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Abstract In this paper, the distributed-order time fractional diffusion equation is introduced and

studied. The Caputo fractional derivative is utilized to define this distributed-order fractional

derivative. A hybrid approach based on the fractional Euler functions and 2D Chebyshev cardinal

functions is proposed to derive a numerical solution for the problem under consideration. It should

be noted that the Chebyshev cardinal functions process many useful properties, such as orthogonal-

ity, cardinality and spectral accuracy. To construct the hybrid method, fractional derivative oper-

ational matrix of the fractional Euler functions and partial derivatives operational matrices of the

2D Chebyshev cardinal functions are obtained. Using the obtained operational matrices and the

Gauss–Legendre quadrature formula as well as the collocation approach, an algebraic system of

equations is derived instead of the main problem that can be solved easily. The accuracy of the

approach is tested numerically by solving three examples. The reported results confirm that the

established hybrid scheme is highly accurate in providing acceptable results.
� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

Due to the importance of fractional partial differential equa-

tions in modeling various problems in mathematics, physics,
and engineering, many studies have been done on such prob-
lems. For instance, see [1–12]. Researchers have utilized
numerical approaches instead of analytical ones to solve these
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equations because it is difficult or impossible to achieve their
true solution. Some of these schemes include meshless method
[13], wavelet approach [14], piecewise spectral-collocation tech-

nique [15] and Touchard wavelet scheme [16]. The distributed-
order (DO) fractional derivatives are a generalization of the
classical fractional derivatives. These derivatives are derived

by the classical integration upon the order of fractional deriva-
tive within a given domain [17]. DO fractional differential
equations can be considered as a generalization of ordinary

fractional differential equations. Such differential equations
have been appeared in modeling of diverse problems in the
fields of diffusion [18], viscoelastic [19], electronic oscillator
[20], control [21], etc. Recently, much attention has been paid

to numerical approaches to solve these types of equations.
Some of these methods are Müntz–Legendre polynomials
method [22], fractional-order Bernoulli-Legendre functions

approach [23], fractional-order generalized Taylor wavelets
scheme [17], Galerkin finite element method [24], Legendre–
Gauss collocation approach [25], and Legendre wavelets

scheme [26]. The fractional diffusion equation is a famous
equation in science and engineering that is a generalization
of the classical diffusion equation. The fractional equation

has been used in the diverse fields, such as viscoelastic materi-
als [27], biology [28], chaotic dynamics of classical conservative
systems [29], etc. In recent years, researchers have investigated
the solution of classical fractional model of the diffusion equa-

tion by different numerical techniques. Some of methods used
are meshless method [13], fractional reduced differential trans-
form approach [30], Crank–Nicholson scheme [31], second-

order ADI difference technique [32], exponential-sum-
approximation method [33], etc. Nowadays, researchers prefer
fractional basis functions to classical polynomials to construct

numerical methods for solving fractional differential equa-
tions, because in dealing with fractional differential equations,
there are usually a number of terms with fractional powers that

are not compatible with classical polynomials. In fact, this
drawback causes that the accuracy of methods generated using
polynomials for such problems significantly reduces. To
resolve this drawback, fractional functions are widely applied

in recent years. In [34], Hosseininia et al. have applied a hybrid
method based on the Müntz-Legender functions and 2D
Müntz-legender wavelets for solving fractional Sobolev equa-

tion. The authors of [35] have used fractional order Legendre
wavelets for the numerical solution of pantograph differential
equation. A computational approach using fractional-order

Legendre functions have been utilized in [36] to solve fractional
convective straight fin model. The authors of [37] proposed an
accurate technique based on the fractional alternative Legen-
dre functions to solve on linear fractional integro-differential

equation. In this paper, we employ fractional Euler functions
(FEFs) (that are constructed using Euler polynomials) to cre-
ate a numerical method for the above stated problem. We

remind that during last years, these functions have been effec-
tively employed to solve various problems, such as fractional-
order delay integro-differential equations [38], fractional par-

tial differential equations [39], fractional integro-differential
equations [40], fractional diffusion equations [41], etc. The
Chebyshev cardinal functions (CCFs) as a well-known family

of cardinal functions have been widely applied for solving
divers problems in recent years. Some of problems solved with
the aid of these polynomials include fractional fourth-order 2D
Kuramoto–Sivashinsky problem [42], coupled nonlinear
fractal-fractional Schrödinger equations [43], telegraph equa-
tion [45], nonlinear optimal control problems [46], partial dif-

ferential equation [47], Sturm–Liouville problem [48], etc. Note
that these functions have several useful properties, such as car-
dinality and exponential accuracy [43]. The main objectives of

this article are briefly given in the follows:

� Introducing the FEFs and obtaining their fractional deriva-

tive matrix.
� Investigating the CCFs for two-dimensional problems and
obtaining their derivative matrices.

� Introducing a new form of the fractional 2D diffusion equa-

tion with DO fractional derivative.
� Proposing a hybrid method based on the FEFs and 2D
CCFs for the numerical solution of such problems.

So, we focus on the DO fractional diffusion problemZ 1

0

- lð ÞC0Dl
t t x; y; tð Þdl ¼ aDt x; y; tð Þ þ F x; y; tð Þ;

x; yð Þ 2 X ¼ 0; 1½ �2; t 2 0; 1½ �; ð1:1Þ
with the initial condition

t x; y; 0ð Þ ¼ m x; yð Þ; x; yð Þ 2 X; ð1:2Þ
and boundary conditions

t 0; y; tð Þ ¼ n1 y; tð Þ; t 1; y; tð Þ ¼ n2 y; tð Þ;
t x; 0; tð Þ ¼ n3 x; tð Þ; t x; 1; tð Þ ¼ n4 x; tð Þ; ð1:3Þ

where a is a real number, F; mand nı; ı ¼ 1; 2; 3; 4 are given
functions, and the function t is the undetermined solution of

the problem. Moreover, C
0D

l
t expresses the Caputo fractional

derivative of order l, which will be provided in the next sec-

tion. Also, the distribution function - : 0; 1½ � ! Rþ [ 0f gsatis-
fies the following conditions [44]:

8l 2 0; 1½ �; - lð Þ > 0 and 0 <

Z 1

0

- lð Þdl < 1: ð1:4Þ

To solve the DO problem introduced in (1.1), we propose a
hybrid approach based on the FEFs and 2D CCFs. We first

expand the problem solution in terms of the FEFs (in the tem-
poral domain) and 2D CCFs (in the spatial domain) together.
By calculating the fractional derivative of the FEFs, employing

the Gauss-Legender quadrature formula, partial derivatives
operational matrices of the 2D CCFs and the collocation tech-
nique, we convert solving this problem into solving an alge-
braic system. Some of the most important advantages of the

suggested hybrid approach are listed in the following:

� Fractional-order basis functions can well invert the proper-

ties of fractional-order differential equations.
� Fractional-order functions have two degrees of freedom but
polynomials have one degree of freedom.

� The CCFs process many useful properties such as orthogo-
nality, cardinality, and spectral accuracy.

� A small value of basis functions is needed to achieve high

accuracy and satisfactory results.
� By applying this method, the consideration problem is
transformed into a system of algebraic equations that can
be solved via a suitable numerical approach.
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The rest of this article includes these sections: Required
preparations are given in Section 2. The FEFs and their frac-
tional derivative matrix are provided in Section 3. The CCFs

and their partial derivatives matrices are investigated in Sec-
tion 4. The hybrid technique is explained in Section 5. Three
examples are given in Section 6. The conclusion of this study

is provided in Section 7.

2. Preparations

In this section, the information required for the next sections is
reviewed.

Definition 1. ([49]) The Caputo fractional derivative of order
0 < l 6 1of the function �h(which is differentiable on its

domain) is defined by

C
0D

l
t
�h tð Þ ¼

1
C 1�lð Þ

R t

0
t� �zð Þ�l�h0 �zð Þd�z; 0 < l < 1;

�h0 tð Þ; l ¼ 1:

(
ð2:1Þ

Corollary 1. ([49]) For l 2 0; 1ð Þ and e 2 Rþ [ 0f g, we have

C
0D

l
t t

e ¼
0; e ¼ 0;
C eþ1ð Þ

C e�lþ1ð Þ t
e�l; e 2 Rþ:

(
ð2:2Þ

Definition 2. ([50]) The Bernoulli polynomials of order jare
defined as

Bj tð Þ ¼
Xj
l¼0

jþ 1

l

� �
.l t

j�l; j ¼ 0; 1; . . . ; ð2:3Þ

in which .l ¼ Bl 0ð Þ; l ¼ 0; 1; . . . ; jare the Bernoulli numbers.
3. The fractional Euler functions

In this section, we review the FEFs and investigate the approx-
imation of a specific function by them and also compute their
fractional derivative.

Definition 3. ([38]) The FEFs of order �iare defined upon
0; 1½ �as

Eb
�i
tð Þ ¼ 1

�iþ 1

X�iþ1

r¼1

2� 2rþ1
� � iþ 1

r

� �
Br 0ð Þ tb �i�rþ1ð Þ; �i ¼ 0; 1; . . . ;

ð3:1Þ
where Br 0ð Þ’s are the Bernoulli polynomials defined in (2.3).

Property 1. The following relation is satisfied for the FEFs:Z 1

0

Eb
�i
tð ÞEb

�j
tð Þtb�1 dt ¼ �1ð Þ�i�1

�j! �iþ 1ð Þ!
b �jþ �iþ 1ð Þ! E�jþ�iþ1 0ð Þ; �i;�j P 0:

ð3:2Þ
Applying the FEFs, we can expand a function

# 2 L2 0; 1½ �ð Þas follows:

# tð Þ ’
X�n
�i¼0

c�iE
b
�i
tð Þ , CTEb

�n tð Þ; ð3:3Þ
where

C ¼ c0 c1 . . . c�n½ �T;
with

c�i ¼
Z 1

0

# tð ÞEb
�i
tð Þt1�b dt;

and

Eb
�n tð Þ ¼ Eb

0 tð Þ Eb
1 tð Þ . . . Eb

�n tð Þ� �T
: ð3:4Þ

Theorem 1. The Caputo fractional derivative of order

0 < l 6 1of the vector Eb�n tð Þexpressed in (3.4) can be computed

as follows:
C
0D

l
t E

b
�n tð Þ ¼ D l;bð Þ

t tð ÞEb
�n tð Þ; ð3:5Þ

where D l;bð Þ
t tð Þ is an �nþ 1ð Þ � �nþ 1ð Þmatrix as

D l;bð Þ
t tð Þ ¼ HD l;bð Þ

t tð Þ Hð Þ�1
;

with

H½ ��k�‘ ¼
0; �k < �‘;

2�2
�k��‘þ2

�k

�k
�k��‘þ1

� 	
B�k��‘þ2 0ð Þ; �k P �‘;

(

for �k; �‘ ¼ 1; 2; . . . ; �nþ 1, and

D l;bð Þ
t tð Þ ¼ t�ldiag 0;

C bþ 1ð Þ
C b� lþ 1ð Þ ; . . . ;

C �nbþ 1ð Þ
C �nb� lþ 1ð Þ

� �
;

in which diag means diagonal matrix.

Proof. The vector Eb
�n tð Þ in (3.4) can be rewritten as

Eb
�n tð Þ ¼

Eb
0 tð Þ

Eb
1 tð Þ
..
.

Eb
�n tð Þ

0BBBBB@

1CCCCCA ¼

2�22

1
1
1

� �
B1 0ð Þ 0 . . . 0

2�23

2
2
2

� �
B2 0ð Þ 2�22

2
2
1

� �
B1 0ð Þ . . . 0

..

. ..
. . .

. ..
.

2�2�nþ2

�nþ1
�nþ1
�nþ1

� 	
B�nþ1 0ð Þ 2�2�nþ1

�nþ1
�nþ1
�n

� �
B�n 0ð Þ . . . 2�22

�nþ1
�nþ1
1

� �
B1 0ð Þ

0BBBBBB@

1CCCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H

�

1

tb

..

.

t�nb

0BBBB@
1CCCCA

|fflfflfflffl{zfflfflfflffl}
Tb tð Þ

¼ HTb tð Þ: ð3:6Þ

So, we have

C
0D

l
t E

b
�n tð Þ ¼ C

0D
l
tHTb tð Þ ¼ HC

0D
l
t T

b tð Þ: ð3:7Þ
On the other hand, we have

C
0 D

l
t T

b tð Þ ¼ t�l

0 0 . . . 0

0 C bþ1ð Þ
C b�lþ1ð Þ . . . 0

..

. ..
. . .

. ..
.

0 0 . . . C �nbþ1ð Þ
C �nb�lþ1ð Þ

0BBBBB@

1CCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D
l;bð Þ
t tð Þ

1

tb

..

.

t�nb

0BBBB@
1CCCCA ¼ D l;bð Þ

t tð ÞTb tð Þ: ð3:8Þ

From (3.6) and (3.8), we get

C
0D

l
t E

b
�n tð Þ ¼ HD l;bð Þ

t tð ÞTb tð Þ ¼ HD l;bð Þ
t tð Þ Hð Þ�1

Eb
�n tð Þ;

which ended the proof.
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4. The Chebyshev cardinal functions

In this section, the 1D and 2D CCFs with their property are
briefly presented.
W �m1 �m2
x; yð Þ ¼ w11 x; yð Þ w12 x; yð Þ . . . w1 �m2þ1ð Þ x; yð Þj . . . jw �m1þ1ð Þ1 x; yð Þ w �m1þ1ð Þ2 x; yð Þ . . . w �m1þ1ð Þ �m2þ1ð Þ x; yð Þ

h iT
: ð4:5Þ
4.1. The 1D Chebyshev cardinal functions

A set with �m1 þ 1ð Þ elements of the 1D CCFs can be generated
on the interval 0; xmax½ �as follows [43]:

/�i xð Þ ¼
Y�m1þ1

�k¼1;�k–�i

x� x�k

x�i � x�k

; �i ¼ 1; 2; . . . ; �m1 þ 1; ð4:1Þ

where x �k ¼ xmax

2
1� cos

2�k�1ð Þp
2 �m1þ1ð Þ

� �� �
and x�k’s are the shifted

zeros of the �m1 þ 1ð Þth Chebyshev polynomial over �1; 1½ �[51].

Remark 1. ([43]) The 1D CCFs demonstrated in (4.1) can also

be defined as follows:

/�i xð Þ ¼ 1

�c�i

X�m
�k¼0

�b�i�kx
�m��k; �i ¼ 1; 2; . . . ; �mþ 1; ð4:2Þ

where

�c�i ¼
Y�m1þ1

�‘¼1;�‘–�i

x�i � x�‘ð Þ;

and

�b�i�k ¼
1; �k ¼ 0;

�1
�k

X�k

�‘¼1

�a�i�‘ �b�i �k��‘; �k ¼ 1; 2; . . . ; �m;

8><>:
in which

�a�i�‘ ¼
X�mþ1

�r¼1;�r–�i

x
�‘
�r; 1 6 �‘ 6 �k:
4.2. The 2D Chebyshev cardinal functions

By employing the CCFs in the one dimension, we can make the
2D CCFs on the domain 0; xmax½ � � 0; ymax½ �as follows:
wi1 x; yð Þ ¼ /i xð Þ/1 yð Þ; 1 6 i 6 �m1 þ 1; 1 6 1 6 �m2 þ 1:

ð4:3Þ
We can approximate any two-variables function
q 2 C 0; xmax½ � � 0; ymax½ �ð Þby the 2D CCFs as follows:

q x; yð Þ ’
X�m1þ1

i¼1

X�m2þ1

1¼1

qi1wi1 x; yð Þ , PTW �m1 �m2
x; yð Þ; ð4:4Þ

where

P ¼ q11 q12 . . . q1 �m2þ1ð Þj . . . jq �m1þ1ð Þ1 q �m1þ1ð Þ2 . . . q �m1þ1ð Þ �m2þ1ð Þ
h iT

;

with

qi1 ¼ q xi; y1
� �

; i ¼ 1; 2; . . . ; �m1 þ 1; 1 ¼ 1; 2; . . . ; �m2 þ 1;

and
Theorem 2. The second-order partial derivative of the vector
W �m1 �m2

x; yð Þexpressed in (4.5) with respect to x can be expressed

in the form of
@2W �m1 �m2
x; yð Þ

@x2
¼ D 2ð Þ

x W �m1 �m2
x; yð Þ; ð4:6Þ

where D 2ð Þ
x is an �m1 þ 1ð Þ �m2 þ 1ð Þ � �m1 þ 1ð Þ �m2 þ 1ð Þmatrix as

D 2ð Þ
x ¼

�d
2ð Þ
11 I

�d
2ð Þ
12 I . . . �d

2ð Þ
1 �m1þ1ð ÞI

�d
2ð Þ
21 I

�d
2ð Þ
22 I . . . �d

2ð Þ
2 �m1þ1ð ÞI

..

. ..
. . .

. ..
.

�d
2ð Þ
�m1þ1ð Þ1I

�d
2ð Þ
�m1þ1ð Þ2I . . . �d

2ð Þ
�m1þ1ð Þ �m1þ1ð ÞI

0BBBBBB@

1CCCCCCA;

with

�d
2ð Þ
�i�j

¼ 1

�c�i

X�m1�2

�‘¼0

�b�i�‘ �m1 � �‘
� �

�m1 � �‘� 1
� �

x �m1��‘�2
�j

; �i; �j ¼ 1; 2; . . . ; �m1 þ 1;

and

I½ ��i�j ¼
1; �i ¼ �j; �i; �j ¼ 1; 2; . . . ; �m2 þ 1;

0; otherwise:




Proof. The proof is easy. So, we leave it to interested reader.

Theorem 3. We can express the second-order partial derivative
of the vector W �m1 �m2

x; yð Þgiven in (4.5), with respect to y in the

form of

@2W �m1 �m2
x; yð Þ

@y2
¼ D 2ð Þ

y W �m1 �m2
x; yð Þ; ð4:7Þ

where D 2ð Þ
y is �m1 þ 1ð Þ �m2 þ 1ð Þ � �m1 þ 1ð Þ �m2 þ 1ð Þmatrix as

D 2ð Þ
y ¼

D 2ð Þ O . . . O

O D 2ð Þ . . . O

..

. ..
. . .

. ..
.

O O . . . D 2ð Þ

0BBBB@
1CCCCA;

in which O is an �m2 þ 1ð Þ � �m2 þ 1ð Þzero matrix and

D 2ð Þ� �
�i�j
¼ 1

�c�i

X�m2�2

�‘¼0

�b�i�‘ �m2 � �‘
� �

�m2 � �‘� 1
� �

y �m2��‘�2
�j

;

�i; �j ¼ 1; 2; . . . ; �m2 þ 1;

where y�j ¼ ymax

2
1� cos 2�j�1ð Þp

2 �m2þ1ð Þ

� 	h i
and y�j’s are the shifted zeros

of the �m2 þ 1ð Þth Chebyshev polynomial over �1; 1½ �.
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Proof. The proof is straightforward. So, we leave it to inter-

ested reader.

As a numerical example, for �m1 ¼ 2; �m2 ¼ 3, we have
D 2ð Þ
y ¼

22:627 12:686 �1:3726 �11:314 0 0 0 0 0 0 0 0

�46:627 �22:627 11:314 35:314 0 0 0 0 0 0 0 0

35:314 11:314 �22:627 �46:627 0 0 0 0 0 0 0 0

�11:314 �1:3726 12:686 22:627 0 0 0 0 0 0 0 0

0 0 0 0 22:627 12:686 �1:3726 �11:314 0 0 0 0

0 0 0 0 �46:627 �22:627 11:314 35:314 0 0 0 0

0 0 0 0 35:314 11:314 �22:627 �46:627 0 0 0 0

0 0 0 0 �11:314 �1:3726 12:686 22:627 0 0 0 0

0 0 0 0 0 0 0 0 22:627 12:686 �1:3726 �11:314

0 0 0 0 0 0 0 0 �46:627 �22:627 11:314 35:314

0 0 0 0 0 0 0 0 35:314 11:314 �22:627 �46:627

0 0 0 0 0 0 0 0 �11:314 �1:3726 12:686 22:627

0BBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCA

:

5. The hybrid method

This section explains a hybrid method based on the FEFs and
2D CCFs for the introduced DO fractional problem in the first
section of this paper.

From (3.3) and (4.4), we can consider the following
approximation:

t x; y; tð Þ ’ WT
�m1 �m2

x; yð ÞKEb
�n tð Þ; ð5:1Þ

where K is an unknown �m1 þ 1ð Þ �m2 þ 1ð Þ � �nþ 1ð Þmatrix. We
obtain the following relation by using (3.5) and (5.1):R 1

0
- lð ÞC0 Dl

t t x; y; tð Þdl ’ WT
�m1 �m2

x; yð ÞK R 1

0
- lð ÞD l;bð Þ

t tð ÞEb
�n tð Þdl

’ WT
�m1 �m2

x; yð ÞK R 1

0
- lð ÞHD l;bð Þ

t tð Þ Hð Þ�1
Eb
�n tð Þdl

’ WT
�m1 �m2

x; yð ÞK R 1

0
- lð ÞHt�ldiag 0; C bþ1ð Þ

C b�lþ1ð Þ ; . . . ;
C �nbþ1ð Þ

C �nb�lþ1ð Þ

� 	
� Hð Þ�1

E
b
0 tð Þ Eb

1 tð Þ . . . Eb
�n tð Þ� �T

dl

’ WT
�m1 �m2

x; yð ÞK R 1

0
- lð ÞD bð Þ t;lð Þdl;

ð5:2Þ

where D bð Þ t; lð Þ ¼ Ht�ldiag 0; C bþ1ð Þ
C b�lþ1ð Þ ; . . . ;

C �nbþ1ð Þ
C �nb�lþ1ð Þ

� 	
Hð Þ�1

E
b
0 tð Þ Eb

1 tð Þ . . . Eb
�n tð Þ� �T

.

Using the Gauss–Legendre integration formula, we can cal-

culate the integral in (5.2) as follows:Z 1

0

- lð ÞD bð Þ t; lð Þdl ’ 1

2

XN
ı¼0

xı-
1

2
sı þ 1ð Þ

� �
D bð Þ t;

1

2
sı þ 1ð Þ

� �
’ P bð Þ tð Þ;

ð5:3Þ
where

xı ¼ 2

1� s2ı
� �

L0
Nþ1

sıð Þ
� 	2 ;
and sıf gNı¼0are zeros of LNþ1 sð Þ in �1; 1½ �(for a given bN). Sub-

stituting (5.3) into (5.2) yieldsZ 1

0

- lð ÞC0Dl
t t x; y; tð Þdl ’ WT

�m1 �m2
x; yð ÞKP bð Þ tð Þ: ð5:4Þ

Utilizing (4.6) and (4.7), we get

@2W �m1 �m2
x;yð Þ

@x2
’ WT

�m1 �m2
x; yð Þ D 2ð Þ

x

� �T
KEb

�n tð Þ;
@2W �m1 �m2

x;yð Þ
@y2

’ WT
�m1 �m2

x; yð Þ D 2ð Þ
y

� 	T
KEb

�n tð Þ:
ð5:5Þ

Substituting (5.1), (5.4) and (5.5) into (1.1), results in

R x; y; tð Þ , WT
�m1 �m2

x; yð ÞKP bð Þ tð Þ � aWT
�m1 �m2

x; yð Þ

� D 2ð Þ
x

� �T þ D 2ð Þ
y

� 	T� �
K

� �
Eb
�n tð Þ � F x; y; tð Þ ’ 0: ð5:6Þ

The function m x; yð Þin (1.2) can be expanded as

m x; yð Þ ’ WT
�m1 �m2

x; yð ÞV; ð5:7Þ

where V is an �m1 þ 1ð Þ �m2 þ 1ð Þ determined vector. According

to (1.2), (5.1) and (5.7), we have

t x; y; tð Þ � m x;yð Þ ’ WT
�m1 �m2

x; yð Þ KEb
�n 0ð Þ �V|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}V1

� �
,V x;yð Þ ’ 0:

ð5:8Þ
The functions nıfor ı ¼ 1; 2; 3; 4expressed in (1.3) can be
approximated as
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n1 y; tð Þ ’ N1 yð ÞEb tð Þ; n2 y; tð Þ ’ N2 yð ÞEb tð Þ;
n3 x; tð Þ ’ N3 xð ÞEb tð Þ; n4 x; tð Þ ’ N4 xð ÞEb tð Þ; ð5:9Þ

in which Nıfor ı ¼ 1; 2; 3; 4are given vectors. From (1.3), (5.9)
and (5.1), we get

WT
�m1 �m2

0; yð ÞK� N1 yð Þ
h i

Eb tð Þ , �N1 y; tð Þ ’ 0;

WT
�m1 �m2

1; yð ÞK� N2 yð Þ
h i

Eb tð Þ , �N2 y; tð Þ ’ 0;

WT
�m1 �m2

x; 0ð ÞK� N3 xð Þ
h i

Eb tð Þ , �N3 x; tð Þ ’ 0;

WT
�m1 �m2

x; 1ð ÞK� N4 xð Þ
h i

Eb tð Þ , �N4 x; tð Þ ’ 0:

ð5:10Þ

We derive an �m1 þ 1ð Þ �m2 þ 1ð Þ � �n1 þ 1ð Þ system using (5.6),
(5.8) and (5.10) as

R xı; y|; tf
� � ¼ 0; ı ¼ 2; 3; . . . ; �m1; | ¼ 2; 3; . . . ; �m2; f ¼ 2; 3; . . . ; �nþ 1;

V xı; y|
� � ¼ 0; ı ¼ 1; 2; . . . ; �m1 þ 1; | ¼ 1; 2; . . . ; �m2 þ 1;

�Ng y|; tf
� � ¼ 0; g ¼ 1; 2; | ¼ 1; 2; . . . ; �m2 þ 1; f ¼ 2; 3; . . . ; �nþ 1;

�Ng xı; tfð Þ ¼ 0; g ¼ 3; 4; ı ¼ 2; . . . ; �m1; f ¼ 2; 3; . . . ; �nþ 1;

8>>>>>>><>>>>>>>:
ð5:11Þ

with

xı ¼ 1
2
1� cos 2ı�1ð Þp

2 �m1þ1ð Þ

� 	h i
;

y| ¼ 1
2
1� cos 2|�1ð Þp

2 �m2þ1ð Þ

� 	h i
;

tf ¼ 1
2
1� cos 2f�1ð Þp

2 �nþ1ð Þ

� 	h i
:

Now, we can easily solve system (5.11) and find the vector K.
Finally, we extract a solution for the DO fractional problem

(1.1) by (5.1).

6. Results of numerical simulations

In the continuation, we have utilized the hybrid methodology
explained in Section 5 for three examples. By helping these
examples, we show the correctness of the explained approach.
Assume that �t x; y; tð Þis the approximation of t x; y; tð Þ, as the

solution of the problem under study. We provide the following
error formulae:
Table 1 Errors achieved with �n ¼ 5;b ¼ 0:9, several values of �m1;ð
- lð Þ ¼ C 3

2 � l
� �

�m1; �m2ð Þ L1 L2 RMS CO

4; 4ð Þ 6:4647� 10�5 4:7542� 10�5 1:1885� 10�5 -

5; 5ð Þ 2:2481� 10�5 1:7938� 10�5 3:5876� 10�6 4.7336

6; 6ð Þ 9:9598� 10�6 6:8224� 10�6 1:1371� 10�6 4.4653

7; 7ð Þ 4:2599� 10�6 3:4088� 10�6 4:8697� 10�7 5.5096

8; 8ð Þ 1:9595� 10�6 1:5636� 10�6 1:9545� 10�7 5.8155

9; 9ð Þ 6:2201� 10�7 4:7183� 10�7 5:2425� 10�8 9.7424
L1 ¼ max
16ı6 �m1þ1

max
16|6 �m2þ1

t xı;y|;1
� ���t xı;y|;1

� ��� ��;
L2 ¼

X�m1þ1

ı¼1

X�m2þ1

|¼1

t xı;y|;1
� ���t xı;y|;1

� ��� ��2 !1=2

;

RMS¼ 1
�m1þ1ð Þ �m2þ1ð Þ

X�m1þ1

ı¼1

X�m2þ1

|¼1

t xı;y|;1
� ���t xı;y|;1

� ��� ��2 ! !1=2

:

Moreover, we report the convergence order (CO) of the pro-
vided scheme using the below formula:

CO ¼
log L1 M2ð Þ

L1 M1ð Þ

� 	
log M2

M1

� 	
������

������;
where M1and M2are the number of basic functions used in the
first and second implantations, respectively. For numerical

integration, we put N ¼ 15.

Example 1. Consider the DO time fractional problem
Z 1

0

- lð ÞC0Dl
t t x; y; tð Þdl ¼ 1

4
Dt x; y; tð Þ þ F x; y; tð Þ;

with

F x; y; tð Þ ¼ 105x2 1� xð Þ2y2 1� yð Þ2 C 5
2

� �
x2 1� xð Þ2y2 1� yð Þ2 R 1

0
- lð Þ t

3
2
�l

C 5
2�lð Þ dl

�
�t

3
2 y2 1� yð Þ2 14x2 � 14xþ 3ð Þ þ x2 1� xð Þ2 14y2 � 14yþ 3ð Þ
h ii

;

where the exact solution is t x; y; tð Þ ¼ 105 t
3
2x4 1� xð Þ4y4

1� yð Þ4. Other required information can be derived from the
expressed exact solution. The results achieved by our hybrid

approach with �n ¼ 5; b ¼ 0:9 and different values of
- lð Þ; �m1and �m2are presented in Table 1. The approximation
solutions and the absolute error functions with

�m1 ¼ �m2 ¼ 9; �n ¼ 5;- lð Þ ¼ C 3
2
� l

� �
and b ¼ 0:9are shown in

Fig. 1 (right and left, respectively). According to the reported
results, it can be concluded that in the suggested hybrid

scheme, by increasing the number of the 2D CCFs, the accu-
racy and convergence order of the problem improve. Note that
the numerical integration introduced in Section 5 is used to

compute the integral appeared in the right side function. This
work also will use for the next examples.
�m2Þ and two values of - lð Þ in Example 1.

- lð Þ ¼ C 5
2 � l
� �

L1 L2 RMS CO

6:3753� 10�5 4:6918� 10�5 1:1729� 10�5 -

2:2311� 10�5 1:7724� 10�5 3:5449� 10�6 4.7052

9:1524� 10�6 6:3497� 10�6 1:0583� 10�6 4.8873

5:4363� 10�6 4:2330� 10�6 6:0472� 10�7 3.3793

2:8725� 10�6 2:4086� 10�6 3:0108� 10�7 4.7773

1:7832� 10�6 1:3541� 10�6 1:5046� 10�7 4.0479



Fig. 1 Graphs of the results achieved for Example 1 with �m1; �m2ð Þ ¼ 9; 9ð Þ; �n ¼ 5, - lð Þ ¼ C 3
2
� l

� �
and b ¼ 0:9.
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Example 2. Consider the DO time fractional problem

Z 1

0

- lð ÞC0Dl
t t x; y; tð Þdl ¼ Dt x; y; tð Þ þ F x; y; tð Þ;

with

F x; y; tð Þ ¼ 103 1� xð Þ4 1� yð Þ4 C 7
2

� �
1� xð Þ2 1� yð Þ2 sin xð Þ sin yð Þ R 1

0
- lð Þ t

5
2
�l

C 7
2
�lð Þ dl

�

�t
5
2 1� yð Þ2 sin yð Þ 29þ 12x� x2ð Þ sin xð Þ � 12 1� xð Þ cos xð Þð Þ
h

þ 1� xð Þ2 sin xð Þ 29þ 12y� y2ð Þ sin yð Þ � 12 1� yð Þ cos yð Þð Þ
ii
;

where its analytic solution is t x; y; tð Þ ¼ 103 t
5
2 1� xð Þ6 1� yð Þ6

sin xð Þ sin yð Þ. The results achieved by our hybrid method with
Table 2 Errors achieved with �n ¼ 6;b ¼ 0:8, several values of �m1;ð
- lð Þ ¼ C 3

2 � l
� �

�m1; �m2ð Þ L1 L2 RMS CO

4; 4ð Þ 1:1530� 10�2 8:7033� 10�3 2:1758� 10�3 -

5; 5ð Þ 4:1440� 10�3 2:6286� 10�3 5:2573� 10�4 4.5580

6; 6ð Þ 8:0423� 10�4 4:9217� 10�4 8:2028� 10�5 8.9925

7; 7ð Þ 4:4451� 10�5 3:1078� 10�5 4:4397� 10�6 18.7836

8; 8ð Þ 1:1143� 10�5 7:6893� 10�6 9:6116� 10�7 10.3614

9; 9ð Þ 7:0021� 10�6 5:2828� 10�6 5:8697� 10�7 3.9946
�n ¼ 6; b ¼ 0:8 for different values of - lð Þ; �m1and �m2are listed
in Table 2. The approximation solutions and the absolute error

functions with �m1 ¼ �m2 ¼ 9; �n ¼ 6;- lð Þ ¼ C 3
2
� l

� �
and

b ¼ 0:8 are shown in Fig. 2 (right and left, respectively).
According to the reported results, it can be realized that in
the suggested hybrid scheme, by increasing the basis functions,

the accuracy and convergence order of the outcomes
ameliorates.

Example 3. Consider the DO time fractional problem

Z 1

0

- lð ÞC0Dl
t t x; y; tð Þdl ¼ 1

2
Dt x; y; tð Þ þ F x; y; tð Þ;

with
�m2Þ and two values of - lð Þ in Example 2.

- lð Þ ¼ C 5
2 � l
� �

L1 L2 RMS CO

1:1463� 10�2 8:6560� 10�3 2:1640� 10�3 -

4:0835� 10�3 2:5830� 10�3 5:1660� 10�4 4.6256

7:5125� 10�4 4:5603� 10�4 7:6005� 10�5 9.2856

9:4228� 10�5 6:5182� 10�5 9:3117� 10�6 13.4675

9:0137� 10�5 6:7652� 10�5 8:4565� 10�6 0.3324

8:5622� 10�5 6:5155� 10�5 7:2395� 10�6 0.4363



Fig. 2 Graphs of the results achieved for Example 2 with �m1; �m2ð Þ ¼ 9; 9ð Þ; �n ¼ 6, - lð Þ ¼ C 3
2
� l

� �
and b ¼ 0:8.

Table 3 Errors achieved with �n ¼ 4;b ¼ 0:7, several values �m1; �m2ð Þ and two values of - lð Þ in Example 3.

- lð Þ ¼ C 3
2 � l
� �

- lð Þ ¼ C 5
2 � l
� �

�m1; �m2ð Þ L1 L2 RMS CO L1 L2 RMS CO

3; 3ð Þ 5:4329� 10�6 4:5342� 10�6 1:5114� 10�6 - 5:4609� 10�6 4:5568� 10�6 1:5189� 10�6 -

4; 4ð Þ 1:4068� 10�6 1:0308� 10�6 2:5769� 10�7 4.6967 1:4017� 10�6 1:0268� 10�6 2:5669� 10�7 4.7272

5; 5ð Þ 5:7811� 10�7 4:2913� 10�7 8:5825� 10�8 3.9854 5:8507� 10�7 4:3443� 10�7 8:6887� 10�8 3.9155

6; 6ð Þ 2:5270� 10�7 1:7458� 10�7 2:9096� 10�8 4.5390 2:4564� 10�7 1:7018� 10�7 2:8364� 10�8 4.7601

7; 7ð Þ 1:3679� 10�7 9:4847� 10�8 1:3550� 10�8 3.9815 1:4547� 10�7 1:0094� 10�7 1:4419� 10�8 3.3986

8; 8ð Þ 5:4904� 10�8 3:4428� 10�8 4:3035� 10�9 6.8363 6:1910� 10�8 3:8385� 10�8 4:7981� 10�9 6.3977

650 M.H. Heydari et al.
F x; y; tð Þ ¼ 106x4 1� xð Þ4y4 1� yð Þ4exþy

� C 9
2

� �
x2 1� xð Þ2y2 1� yð Þ2 R 1

0
- lð Þ t

7
2
�l

C 9
2�lð Þ dl

�
� t

7
2

2
y2 1� yð Þ2 x4 þ 22x3 þ 97x2 � 120xþ 30ð Þ
h

þx2 1� xð Þ2 y4 þ 22y3 þ 97y2 � 120yþ 30ð Þ
ii
;

where the true solution is t x; y; tð Þ ¼ 106 t
7
2x6 1� xð Þ6y6

1� yð Þ6exþy. The results achieved by the utilized hybrid
method with �n ¼ 4; b ¼ 0:7, two values of - lð Þand several
values of �m1and �m2are provided in Table 3. The approx-
imation solutions and the absolute error functions with

�m1 ¼ �m2 ¼ 9; �n ¼ 4; - lð Þ ¼ C 5
2
� l

� �
and b ¼ 0:7are shown

in Fig. 3 (right and left, respectively). According to the
reported results, it can be realized that in the suggested

hybrid scheme, by increasing the basis functions, the
accuracy and convergence order of the outcomes
ameliorates.



Fig. 3 Graphs of the results achieved for Example 3 with �m1; �m2ð Þ ¼ 9; 9ð Þ; �n ¼ 4, - lð Þ ¼ C 5
2
� l

� �
and b ¼ 0:7.
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7. Conclusion

This paper provided a hybrid approach to find a numerical

solution for the DO fractional diffusion equation by employ-
ing the FEFs and 2D CCFs. The Caputo fractional derivative
was applied to define the DO fractional derivative. To con-

struct the expressed method, fractional derivative operational
matrix for the FEFs and partial derivatives operational matri-
ces for the 2D CCFs were achieved. Using operational matri-

ces, the Gauss–Legendre quadrature formula and collocation
approach, an algebraic system of equations was derived
instead of the original problem that easily solved. The accu-

racy of the approach was tested by solving three examples,
numerically. The yielded results confirm that the established
hybrid approach is highly precise in solving such problems.
As future research direction, the FEFs and 2D CCFs utilized

in this paper can be developed for solving fractional versions
of other applied problems, such as the extended Fisher–Kol-
mogorov and Klein–Gordon equations with this type of frac-

tional derivative.
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