReLU 0.2 + 0.8 + 2 3 Dropout 0.25 - 

11 leakyReLU 0.2 - - - - - - - Sigmoid 

12 leakyReLU 0.2 + 0.8 + 2 3 Dropout 0.25 Sigmoid 

13 leakyReLU 0.2 - - - - - - - - 

14 leakyReLU 0.2 + 0.8 + 2 3 Dropout 0.25 - 

15 leakyReLU 0.2 - - + 2 3 Dropout 0.4 Sigmoid 

16 leakyReLU 0.2 - - + 2 3 Dropout 0.4 Sigmoid 

17 leakyReLU 0.2 - - + 2 5 Dropout 0.4 Sigmoid 

18 leakyReLU 0.2 - - + 2 5 Dropout 0.4 Sigmoid 

19 leakyReLU 0.2 - - - - - - - - 

20 leakyReLU 0.2 - - - - - - - - 

 

4.7 RESULTS AND DISCUSSION OF THE EXPERIMENT  

Table 4.6 and Table 4.7 show the FID scores of the all experiments. The scores 

for MNIST data set are higher than CELEBA data set experiments. One reason for it 

is the computational limitations.  It is taken only 5,000 samples to compare. But it is 

not important, since the reference point of FID is also computed with the same 
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parameters, and we concern with the comparisons. So, it can be examined MNIST data 

set experiments and CELEBA data set experiments separately.  

According to FID scores the winner configuration for MNIST data set 

experiments is experiment number 3 with an FID score of 52.4530, while the original 

implementation of GAN’s FID score is 53.7039. Experiment number 8 has the closest 

FID score with 52.5877. A visual inspection can be done for experiment 3 in Figure 

4.11. 

According to FID scores the winner configuration for CELEBA data set 

experiments is experiment number 18 with an FID score of 0.0681, while the original 

implementation of GAN’s FID score is 0.4570. Experiment number 15 has the closest 

FID score with 0.0793. A visual inspection can be done for experiment 18 in Figure 

4.12. 

 

Table 4.6: FID Scores of MNIST data set experiments  

Experiment 

Number 

Data Set FID 

Score 

1 MNIST 53.7039 

2 MNIST 62.0163 

3 MNIST 52.4530 

4 MNIST 55.5659 

5 MNIST 53.3753 

6 MNIST 53.1102 

7 MNIST 53.8863 

8 MNIST 52.5877 

9 MNIST 56.3247 

10 MNIST 55.4045 

 

Table 4.7: FID Scores of CELEBA data set experiments  

Experiment 

Number 

Data Set FID 

Score 

11 CELEBA 0.4570 

12 CELEBA 18.5712 

13 CELEBA 0.5618 

14 CELEBA 0.1605 
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Table 4.7 (continued) 

15 CELEBA 0.0793 

16 CELEBA 0.1015 

17 CELEBA 0.0844 

18 CELEBA 0.0681 

19 CELEBA 0.2844 

20 CELEBA 0.2584 

 

Epoch 1 Epoch 500 Epoch 5000 Epoch 15000 

    
Epoch 20000 Epoch 25000 Epoch 28000 Epoch 30000 

    
Figure 4.11: Visual inspection of experiment 3 

 

 
Epoch 1 Epoch 100 Epoch 500 Epoch 1500 

    
Epoch 2000 Epoch 3000 Epoch 3800 Epoch 4000 

    
Figure 4.12: Visual inspection of experiment 18 

 

According to these results latent dimension of 100 or 200 and the number of 

epochs is seen as not very important for the results.  Bach size of 32, 64 or 128 are not 

made any significant changes in the results.  
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We can see that loss function mse is over binary cross-entropy for MNIST data 

set. But for CELEBA data set the winner optimizer is binary cross-entropy. The Adam 

optimizer is significantly dominant, with a learning rate of 0.0002 and a Beta1 value 

of 0.5 in the performant experiments. The results of leakyReLU with an Alpha of 0.2 

and batch normalization with a momentum of 0.8 are excellent at the structures of the 

discriminator and the generators’ network layer designs. Upsampling and 

downsampling are very important for DCGAN and WGAN derived configurations, 

but for LSGAN it is better not to use convolutional layers. 

With the sigmoid function, the activation function for the discriminators' last 

layer is excellent.  For the generator site, Tanh activation function seems to be a must. 

Another important issue is seen from the results that, the discriminator’s 

network structure should be in a harmony with the structure of the generator’s network. 

For example, if convolutional layers are used in one network, it must be used in the 

other network too.   
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5 CHAPTER V 

 

CONCLUSIONS 

 

GANs are fascinating. Interest to this neural network is growing rapidly. Their 

ability of generating realistic examples makes them very important actor in the 

generative machine learning filed. As Goodfellow, I. et.al. indicated in their recent 

paper [28], it is indeed very hard to train them at this time. To make GANs a more 

credible technology, it will be necessary to provide models, costs, or training 

algorithms that can consistently and quickly locate good Nash equilibria. To achieve 

a successful result, its structure has to be built very carefully. The main conclusion of 

this thesis is, when building a GAN network its generator and discriminator has to be 

in a harmony in their structures. Similar structures have to be configured and 

connected. Learning process must be in the same pace. If one of the networks are 

learning faster than the other than this GAN network is bound to fail. The 

generalization is very important for the generative tasks. Because of that when building 

the generator network, for example when synthesize an image, to capture the main 

features, the network has to handle the problem of generalization as the nature of the 

problem field, i.e., in this example using convolutions is highly recommended. But for 

another field, the generalization may be changed. All structures, the discriminator and 

the generator’s losses and sample generated images can be seen at appendices. So that 

all architectural differences and their effects on visual inspection can easily be 

discovered. According to the results we concluded that hyper-parameters are very 

sensitive. Even if the most performant model’s a few parameters are changed the 

results affected very badly. It means hyper-parameters should not be tuned randomly. 

Tuning suggestions are in the section 4.7.  

In this thesis we focused on mainly DCGAN, LSGAN and WGAN derived 

GAN structures. Although these GANs are very important pillars in the GANs’ 

evolutions, there are some promising approaches like evolutionary GANs (E-GAN) 

[20] and progressive growing GANs [19]. Because of GANs' popularity many new 

GANs are introduced continuously. This study can be extended with newly introduced 
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GANs.  But more importantly when evaluating a new GAN, it would be very good if 

we had an evaluation framework and a fair metric.  
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Appendix A - Experiment 1 
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Appendix B - Experiment 2 
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Appendix C - Experiment 3 
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Appendix D - Experiment 4 
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Appendix E - Experiment 5 
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Appendix F - Experiment 6 
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Appendix G - Experiment 7 
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Appendix H - Experiment 8 
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Appendix I - Experiment 9 

 

 

 

 

 

 

 



 

 

54 

Appendix J - Experiment 10 
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Appendix K - Experiment 11 
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Appendix L - Experiment 12 
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Appendix M - Experiment 13 
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Appendix N - Experiment 14 
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Appendix O - Experiment 15 
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Appendix P - Experiment 16 
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Appendix Q - Experiment 17 
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Appendix R - Experiment 18 
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Appendix S - Experiment 19 

 

 

 

 

 

 

 



 

 

64 

Appendix T - Experiment 20 
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