OPTIMIZATION THE TRAINING ALGORITHMS OF MACHINE
LEARNING USING GAN NETWORKS

SEDAT AKEL

JANUARY 2022

CANKAYA UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF COMPUTER ENGINEERING

MASTER’S THESIS IN
COMPUTER ENGINEERING

OPTIMIZATION THE TRAINING ALGORITHMS OF MACHINE
LEARNING USING GAN NETWORKS

SEDAT AKEL

JANUARY 2022

ABSTRACT

OPTIMIZING THE TRAINING ALGORITHMS OF MACHINE LEARNING
USING GENERATIVE ADVERSARIAL NETWORKS

AKEL, Sedat
Computer Engineering Master
Supervisor: Assist. Prof. Dr. Roya CHOUPANI
January 2022, 68 pages

Artificial intelligence has started to be a part of our lives in many aspects over
the past few decades. Developing new products without features using artificial
intelligence is not reasonable in the contemporary world. It would not be possible if
we were not using the deep learning techniques in machine learning algorithms.
Traditional machine learning needs clever human design code that transforms raw data
into input features for machine learning algorithms. But with deep learning, learning
features from raw data directly are possible and this eases the requirement for subject-
matter expertise. GANSs are very recent advancement in the field of deep learning.
They were not presented before 2014. Their capacity and quality of generating are far
better than the other generative techniques in machine learning. Their philosophy is
based on self-criticizing techniques for automatically learning representation of
features. GANs can be used for generating photorealistic images, colorization, turning
a simple sketch into a photorealistic image, increasing the resolution of an image,
replacing photo defects with realistic patterns, predicting the next frames in a video,
data augmentation, generating text, audio etc. data and more. GANs’ architecture is
very original in deep learning. They are made up of two neural networks that compete
during training. Their structures are very clever and interesting but that leads us to
very difficult training sessions. GANs are known as difficult to train, prone to failure

and very difficult to hyper-tune.

In this thesis we focused on the optimization of some of the GANs. Their
philosophies are the key reason to difficulties. For this we first explain the potential
difficulties of GANSs’ trainings. After we retrain some known GANs and compare the
results. We propose some structural designs and some optimization parameters to

achieve better performant GANS.

Keywords: Generative Adversarial Networks (GANs), GANs’ Optimization,

Generative Models, Machine Learning, Neural Networks, Deep Learning

oz

CEKIiSMELI URETICi AGLAR iCiN MAKINE OGRENMESI EGIiTiM
ALGORITMALARINDA OPTIMIiZASYON

AKEL, Sedat
Bilgisayar Miihendisligi Yiksek Lisans
Danigman:, Dr. Ogretim Uyesi Roya CHOUPANI
Ocak 2022, 68 sayfa

Yapay zeka, son birkag on yilda hayatimizda ¢ok farkli yonleriyle yer bulmaya
basladi. Baz1 6zelliklerinde yapay zekanin yer almadigi yeni bir iirlin, glinlimiiz
diinyasinda pek yer edinemez durumdadir. Bu, makine 6grenmesi algoritmalarinda
derin 6grenme tekniklerinin kullanilmasi ile miimkiin olmustur. Geleneksel makine
O0grenmesi, ham veriyi algoritmalarda kullanilabilecek 6zelliklere ¢evirebilmek igin
insan akilinin yer aldigi tasarim ve kodlamalara ihtiyag duymaktadir. Fakat derin
ogrenme ile dogrudan ham veriyi kullanarak 6zellikleri 6grenmek miimkiindiir. Bu da
makine 6grenmesi sirasinda alan uzmani ihtiyacini olduk¢a azaltmaktadir. GANlar
derin 6grenme alaninda oldukga yeni bir ilerleme alanidir. GANlar 2014’ten 6nce
yoklardi. Onlarin makine iiretmesi alanindaki kapasiteleri ve Uretimdeki kaliteleri
diger iiretici makine d6grenmesi tekniklerinden ¢ok daha iyi durumdadir. Felsefeleri,
verideki 6zellikleri tanimlamay1 otomatik olarak 6grenen ve kendi kendini elestirerek
bunu yapan bir mantiga dayanmaktadir. GANlar, fotograf kalitesinde resimler
uretmek, siyah-beyaz resimleri renklendirmek, basit bir ¢izimi gercekgi bir resime
doniistiirmek, resimlerin ¢ozinirliigiini artirmak, resimlerdeki hatali-eksik yerleri
onarmak, videolarda sonraki kareyi tahmin etmek, makine 6grenmesinde kullanmak
tizere veri liretmek, gecekei yazilar liretmek, gergekei miizik ve sesler iiretmek icin

kullanilabilmektedir. GANIlarin mimarisi derin 6grenme teknikleri arasinda oldukca

Vi

orijinaldir. Temel olarak birbiriyle yarigan iki sinir agindan olusmaktadir. Yapilar
oldukcga zeki tasarlanmis ve oldukga ilgingtir. Fakat bu durum makine 6grenmesini
oldukca zorlu ve kirillgan yapmaktadir. GANlar olduk¢a zor 6gretilen, hataya acik ve
optimizasyonu olduke¢a zor olarak taninmaktadir.

Bu tezde GANIlarin optimizasyonuna odaklandik. GANlarin felsefeleri
zorluklarda anahtar konumdadir. Bu sebeple oncelikle GANlarin egitimindeki
potansiyel zorluklar1 agikladik. Daha sonra iyi olarak bilinen bazi GAN mimarilerini,
baz1 veri setleri ile egitim sonuglarini karsilastirdik. Son olarak bazi temel yapisal

Oneriler ve optimizasyon parametreleri 6nerdik.

Anahtar Kelimeler: Cekismeli Uretici Aglar, GANlarin Optimizasyonu, Uretici
Modelle, Makine Ogrenmesi, Yapay Sinir Aglar1, Derin Ogrenme

Vii

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisor Assist. Prof. Dr.
Roya Choupani who always guided me with her knowledge and experience and gave
me lots of advice. This thesis would not be possible without her criticism,
encouragement, and insight throughout the research. My special gratitude also goes to
the rest of the thesis committee for the encouragement and insightful comments.

| also would also like to express my special thanks to my wife for her support,

and motivation.

viii

TABLE OF CONTENTS

STATEMENT OF NONPLAGIARISM ...t ii
ABSTRACT .ottt e bttt sttt renre s iv
O Z ettt vi
ACKNOWLEDGEMENTooii et viii
TABLE OF CONTENTS. .. .ot IX
LIST OF TABLES ...ttt Xii
LIST OF FIGURESoctiiiict ettt Xiii
LIST OF ABBREVIATIONS ...ttt Xiv
CHAPTER | INTRODUCTION. ...ttt see e e snae e nnne e 1
1.1 SCOPE OF THE THESIS ...ttt 2
1.2 THESIS ORGANIZATIONooiiiiiiciieieiesesee e 3
CHAPTER Il BACKGROUND........cciitiiiiiiieiee et 5
2.1 INTRODUCTIONoiitii ettt e e e e e nee e 5
2.2 GENERATIVE MODELS ...t 6
2.3 PREDICTIVE VS. DESCRIPTIVE.......ccocoiiiitiirieice e 6
2.4 ZERO-SUM GAMEcot ittt 9
2.5 GAN MODEL ARCHITECTURE.......ooi it 9
2.6 DIFFICULTIES OF GANS ...ccttieecie ettt et nnee e 12
2.7 LITERATURE REVIEW.......ooiiiiiet st 15
2.7.1 Deep Convolutional Generative Adversarial Networkscc.ccoe.... 15

2.7.2 The Wasserstein GAN (WGAN) ..ot 16

2.7.3 The Least Squares Generative Adversarial Network............cccceevvrennenee. 17

2.7.4 Progressive Growing GANSoiiiiiiiiiie e 18

2.7.5 EVOIULIONAIY GANS ..ottt 18
CHAPTER Il OPTIMIZATION OF GANS......ocoieee e 20
S.LINTRODUCTIONottt ettt a e enae e neas 20
3.2 SOME OPTIMIZATION BASELINES..........coooitiiieieeceee s 20

3.2.1 Downsampling using strided convolutions............c.ccoovieneniiiin e, 21

3.2.2 Upsampling using strided CONVOIULIONSccoveiieiiniiiniiisieeee 21

3.2.3 Using Batch NOrmalizationcccccevviieiicie i 21

3.2.4 UsiNg LEAKYRELUc.ccviiiieice e 21

3.2.5 Using Adam Stochastic Gradient Decentccccevvveviieviecieccie e, 21

3.2.6 Using a Gaussian Latent SPaCe...........covriririeierieiesc s 22

3.2.7 Separating Batches of Fake and Real Images..........cccccovevvevvcceiveinene, 22

3.2.8 Using Label SMOOthiNgcccveviiiiiiee e 22

3.3 USING DIFFERENT LOSS FUNCTIONSooiiiieiee e 22
3.3.1 MINIMAX GAN LOSSvveueeiiiiiieieeiie ettt sre e enes 22

3.3.2 Least SQUAreS GAN LOSS.....cccuiiiiiiiiiiieiiie s siee e e sninessinee s 23

3.3.3 WaSSErSteiN GAN LOSS......ccviiriiiiiieiiesiisiisieeeeee et 23
CHAPTER IV OPTIMIZATION TRIALS ... 24
AL DATA SET USED ..ottt 24
4.2 COMPUTING ENVIRONMENTciiiiiiiiieitse e 26
4.3 EXPERIMENT ENVIRONMENTcoiiiiiiiieiiise e 26
4.4 EXPERIMENT PARAMETERSoooiiii e 31
A5 EVALUATION ...ttt e e e e nna e e nnaeanneas 32
4.5.1 Frechet Inception Distance (FID)ccccovveiiveieiiieii e 33

4.6 EXPERIMENTS ..ottt 33
4.7 RESULTS AND DISCUSSION OF THE EXPERIMENTccccovvveiiieee. 38
CHAPTER V CONCLUSIONS ...t 42
APPENDICIES.......c oottt ettt 44
AppendiX A - EXPEFIMENT L......coiiiiieiieie ettt 45
ApPendiX B - EXPEIIMENT 2cvveiiceeceecie et 46
ApPPendix C - EXPEIIMENT 3 ... 47
ApPPendix D - EXPEIIMENT 4ooiiiieiiiieeeee e 48
AppendiX E - EXPEIIMENTSoiviiiceceee et 49
ApPPENdiX F - EXPEIMENT B....ccuveiiiiiiiiciiie sttt sae e 50
APPENdiX G - EXPEIIMENT 7 ... 51
Appendix H - EXPEIIMENT 8ooviiiiiiiiisiieee e 52
AppendiX | - EXPErIMENT O....coiiiiiii e 53

AppendixX J - EXPEriMENt 10coiiiiiieiiie et e 54

Appendix K - EXPEriMENt 11ooiiiiiiiiiiieiee e 55
AppendiX L - EXPEIIMENT 12cooiiieiiee ettt 56
AppendiX M - EXPEriMENT 13coiiiiieece et 57
Appendix N - EXPErIMENt 14ooviiiiiiiiiiieeee e 58
Appendix O - EXPErIMENt 15c..oiiiiiiiiiiieee e 59
AppendiX P - EXPEriMENt L16........cccociueiieieeie et 60
AppendiX Q - EXPErIMENT 17ccoiiiiiieie et 61
Appendix R - EXPErimeNt 18ccoiiiiiiiiiieiee e 62
Appendix S - EXPErMENt 19......ccoiiiiiiiiiieeee e 63
AppendiX T - EXPEriMENt 20coviiiiieiicie et 64
REFERENGCES.co ittt sttt sttt e s 65
CIRRICULUM VITAE .cotiuiiiiiiiiiiiiniiiiiiiiiniiiiitetesesesesesssssssssasasasasases 68

Xi

Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 4.6:
Table 4.7:

LIST OF TABLES

EXPEIIMENTS ..ot sae e nrees 34
Hyper-parameters 0f the GANScccoiviieiiccceese e 35
Hyper-parameters of the diSCrimIinators............ccoceveveieninininieeeee, 36
Layer structures of the generators and their hyper-parameters................ 37
Layer structures of the discriminators and their hyper-parameters.......... 38
FID Scores of MNIST data set eXperiments.........ccccocevvveveeiieiieiesinennin, 39
FID Scores of CELEBA data Set eXperiments..........ccccocevvrereneneeeennn, 39

xii

LIST OF FIGURES

Figure 2.1: Unsupervised vs. supervised [€arningccccccevvveveiieivenesieseese e 7
Figure 2.2: Discriminative and generative modeling.........c.ccccoevvveviviviiccniccecen, 8
Figure 2.3: Basic GANS AIChItECIUIEccviieiieiice e e 10

Figure 2.4: Suffering from mode collapse. Images are from experiment number 2.13

Figure 2.5: Suffering from non-convergence. Images are from experiment number

SRS TS PSPPSR 14
Figure 2.6: The proposed model architecture of DCGAN........ccocoiiriiininiiicee, 15
Figure 2.7: The model architectures of a typical LSGAN.ccccocviiininiiniinen, 18
Figure 3.1: A road map 0f GANS.cciiieiiie e 20
Figure 4.1: 25 sample digits from MNIST data...........cccceceviveevrereiieieece e 24
Figure 4.2: A sample from CELEBA data...........ccoooviiiiiiieieeiec e 25
Figure 4.3: A sample from resampled and face detected CELEBA data.................. 25
Figure 4.4: Example of model summary of the discriminator in the experiments.... 27
Figure 4.5: Example of model summary of the generator in the experiments.......... 27
Figure 4.6: Example of model summary of the GAN in the experiments................. 28

Figure 4.7: Example of model structure figure of the whole GAN in the experiments

Figure 4.8: Example of plot diagram for the discriminator (blue plot) and for the
generator (orange plot) losses, in a typical training SESSIoNccccevverivieereerennen. 30
Figure 4.9: Example of generated images with the generator during experiments... 30

Figure 4.10: Another example of generated images with the generator during

EXPEIIMIENTS ...ttt e et e st e e e st e e steese e s beebeeaeesbeeteensessaenbeennenreas 31
Figure 4.11: Visual inspection of eXperiment 3.........ccccovvvrieieieniieneseeeeeeeees 40
Figure 4.12: Visual inspection of experiment 18..........cccccovviiiineni s 40

xiii

LIST OF ABBREVIATIONS

GAN Generative Adversarial Network
ML Machine Learning
Al Artificial Intelligence

DCGAN Deep Convolutional GAN

RNN Recurrent Neural Network
CNN Convolutional Neural Network
WGAN Wasserstein GAN

LSGAN Least Square GAN

VAE Variational Autoencoder

FID Frechet Inception Distance
ReLU Rectified Liner Activation Unit

LeakyRelLLU Leaky Version of Rectified Liner Activation Unit
Adam Adaptive Moment Estimation

SGD Stochastic Gradient Descent

Xiv

CHAPTERII

INTRODUCTION

Algorithms for machine learning are very good at classification and regression
type of problems. Because they are designed to recognize patterns in existing data. But
if the problem comes to generating new data the whole picture is changed. There are
numerous techniques in machine learning to generate data, but they are very limited
in creativity. This is where the GANs come to the scene.

GANSs are a type of generative training architecture in deep learning. lan
Goodfellow et al. proposed GANSs in a study published in 2014 [1]. Since then, they
got very important attention within the field of Al, and their realistic generative
capacity made them a far most interesting research area.

Generative Adversarial Networks (GANSs) are a type of generative machine
learning model. GANs are capable of both precise reproduction and approximate
prediction. They can implicitly learn high-dimensional distributions of any data
especially image and audio data which are difficult to model. At the start of the GANs’
training a very basic latent distribution is given, but at the end of the training this turns
to a very complicated and plausible data outputs like realistic images. They use two
competing neural networks to find the real distribution of the data. The generator is
used to generate fabricated data. On the other hand, the discriminator is used to
distinguish generated data from actual samples.

Training GANs is known as very difficult process, because the generator and
the discriminator interact each other and very sensible to the other’s dynamics. The
discriminator and the generator in a GAN architecture constantly try to outwit one
other. This competition based on a zero-sum game. As training advances, the game
may end up in a state that game theorists call a Nash equilibrium, named after the

mathematician John Nash: this is when no player would be better off changing their

own strategy, assuming the other players do not change theirs. They have many issues
to think about and decide to achieve a good result in generation paradigm. To generate
more plausible instances its discriminator must also be as good as its generator. GANs
have a very simple theoretical philosophy. But finding a balanced training strategy for
the both neural networks is very difficult. In order to train both the generator and the
discriminator at the same time, there must be healthy rivalry between them.

There are many issues to think about and decide to achieve a good result in
generation paradigm. To generate more plausible instances GAN’s discriminator must
also be as good as its generator.

The biggest difficulty in GANs is mode collapse situation. According to Chen,
H. [2], mode collapse is one of the primary causes of GAN training instability. Mode
refers to an output distribution. When this happened, the generator starts to produce
very similar outputs. This type of situation is not a good practice because lack of
diversity is a barrier in front of advancement. Lack of advancement is a barrier in front
of good quality outputs.

Another common failure in GAN training is non-convergence. In a normal
neural network convergence failing means that the model loss doesn’t go to a lower
state. But in GANs’ trainings it means very different. We have to find a balance
between the discriminator and the generator. When this situation happens in the
training, it may appear to be fine at first, but later begin oscillating or diverging (non-
convergence) [2], and even worst the reason may not be obvious.

GAN:Ss are also very sensitive to the hyper-parameters. The discriminator and
the generator have to learn at similar pace. If one of them learns more quicker than the
other, this part of the GAN start to learn nothing. This is called diminished gradient.

There have been implemented many techniques to improve the quality and
effectiveness of the GANSs. Each of them focused some part of the problem, and none
of them have achieved the ultimate success. This challenge of getting better results for

GANSs seems to remain quite a while.

1.1 SCOPE OF THE THESIS
After the introduction of original GAN in 2014, it has got a good attention and

have proven that they are useful generative models. Since then, many research papers

2

proposed alternative GAN models to address the difficulties and limitations of the
original GAN. Bhatnagar, S. et. al. in their paper [3] show the progress in GANS in
human face generation. The results are very impressive. The quality has improved. But
this is only limited the small images.

In just three years, advances in GANs made possible to produce high quality
portrait photographs. But there are far more advances to be made to get adequate
generative products. In this thesis we aimed to improve some GANSs architectures with
the optimization of training algorithms to get better results.

We used some types of GANS in this thesis as a base of GANs structures for
optimization and comparison. One of them is DCGAN [4]. Wasserstein GAN
(WGAN) [5] which proposes to use a different loss function like Least Squares GAN
(LSGAN) [6] are two other GAN structures we tried as bases in our experiments.

One of the early successful implementations of GANs is DCGAN [4] which
uses ConvNets (CNN) in its implementation. This approach then has become the de
facto standard in GANs algorithms. Without the need to modify the underlying GAN
architecture they use CNN to scale up to the full GAN framework.

As we said numerous times, GANs are known as very difficult in model
training. Mode collapse is very common defect in their structures if they are not built
wisely. When this happens, similar instances are produced by the generator and, it’s
wrongly assumed that the loss function is optimized. Substituting the GAN loss
function with the Wasserstein GAN (WGAN)’s proposed loss function [5] is to
address this problem. But another problem is the quality of the generated images. With
the Least Squares GAN (LSGAN) [6], not only the mode collapse problem solved but
also the perceptive quality is also improved.

This study proposes some optimization to DCGAN, WSGAN and LSGAN
architectures. Hyperparameters which are subject to be changed are discussed and
some advises are given for constructing the generator's and discriminator's network

structures.

1.2 THESIS ORGANIZATION
Chapter 2 contains fundamental information about GANs to make clear the

root causes of the potential problems. It also includes other background information

3

about optimization of GANs and a literature review. The structures of examined GANSs
are explained in this chapter.

In Chapter 3, we propose some optimization architectures and regularization
tunings for DCGAN, WSGAN and LSGAN architectures.

In Chapter 4 we explain experiments and discuss the results of the proposed
GANSs’ architectures. To try the architectures, we also introduce data sets used in the
experiments. All information about experiments’ environment, and experiments’
structures are given. Comparison with original architectures and effects of
optimizations are also explained.

Conclusions and future studies can be found in Chapter 5. Finally, all
experiments which are conducted during this thesis are summarized with their GAN
structures, example outputs during training sessions and loss function’s plots can be

found in appendices section.

CHAPTER I

BACKGROUND

2.1 INTRODUCTION
GANs are a clever way of training a generative model, instead of using

unsupervised techniques like other generative models, they both use supervised and
unsupervised techniques together. In their structures, there are two sub models namely
the generator and the discriminator. These sub models are seemed to some kind of
ordinary neural networks. But their objectives conflict with each other. The
discriminator is a classifier neural network which aims to distinguish the generated
samples from real (from training sets) samples. On the other hand, the generator aims
to produce convincing samples from starting a really nonsense noise vector. Training
sessions are held together until the discriminator is not sure about the classification
results.
GANSs have many practical application areas like:
» Generating artificial human face images
» Generating a cartoon character
» Image to image translation
* Human pose estimation
* Generating 3D objects from 2D images
* Photograph inpainting
» Photograph editing
» Text to image translation

Before we go into detail, we make some explanation to make GANs definition
more understandable. What is generative modeling, what we mean by zero-sum game
and how predictive and descriptive machine learning techniques are related in the
GAN:S architecture.

2.2 GENERATIVE MODELS

A generative model is a machine learning model capable of generating random
instances using a training set. The output is typically similar to it. Generative
modelling involves automatically discovering and learning patterns in the input set
using unsupervised techniques. After learning phase, the generative model can
produce new plausible instances. GANs are models within the deep generative models
which are aimed to describe the problem area with probability and statistics.

Naive Bayes, which is more commonly employed as a discriminative model,
is an example of a generative model. To make a prediction, input and output data are
generalized with the probability distribution. This classification can be reversed to
generate independent features which means it is a generative function [7].

There are other examples of generative modelling like Latent Dirichlet
Allocation (LDA), and The Restricted Boltzmann Machine (RBM). It is not in this
thesis context that we only mention their names.

Generative modelling can be categorized in various way, but we decided that
it can be as Variational Autoencoder (VAE) [8], Autoregressive Networks [9], and
Generative Adversarial Networks (GANS).

The VAE is a good generative model, but generated samples are very
dependent of the input samples and novelty is very limited. As Wolternik, J.M. et.al.
stated their 2019 paper [10], generated samples of VAE are more blurred compared to
GANSs’ outputs.

There are some autoregressive networks, for example Pixel RNN [11]. In this
suggested architecture, pixel prediction is made. The generation is satisfactory but the
prediction period is very long and comparing with the GAN models they are very low
which means for high resolution problem it is nearly impossible to get good results.

The main objective of these paper is GANs and its optimization. So, the other
generative models are only mentioned briefly and we study in detailed on GANs

architecture.

2.3 PREDICTIVE vs. DESCRIPTIVE
There is a very common classification for machine learning types as predictive,

descriptive and reinforcement learning. We are interested in first two types in the

6

concept of GANs. So, reinforcement learning is out of our scope at the moment. The
predictive type of learning known as supervised learning which tries to learn from
given labelled input and output pairs [12]. While the other type of learning which is
descriptive, can be also called unsupervised learning. This type of learning aims to
discovery the knowledge with the examination of the patterns in the input data [12].

The main difference between these two machine learning types is whether there
are labels in the training data or not. A depict can be seen in Figure 2.1.

According to Kotsiantis [13], dataset used in a machine learning algorithm can
have known labels or not, accordingly this algorithm is called supervised or not.

The predictive machine learning type can classify the given inputs or make
regression type of predictions. On the other hand, the descriptive type learning learns
from patterns in the input samples. GANS can be classified as the descriptive type of
learning but using labelled data in the middle of the training sessions. According to
Hofmann [14], descriptive type of ML can help to create labels before using in a

supervised learning task.

Unsupervised Input Data (X) Model
Learning
Update Model
Prediction (yhat
Supervised Input Data Model (vhat) = Error
Learning
Output Data (v)

Figure 2.1: Unsupervised vs. supervised learning

Generative models are an unsupervised problem which involves the
summarization of the distribution of input variables. On the other hand, predictive

modelling is to predict classes with the training of labelled sample set. As it is

illustrated in Figure 2.2, differences between discriminative and generative modelling

can be seen.

Input Data

Model

Model

Genereted

Predicted Example

Classification

Figure 2.2: Discriminative and generative modeling

As in his book Bishop, C. M. [15] stated that, generative models are approaches
that explicitly or implicitly represent the distribution of inputs and outputs, allowing
synthetic data points to be generated in the input space by sampling from them.

It is not to be surprise that generative model should produce new instances
which is indistinguishable from problem domain. GANs is a good model approach to
achieve this goal.

In GAN algorithms supervised and unsupervised learning paradigm are used
totally different. The discriminator is trained with fully supervised techniques with
labeled data in the training set. The generator models are originally unsupervised
learning models, but supervised techniques are also used in the GAN architecture. It
can be thought as a decoder in an autoencoder, but is training approach is very
different.

Briefly, the generator receives a random noise vector and produce a fake image.
The discriminator model is fed with generated images in addition to training set. And
this samples are labelled as fake or real to be trained using supervised learning to
successfully discriminate fakes from reals. As a subsequent process, the generator
learns how to convince the discriminator by minimizing its cost. During this process
the discriminator’s parameters are frozen and the back propagation tunes only the

generator’s parameter.

2.4 ZERO-SUM GAME

According to merriam-webster dictionary [16] zero-sum game is, in a situation
only one side can win while at the same time the other side loses. Zero sum game is
named after the game theory. If one person wins and the other person loses the total
net gain is zero. In the GANs structures, it can be thought as when the generator
generates very good samples which cannot be discriminated from real samples then its
model parameters cannot be changed at all but the discriminator’s model is penalized
very hugely. In the same philosophy, if the discriminator successfully differentiates
genuine samples from fakes, then it is rewarded, means that no model parameter
changes are needed whereas the generator’s model parameters will be penalized
hugely. This zero-sum game penalization will eventually (and hopefully) reach to a
point that generated samples by the generator network cannot be differentiated from
real samples by the discriminator network.

2.5 GAN MODEL ARCHITECTURE

In this section, we are going to give more detailed information about GANs’
structures. GANSs are composed of two trained models that uses a competitive
dynamic between them. These models are actually neural networks having opposite
objectives. The generator network aims to generate authentic samples with a given
domain as training set, but not use these training samples directly. The discriminator
aims to distinguish the generated samples and training samples from each other as a
classic classification mission.

The generated data (instances) will vary depending on the choice of training
set. For example, if we want to produce new human faces than we train the GAN with
the samples of real human faces.

While the generator tries to generate authentic instances, the discriminator tries
to classify them as real or not. They are trained one-by-one; not at the same time. The
generator’s input to the neural network is a random noise, On the other hand the
discriminator’s input to its neural network is samples half from training set half from

previously generated samples. This process is not a one-time process. The two

networks try to outsmart each other until they excel in their jobs. The Generator learns
through the feedback it receives from the Discriminator’s classifications.

There are many varieties of GANs. Depending on the complexity of the
domain or design of the GAN implementation, two neural networks can be as simple
as densely connected networks, or they can be complex neural network which are used
to solve other complex machine learning problems. As Saxena, D. et. al. explained in

their paper [17] a sample GAN structure can be seen in Figure 2.3.

Generator Generated Samples
Tramning Set Update Model Discriminator Loss
2D
Guassian
Noise Real
Discriminator
=) Fake
Update Model Generator Loss

Figure 2.3: Basic GANs Architecture

The generator receives a random noise vector (typically a 2D Gaussian) as an
input and produces a fake image as an output. During the training the generator is
never fed with real samples. It receives these random noises as the latent space of the
desired output domain. The latent space is the characteristics of the desired output
domain. But it cannot be observed or discovered directly. It is supposed to be get with
the help of deep learning techniques. At the beginning of the training iterations,
generated images seem very far from the desired images, but it will gradually learn to
produce more realistic images. Similarly, the discriminator has no trouble at learning
to classify real ones from fake ones as the generated samples are far from to be so
called real.

The discriminator and the generator are trained in turn. First the discriminator

is trained. In this phase only its parameters are updated. The classification is ranged

10

between 0.0 to 1.0 in confidence. After this training session, now, it is the generator’s
turn to be trained. Actually, the generator is not trained alone, but the help of the
discriminator. The produced images are fed into the discriminator as if they were real.
At this stage the real samples are not included to the training. And the discriminator’s
parameters are not changed in this stage, that are frozen. The generated imaged in this
stage are fakes but we want the discriminator believe that they are real. The
backpropagation is applied to the generator only.

The generator never actually fed with any real images, but it can produce
convincing images by only getting the gradients from the discriminator during the
second phase of the GAN training. So, the better discriminator means that the better
generator.

The basic algorithm for a GAN as follows:

Training of the discriminator
{Generate images with random noise vector as the latent space

Train the discriminator with real and generated images with equal number

Classify these images with the range of 0.0 — 1.0

Compute the classification errors

(With the aim of minimizing classification error)

Backpropagate it to only the discriminator}

Training of the generator
{Generate images with random noise vector as the latent space

Label all of them as real (to fool the discriminator)

Classify them with the help of the discriminator

Compute the classification errors

(With the aim of maximizing the discriminator’s errors)

Backpropagate it to only the generator}

These two steps are repeatedly continued until the equilibrium is believed to be

reached.

11

2.6 DIFFICULTIES OF GANs

As the last sentenced from the previous paragraph is stated, training will
continue until the belief of the reach of the equilibrium. So, when the training should
be stopped is a difficult question. The GANs’ philosophy is like in the game theory as
zero-sum game. If none of the sub networks are getting better by changing their
situation then the equilibrium is reached. In a GAN, if produced samples and real
samples have equal probability of (50%) realness, then the training reached its goal.
This is theoretical situation. In real life the GANSs are not perfect enough to reach to
this state. And the GANs’ difficulties start here.

One of the biggest difficulties is mode collapse. This is a situation when the
trainings are continued, the generated samples are started to be similar even with the
different latent spaces. This can be partial collapse and it can be recovered or totally
collapsed. The easiest way to understand a mode collapse is to examine the generated
samples during the training iterations. It can also be discovered by examining the
model loss graphic. While discriminator’s loss converges, the generator’s is
oscillating. When this happens, the produced samples are really garbage and the
discriminator is very good at the classification, its loss value goes to zero. Because it
is very easy to classify the realness. The experiment number 2 of our experiments

resulted in such a situation. The results can be seen in Figure 2.4.

12

—— dloss
loss
12 A 9
10
L
0 8_
S
S 6
4_
21 |
| by
01 1

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

Epochs

Losses over epochs (above) and generated images (below)

BEE S S SEEEEAH
HER N
HEBRE® ESENEN EEREE
REBEER BEEEEN RN
B EEEE BREEEE kB OER ER ER
%%ﬁﬁ%@ﬁ mREREEBE E BEOBEOBS BR
%ﬁ@%ﬁ mEBEEE AR A A

Figure 2.4: Suffering from mode collapse. Images are from experiment number 2

The underlying concept of GANSs is straightforward. But achieving a stable
training is very difficult for a GAN. For a normal neural network model loss settles
down during the training. On the other hand, in a GAN we have not got an explicit
loss function for the generator and convergence of the discriminator’s loss is not a
good thing without the loss of generator gets the same achievement. The generator and
the discriminator should learn at the same pace. If the discriminator learns faster than
the generator then the generator stars to learn nothing, means failing in the
convergence. This situation is called non-convergence. In Figure 2.5 a typical
convergence failure can be seen. Over the first iterations the loss of the discriminator
drops significantly. In this stage, the generator is not good enough to generate, and we

13

do not want the discriminator classify them as fake so easily. These images are from
experiment 12, and the generated images also can be seen.

— dloss
—— gloss

3.5 4
3.0 4
2.5 1
0 2.0 A

g 151

1.0 A

0.5

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs
Losses over epochs (above) and generated images (below)

Figure 2.5: Suffering from non-convergence. Images are from experiment number 12

GAN:Ss are also very sensitive to the hyper-parameters. Both the discriminator
and the generator have to be in a harmony. One of the others parameters can affect the
others. And for each network each parameter has to be chosen very carefully.
Sometimes finding the correct parameter is a try and evaluate process.

Generator can generate a wide range of data. Generating space is so huge that
starting point of the generation becomes very important in the sense of elimination of
unrelated distributions. In the real life, meaningful things like an image data, has
related attributes in it. We fed the generator with a random noise vector as a

14

representation of latent space. So, this noise vector should have a specific distribution.
We can think of the random numbers as the latent representation of the desired
generated data. The multivariate normal distribution can be used for a set of

approximately correlated random values that concentrate around a mean value.

2.7 LITERATURE REVIEW

Since the introduction of Generative Adversarial Networks in 2014 [1], their
popularity has rapidly increased. GANs have seen as a very good generative model
which can produce plausible new data. But their difficulties in training let many
researchers propose alternative optimization to address the difficulties and limitations
of the original GAN. They concentrated their studies around changing architecture of
the GANs’ network structures, finding a new loss function and change it and

optimizing hyper-parameters of the GANS.

2.7.1 Deep Convolutional Generative Adversarial Networks

DCGAN [4] was one of the first successful implementations among proposed
GANSs for a better performant implementation. It is based on the original GAN
architecture. The main difference is using convolutional neural networks in the hidden
layers of the both generator and the discriminator’s network. The basic idea is to learn
from high dimensional space for image or image like data can only be achieved using
convolutional layers in its structure. The common structure of the proposed GAN can
be seen in Figure 2.6. It gets so high attention that, most of the other GANs are

constructed on this proposal.

1007

1024 512 256 128 3
latent .

4 g 16 v 32
64
e Stride e Stride
a 8 Stride 2 16 Trae 2 Szindt? Stride 2
CONV 1 CONV 2 CONV 3

CoNV4 o

Figure 2.6: The proposed model architecture of DCGAN

15

The convolutional layers are a bit different from the used in a classical
convolutional layered neural network. Upsample layers are used to double the
dimensions when generating operation in the generator’s structure. As the same
manner, when using in the discriminator’s network the reverse paradigm should be
used which means using transpose convolutional layers. There are some other
suggestions other than using convolutional layers. These are:

e Do not use pooling layers instead use strided convolutions
e Batch normalization should be used

e Ingenerator use ReL U for the activation layer

e Indiscriminator use LeakyRelL U

e Use Tanh for the last activation layer of the generator

2.7.2 The Wasserstein GAN (WGAN)

The mode collapse situation which is explained in the previous sections, is a one
of the major difficulties in front of the training of the GANSs. Researchers and
implementors propose many solutions to address this issue in their studies. One of
them is Wasserstein GAN (WGAN) [5]. Arjovsky, M. et.al. propose a new loss
function to solve this problem. The main objective with their proposal is improvement
in the stability on the training process. They also aim to judge the generated samples
with their quality also. WGAN has a dense mathematical thinking. But with only a few
minor modifications to the DCGAN architecture is adequate to implement in practice.

WGAN is a GAN variant that uses a different technique to train the generator
model. Rather than using a discriminator, it introduces a critic model. This model
scores the realness of the generated images. This critic model is based on a
mathematical model that tries to minimize the distance of the distributions of the image
sets: generated images and images in the training set.

WGAN implementation is based on the DCGAN, and main differences are
replacement of the loss function with the Wasserstein loss function and replacing the
discriminator with a more frequently updated version of critic model.

There are some differences in the WGAN algorithm. These are:
e Do not use sigmoid function in the output layer of the critic, use simple linear

activation
16

e For the critic and the generator models use Wasserstein loss function
e Use RMSProp gradient descent with very small rates and with no momentum
e The critic model is updated more often

e Change the labels of fake and real images with 1 and -1

2.7.3 The Least Squares Generative Adversarial Network

LSGAN is proposed by Mao, X. et.al. in a 2017 paper [6]. The main motivation
behind LSGANS is to solve the vanishing gradients problem. This problem occurs
when the discriminator learns faster than the generator. To realize about bad samples
which are produced by the generator, it tries to find unrelated samples by manipulating
the weights according to the distance from the decision boundary of the discriminator.
This is very important especially in the beginning of the training iterations. This is a
kind of regularization. For more distances from decision boundary causes larger
penalty for the generator. Least squares loss function is implemented to the output
layer of the discriminator.

With these regularizations, LSGAN also leads to a more stable training which
is very important in GANs’ trainings. There are some differences in the LSGNA
algorithm. These are:
e Change the labels of fake and real images with 0.0 and 1.0
e Apply mean squared error (L2 loss)
e The output layer of the discriminator should be linear

The model structure is shown in Figure 2.7.

17

Noise, 1024

Full Connected, 7x7x256,BN
3x3, deconv, 256, stride2,BN
3x3, deconv, 256, stride1,BN

3x3, deconv, 256, stride2,BN 5XS conv, 512, stridel, BN

. 5x5 conv, 512, stridel, BN
3x3, deconv, 256, stride1,BN

5x5 conv, 512, stridel, BN
3x3, deconv, 256, stride2,BN
5x5 conv, 512, stridel, BN

3x3, deconv, 256, stride2,BN
FC, 1

3x3, deconv, 256, stridel Least squares loss

Figure 2.7: The model architectures of a typical LSGAN

2.7.4 Progressive Growing GANs

An important technique was proposed in a 2018 paper [19] by Nvidia researchers
Tero Karras et al. The model proposes to start from small images when generating
samples. For later iteration more convolutional layers are added to generate larger
images. So that learning gradually can be achieved to get convincing results. They also
propose a new technique to variate the generated images to avoid mode collapse. The
generator and the discriminator are trained with a 4x4 pixels. For later iterations
gradually adding convolutional layers make the training images up to 1024x1024
resolution. This technique makes the training time less than usual. Because training
iterations are done mostly with low resolution images. So, the time required for entire

training is significantly reduced.

2.7.5 Evolutionary GANs

For a consistent training and more convincing outputs, Wang et al. [20] suggested
anovel GAN architecture. They called this GAN as Evolutionary GAN (E-GAN). The
main difference from other GANs is the objective function of the adversarial. The
others use a non-changing one, during the training. But They use an alternating and

evolving one. In their techniques they use different metrics to optimize the objective
18

function. The worst performing generator based on a score is removed and the rest are
carried forward to the next iteration. They preserve the best generator at every

iteration. The various generators are analyzed and selected for optimal generation.

19

CHAPTER 11

OPTIMIZATION OF GANS

3.1 INTRODUCTION

Since its introduction, many GAN structures have been proposed by many
researchers and implementors. In Figure 3.1, a narrow road map can be seen. It is not
limited to this; there are many numbers of GANs. A main reason for so many different
GAN:S s its difficulty to train. Some of them are focused to the mode collapse

problem, the others to the speed of the training or quality the output result.

= Original GANs || o DCGAN S improved ™ Cycle GANs /2 PGAN < BigGANs

o o © GANs o o . o

™ ™~ LAPGAN ™ ™~ PACGAN ™ Video2video ™ SinGANs
WGAN Hinge loss SAGANs
WGAN-GP based GANs

BEGAN

C e iC iC b
Figure 3.1: A road map of GANS.

There is not an agreement on the one “perfect” GAN structure. We also not
introduced the “perfect” one. We show our experiments on the some known GANs
and also optimize those algorithms with our hyper-parameters and some structural
changes.

As Salimans et al. pointed out in their paper [22], finding an equilibrium is very
difficult process, because the cost function of the GANSs is non-convex and parameters

are very large.
3.2 SOME OPTIMIZATION BASELINES

Before proceeding to the optimizations, we introduce some concepts and

common approaches with related to GANs optimizations.

20

3.2.1 Downsampling using strided convolutions
In a classical deep convolutional network, the pooling layers are used to
downsample the images. It seems to be natural to use the pooling layers in the

discriminator part, but instead using strided convolutions are suggested.

3.2.2 Upsampling using strided convolutions

The generator model should be in a harmony with the discriminator part. So,
when we use downsampling using strided convolutions, it is not a surprise to use
opposite in the generator part as upsampling using strided convolutions. So, the

generator model can scale a given input to the required output dimensions.

3.2.3 Using Batch Normalization
It is recommended to use batch normalization [23] after the activation layers of
the discriminator and the generator models So that stabilization of the training process

can be achieved. The activations have a zero-mean variance after batch normalization.

3.2.4 Using LeakyReLU

The rectified linear (ReLU) activation unit is a straightforward calculation that
returns the input value directly if it is positive, and returns 0 otherwise. In “leaky”
version of this activation function allows some negative values effect in a small
negative percentage which makes the network layers much more optimized. For deep
convolutional neural networks, using ReLU has become a standard protocol. In a
GAN, instead of ReLU, usage of LeakyReL.U makes some negative values take effect.
Initially, ReLU was suggested for the generator model, while LeakyReLU was
suggested for the discriminator model. But in our experiments, we also use
LeakyReLU in both networks.

3.2.5 Using Adam Stochastic Gradient Decent

Stochastic gradient descent (SGD), takes one data point at random from the entire
data set at each iteration to drastically simplify computations. Adam is a variant of
SGD. It can be successfully used in DCGAN training, but with the value of 0.0002 for

learning rate and 0.5 for the betal momentum value. This is recommended for both

21

the discriminator and the generator networks. In our experiments we change the

parameters to see the results.

3.2.6 Using a Gaussian Latent Space
The DCGAN suggests to sample using a uniform distribution. But a standard
Gaussian distribution is suggested to get better results.

3.2.7 Separating Batches of Fake and Real Images
The original GAN architecture combines fake and real images in the training
sessions. But separating fake and real images and training them one after another,

however, appears to be the ideal method.

3.2.8 Using Label Smoothing
The class label for images in the training set is 1 and for the generated images
this value is 0. To get a regularization effect on training we can smooth these values

slightly higher or lower (randomly) values. These are called soft labeling.

3.3 USING DIFFERENT LOSS FUNCTIONS

Like any other deep learning neural network, the discriminator model is updated.
But when it comes to the generator it has no loss function explicitly. Its loss function
comes from the discriminator indirectly. Minimax loss is the original GAN loss
function. During the advancement of GANs two more loss functions are introduced

and implemented successfully. These are Wasserstein and least squares loss functions.

3.3.1 Minimax GAN Luoss

The discriminator and the generator models are optimized simultaneously
according to the minimax loss optimization. In two sided games, minimax loss means
minimizing the loss for one side while maximizing the others. In our scenario, the
generator and discriminator are the two sides which take their turns to update their
model weights. The minimax strategy in the GAN seeks to minimize the generator loss

while increasing the discriminator loss. As stated in

22

min max (D, G) (3.1)
discriminator’s loss: maxlog D(x)+log(1 — D(G(2))) (3.2)

3.3.2 Least Squares GAN Loss
It is proposed by Xudong Mao, et al. [6]. They experimented that using binary
cross entropy loss has some limitations. Gradients have gone to disappearing with this
loss function when created images are considerably different from genuine ones. To
correct this problem, they proposed increasing the penalty for larger errors, resulting

in a significant model correction.
Their methods indicate that for generated and real photos, the class labels of 0

and 1 should be kept, and the least squares should be minimized, means L2 loss.

discriminator: min(D(x)-1) +(D(G(2)))° (3.3)
generator: min(D(G(z2)) — 1)2 (3.4
L2 loss =Sum(Ypredicted — Ytrue)2 (3.5)

3.3.3 Wasserstein GAN Loss

It is proposed by Martin Arjovsky, et al. [5]. They observed that in the traditional
GAN architecture, the Kullback-Leibler divergence, or the difference between the
actual and projected probability distributions, is not good enough. They proposed to
change the philosophy to the Earth-Mover’s distance (Wasserstein distance). Using
this loss function also changed the role of the discriminator. Now it is updated five
times more than the original one, and so its name is changed to “critic”. The critic
model does not use prediction probability, instead give scores to the images. The
model weights are kept small (hypercube of [-0.01, 0.01]). The Wasserstein loss
function allows a continuous training of the models. So, it can generate better quality

images.

23

CHAPTER IV

OPTIMIZATION TRIALS

4.1 DATA SET USED

There are two datasets which are used in our experiments. These are MNIST
dataset and CELABA dataset.

The MNIST database is the acronym of Modified National Institute of
Standards and Technology database. It has a vast library of handwritten digits that is
frequently used to train image processing systems. In the field of machine learning,
the database is also commonly utilized for training and testing of training algorithms.
The dataset contains 70,000 28x28 pixel grayscale images of handwritten digits. The
mnist.load dataset() function in Keras gives access to the MNIST dataset. We used

only 60,000 training set in our experiments. Figure 4.1 shows an example of data.

Figure 4.1: 25 sample digits from MNIST data

The CelebFaces Attributes Dataset (CelebA) is a large-scale face dataset with
over 200K celebrity photos and 40 attribute annotations for each image. It can be

downloaded from Kaggle webpage [24]. This dataset is very big. Because of the

24

limitations of the computer power, we prepared another version of this dataset using a
predefined machine learning model which makes face detection [25]. After all we used
50,000 40x40 pixel colored face images in our experiments. Figure 4.2 shows an
example of random data. And after face detection, Figure 4.3 shows the prepared data

sample.

il HY o
e

T
A\‘

-

Figure 4.3: A sample from resampled and face detected CELEBA data

25

4.2 COMPUTING ENVIRONMENT

During experiments this computing environment is used:
MacBook Pro
System Memory: 16.00 GB
System CPU: 8 Core
System GPU: 8 GPU
Chip Architecture: M1
maxCacheSize: 5.33 GB

4.3 EXPERIMENT ENVIRONMENT

More than 30 experiments are conducted, but only 20 of them are included in this

report. Because the rest was not controlled, so they are excluded from evaluations. To

make experiments comparable, similar code structures are used for all experiments. At

the same time only maximum 2 of them are run simultaneously. For some of the GANs

same structure are used with both MNIST and CELEBA datasets. For each experiment

these files are generated:

1.

Model summary of the discriminator (Example:
master_gan_mnist_v1_discriminator_modelsummary.txt see Figure 4.4)

Model summary of the generator (Example:
master_gan_mnist_v1_generator_modelsummary.txt see Figure 4.5)

Model summary of GAN (Example: master_gan_mnist_v1l_modelsummary.txt
see Figure 4.6)

Graphical representation of the whole GAN structure with all layers, connection
between them and input output layers. (Example:

master_gan_mnist_v1l _model_plot.png see Figure 4.7)

Plot diagram of the discriminator and the generator loss over iterations
(Example: master_gan_mnist_v1 plot_loss.png see Figure 4.8)

Model parameters and structures are saved every 500 iterations for original
GAN and LSGAN based models and, every 200 iterations for DCGAN and
WGAN based models. (Example:

master_gan_mnist_v1_generator_model_30000.h5)

26

7. Sample images generated with the current generator in training process are
saved every 500 iterations for original GAN and LSGAN based models and,
every 200 iterations for DCGAN and WGAN based models. (Example:
master_gan_mnist_v1 30000.png see Figure 4.9 and
master_lsgan_celeba_v3_30000.png see Figure 4.10)

Model: "discriminator"

Layer (type) Output Shape Param #
flatten (Flatten) (None, 784) 0 T
dense (Dense) (None, 512) 401920
leaky_re_lu (LeakyRelLU) (None, 512) 0

dense_1 (Dense) (None, 256) 131328
leaky_re_lu_1 (LeakyReLU) (None, 256) 0

dense_2 (Dense) (None, 1) 257

Total params: 533,505
Trainable params: 533,505
Non-trainable params: @

Figure 4.4: Example of model summary of the discriminator in the experiments

Model: "generator"|

Layer (type) Qutput Shape Param #
;;;;e_3 (Dense) (None, 256) 25856
leaky_re_lu_2 (LeakyRelLU) (None, 256) 0
batch_normalization (BatchNo (None, 256) 1024
dense_4 (Dense) (None, 512) 131584
leaky_re_lu_3 (LeakyRelLU) (None, 512) 0
batch_normalization_1 (Batch (None, 512) 2048
dense_5 (Dense) (None, 1024) 525312
leaky_re_lu_4 (LeakyRelLU) (None, 1024) 0
batch_normalization_2 (Batch (None, 1024) 4096
dense_6 (Dense) (None, 784) 803600
reshape (Reshape) (None, 28, 28, 1) 0
;;;;l params: 1,493,520

Trainable params: 1,489,936

Non-trainable params: 3,584

Figure 4.5: Example of model summary of the generator in the experiments

27

Model: "model_2"

Layer (type) Output Shape Param #
input_3 (InputLayer) [(None, 1@0)] 0 -
model_1 (Functional) (None, 28, 28, 1) 1493520
model (Functional) (None, 1) 533505

Total params: 2,027,025
Trainable params: 1,489,936
Non-trainable params: 537,089

Figure 4.6: Example of model summary of the GAN in the experiments

28

input: | [(None, 100)]
output: | [(None, 100)]

e
model 1 l

input: | [(None, 100)]
output: | [(None, 100)]

input_3: InputLayer

enerator

~—

input: | [(None, 100}]
output: | [(None, 100)]

dense 3_input: InputLayer

/

input: | (None, 100)
output: | (None, 256)

}

]
]

: input: | [(None, 28, 28, 1)]
: output: | [(None, 28,28, 1)]

input: | [(None, 28, 28, 1)]
output: | [(None, 28, 28, 1)]

)

input: | (None, 28,28, 1)
output: (None, 784)

)

input: | (None, 784)

dense_3: Dense

flatten_input: [nputLayer

input: | (None, 256)
leaky re lu 2: LeakyReLU

!

flatten: Flatten

output: | (None, 256)

input: | (None, 256)
output: | (None, 256)

batch_normalization: BatchNormalization dense: Dense

)

input: | (None, 256)

output: | (None, 512)

}

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| input: | (None, 512)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

dense_4: Dense

leaky_re_lu: LeakyReLU

}

input: | (None, 512)
output: | (None, 256)

)

leaky_re_lu_1: LeakyReLU

output: | (None, 512)

!

leaky_re_lu_3: LeakyReLU

output: | (None, 512)

input: | (None, 512)

dense_1: Dense

output: | (None, 512)

el

input: | (None, 512)
output: | (None, 512)

input: | (None, 256)
output: | (None, 256)

batch_normalization_1: BatchNormalization

)

input: (None, 512)
output: | (None, 1024)

I

leaky re lu 4: LeakyReLU

}

input: | (None, 256)
output: (None, 1)

dense 5: Dense dense_2: Dense

input: | (None, 1024)
output: | (None, 1024)

!

batch_normalization 2: BatchNormalization

input: | (None, 1024)
output: | (None, 1024)

)

input: | (None, 1024)
output: | (None, 784)

)

input: (None, 784)
output: | (None, 28, 28, 1)

dense_6: Dense

reshape: Reshape

Figure 4.7: Example of model structure figure of the whole GAN in the experiments

29

77 —— dloss
gloss

wow g
Y

|

0 5000 10000 15000 20000 25000 30000
Epochs

Figure 4.8: Example of plot diagram for the discriminator (blue plot) and for the generator
(orange plot) losses, in a typical training session

Figure 4.9: Example of generated images with the generator during experiments

30

,@-fﬂ‘ H

e (31 B
{
B IU B EL

o |

o
4

-,
(34

Figure 4.10: Another example of generated images with the generator during experiments

4.4 EXPERIMENT PARAMETERS
We used 4 models for the basis of our experiments. With those structures we
changed some of the parameters and in some experiments, we changed the structure

of the GANs. The parameters for the experiments are:

1. The GAN’s Overall Parameters

a. Experiment Number

b. Derived From (inspiration of the GAN structure)

c. Dataset Used

d. Number of Epochs

e. Dimension of Latent Space

f. Bach Size

g. Loss Function of the GAN

h. Optimizer Name

i. Optimizer Learning Rate

J. Optimizer Betal Parameter (for Adam optimizer)
2. The Discriminator’s Parameters

a. Loss Function of the Discriminator

31

b. Optimizer Name
c. Optimizer Learning Rate
d. Optimizer Betal Parameter (for Adam optimizer)
3. The Generator’s Structure Parameters
a. Activation Functions of Layers
b. Alpha Value (for leakyReLU)
c. Whether Batch Normalization is used or not
d. Momentum Value (for Batch Normalization)
e. Whether UpSampling2d is used or not
f. Whether Conv2D is used or not
g. Kernel Size (for Conv2D)
h. Last Layer Activation Function
4. The Discriminator’s Structure Parameters
a. Activation Functions of Layers
b. Alpha Value (for leakyRelLU)
c. Whether Batch Normalization is used or not
d. Momentum Value (for Batch Normalization)
e. Whether Conv2D is used or not
f. Number of Strides (for Conv2D)
g. Kernel Size (for Conv2D)
h. Name of the Regularization if it is used
I. Value of the Regularization if it is used

j. Last Layer Activation Function if it is used

4.5 EVALUATION

A loss function is used to train deep learning neural networks until they
approach convergence. On the other hand, in a GAN model the generator learns from
the discriminator. For the generator, there is no explicit loss function [22]. To achieve
equilibrium, both the generator and the discriminator are trained together. The
generated images are used to evaluate a GAN's performance. Manual evaluation of
generated images is the first step in the evaluation. But there are some other

guantitative measurements to support the visual inspections. In fact, there is no

32

universally accepted method for evaluating a GAN's generator model. This problem is
still an open research area as Borji, A. [26] stated at his paper.

When GAN training is in progress, we have to find a way to stop the training
process. While evaluation of the model is a visual inspection, we should save the
models in an interval. Actually, we saved the generator models in some steps. These
saved models can be used when the visual inspection is done, and correspondent saved
model can be used for the image producing. But it be kept in mind that, this is a
subjective evaluation and includes biases of the reviewers.

There are numerous quantitative evaluation metrics which can be used. As of
today, there is no agreed technique about GAN’s inspections. But some researchers
suggest Frechet Inspection Distance (FID) score seems more plausible [26]. In our

experiments we use FID score as the comparison unit.

4.5.1 Frechet Inception Distance (FID)

Martin Heusel and his colleagues proposed and applied the FID score technique
[27]. The distance between feature vectors calculated for real and generated images is
calculated using the FID. So, the similarity of the generated samples to the training set
can be determined. Lower scores indicate a closer relationship between the two groups.
To find the FID score, it is needed computing power. If the number of the samples in
the compared sets are high in number than the generated score is more reliable, but it
needs more computing power. In our experiments 5,000 samples from the generated
images and 5,000 samples from training set are randomly chosen, then their FID scores
are calculated. For the CelebA image set the FID scores are calculated in low values,
but for MNIST data set the FID scores may seems to a bit higher. But we only concern
with the comparison between different models, these scores are acceptable in our
situation. The score reflects the similarity of the two groups of images calculated with
the inception v3 image classification model.

4.6 EXPERIMENTS
Experiments are started by implementing advised algorithms of the GAN [1],
DCGAN [4], LSGAN [6] and WGAN [5]. While proceeding, we took the visual

inspection of the generated images in certain intervals. The generator and the

33

discriminator’s losses are kept in a memory object and at the end of the iterations it is
plotted in a file. After each interval period the generator produced sample images, and
these images are kept in separate files to inspect. For the same interval the current
model structure with its weights is kept in separate h5 files. Any time after the
execution we can regenerate images with those h5 files. All important hyper-
parameters which is subject to change in our experiments are noted in a file. The GANs
architectures are kept in 4 separate files. One for the discriminator, one for the
generator and one for overall GAN structure. The fourth structure file is the detailed
version of overall GAN structure with all layers and activations and interactions
between layers. The sample files are given in the previous chapter. (From Figure 4.4
to Figure4.10).

There are conducted 20 experiments. We used MNIST dataset in 10, and
CELEBA dataset in the other 10 of the experiments. After implementing and running
original GANs algorithms, FID scores are calculated and noted. After that the
structures and hyper-parameters of these GANs are changed and the procedures are
started from the beginning.

The complete list of experiments is in Table 4.1.

Table 4.1: Experiments

Exp.|Derived |Dataset |Epochs|Latent Batch
From Dimension | Size
1|GAN MNIST 30000 100 32
2| DCGAN [MNIST 4000 100 32
3|LSGAN |MNIST | 30000 100 32
4{WGAN |MNIST 4000 100 32
5|DCGAN [MNIST 4000 100 32
6 | DCGAN [MNIST 4000 100 32
7|LSGAN [MNIST 30000 200 32
8|LSGAN |MNIST | 30000 200 128
9|LSGAN |MNIST | 30000 200 128
10{WGAN |MNIST 5000 100 64
11 |{GAN CELEBA| 30000 100 32
12| DCGAN |CELEBA| 4000 100 32
13|LSGAN |CELEBA| 30000 100 32

34

Table 4.1 (continued)

14|WGAN |CELEBA| 4000 100 32
15|DCGAN |CELEBA| 4000 100 32
16|DCGAN |CELEBA| 4000 100 32
17|DCGAN |CELEBA| 4000 100 32
18| DCGAN |CELEBA| 4000 100| 128
19|LSGAN |CELEBA| 30000 100 64
20| LSGAN [CELEBA| 30000 200 128

As it can be seen from Table 4.1, original GAN is used only two times: one for MNIST
data set and the other for CELEBA dataset. These can be used as a starting point for
the rest of the experiments. Latent dimensions are used mostly as 100 dimensions and
the batch sizes are mostly 32. Number of epochs are 30000 for GAN and LSGAN
derived algorithms and 4000 and 5000 for DCGAN and WGAN derived algorithms.
But these parameter changes are not the main differences (versions) of the
experiments. All structural differences and hyper-parameters of the generators and the
discriminators are given at Table 4.2, Table 4.3, Table 4.4, and Table 4.5.

Table 4.2: Hyper-parameters of the GANs

EXxp.
Name Learning|Betal
Rate

1| binary_crossentropy | Adam 0.0002 (0.5
2 | binary_crossentropy | Adam 0.0002 (0.5
3| Mse Adam 0.0002 |05
4 | wasserstein_loss RMSprop|0.00005 |-

5| binary_crossentropy | Adam 0.0002 (0.5
6 | binary_crossentropy | Adam 0.0002 (0.5
7| Mse Adam 0.0002 [0.5
8| Mse Adam 0.0002 |05
9|Mse Adam 0.0002 (0.5
10 | wasserstein_loss RMSprop|0.00005 |-

11 |binary_crossentropy | Adam 0.0002 (0.5
12 | binary_crossentropy | Adam 0.0002 |0.5

35

Table 4.2 (continued)

13 |Mse Adam 0.0002 |05
14 | wasserstein_loss RMSprop|0.00005 |-

15 | binary_crossentropy | Adam 0.0002 (0.5
16 | binary_crossentropy | Adam 0.0002 (0.5
17 |binary_crossentropy | Adam 0.0002 (0.5
18 | binary_crossentropy | Adam 0.0002 (0.5
19| Mse Adam 0.0002 |05
20 | Mse Adam 0.0002 |05

Table 4.3: Hyper-parameters of the discriminators

Discriminator

EXxp.
Name Learning | Betal
Rate

1| binary_crossentropy | Adam 0.0002 |05
2| binary_crossentropy | Adam 0.0002 |05
3| Mse Adam 0.0002 (05
4 | wasserstein_loss RMSprop|0.00005 |-

5| binary_crossentropy | Adam 0.0002 |05
6 | binary_crossentropy | Adam 0.0002 |05
7|Mse Adam 0.0002 |05
8| Mse Adam 0.0002 (05
9| Mse Adam 0.0002 (05
10 | wasserstein_loss RMSprop|0.00005 |-

11| binary_crossentropy | Adam 0.0002 |05
12| binary_crossentropy | Adam 0.0002 (0.5
13| Mse Adam 0.0002 |05
14 | wasserstein_loss RMSprop|0.00005 |-

15| binary_crossentropy | Adam 0.0002 |05
16 | binary_crossentropy | Adam 0.0002 |05
17| binary_crossentropy | Adam 0.0002 |05
18| binary_crossentropy | Adam 0.0002 |05
19| Mse Adam 0.0002 (0.5

36

Table 4.3 (continued)

20| Mse

Adam

0.0002

0.5

Table 4.4: Layer structures of the generators and their hyper-parameters

Generator
EXxp.
Name Alpha| [Momentum Kernel | Name
Size

1|leakyRelLU 0.2 0.8 - - -| Tanh
2|Relu - 0.8 + + 3| Tanh
3 |leakyRelLU 0.2 0.8 - - -| Tanh
4|Relu - 0.8 + + 4| Tanh
5|Relu - 0.8 + + 3| Tanh
6 | leakyReLLU 0.2 0.8 + + 3| Tanh
7| leakyRelLLU 0.2 0.8 - - -| Tanh
8| leakyRelLLU 0.2 0.8 - - -| Tanh
9| leakyRelLU 0.2 0.8 - - -| Tanh
10|Relu - 0.8 + + 4| Tanh
11 | leakyRelL U 0.2 0.8 - - -| Tanh
12 |Relu - 0.8 + + 3| Tanh
13|leakyRelLU 0.2 0.8 - - -| Tanh
14 |Relu - 0.8 + + 4| Tanh
15|Relu - 0.8 + + 3| Tanh
16 | leakyRelLU 0.2 0.8 + + 3| Tanh
17 | leakyRelLLU 0.2 - + + 4|Tanh
18 |leakyRelL U 0.2 - + + 4|Tanh
19| leakyRelLU 0.2 0.8 - - -| Tanh
20 (leakyReLU| 0.2 0.8 - - -| Tanh

37

Table 4.5: Layer structures of the discriminators and their hyper-parameters

Discriminator

EXxp.
Name Alpha Mome Strides |[Kernel |Name Value |Name
ntum Size
1|leakyReLU 0.2 - - -1- - | Sigmoid
2| leakyRelLLU 0.2 0.8 2 3| Dropout 0.25(Sigmoid
3|leakyRelLU 0.2 - - -1- -1-
4 | leakyRelLU 0.2 0.8 2 3| Dropout 0.25(-
5| leakyRelLU 0.2 - 2 3| Dropout 0.4 |Sigmoid
6| leakyReLLU 0.2 - 2 3| Dropout 0.4 |Sigmoid
7|leakyReLU 0.2 - - -1- -1-
8|leakyRelLU 0.2 - - -1- -1-
9|leakyReLU 0.2 - 2 3| Dropout 0.4 | Sigmoid
10 | leakyReLLU 0.2 0.8 2 3| Dropout 0.25(-
11 | leakyRelLU 0.2 - - -- - | Sigmoid
12 | leakyReL U 0.2 0.8 2 3| Dropout 0.25|Sigmoid
13 |leakyRelLU 0.2 - - -1- -1-
14 |leakyRelLU 0.2 0.8 2 3| Dropout 0.25|-
15| leakyRelLU 0.2 - 2 3| Dropout 0.4 | Sigmoid
16 | leakyReL U 0.2 - 2 3| Dropout 0.4 |Sigmoid
17 | leakyReLLU 0.2 - 2 5| Dropout 0.4 |Sigmoid
18| leakyRelL U 0.2 - 2 5| Dropout 0.4 |Sigmoid
19 | leakyRelL U 0.2 - - -1- -l-
20 [leakyReL U 0.2 - - -1- -l-

4.7 RESULTS AND DISCUSSION OF THE EXPERIMENT

Table 4.6 and Table 4.7 show the FID scores of the all experiments. The scores

for MNIST data set are higher than CELEBA data set experiments. One reason for it

is the computational limitations. It is taken only 5,000 samples to compare. But it is

not important, since the reference point of FID is also computed with the same

38

parameters, and we concern with the comparisons. So, it can be examined MNIST data
set experiments and CELEBA data set experiments separately.

According to FID scores the winner configuration for MNIST data set
experiments is experiment number 3 with an FID score of 52.4530, while the original
implementation of GAN’s FID score is 53.7039. Experiment number 8 has the closest
FID score with 52.5877. A visual inspection can be done for experiment 3 in Figure
4.11.

According to FID scores the winner configuration for CELEBA data set
experiments is experiment number 18 with an FID score of 0.0681, while the original
implementation of GAN’s FID score is 0.4570. Experiment number 15 has the closest
FID score with 0.0793. A visual inspection can be done for experiment 18 in Figure
4.12.

Table 4.6: FID Scores of MNIST data set experiments

Experiment | Data Set | FID
Number Score

MNIST |53.7039
MNIST [62.0163
MNIST [52.4530
MNIST [55.5659
MNIST |53.3753
MNIST |53.1102
MNIST |53.8863
MNIST [52.5877
MNIST [56.3247
MNIST [55.4045

O 0| N0 | B|W|IN|PF

=
o

Table 4.7: FID Scores of CELEBA data set experiments

Experiment | Data Set |FID
Number Score

11| CELEBA|0.4570
12| CELEBA|18.5712
13| CELEBA|0.5618
14| CELEBA|0.1605

39

ERRER
GERAE

EEENS
EEEER

Table 4.7 (continued)

15| CELEBA|0.0793
16| CELEBA|0.1015
17| CELEBA|0.0844
18| CELEBA|0.0681
19| CELEBA|0.2844
20| CELEBA |0.2584

g | SEREE |3 ENEEE

? | DEEDR S EE0NE

S| DDEEE 3 EEREER
i} (i

DEREE | | OEOER

ENNEE | | ECOEE

o | CERER g DEEED

3 | EEEED I IOREQ

S| NEDEE 5 EREEE
o o
LU Ll

][N

bl]s)

o g PEHEGE

3 < DENNN

8 g EnESE
L Ll

]l]

o~ o[]S

g RENEDN

- R DREEE

E S HPEGR
i (i

Figure 4.11: Visual inspection of experiment 3

Epoch 1500

DERED
EENTER
IESEn
R EE
ARDIMIVS] A

Epoch 4000

BRED
AEEPE
BWNEE
DE Y M
BEEWL

Epoch 500

ECIREE
EMEaE
ERanE
FREEEE
ERENT

Epoch 3800

HENAE
EBRIEaEE
BESEE
60l o] |
BEREE

SENEE

T E TFA Al

DRE0OA

LcEaaar
ME3Ga
dubEE

Epoch 1

Epoch 2000

o
= =~ g - = [e
S| DREED & kNG
= e —— =
g| HOHINE g ERREN
o o
LLI LLI
EEEEN DHAEE

3])l
EMELn
BEEND
EEPEE

Figure 4.12: Visual inspection of experiment 18

According to these results latent dimension of 100 or 200 and the number of

epochs is seen as not very important for the results. Bach size of 32, 64 or 128 are not

made any significant changes in the results.

40

We can see that loss function mse is over binary cross-entropy for MNIST data
set. But for CELEBA data set the winner optimizer is binary cross-entropy. The Adam
optimizer is significantly dominant, with a learning rate of 0.0002 and a Betal value
of 0.5 in the performant experiments. The results of leakyReLU with an Alpha of 0.2
and batch normalization with a momentum of 0.8 are excellent at the structures of the
discriminator and the generators’ network layer designs. Upsampling and
downsampling are very important for DCGAN and WGAN derived configurations,
but for LSGAN it is better not to use convolutional layers.

With the sigmoid function, the activation function for the discriminators' last
layer is excellent. For the generator site, Tanh activation function seems to be a must.

Another important issue is seen from the results that, the discriminator’s
network structure should be in a harmony with the structure of the generator’s network.
For example, if convolutional layers are used in one network, it must be used in the

other network too.

41

CHAPTER V

CONCLUSIONS

GAN: s are fascinating. Interest to this neural network is growing rapidly. Their
ability of generating realistic examples makes them very important actor in the
generative machine learning filed. As Goodfellow, I. et.al. indicated in their recent
paper [28], it is indeed very hard to train them at this time. To make GANs a more
credible technology, it will be necessary to provide models, costs, or training
algorithms that can consistently and quickly locate good Nash equilibria. To achieve
a successful result, its structure has to be built very carefully. The main conclusion of
this thesis is, when building a GAN network its generator and discriminator has to be
in a harmony in their structures. Similar structures have to be configured and
connected. Learning process must be in the same pace. If one of the networks are
learning faster than the other than this GAN network is bound to fail. The
generalization is very important for the generative tasks. Because of that when building
the generator network, for example when synthesize an image, to capture the main
features, the network has to handle the problem of generalization as the nature of the
problem field, i.e., in this example using convolutions is highly recommended. But for
another field, the generalization may be changed. All structures, the discriminator and
the generator’s losses and sample generated images can be seen at appendices. So that
all architectural differences and their effects on visual inspection can easily be
discovered. According to the results we concluded that hyper-parameters are very
sensitive. Even if the most performant model’s a few parameters are changed the
results affected very badly. It means hyper-parameters should not be tuned randomly.
Tuning suggestions are in the section 4.7.

In this thesis we focused on mainly DCGAN, LSGAN and WGAN derived
GAN structures. Although these GANs are very important pillars in the GANs’
evolutions, there are some promising approaches like evolutionary GANs (E-GAN)
[20] and progressive growing GANSs [19]. Because of GANS' popularity many new

GANs are introduced continuously. This study can be extended with newly introduced
42

GANSs. But more importantly when evaluating a new GAN, it would be very good if

we had an evaluation framework and a fair metric.

43

APPENDICIES

This page intentionally left blank

44

Appendix A - Experiment 1

input: | [(Nome, 100)
input_3: InputLayer |— { !

output: | [(None, 100)]

input: | [(None, 100)]

input_2: InputLayer
P2 Tnputtay output: | [(None, 100)]

input: None, 100
dense_3_input: InputLayer P I U |

i
I

! input: [1N0ne.28.28,1)]|
! output: {(Nonc.28.28.l)]|

output: | [(None, 100)] |

/

input: | (None, 100)
output: | (None, 256)

}

dense_3: Dense

input: | (None, 256) input: | (None, 28, 28, 1)

output: (None, 784)

)

leaky_re_lu_2: LeakyReLU

]

flatten: Flatten

output: | (None, 256)

‘ input: | (None, 256) |
‘ output: | (None, 256) |

input: | (None, 784)
output: | (None, 512)

}

leaky re lu: LeakyReLU

}

input: | (None, 512)
output: | (None, 256)

| batch_normalization: Batch® ‘ dense: Dense

I

input: | (None, 256)

input: | (None, 512)

dense_4: Dense
output: | (None, 512)

output: | (None, 512)

l

leaky_re_lu_3: LeakyReLU

input: | (None, 512)
output: | (None, 512)

dense_l: Dense

)

leaky re_lu_I: LeakyReLU

|

input: | (None, 256)

input: | (None, 512) input: | (None, 256)

batch_normalization_1: Batch

output: | (None, 512) output: | (None, 256)

input: | (None, 512)
output: | (None, 1024)

l

dense_S: Dense

dense_2: Dense

output: | (None, 1)

input: | (None, 1024)

leaky re lu_4: LeakyReLU

output: | (None, 1024)

!

™. yation 2: Batch B ‘ input ‘(Nuﬂe.l(llfi)‘
atch_nor L ‘ output: ‘ (None, 1024) ‘

i

input: | (None, 1024)

dense_6: Dense
- output: | (None, 784)

i

nput; | (None, 784)

i
reshape: Reshape
output: | (None, 28, 28, 1)

i

77 —— dloss
—— gloss

n v o
&
|

I et s 17 e e ket el W i 14 et e A ek e

0 5000 10000 15000 20000 25000 30000

Epochs

45

Appendix B - Experiment 2

model_

input: | [(None, 100)]
InpuiLayer
output: | [(None, 100)]
input:_ | [(Nonme, 10m] | |
output | [(None, 100y ||

dense 1: Dense.

output

input | (None, 100y

(None, 6272)

reshape: Reshape [—
output:

.

[(None, 28,28 1)]
[(None, 28, 28, 1)]

Tnpor [(None, 7.7, 120 _]

up_sa

5 U 20

[utput | (None, 14. 13, 1257 |

leaky_re_lu; LeakyReLU

output

(Nene, 14, 14, 128)

(None, 14, 14, 128)

(None, 14, 14, 32)
(None, 14, 14, 32)

E—

[inpur [(None, 14, 14.128)

| outpue: | (None, 14, 14.128)

input:_ | (None, 14, 14,32)

conv2d_1: Conv2D
- (None, 7,7, 64)

outp

(None, 14, 14, 128)

(None, 14, 14, 128)

zero_padding2d: Zen

,. oo |

input._| (Nene, 14, 14, 128) |

Surput: | (Rone. 5,

[Cinput [(None, 5,8, 64) |
[output: | (Nonc, 8.8, 64) |

‘ batch_nor

conv2d 5 ConvaD

(None, 28, 28, 128)

(Nonc, 28, 28, 64)

| inpue | eNor

| outpur: | (None. 2828 64) |

ation_I: Activat

input:

output:

(None, 28, 28, 64)
(None, 28, 28, 64)

input:

conv2d 6: Com2D

output:

[mput | (None 5.8 64)
leaky re lu_ 1@ LeakyRel U
output: | (None, 8, 8, 64)
input: | (None. 8 8. 64)

dropeut_1: Dropout

(None, 28, 28, 64)
(Nonc, 28,28, 1)

activation

2: Activation

output:

(None, 28, 28, 1)
(None, 28, 28, 1)

output: | (None. 8. 8. 64)

nput: | (None, 8, 8, 64

conv2d_2: Conv2D oo (None)

- output: (None, 4. 4, 128)
input: None, 4.4, 128

batt | [input T¢
[oupar | (Nome, 3,5, 128
input:_ | (Nome, 4. 4. 128)

leaky re lu 2: LeakyReLU

ouput: | (None, 4. 4, 128)

(None, 4, 4,128)
(None. 4. 4.128)

input:
dropeut_2: Dropout

(None. 4,4, 128)
conv2d_3: Conv2D
(None, 4,4, 256)

output:

[input: | (None, 4, 4, 256]
[“oumput [(None, 42256,

input. | (None, 4, 4. 256)
leaky re lu_3: LeakyReLU
output: | (Nome. 4. 4. 256)
input. | (None. 4. 4. 256)
dropout_3: Dropout
oulput: | (None. 4. 4. 256)
input: | (None, 4,4, 256
fNatten: Flatten [——+ ‘ 4
utput: | (None, 4096)
input: | (Nome, 4096)
dense: Dense [—
utput: | (Nere, 1)

3 ;E-i 8%
T

5
i
v

[
k¢
E

i
A
Pk
a

Fakd
aral

14

12

10 4

OB_

—— dloss
—— gloss

T
500

T T
1500 2000

Epochs

T
1000

T T T T
2500 3000 3500 4000

46

Appendix C - Experiment 3

mput: | [(None, 100)]
input_3: InputLayer
output: | [(None, 100)]
R I T
1
. input: | [(None, 100
! input_2: InputLayer P I 1
: output: | [(None, 100)]
1
1

1 input: | [(None, 100)]

mnput:

dense 3 _input: InputLayer

output:

[(None, 100y

[(None, 28,28, 1)]

output:

[(None, 28,28, 1)]

g /

1 input: | (None, 100) input: | [(None, 28, 28, 1)]
N dense_3: Dense flatten_input: [nputLayer
1 output: | (None, 256) output: | [(None, 28, 28, 1)]
1
l : l l
N
[N - "
input: | (None, 256 input: one, 28, 28, 1
: ! leaky re_lu_2: LeakyReLU r {) flatten: Flatten P ™)
B output: | (None, 256) output: | (None, 784)
'
| : J l
h
: ! o o input: | (None, 256) input: | (None, 784)
it bateh_normalization: BatchNormalization dense: Dense
' : output: | (None, 256) output: | (None, 512)

! l

l

dense_4: Dense

input: | (None, 256)

output:

(None, 512)

leaky re_lu: LeakyReLU

input: | (None, 512)

l

output: | (None, 512)

l

input:
leaky re lu_3: LeakyReLU

(None, 512)

output:

(None, 512)

dense_1: Dense

input: | (None, 512)

]

output:

(None, 256)

l

(None, 512)

batch_normalization_1: BatchNormalization

leaky re_lu_l: LeakyReLU

(None, 512)

input: | (None, 256)

output: | (None, 256)

l

]

input: | (None, 512)

dense_5: Dense

output:

(None, 1024)

input: | (None, 256)

dense_2: Dense

l

output:

(None, 1)

input: | (None, 1024)

leaky_re_lu_4: LeakyReLU

output: | (None, 1024)

l

input:

(None, 1024)

! . .
!y | batch_normalization_2: BatchN

Iy output:

(None, 1024)

[input: | (None, 1024)
1y dense_6: Dense
[N - output: | (None, 784)
'
" l
]
h -
N input: (None, 784)
[reshape: Reshape
output: | (None, 28, 28, 1)

= [a][]

<]
=

o4 O]

aNE | OERES

1759

1.50 1

1.259

1.00 1

0.75 1

wow o H

0.50 1

0.25 7

0.00 4

— dloss
—— gloss

4] 5000 10000

15000

Epochs

20000 25000 30000

47

Appendix D - Experiment 4

sequential |

‘ [—

input:

output

[(None. 100)]
[(Nonc, 100)]

input: | [(Nene. 100)]
input_2: InputLayer
output: | ((None, 100)]
J o
'
t: | [(None, 100)] | 1) t: | [(Neone, 28, 28, 1)
dense | input: InputLayer [—opat | None. 001 vy) tnputLayer [—n2ut | [(None, 1
ouput: | [(None, 100)] | | ! cutput: | [(Nene. 2828, 1)]

input (None, 100y input: | [(Nonc, 28, 28, 1)]
dense_I: Dense conv2d_input: InputLayer
output: | (None, 6272) output: | [(None, 28, 28, 1)]
input: | (None. 6272) input: | (None, 28 28, 1)
reshape: Reshape conv2d: Conv2D
output: | (None, 7. 7. 128) output: | (Nene, 14, 14, 16)
[Cinput: T (None, 7.7, 128) | (None, 14. 14, 16)
up ling2d: U 2 leaky re lu: LeakyReLU

["outpur: | a¥one. 1

(None, 14, 14, 16)

+.128) |

|

conv2d_d: Conv2D

input: | (Neme, 14, 14, 128)
output; | (None, 14, 14, 128)

imput: | (None, 14, 14, 16)

NEOOER

—

output

[(None. 14,14, 128)

input: | (None, 14, 14, 16)
conv2d_l: Conv2D

| (None. 14,14, 13%)

output: | (None, 7, 7. 32)

input: | (None, 14, 14,128) |

o [Cinput: | (ene, 7. 7.32) |

Aetivation ‘[

output: | (Nonc, 14, 14, 128) |

Zero_padding2d; 7

ut: | (None, 8, 8, 32) |

input: | (None, 14, 14,128)
>

[input_ | (None. & £.32) |

<]
3]
a
2]
<]
7]
B

| output: \ (None, 28_28_128) \

\ output:] (None, 8, 8, 32) \

H
2]
H

H

l

’ conv2d_S: Conv2D

input: | (None, 28, 28, 128)

output: | (None, 28, 28, 64)

input: | (None, §, 8, 32)

leaky_re_lu_1: LeakyReLU
- output: | (None. 8.8, 32)

[input [(None, 28,28, 64) |

input: | (None, 8, 8 32)

batch

| output: | (None, 28,28, 64) |

dropout L Dropout
| pou PO I utput: | (None, 8, 8, 32)

input: | (None, & 8, 32)
output: | (None, 4, 4. 64)

conv2d_2: ConvaD

]

a8

'4

conv2d_6: ConvzD

output

input: | (None, 28, 28_64)
activation_1: Activation
output: | (None, 28, 28, 64)
input: | (None, 28, 28, 64)

(Nonc, 28, 28, 1)

[Cinpur T (None. 4. 4. 64y |
| output: | (None. 4, 4. 64 |

!

(None, 28, 28, 1)
(None, 28, 2. 1)

(Nong, 4, 4, 64)

leaky_re_lu_2: LeakyRel.U
- (None, 4, 4, 64)

(None, 4. 4. 64)
(Nonc, 4, 4, 6d)

dropout_2: Dropout

convad_3: Convaly

[Cinput | (None.3. 4. 128) |
[output [(None, 4, 4. 128) |

input: | (Nene, 4, 4. 128)
output: | (None, 4, 4, 128)

leaky_re_lu_3: LeakyReLU

input: | (None, 4, 4, 128)

dropout_3: Dropout
‘ o ” output: | (None, 4, 4, 128)

input: | (Nene, 4.4, 128)

flatten: Flatten
output: | (None, 2048)

put: | (None, 2048)

i
dense: Dense
output: | (None, 1)

.

DS EEE

0.00005

I—B.OOODD q
o]

3p.00005 4
s
—0.00010 1

—0.00015

—0.00020

—— dloss
—— gloss
— gloss

T
0 500

T
1000

T
1500

T T T T T
2000 2500 3000 3500 4000

Epochs

48

Appendix E - Experiment 5

. input: | [(None, 100)]
input_3: InputLayer
output: | [(None, 100)]

e 7 | E R
' .
input (None, 100)] I m m
input_2: InputLayer s L ! I #
output: | [(None, 100)] I A
e ‘ B B
sequential_I %a
. input: | [(None, 100)] . input: | [(None, 28, 28, 1)] ; :
dense_1_input: InputLayer — input_1: InputLayer
output: | [(None, 100)] output: | [(None, 28, 28, 1)]
/ el \ """"""" ' ’
input: | (None, 100) [(None, 28,
dense_I: Dense conv2d_input: InputLayer
- output: | (None, 6272) - output: | [(None, 28,28, 1)]

2]
(e 7]
B g
BAd
E

input: | (None, 28,28,1)

reshape: Reshaj
P P output: | (None, 14, 14, 64)

A
E
£
&

’ conv2d: Conv2D

input: | (None, 14, 14, 64)

leaky re lu: LeakyReLU

output: | (None, 14, 14, 64)

EISS
>

input: | (None, 14, 14, 64)
dropout: Dropout
output: | (None, 14, 14, 64)

/

HEMEE
|

conv2d 1:Conv2D

dropout_1: Dropout

SAENA
ola]a]w]-o

input: | (None, 7,7, 64)
flatten: Flatten

|
ARSEA

output: | (None, 3136)

!

input: | (None, 3136)

EOD EBNENR | ON

input: | (None, 28, 28, 64)

dense: Dense

1
I
1
1
I
1
1
1
I
1
1
1
I
1
1
1
I
1
1
1
I
1
1
1
I
1
1
1
I
1
1
I
1
1
1
I
1
1
1
I
1
1
1
I
1
1
1
I
1
1
1
I
1
1
1
I
1
1
I
: output: (None, 1)

2

El
4]

0.75

L e i

I

0.70

Ll
pd

0.65 -
0.60 4

0.55 A

wow o

0.50 1
0.45
0.40 -

—— dloss
0.35 A gloss

T T T T T T T T
o 500 1000 1500 2000 2500 3000 3500 4000

Epochs

49

Appendix F - Experiment 6

) input: | [(None, 100)]
input_3: InputLayer
output: | [(No

input_2: InputLayer

]
1

]
input: | [(None, 100)] I
1
output: | [(None, 100)] 1
l

dense_1_input: InputLayer
output.

dense_1: Dense

reshape: Reshape

input: | (None, 14, 14, 64)

up_sampling2d: UpSampling2D
psampis e FpRamping output: | (None, 14, 14, 64)

leaky re lu: LeakyReLU

/

input: | (None, 14, 14, 128) i
conv2d_2: Conv2D h
output: | (None, 14, 14, 128) i

] i

input: | (None, 14, 14, 64)

dropout: Dropout
P P output: | (None, 14, 14, 64)

input: | (None, 14,14, 128) | 1 1
output: | (None, 14,14, 128) | ;1 1y

input: | (None. 14, 14, 64)

batch_normalization: BatchNormalization comv2d_1: Conv2D

o
I
b
|
[input [iNone, 14,14, 128) | L
| output:] (None, 28, 28, 128)] ,:'\

Fine?

up sampling2d_1: Up!

Al
J]

-
s

i

=
CET

]
=

]

1]]

=
B
o

]
A

(B

wlafi]
]

2]
H
Ed
3]

4]

=

conv2d_3: Comv2D

it I

input: | (None, 3136)

dense: Dense

output: (Nong, 1)

8.1
(None, 28,28, 1)

El
Kl

9]
a
a
A =
B8
E O
HE
ﬂ ,

NEREE
[o]a]

b

0.75 4

| h’h L B AL TR v -
0.70 " ,”.,f "I 1|Lu.‘i”|lﬁ:‘“ll\ ah A-iqh"" fie ’.j ,“

0.65 4

0.60 4

w w o -

0.551

0.50 4

0.45
— dloss

0.40 4 gloss

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

Epochs

50

Appendix G - Experiment 7

. input: | [(Nene, 200)]
input_3: InputLayer
output; | [(None, 200)]
input: None, 200
input_2: InputLayer P u !
output: | [(Nene, 200)]

Veeemtial 1 r **77————7”,\\}“‘\

r
| |
| |
1 I
| i
I I
| i
| i
1 1!
i h
! input: Nene. 200! [input: None, 28,28, 1
: ! dense_3_input: InputLayer P [(None) : 1 input_l: InputLayer P I)
h : output: | [(None, 200)] | | output: | [(Nene, 28,28, 1))
1 e
: 1 / : : : : sequential \ 1
! []
: : input: | (None, 200) : ! : ! . input: | [(None, 28,28,] | !
1 dense_3: Dense i1 1| flatten_input: InputLayer !
I output: | (None, 256) 1 : | : output: | [(None, 28, 28, 1)] :
: : : | : | i
" | 1 " :
: ! input: | (None, 256) : i y input: | (None, 28, 28, 1) '
v! leaky_re_lu_2: LeakyReLU pih flatten: Flatten '
| : output: | (None, 256) ! : ! output: (None, 784) :
|
i : : | : |]
" I : | :
o] input: | (None, 256) | 1111 input: | (None, 784) ! 3
| ; batch_normalization: BatchNormal out | (Nome, 256) | ! i ; | dense: Dense ot | (None,312) 1
output: one, 2! 1 output: one, 512
¥ o ;
} ' i : |
i input: | (None, 256) Y input: | (None, 512) 1 t
: ! dense_4: Dense P : 1 leaky re lu: LeakyReLU il | .
! output: | (None, 512) e output: | (None, 512) 1
n e 1
: | : : I :]
| | | =
:: jeck i 3 LeakvReLlJ input: | (None, 512) :; :: 4 12D input: | (None, 512) 1 ﬂ
leaky re lu_3: LeakyRe lense_1: Dense I)
: : yre Y output: | (None, 512) : : i : - output: | (None, 256)]
| yrh]
i l i] : B Ea
I " '
: [o input: | (None, 512) | ! : ! : input: | (None, 256) '
o batch_normalization_1: BatchNor: put | (N) : 1y | leaky re lu 1: LeakyReLU oot | (N 256) | . n
I output: lone, 512 I output: one,] 4 3
! i ‘ Z
| : l V : | l]
i i |
b input: | (None, 512) Y input: | (None, 256) | .
! dense_5: Dens ! dense_2: Dens %
: ; cse_3: Dense output: | (None, 1024) : : ; : etse= Deme output: | (None, 1) : E
H ! -
L 1!
: | leak 10 4: LeakyReLU input: | (None, 1024) : : E B
eaky re_lu 4: LeakyRel i’ a9 7
:: Yoo Y output: | (None, 1024) :: .
I
N I "
! |
I | I
h . L input; | (None, 1024) | ! ;
1y | batch_normal 2: BatchN lization !
" - - output: | (None, 1024) | 1!
LN 1!
" n
i "
I ; input: | (None, 1024) 1!
1 dense_6: Dense 1!
1 - output: | (None, 784) | ;
i I
| : | :
/! iy
| : input: (None, 784) 1!
N reshape: Reshape 1!
1 output: | (None, 28, 28, 1) I ;
1 I U
S T L T I I T I I T I T I T I I I I o I I I I o I I o o oo)
164 —— dloss
—— gloss
1.4+
L 1.2+
Q 1.0 1
S
0.8
S
0.6
0.4 4
0.2
0.0
T T T T T T T
0 5000 10000 15000 20000 25000 30000

Epochs

51

Appendix H - Experiment 8

nput: | [(None, 200)]

input_3: InputLayer

output:

[(None, 200)]

fmmmmm e m e mmm - o) -
model 1 l_

1
1
[(None, 2000] | 1
1
i

. input:
input_2: InputLayer
output: | [(None, 200)]
"sc};.fe;u;l}""""""""[_______
. input: | [(None, 200)] input: | [(None, 28,28, 1)]
dense_3_input: InputLayer input_I: InputLayer
utput: | [(None, 200)] output: | [(Nene, 28,28, 1)]
input: | (None, 200) input: | [(None, 28, 28, 1)]
dense_3: Dense flatten_input: InputLayer
output: | (None, 256) output: | [(None, 28, 28, 1)]
input: | (None, 256) input: | (None, 28, 28, 1)
leaky re lu_2: LeakyReLU P flatten: Flatten P
output: | (None, 256) output: (None, 784)
L . input: | (None, 256) input: | (None, 784)
batch_normalization: BatchNe | dense: Dense
- output: | (None, 256) output: | (None, 512)

}

!

reshape: Reshape

input: | (None, 1024)
leaky re_lu_4: LeakyReLU
output: | (None, 1024)
L . input: | (None, 1024)
batch all 2: BatchNormalization
- - output: | (None, 1024)
input: | (None, 1024)
dense_6: Dense
output: | (None, 784)
input: (None, 784)

]

(None, 28,28, 1)

input: | (None, 256) nput:
dense_4: Dense leaky_re_lu: LeakyReLU
- output: | (None, 512) - output: | (None, 512)
nput: | (None, 512) input: | (None, 512)
leaky re lu_3: LeakyReLU dense_1: Dense
output: | (None, 512) output: | (None, 256)
X input: | (None, 512) input: | (None, 256)
batch_normalization_1: BatechN lization - leaky re lu_I: LeakyReLU
output: | (None, 512) output: | (None, 256)
input: (None, 512) input: | (None, 256)
dense_5: Dense dense_2: Dense
- output: | (None, 1024) - output (None, 1)

|
I
I
|
I
I
|
I
I
|
I
I
I
i
I
I
i
I
1
i
|
I
i
(None, 512) |
I
i
1
I
I
I
|
I
I
I
I
I
|
|
I
i
I
I
i
I
I
I
I
I

(Joln]w]w

1.75 A

1.50

1.25 A

1.00 4

w w o H

0.75 1

0.50 4

0.25 1

0.00

—— dloss
—— gloss

T
0 5000

T
10000

T T
15000 20000

Epochs

T T
25000 30000

52

Appendix | - Experiment 9

input: | [(None, 200)]
output: | [(None, 200)]

input_3: InputLayer

[(None, 200)]
[(None, 200)]

: ' input: | [(None, 200)] X input: | [{None, 28, 28, 1)]
V! dense_1_input: InputLayer input_I; InputLayer
' : output: | [(None, 200)] output: | [(None, 28, 28, 1)]

Yy '/

Ty

hy

input: | (None, 200)
output: | (None, 256)

_____________________________ y
) sequential l

input: | [(None, 28, 28, 1)]
output: | [(None, 28, 28, 1)]

|

dense_1: Dense conv2d_input: InputLayer

input: | (Nene, 256)
output: | (None, 256)

input: | (None, 28,28, 1)
output: | (None, 14, 14. 64)

|

input: | (None, 14, 14, 64)
output: | (None, 14, 14, 64)

|

input: | (None, 14, 14, 64)

leaky_re_lu_2: LeakyReLU conv2d: Conv2D

input: | (None, 256)
output: | (None, 256)

batch_normalization: BatchN leaky_re_lu: LeakyReLU

|

input: | (None, 256)
dense_2: Dense

dropout: Dropout

output: | (None, 512) output: | (None, 14, 14, 64)

|

g I

| i
| |
1 I
1 1
1 1
1 1
1 |
1 1
| I
| l
| i
1 |
1 1
| I
1 1
1 1
1 I
1 1
1 1
1 i
1 I
1 1
| 1
| [
| i
1 i
1 1
1
: 1
1 1
1 input: | (None, 14, 14, 64) !
| conv2d_I: Conv2D :
1
1 I
1 1
1 l
\ i
1 1
1 I
1 1
1 l
1 |
1 1
1 1
1 i
| i
1 I
1 I
| I
1 i
1 I
1 1
1 I
1 1
1 1
l |
1 I
| I
1 i
| I
| I
I

" input: | (None, 512).."

: ' leaky_re_lu_3: LeakyReLU P () 14

. : output: | (None, 512) output: | (None, 7.7, 64) -ﬁ
s

N nput: None, 512 mput: | (None, 7,7, 64 v

"1 | batch_normalization_1: BatchNormalizati i {) leaky_re_lu_1: LeakyReLU i) 24

: | output: | (None, 512) output: | (None, 7,7, 64)

g | |

N

Y

"y input: | (None, 512) input: | (None, 7,7, 64)

Yy dense_3: Dense dropout_1: Dropout

: [l output: | (Nene, 1024) output: | (None, 7,7, 64)

N l l Ei

| :

] input: | (None, 1024) " input: | (None, 7,7, 64)

" leaky_re_lu 4: LeakyReLU flatten: Flatten .

hy - output: | (None, 1024) output: (None, 3136) 7

'

I : l l

Ny

Y

Y . . input: | (None, 1024) input: | (None, 3136)

1y | batch 1| 2: BatchN, 1 dense: Dense

1 - - output: | (None, 1024) output (None, 1)

Ny [———————

" L e

N

"

1 input: | (None, 1024)

1 dense_4: Dense

1 - output: | (None, 784)

"

"

I l

input: (None, 784)
output: | (None, 28, 28, 1)

! :

: reshape: Reshape
1

0.7

0.6 1

0.5

0.4 4

0.3

0.2 4

0.1+

— dloss
—— gloss

0.0 1

T T T T T T
0 5000 10000 15000 20000 25000 30000

Epochs

53

Appendix J - Experiment 10

input: | [(None, 100)]

input_3: InputLayer

output: | [(None, 100)]
* model 1 H
H input: | [(None, 100; H
: input 2: InputLayer |7 L il I
output: | [(None, 100)] | |
quential 1T mToTTmmomT T
input: | [(None, 100)] input: | [(None, 28. 28. 1)]
dense_I| _input: InputLayer input_1: Inputlayer
- output: | [(None, 100)] - output: | [(None, 28,28, 1)
e 1D input: | (Nene. 100) . R input: | [(None. 28.28_]
ense 1: Dense conv2d input: InputLayer
outpul: | (None, 6272) P put output: | [(None, 28, 28. 1]
N ut | (None, 6272) 24 ComeaDy || (None, 28,28, 1)
reshape: Reshape S . . conv2d: Conv2D [~ S
P P I outpuat: | (None, 7, 7, 128) output: | (None, 14, 14, 16)
. . N T AT PSS TN KT EN NN
[owput: | (None, 12,714, 128) | [output: | (None, 14,14, 196) |
input | (None. 14, 14, 128) input: | (None. 14, 14, 16)
conv2d_4: Conv2Dy aropout: Dropout
output: | (None, 14, 14, 128) output: | (None, 14, 14, 16)
bare [Cinput: [(None, 14,14, 128) 0 1oz | [(None, 14,14, 16)
ate comv2d_1: Conv:
[owpus: | (None, 14, 14, 128) oupu | (None. 7.7, 32)
e tivation: Activation |_HPUL_| (None. 14, 13, 128) s 2 oy |_input [(None. 7.7.32) |
output: | (None, 14, 14, 128) [outpuc: | (None. 8.8.32) |
; i o | input: ‘ (None, 14, 14, 128) [et [input: ‘ (Nonc, 8, 8. 32) ‘
up_sampling2d_1: satch
i S | output: | (None, 28, 28, 128y | - [output: | (None, 5. 5.32) |
. (None, 28, 28, 128) input: | (Nene, 8. 8, 32)
conv2d 5: ConvZD leaky re lu 1: LeakyReLU
(Nonc, 28, 28_64) output: | (Nonc, 88_32)
e . [input: | (None. 28,28 64) | aronout 1 Dromowt || (None, 8. 8.32)
- - [“output: | (None. 28.28. 64 | pont Cutpul: | (None, 8, 8.32)

]

input.

(None, 8. 8. 32)
conv2d_2: ConvaD

(Nonc, 4, 4, 64)

input: | (None, 28, 28, 64)

[imput | (None, 4, 4. 64) |
conv2d_6: Conv2D batch 1
- output: | (None, 28, 28, 1) -

[(None, 4, 4,64) |

input: | (None, 28, 28. 1)
activation_2: Activation

leaky_re_lu_2: LeakyReLU
output: | (None, 28, 28, 1)

input:_| (None, 4. 4. 64)

dropout_2: Dropout
‘ ot i output: | (None, 4. 4, 64)

input: | (Nene, 4,4, 64)

conv2d_3: ConvaD

output: | (None. 4, 4. 128)

T mpue_ | tNone, 4,4, 138) |
[t [None, 3, 4,138 |

mput: | (Nome, 4, 4, 128)
output: | (None, 4, 4, 128)

leaky_re_lu_3: LeakyReLU

input. | (Nonc_ 4. 4, 128)
output: | (None. 4. 4. 128)

input: | (Nonc, 4, 4, 128)
output. | (None, 2048)

input: | (None, 2048)
Dense
output: | (None, 1)

flatten: Flatten

L

S
$0.00005 A

—0.00010

—0.00015

0.00005 A

0().00000 b

— dloss
—— gloss
—— gloss
T

T T T T T
0 1000 2000 3000 4000 5000

Epochs

54

Appendix K - Experiment 11

T input: | [(None, 100)]
input_3: InputLayer
puL: inputtay output: | [(None, 100)] -
fmmmm o m e Fe
o i , EEEEN
! input: | [(None, 100)] :
: input_2: InputLayer |
, output: | [(None, 100)] : . . - . .
1! 1
i (] HHEENE
" — i — 1
input: one, 100) | input: one, 40,40, 3
: ! dense_3_input: InputLayer P L) : 1" | input_I: InputLayer P o i b
| : output: | [(None, 100)] | |1 : output: | [(Nene, 40, 40,3)] b =
1 W T - - - - - - - - - —--- i s
D: j |::: diseriminator l :a ‘ &‘ﬁ . e
" Yy " 2
o input: | (None, 100) i input: | [(None, 40.40,3)] | '} @ H .
" dense_3: Dense 1111 fatten_input: InputLayer n s E.
" N output: | (Nene, 256) i B output: | [(None, 40, 40, 3)] | 1, ‘ %ﬂ tfg H
1 [~ —
g ' i l | ENEEE
" L ! - e
1y P it " i 55 I
t: | (None, 256 i t: | (None, 40,40, 3 ! 4 b *
4 feaky re_lu 2: LealgReLU [Pt | (None, 259 o laten: Faten |2t (None) i BE3EHE
1 output: | (None, 256) | : | : output: (None, 4800) :,
' l N l i
" T i
" | : \ : i . - E .
! o input: | (None, 256) | | 111 input: | (None, 4800) ' : .
! batch_normalization: BatchNor h dense: Dense " |
i: output: | (None, 256) | 1 :] output: | (None, 512) :1 =
" i b
H] g | I EEHH
I
il input: | (None, 256| o input: | (None, 512 i
:: dense_4: Dense r ((N 5]2: : : : : leaky_re_lu: LeakyReLU P :N SIZ; |: - ! . . .
. output: | (None, h output: | (None, |
g i | EHEEBE
:1 : i 0!
1 I I
:' . input: | (None, 512) : : ! : . input: | (None, 512) |:
‘: leaky re lu_3: LeakyReLU wutpat | (Nore 512) N 1 ' dense_1: Dense output. | (Nome, 256) (. . - E o
n : i o wiput;] b L
" T i
[}
{ ' gt ' | HEEEE
Yy input: | (None, 512) | N input: | (None, 256) ! . . 3
"1 | batch ization_1: BatchNor i P {) ! : | : leaky re lu_l: LeakyReLU Le {) :‘ B ¥ .]
:l - - output: | (None, 512) : i - output: | (None, 256) .j 2
: I g I | EdHEN
1 i ! a ‘ K BB
" I i =y
N input; | (None, 512) il iput: | (None, 256) " ‘ == =
y dense_5: Dense N dense_2: Dense !
" - output: | (None, 1024) T B output: | (None, 1) !
1 | !
" l ! : ooooooTIoIIooIIoIIoIIooIIIIICL ! A
] l
} . i JEEEE
N input: | (None, 1024) b
" leaky re_lu_4: LeakyReLU Y E . E '
Ty output: | (None, 1024) [
! | W E B
1 " 3
¥ o
'
1 input: | (None, 1024) |! ! - . g a .
11 | batch_normalization 2: BatchNormalizati put_|) "
:. output: | (None, 1024) : \ E . . . E
1 : | :
" i
r: input: | (None, 1024) 1!
n dense_6: Dense 1!
' output: | (None, 4800) | :
1 1 1 I
" "
" i
1 : input: (None, 4800) 1!
i reshape: Reshape 1!
(None, 40, 40, 3) I :
.--_.-__-__--_-._--_-.'.'_'.'.'_'.'.'.'.'.'.'_'_'.'I_'
—— dloss
25 4 —— gloss
20
L
Q
s 15 A
s
10
5
n |
T T T T T T T
0 5000 10000 15000 20000 25000 30000
Epochs

55

Appendix L - Experiment 12

input: | [(None, 100)]
output: | [(None, 100)]

| [——

input_2: Inputlayer

output:

I
input: | [(None, 100)] | |
[(None, 100)] H

input:_| [(Nene, 40, 40, 3)]
output: | [(None, 40, 40, 3)]

sequential

input: | [(None. 100)] -
input_1: InputLayer

dense_1_input: InputLaye
e Lnput Inpull-ayer 1= out | [(None, 100)]

conv2d_input: Inpul

(None, 100)
dense_l: Dense 13

None, 12800)

input (None, 12800)
reshape: Reshape

conv2d: Conv2D
output: | (None, 10,10, 128) output: | (None, 20, 20, 32)

| input: | (None, 40, 40, 3)

put: | (None, 10, 10, 128)
D
| output: | mNone, 20.20.125) |

I
I

nput._| (None, 20, 20, 32) !

leaky re lu: LeakyReLU !
i
I
I

output: | (None, 20, 20, 32)

input: | (None, 20, 20, 128)
output: | (None, 20,20, 128)

input: | (Nene, 20, 20, 32)

(None, 20, 20, 32)

conv2d 4: Conv.

output:

| dropout: Dropout

] inpur] (Nonc, 20, 20, 128) |

! (None, 20, 20_32)
[[output: | (None. 20,20, 128) |1
1

(None, 10, 10, 64)

input

batch_normalization_3: BatchNc convad_I: ConvaD

input: [(Nene, 20,20, 128)
output; | (None, 20,20, 128)

activation: Activation zero_padding2d: 7 22D

[input | tNone, 10, 10, 64) |
| ourput: | (None, 11,11, 64) |

\ input: \ (Nene, 20, 20, 125)]

\ nput \ (None, 11, 11, 64) |
| outpur | (None, 40,20, 128 |

[oupur. | (Nene, 11, 11.64) |

| Batch_ BatchN

input. | (None, 40, 40, 128) input: | (Nene, 11, 11, 64)

eonv2d 5: ConvD leaky re lu 1:LeakyReLU

output: | (None, 40, 40, 64) output: | (None, 11, 11, 64)

[mput | (None, 40,40, 64) |
| ouput: | (None, 40,40, 64) |

input: | (None, 11, 11, 64)
utput: | (None, 11, 11 64)

bateh C 4: Bateh

dropout 1+ Dropout

(None, 40, 40, 64) input._| (None, 11, 11, 64)

cuiput: | (None, 6, 6, 128)

activation_1: Activation conv2d_2: Conv2D

40, 40, 64)

input:_| (None, 40, 40, 64) [Cinput: | iNene. 6, 6.128) ||
conv2d_6: Conv2D batch_y ation_| H
output: | (Nonc, 40, 40, 3} \ output: | (None, 6, 6, 128) |,.
h
i
:
input._| (None, 40, 40, 3) input. | (None, 6.6, 128) I
activation_2: Activation leaky_re_lu_2: LeakyReLU i
output: | (Nome, 40, 40, 3) output: | (None. 6. 6. 128) h

input:_| (None. 6. 6, 128)

diopout_2: Dropout

output: | (None, 6. 6, 128)

t | (None, 6.6, 128

conv2d_3: Conv2D) i (None,)

- output: | (None, 6. 6. 256)

batch 1 ization_2:

\ input | (None, 6, 6, 256) |
[output: | (Nene, 6. 6.256) |

input: | (None, 6, 6, 256)

output: | (None, 6. 6. 256)

input: | (None. 6, 6, 256)
dropout 3: Dropout
output: | (None, 6. 6, 2563

input:_| (None, 6, 6, 256)
output: | (None, 9216)

leaky_re_lu_3: LeakyRelU

fatten: Flatten

— dloss
—— gloss

3.5 4
3.0 4
2.5
02.04

s 1.5 1

1.0 4

0.5 4

0.0 4

0 500 1000 1500 2000 2500 3000 3500 4000
Epochs

56

Appendix M - Experiment 13

input: | [(None, 100)]
output: | [(None, 100)]

input_3: InputLayer

input: | [(None, 100)]
output: | [(None, 100)]

.
1

.
.
.
.
.
1
.
.
1
.
.
.
.
1
1
g
.
.
1
1
.
.
1
.
.
.
.
.
1
.
.

EEEEE

input: | [(None, 100)]
output: | [(None, 100)]

dense_3_input: InputLayer

/

input: | (None, 100)
output: | (None, 256)

}

leaky re_lu_2: LeakyRelLU

output: | [(None, 40,40, 3)]

1
|
1 input: | [(None, 40,40, 3)]
|
|

23

input: | [(None, 40, 40, 3)]
output: | [(None, 40, 40, 3)]

o

dense 3: Dense

input: | (None, 256) input: | (None, 40,40, 3)

flatten: Flatten

output: | (None, 256) output: (None, 4800)

input: | (None, 4800)
output: | (None, 512)

r\lnvl

batch_ lization: Ba lization

l

input: | (None, 256)
output: | (None, 512)

input: | (None, 256)
output: | (None, 256)

dense: Dense

INeR | HERE
)

%
E

input: | (None, 512)

dense_4: Dense

output: | (None, 512)

input: | (None, 512)
output: | (None, 256)

|

leaky re_lu_I: LeakyReLU

l

leaky re_lu_3: LeakyReLU

—

batch_normalization_|: BatehNormalization

input: | (None, 512)
output: | (None, 512}

dense_1: Dense

input: | (None, 512)
output: | (None, 512)

input: | (None, 256)
output: | (None, 256)

HEAFE DEEDA EUEEg EEEEE

!

nput: | (None, 512)
output: | (None, 1024)

l

leaky re_lu 4: LeakyReLU

|

batch_normalization 2: BatchNor

|

input: | (None, 1024)
output: | (None, 4800)

|

input: (None, 4300)
output: | (None, 40, 40, 3)

input: | (None, 256)
output: | (None, 1)

dense_S: Dense

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

leaky re_lu: LeakyReLU |
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

dense_2: Dense 1

I
I

input: | (None, 1024)
output: | (None, 1024)

HElNE DESI
@

ol
|
el

input: | (None, 1024)
output: | (None, 1024)

dense_6: Dense

reshape: Reshape

—— dloss
— gl
5 gloss
4 m
L
o]
34
S
S
2 m
14
0 -
T T T T T T T
o 5000 10000 15000 20000 25000 30000

Epochs

57

Appendix N - Experiment 14

input: | [(None, 100)]
input_3: InputLayer
output: | [(None, 100)]

input:

. [(None, 100)] H
input 2: InputL ayer '

output: | [(None, 100)]

HERER
AHBER EEEER

(O Je
ERrnD SHFEX HEEEER

dropout_1: Dropout

]
l output: \ (None, 40, 40, 64) |

output: | (Nene, 11, 11, 32)

(Nane, 40, 40, 64)

input. | (None, 11, 11,32)
activation_1: Activation conv2d. Conv2D
o (None, 40, 40, 64) N output: (None, 6. 6, 64)
Non, 40, 401, 64 input: | (None, 6, 6, 64
convad_6: ConvaD ¢) batch 1 ization 1 [Linpu]) |

(None, 40, 40, 3)

output:

[“output: | (Nome. 6.6.64) |

J
I
| [(None, 100y] | 4 [[(None. 40,40, 3
dense_1_input: InputLayer npu [(None i input_1: InputLayer npu L(None il
output: | [(None. 100)] | ! output: | [(None, 40, 40, 3)]
|11 equential
I
input: | (Nene, 100y ' input: | [(None, 40,40, 3)]
dense_1: Dense | convzd_input: InputLayer
output: | (None, 12800) ! output: | [(None, 40,40, 3]
|
I
I
e Reat input: | (None, 12800) ! s Comyaty Ut | (None, 40 40.3)
reshape: Reshay conv2d: Conv:
P P [ouput: | (None, 10, 10, 128 ! output: | (Nene, 20,20, 16)
I
|
[Cinpur:] (None, 10,10,128) | | input: | (Nene, 20, 20, 16)
u ling2d: U D ! leaky re lu: LeakyReLU
P \ output: | (None, 20, 20, 128) \ ! . ¥ output: | (Nene, 20, 20, 16)
|
20 4 ComaD input: | (Nene, 20, 20, 128) : p b input: | (Nene, 20, 20, 16}
c : ropout: t
oA o e iput: | (Nene, 20, 20, 128) I ropent L opent |t | (Nenc, 20, 20, 16)
m ' e
I
i
I
atch B] input: {(Nun:,lﬂ,lﬂ, 128) ‘; comvad 1: Coman | Pu | (None, 20,20, 16)
- - | owput: | (None, 20.20.125) | ! - output: | (None, 10, 10, 32)
i
input: | {None, 20, 20, 128) ! input; None, 10, 10, 32)
activation: Activation [~ < i zero_padding2d: Z EZD‘ put_[one |
output: | (Nene, 20, 20, 128) I | output: | (None, 11, 11,32y |
I
|
o | input: |(N.m=,zn, 20, 128) | ' bach | input: ‘ (None, 11, 11,32} ‘
: ate!
e | output: | (None, 40, 40, 128) | I | output: \ (Nome, 11, 11,32)]
I
| I
I
245 Comyap |1PPU | (None, 40, 40, 128) ' eaky et 1: LeakyReLuy | P | (None 11, 11.32)
conv2d_5: Con: I eaky re lu_1: Le
output: | (None, 40, 40, 64) i output; | (Nene, 11,11, 32)
I
|
i
Dot [mput: T (None, 40,40, 64) | 1 input: | (None. 11, 11, 32)
atel .
I
I
I
I
I
I
I
I
I
i
I
I
I
I
I
I
I
I
I
I

ation 2: Activation

input:_| (None, 40, 40, 3)

[input:] (None, 6, 6.64) |

T

i
b2
d
=
=
=
=
3
E
54

(None, 40, 40, 3)

eaky re lu 2: LeakyReLU
output: |

output; | (None, 6, 6,64) |

[(None. 6, 6, 64
dropout_2: Dropout [nPu_| (None)
- output: | (None, 6, 6. 64)
input: | (None, 6, 6, 64)
comv2d_3: Comv2D
- cutput: | (None, 6. 6. 128)

[Cinput: [(None. 6.6, 128) |

batch, 2
- [output: \ (None, 6. 6, 128) \

]

leaky re lu 3: LeakyReLU

input:
output:

(None, 6. 6, 128)

dropout 3: Dropout
‘ pou " (None, 6. 6, 128)

input: | (None. 6, 6, 128)
output; | (None, 4608)

e 6057

flatten: Flatten

(e

=
=
&3
=
Bl
Ed
=]
=

i

HIEnY | ORNUEE DoORrN
PEXAR @ =D

i)

0.0002

0.0001 -

0.0000 +

wow oo

—0.0001 4

—0.0002 -

—0.0003

0

T
500

T T T T T
2000 2500 3000 3500 4000

Epochs

T T
1000 1500

58

Appendix O - Experiment 15

. R input: | [(None, 100)]
t_3: InputLayer
Ut 3 fnputtayer output: | [(None, 100)] - . .
s T . EEEE
I
. input: | [(None, 100)] | . . .
input_2: InputLayer I
utput: | [(None, 100)] [1 . - .
; 1
.) HEHNE
input: , 100) i input: .40, 40,3 !
dense_1_input: InputLayer input: | [@ane U | :" input_1: InputLayer input: | [(None U !
output: | [(None, 100)] | s output: | [(None, 40, 40, 3)] :
N
S
/ : " 1 sequential ‘ H -
i
input: | (None, 100) 1! : ! input: | [(None, 40, 40, 3)] E B
dense_1: Dense 1hU] conv2d input: InputLayer .
output: | (None, 12800} 1 : ' : output: | [(None, 40, 40, 3)] B
' & E S
HE R

NEEEE HSRECE NEEEEN

L
ut: . 12800) th t: 40,40, 3
reshape: Reshape 1 (Blone,) : ! : ! conv2d: Conv2D 1y (Oone) H
output: | (None, 10, 10, 128) 1 : " output: | (None, 20, 20, 64)
1
o
g I _
N >
) X input: | (None, 10, 10, 128) | 1! : input: | (None, 20, 20, 64) g h
up_sampling2d: UpSampling2D 1! | leaky re lu: LeakyReLU =
output: | (None, 20, 20, 128) | o output: | (None, 20, 20, 64)
- . B e
input: | (None, 20, 20, 128) 1 input: | (None, 20,20, 64) -6
conv2d_2: Conv2D P : 1 dropout: Dropout i ‘ b
output: | (None, 20, 20, 128) 0! : 1 output: | (None, 20, 20, 64) i]’ [|

] i l

HRLCER poeos

]

HdE EJrdl FHEMS EEEER

1
1
1
1
‘
‘
‘
‘
‘
'
'
|
1
1
1
1
1
1
1
‘
‘
‘
‘
‘
'
'
|
1
1
1
(Nonc, 20,2064 |
1
1
‘
‘
‘
‘
‘
'
'
|
1
1
1
1
1
1
‘
‘
‘
‘
‘
‘
'
|
1
1
1
1
1
1

input: | (None, 20, 20, 128) : 1 input:
batch_normal; : BatchNormals [conv2d_1: Conv2D
- output: | (None, 20,20, 128) | ;1 : 1 - output: | (None, 10, 10, 64) E E
]
] = E
l i HEE s
- o - B
t: | (None, 20, 20, 128 ! t: | (None, 10, 10, 64) 8
activation: Activation input: | (None.) | : : ! : leaky re_lu_I: LeakyReLU input | (None) H -.‘g 3
output: | (None, 20, 20, 128) | N output: | (None, 10, 10, 64) -_3 E a f’i
1
l it = ~
' E s ™~
_ o i | k} lg :
input: | (None, 20, 20, 128) it input: | (None, 10 10, 64)
up_sampling2d_1: UpSampling2D o dropout_1: Dropout
output: | (None, 40, 40, 128) i output: | (None, 10, 10, 64)
' th
! h E&
: 1 i WYEDNS
- > ' nout:
: conv2d_3: Conv2D input: | (None, 40, 40, 128) ! : : : flatten: Flatten input: | (None, 10, 10, 64) - ﬂ B &J g
: - output: | (None, 40, 40, 64) : \ : H output (None, 6400) a n g E ﬁ
| : Bt l =
1 1
. — i . sEERA
- - - 5 » Wy Ty i E s
batch nommalization 1 BatchNormaization [T Crone- A 40.64) 1y donse: Dense [Pt | (None, 6400) Fag il
- - output: | (None, 40, 40,64) | ! output (None, 1)

. o input: | (None, 40,40, 64)
activation_: Activation
- output: | (None, 40, 40, 64)

input: | (None, 40, 40, 64)
conv2d_4: Conv2D
output: | (None, 40,40, 3)
mput: . 40,40, 3)
i . activation_2: Activation input:_| (None 2 ‘
N output: | (None, 40, 40, 3) ‘
:.l:______ fiinfiifgegogtegfogteglogtegfigfifinfigfiggtegegtegtiptegtigtififig
1.2 —— dloss
—— gloss
1.0 4
L
Q o84
S
S
0.6
0.4 1
0.2
T T T T T T T T T
o] 500 1000 1500 2000 2500 3000 3500 4000
Epochs

59

Appendix P - Experiment 16

[(001 .sn0M)] | :wqai

wyslivgal £ jugai
{001 .sn0M)] | uqgtuo . . -

|
I

(001 .on04)] | wqui
(008 enol)] | ugei oysdivgal 1€ tugni
i
|

[(001 .sn0M)] | uqiuo

[(00] smoM)] | :tugai

1oy Diugal <1 _Jugai 1oyslugal Suqai_[_sensh

(£ 0808 sr0/)] | suqiue

I
I

: [(£ .0 0B 5t0M)] | i
| 1001 sno)] | tugquwo

BAREY EEEEE

Hd ENFER EEEEE
i NHEJAR HEEEN

DEGEN RESED EEEEE

[(£ 0k 0k 2n0M)] | dugai (001 ,200M) i
wsys Duqul siugni_bCamos semsl :1_sensh
[(£ .0k 0k 2noW)] | ugiuo (008ST anoM) | Hugiuo
(£.04 .08 sn0M) | uqai (00881 ,omoM) | :uqui
ALvne) :blvios Udaflydesd € ul =1 velss]
(#0020 sn0M) | luqiuo (008S1 Lono¥) | Hugiuo
(k0,020 omoM) | ugni (00ECT LonoMl) Sugni
Udashydsed wul a1 yalssl oquiessl :squdest
(b0 .0 0€ amok) | sugluo (8C1 01 01 sn0) | uqiue
l B
(0008 08 amoM) | suqai |(8§I(0[,0[,snuw)l Suqai |m) e <+

Juoqord dwoqoib |

(80,02 ,0C s00M) | uquo [32102 0¢ snoit) | wquo |

2]
&

-

(BC1.02.0€ sn0M) | dwgni
ASvnoeD :1_bSvaos ASvroD :S_bSvnoy

(k001,01 80k | Jugiue (BE1.,0€.0€ sn0M) | uquo

-~

(83,01 ,01 500M) | thugai
Uldosbyslsod i1 _ul_o1_vyslsol
(b0 ,01,01 om0 | ueuo

Ao el

| (81 ,0€,0C an0M) t Jugni 1
| 2102 .08 anovt) | swquo |

(k001,01 ,2t0M) | :tugai
(k001,01 ,20M) | :uqiuo

(8S1,02,0< snoM) | uqni

Uldaslydsad - ul o1 plssl
(8E1,02 08 sn0M) | tugiuo

am "
HEEEE pEEER RRDAD | EEEEE
| 4 4 »

@]]

wogoidl 1 _uoqoib ‘

|

(k001,01 ;snoM) | uqoi
(0040 2n041) Hugiue

[caer 02 08 nolt) | ouqui |

notisll nstislt
[(@21 .08 0% sn0l) [o |

ASgail J:1_bSgnilqumse_qu

[

-

i
‘
i
‘
|
X
X
X
X
|
|
|
i
i
|
i
i
‘
i
:
i
'
X
|
'
|
:
V[0808 anot) | dwqai
|
i
i
i
i
i
i
i
X
X
'
X
|
|
i
|
i
i
i
i
i
g
‘
:
X
'
|
|

Al EEPaR

(0040 ,9m0M) | wqat
" (1 enod) | -wquo

(81 .08 Ok sn0M) | cwqni
(k0 0B 08 an0M) | dugiue

9ai19 (1 :9ansh ALvioD :£_blvnos

RAAGE TRARN ATFaRD

d
< |
=
=
&
=
|
k3
=
€l
Bl

DEREE

=
]
< |
=]

[0 .08 08 om0i) [tuqui |
[[(+0.0 08 sm0¥1) | 1o |

il Vidots :1_noitsxill Jhl.ﬁdl

(B0 Ok 0 on0M) | chugni
UldoSlydsad :b_ul_s1_valssl
(b0 .0k 0k Jom0M) | Suqiuo

(ko Ok 0k anoM) | chuqai
Ao b blvnos
(£,08 08 2n0M) | ugtuo -

| (£ .0k O an0M) | uqui |
I (£ 0k Ok an0M) [Hueiuo |

124 —— dloss
—— gloss

1.0

0.8

w v g

0.6

0.4

0.2

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

Epochs

60

Appendix Q - Experiment 17

sequential_1

input: . 100
input_3: InputLayer input: | [(None]
output: | [(None, 100)]
input: . 100
input_2: InputLayer input:_| [(None, 100)]
utput: | [(None, 100)]

EZH EEEEE

HINSE NEEEER

l

l

I
I
I
input: None, 100] input: one, 40, 40, 3
dense_1_input: InputLayer s [1 input_1: InputLayer 1 [1l :
output: | [(None, 100)] output: | [(None, 40, 40, 3)]) E 3
S . -
/ sequential 1! . .
0!
I
input: | (None, 100 input: jone, 40, 40, 3 !
dense_1: Dense P) conv2d_input: InputLayer w [1 : : . m
output: | (None, 3200) output: | [(None, 40, 40, 3)] N P
] EEEESd
| EERES
input: | (None, 3200) input: | (None, 40, 40, 3) |
leaky_re_lu 4: LeakyReLU conv2d: Conv2D Y
output: | (None, 3200) output: | (None, 40,40, 128) :)
I .
| | 3 ERESEN
1
input: (None, 3200) input: | (None, 40, 40, 128) | ! : H E . E -
- o " 1
reshape: Reshape leaky re lu: LeakyReLU N
output: | (None, 5, 5, 128) output: | (None, 40, 40, 128) : : ! . B .
I g >
l 1 i EES E
input: | (None, 5, 5. 128) input: | (None, 40, 40, 128) N - ¢ - =
conv2d_transpose: Conv2D Transpose il conv2d_l: Conv2D P : : n . n
output: | (None, 10, 10, 128) output: | (None, 20, 20, 128) "
l l !
1!
1!
input: | (None, 10, 10, 128) input: | (None, 20,20, 128) | ' : ﬁ H
leaky re lu 5: LeakyReLU leaky re_lu I: LeakyReLU Y E
output: | (None, 10, 10, 128) output: | (None, 20,20, 128) | !
= D)

input: | (None, 10, 10, 128) input: | (None, 20, 20, 128)
conv2d_transpose_1: Conv2DTranspose conv2d_2: Conv2D
output: | (None, 20,20, 128) output: | (None, 10, 10, 128)
input: | (None, 20, 20, 128) input: | (None, 10, 10, 128)
leaky_re_lu_6: LeakyReLU leaky _re_lu 2: LeakyReLU
output: | (None, 20, 20, 128) output: | (None, 10, 10, 128)
input: | (None, 20,20, 128 input: one, 10, 10, 128
conv2d_transpose_2: Conv2DTranspose o {) conv2d_3: Conv2D i ®)
output: | (None, 40, 40, 128) output: | (None, 5, 5, 128)
input: | (None, 40, 40, 128) mput: | (None, 5, 3, 128)

leaky_re_lu_7: LeakyReLU

output: | (None, 40, 40, 128)
input: | (None, 40, 40, 128)
output: | (None, 40,40, 3)

conv2d 4: Conv2D

leaky re lu_3: LeakyReLU

output:

(None, 5, 5, 128)

flatten: Flatten

input: | (Nene, 5. 5. 128)

output: (None, 3200)

input: | (None, 3200)
dropout: Dropout
output: | (None, 3200)
input: ., 3200
dense: Dense P (Nonc)
utput; (None, 1)

=

B O
EAEDE

=

ENER FEHEERD

BRER
AT
AR

w w g

17.5

15.0 4

12.5 1

10.0 4

7.5 A

5.0 4

2.5 9

e |

FBRRT Sy

0.0

T T T
0 500 1000

T
1500

T T
2000 2500

Epochs

T
3000

T T
3500 4000

61

Appendix R - Experiment 18

input. lone, 100
input_3: InputLayer put: | [N !

output: | [(None, 100)]
e ‘l"" ______ o
I
! input . 100
! input_2: InputLayer ingut: | [(Nowe, 100)]
: output: | [(None, 100)]
| mm e e mmCE D T it o

sequential 1 I \mﬁd\

input; one, 100 input; None, 40, 40, 3
dense_]_input: InputLayer 1 i) ‘ input_1: InputLayer s [ﬂ_) |
output: | [(None, 100)] | ouput: | [(None, 40,40, 3)] |
/ i \' """""""" ‘
imput: | (None, 100) input: (None, 40, 40, 3)]
dense_1: Dense 0 conv2d_input: InputLayer o L !
output: | (None, 3200) output: | [(None, 40, 40, 3)]
leaky _re_lu_4: LeakyReLU input: | (None, 3200) com2d: Com2D |2t (lone, 40, 40,3)
- output: | (None, 3200) . utput: | (None, 40, 40, 128)
reshape: Reshape input: (None, 3200) Jeaky. e lu: LeakyReLU input: | (None, 40, 40, 128)
’ g output: | (None, 5,5, 128) i output: | (None, 40, 40, 128)
input: (None, 5, 5, 128) mput: | (None, 40, 40, 128)
conv2d_transpose: Conv2DTranspose i conv2d_1:Conv2D P
output: | (None, 10, 10, 128) output: | (None, 20, 20, 128)

!

(None, 10, 10, 128) input: | (None, 20, 20, 128)

leaky re_lu 5: LeakyReLU

output:

leaky re_lu_1: LeakyReLU

output:

(None, 10, 10, 128) (None, 20, 20, 128)

!

d

HdE EEEEm

EEY EEEEE

&

=
O
O
O
r
3
=
K
&
F
| S
& £
= B
HE

AR

EEmEm

il

input: | (None, 10, 10, 128) mput: | (None, 20, 20, 128)
conv2d_transpose_1: Conv2DTranspose conv2d_2: Conv2D
output: | (None, 20, 20, 128) output: | (None, 10, 10, 128)
input: | (None, 20, 20, 128) input: | (None, 10, 10, 128)
leaky_re_lu_6: LeakyReLU leaky_re_lu_2: LeakyReLU
output: | (None, 20, 20, 128) output: | (None, 10, 10, 128)
input: | (None, 20, 20, 128) input: | (None, 10, 10, 128)
conv2d_transpose_2: Conv2DTranspose conv2d_3: Conv2D
output: | (None, 40, 40, 128) output: | (None, 3, 5, 128)

|

]
]
!
1
1
]
!
1
1
]
]
!
1
1
]
!
1
1
]
]
!
1
1
]
!
1
1
]
]
!
1
1
]
!
1
1
|
] input:
1
1
]
!
1
1
]
]
!
1
1
]
!
1
1
]
]
!
1
]
]
!
1
1
]
]
!
1
]
]
!
1
1
]
]
!
1
]

x

—

RERE | CDven Sucum | 4

|
&
E
=
|
=
|
|
|

&

LRE

5
=z
9
- |
=]
=2
i
|
=
&
B
=
B
8
[
=
=
[
&

]
=
B
£
|
5]
¥
Fa

input: | (None, 40, 40, 128) input: | (None, 5,5, 128)
leaky re_lu_7: LeakyReLU leaky re_lu 3: LeakyReLU
output: | (None, 40, 40, 128) output: | (None, 5,5, 128)
input: | (None, 40, 40, 128) input: | (None, 5, 5, 128)
conv2d_4: Conv2D flatten: Flatten
output: | (None, 40, 40, 3) output: (None, 3200)
! |
[N input: | (None, 3200)
h dropout: Dropout
[output: | (None, 3200)
1
" l
"
1
" input: | (None, 3200)
Y dense: Dense
|, output: (None, 1)
e e e e e - -- .- - - ------- 1
L
— dloss
15.0 1 —— gloss
12.5 1
L 10.0 4
0
5 754
S
5.0 A
2.5 ke 2l o
0.0 A
T T T T T T T T T
o] 500 1000 1500 2000 2500 3000 3500 4000
Epochs

62

Appendix S - Experiment 19

. input: | [(None, 100)]
input_3: InputLayer
output: | [(None, 100)]
wodel 1T TTTTTT 'l""""""";
i
input one, 100
nput_2: InputLayer P [J ;
output: | [(None, 100)] |
I

';eﬁ.le;ii;[l”"’"””""T 7777777777 W 7777777777777777777777

'
1
' input:
|
|

=
k=
=

B
=
&
=
=
£3
d
=

PADEr EEERE

" R

n

E
B
b
i
B
£
=
T
5

W O

-t
- |
=
5 |
a8
S|
B
=
|
o |

4

-

(\.
e 2

Gl | F
EE

1
1
'
'
'
1
1
' i
! I
Y |
input one, 100] | one, 40, 40,3
: : dense_3_input: InputLayer o [il : | input_I: InputLayer (s)
' utput: | [(None, 100)] | | : output: | [(None, 40, 40,3)]
1 e
: : '/ : ; : : sequential L
! i
: ! input: | (None, 100) : i1 input: | [(None, 40, 40, 3)]
' dense 3: Dense 11| fatten input: InputLayer
" - output: | (None, 256) N - output: | [(None, 40, 40, 3)]
' o
i l i l
" it
! input: | (None, 256 i nput: .40, 40, 3)
: : leaky_re_lu_2: LeakyRel.U input: | (None, 236) : i : | flatten: Flatten fnput: | (None)
1 output: | (None, 256) | : ' ; output: (None, 4800)
i |
N l o l
: ! : 1h
! input: one, 256) | 111 input: e, 4800
:: batch_normalization: BatchN i e - (on) :\:r dense: Dense P - (on)
" output: | (None, 256) | |1 H output: | (None, 512)
Y I : | :
[[
i i
! input: | (None, 256) i input: None, 512)
: ! dense_4: Dense P : ! : leaky re_lu: LeakyReLU o (
) output: | (None, 512) o output: | (None, 512)
' : | : : [
L 1 i
/| i
! input: None, 512 ! input: one, 512
" leaky re lu_3: LeakyReLU P () | o dense_1: Dense id ®)
' : output: | (None, 512) " : | output: | (None, 256)
I l | : N : l
LN [
" i : ' :
't input: one, 512) | 11 input: one, 256
"1 | batch_normalization_1: Batch i P L a : 1 : leaky re lu_I: LeakyReLU P il)
: | output: | (None, 512) : N output: | (None, 256)
1 : i : !
I [
I | :) :
: | input; | (None, 512) : i input: | (None, 256)
H dense_5: Dense - it dense_2: Dense
V! output: | (None, 1024) it output: (None, 1)
! : ! : IL}_'_'_'_"_'.'_'_'_':_'.—_'.'_'.'_'.'_'.'_'.'_'.'_'.'_'_'_'.
" ;o
! : input: | (None, 1024) ! :
h leaky re_lu_4: LeakyReLU n
: | output: | (None, 1024) : ,
" '
i i
' - I
1] I
11| batch_normalization 2: BatchNormati input_| (None, 1024) | |,
I - - output: | (None, 1024) | 1 ;
I i
N | :
" i
I
' input one, 1024 '
" dense_6: Dense i ™) "
: | output: | (None, 4800) : i
1 : | :
I "
' |
" input: | (None, 4800) i
I reshape: Reshape 1!
I output: | (None, 40, 40, 3) | :
1 U

THELR

o]]
pHNEnE DR

BREDE
CANENa

v ow oo M
S

—— dloss
—— gloss

T T
0 5000 10000

T T T T
15000 20000 25000 30000

Epochs

63

Appendix T - Experiment 20

input: | [(None, 200)]
input_3: InputLayer
| (Nore, 200 EEEEN
e T T EEEER
"
: input 2 Inoutla input: | [(None, 200)] E
input_2: InputLayer
: Pl Toputiay output: | [(None, 200)] :
[T PR S ! -
1) sequential | f \-I\t:ﬁbd\ |
1 " |
1 iy - |
input: one, 200 i input: one, 40,40, 3
: : dense_3_input: InputLayer IP " {?: 2001]] : t: input_I: InputLayer tp:t i((:) 33 :
" outpul one, e outpu one, 40,40, | -
'
¥ '/ et & “““““““ } EEEER
/! i o @
input: | (None, 200) e input: | [(None, 40, 40, 3)] | ! o =
: : dense_3: Dense r : ' : ' | flatten_input: InputLayer P L ! ! : H . .
N output: | (None, 256) | :. : output: | [(None, 40, 40, 3)] : | H s -
I 1
N l o l r .
! i § HEER
" input: | (None, 256) o input: | (None, 40, 40, 3) iy
' leaky re lu 2: LeakyReLU it flatten: Flatten !
' } output: | (None, 256) o : ' output: | (None, 4800) ; |
N o ! o
h
g) i : § EER
" — i — |
nput: | (None, 256 h mput: | (None, 4800 !
: . batch_normalization: BatchNormali : :) . EN 256: | s: ' dense: Dense |— ptp " ((N 512)} : | .
output: | (None, 1 output: one,
!] i i} PEES
i] } <
: 1 input: | (None, 256) : i: . input: | (None, 512) : : . -
: X ' : 3 1
: ! dense_4: Dense : h leaky_re_lu: LeakyReLU] 45 H .
.} - output: | (None, 512) .f:' - output: | (None, 512) w:
h]
g l i l !
h [N ; [o
! input: | (None, 512) X o input: | (None, 512) 1] . - D‘
' : leaky_re_lu_3: LeakyReLU oot | (Nome,312) o : | dense_1: Dense ot | (Nome, 256) i : 3
output: one, i output: | (None,] :
H i | HEEEE
: : i l | HHE®3
' input: | (None, 512) | "1 1, input; | (None,256) | 1| ¥
11| batch nommalizaton. 1: BatchNomalization 2| (N0 S12) | eaky re lu_ I LeakyReLU | (None, 236 f 1] . g L! . m
" - - output: | (None, 512) | 11, c output: | (None, 256) | 1 r -
g] i i | PEEHHE
h T]
" e
: | d D input: | (None, 512) : t 1 : p D input: | (None, 256) 1 :
I ense_5: Dense ' ense_2: Dense
: I - output: | (None, 1024) : :1 : - output (None, 1) : 1 . ﬁ H H .
I 1 1
Y [ittt ~ o] B4
g ! ! EEEEE
' input: | (None, 1024 " 3 ’
: 1 leaky_re_lu_4: LeakyReLU P :N 1024: : E g . E b
I output: | (None,
g : I EEEEB
I | - —~
! S HES R
input: one,
1| batch | 2: BatchNormal L "
[output: | (None, 1024) |1 i
I "
1 [H
! i
I
' input None, 1024] I
1 ; dense_6: Dense P () !
" - output: | (None, 4800) !
by !
" l :
' i
I -
] input one, 4800 !
' : reshape: Reshape P l) !
Y output: | (None, 40, 40, 3) !
1 1!
[ttt !
Iy — dloss
—— gloss
ﬁ P
5
L
o
4
S
S 3
5
1
0 -
T T T T T T T
0 5000 10000 15000 20000 25000 30000
Epochs

64

REFERENCES

[1] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks.
http://arxiv.org/abs/1406.2661

[2] Chen, H. (2021). Challenges and Corresponding Solutions of Generative
Adversarial Networks (GANs): A Survey Study. Journal of Physics: Conference
Series, 1827(1). https://doi.org/10.1088/1742-6596/1827/1/012066

[3] Bhatnagar, S., Cotton, T., Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley,
P., Garfinkel, B., Dafoe, A., Scharre, P., Zeitzoff, T., Filar, B., Anderson, H., Roff,
H., Allen, G. C., Steinhardt, J., Flynn, C., Héigeartaigh, S. O., Beard, S., ... Amodei,
D. (2018). The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and
Mitigation Authors are listed in order of contribution Design Direction.

[4] Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial — Networks.
http://arxiv.org/abs/1511.06434

[5] Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative
adversarial networks. In International conference on machine learning (pp. 214-223).
PMLR.

[6] Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., & Paul Smolley, S. (2017). Least
squares generative adversarial networks. In Proceedings of the IEEE international
conference on computer vision (pp. 2794-2802).

[7] Azeraf, E., Monfrini, E., & Pieczynski, W. (2020). Using the Naive Bayes as a
discriminative classifier. http://arxiv.org/abs/2012.13572.

[8] Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes.
http://arxiv.org/abs/1312.6114

[9] Akaike, H. Fitting autoregressive models for prediction. Ann Inst Stat Math 21,
243-247 (1969). https://doi.org/10.1007/BF02532251

[10] Wolterink, J. M., Kamnitsas, K., Ledig, C., & Isgum, I. (2019). Deep learning:

Generative adversarial networks and adversarial methods. In Handbook of Medical

Image Computing and Computer Assisted Intervention (pp. 547-574). (The Elsevier
65

https://doi.org/10.1007/BF02532251

and MICCAI Society book series). Elsevier. https://doi.org/10.1016/B978-0-12-
816176-0.00028-4

[11] Oord, A. van den, Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel Recurrent
Neural Networks. http://arxiv.org/abs/1601.06759

[12] Kevin P. Murphy, (2012), Machine Learning: A Probabilistic Perspective, 2012
ISBN 978-0-262-01802-9, p 2.

[13] Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification
techniques. Informatica, 31, 249-268.

[14] Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic
analysis. Machine Learning, 42, 177-196.

[15] Bishop, C. M., (2006). Pattern Recognition and Machine Learning, p 43.

[16] https://www.merriam-webster.com/dictionary/zero-sum%20game [Accessed:
21-Oct-2021].

[17] Saxena, D., & Cao, J. (2021). Generative Adversarial Networks (GANS)
Challenges, Solutions, and Future Directions. ACM Computing Surveys (CSUR),
54(3), 1-42.

[18] Metz, L., Poole, B., Pfau, D., & Sohl-Dickstein, J. (2016). Unrolled Generative
Adversarial Networks. http://arxiv.org/abs/1611.02163

[19] Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans

for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.
[20] Wang, C., Xu, C., Yao, X., & Tao, D. (2018). Evolutionary Generative
Adversarial Networks. http://arxiv.org/abs/1803.00657
[21] Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2020). A Review on Generative
Adversarial Networks: Algorithms, Theory, and Applications.
http://arxiv.org/abs/2001.06937.
[22] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X.
(2016). Improved Techniques for Training GANSs. http://arxiv.org/abs/1606.03498.
[23] loffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift.
http://arxiv.org/abs/1502.03167
[24] https://www.kaggle.com/jessicali9530/celeba-dataset, [Accessed: 12-Sep-2021].
[25] Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and
alignment using multitask cascaded convolutional networks. IEEE Signal Processing
Letters, 23(10), 1499-1503.

66

https://www.merriam-webster.com/dictionary/zero-sum%20game

[26] Borji, A. (2018). Pros and Cons of GAN Evaluation Measures.
http://arxiv.org/abs/1802.03446

[27] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017).
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium. http://arxiv.org/abs/1706.08500.

[28] Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., ... & Bengio, Y. (2020). Generative adversarial networks. Communications of the

ACM, 63(11), 139-144.

67

http://arxiv.org/abs/1706.08500

