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ABSTRACT
Calcium is an essential element in our body and plays a vital role
in moderating calcium signalling. Calcium is also called the second
messenger. Calciumsignallingdependson cytosolic calciumconcen-
tration. In this study, we focus on cellular calcium fluctuations with
different buffers, including calcium-binding buffers, using the Hil-
fer fractional advection-diffusion equation for cellular calcium. Limits
and start conditions are also set. By combining with intracellular free
calcium ions, buffers reduce the cytosolic calcium concentration. The
buffer depletes cellular calcium and protects against toxicity. Asso-
ciation, dissociation, diffusion, and buffer concentration are mod-
elled. The solution of the Hilfer fractional calcium model is achieved
throughutilizing the integral transform technique. To investigate the
influence of the buffer on the calcium concentration distribution,
simulations are done in MATLAB 21. The results show that the modi-
fied calciummodel is a function of time, position, and the Hilfer frac-
tional derivative. Thus the modified Hilfer calcium model provides a
richer physical explanation than the classical calciummodel.
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1. Introduction

Calcium is required for almost every process in the human body, such as heartbeat, mus-
cle contraction, cell cycle, fate, metabolism, bone movement, brain function, etc. Calcium
performs various vascular procedures such as information processing and blood flow. Cal-
cium is also known as the second messenger and is found in almost all nerve cells, such
as neurons, astrocytes, hepatocytes, and many others. Although calcium is essential for
the sustenance of life, its increased concentration spells death; therefore, it is necessary to
maintain the calcium intake.
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In practically all types of human and animal cells, calcium signalling is a fundamental
component of cell communication. This calcium signalling controls all vital functions of
the hepatocyte cell, which is a parenchymal cell of the liver. The concentration of cytosolic
calcium affects calcium signalling. A prerequisite for the proper functioning of the calcium
messenger system in higher organisms is maintaining the concentration of cytosolic cal-
cium in the resting cell deficient. Calcium signalling in excitatory and non-excitable cells
is dependent on relatively low cytosolic calcium concentrations and the existence of a cal-
cium concentration gradient existing among the cytosol and the passage of intracellular
organelles.

After being released from the calcium channel gate in the cytoplasm, Ca+2 ions undergo
various physical processes such as transport, buffering, etc. Calcium transport occurs in
the cytoplasm by a combination of convection and diffusion. The buffering mechanism
also controls the calcium concentration. In the cytoplasm, approximately 99% of calcium
binds with the buffer to alter the enzymatic characteristics of calcium [1]. Calcium-binding
buffers serve an essential function in lowering intracellular calcium concentrations by
binding to free Ca+2 ions. The equilibrium between the ’on’ and ’off’ response, which
brings Ca into the cytoplasm, consequently the ’off’ reaction, so it removes the signal
through the joint action of exchangers, pumps, and buffers determines the intracellular
calcium level at any given moment.

Buffers are defined as solutions that resist changes in pH by the addition of a small
amount of acid or base. That is, it maintains the pH of the body. In this paper, we study
about protein buffer system. Protein in the human form is made up of amino acids with
functional groups that act as the acid of the week and base to stabilize the pH within the
body’s cell.

In this paper, we have discussed four buffers (EGTA, Troponine, Calmodulin, BAPTA).
BAPTA primarily protects cells against toxic calcium overload. EGTA is a chelating agent
with a high affinity for calcium ions. EGTA is used as a buffer equal to the pH of the living
cell. Calmodulin is a critical neuronal protein that is a crucial mediator of several Ca+2-
dependent intracellular signalling cascades in the brain. Calmodulin modulates synaptic
transmission and synaptic plasticity through Ca, which relies on its target proteins in pre
and postsynaptic compartments. Calmodulin is a regulatory protein used to detect changes
in calcium ion concentration.

Many real-world issues have been solved throughmathematical modelling [2–4]. Many
mathematical models have been proposed to describe the common phenomena of intra-
cellular and intercellular calcium oscillations. This paper used an analytical technique to
tackle the one-dimensional issue of calciumdiffusion. Previous research includes studies by
Meyer et al. [5] conducted experimental investigations with favourable findings, obtaining
results utilizingmolecularmodelling for the receptor of calcium profiles. Nehar [6] investi-
gated linearized buffered Ca diffusion in the microdomain. Winston et al. [7] constructed
a model to explain intracellular calcium fluctuations in endothelium cells. Smith et al. [8]
used a circularly symmetric area to describe the occurrence above to determine the rapid
buffering approximation near an open calcium channel. Agarwal et al. [9] investigated the
influence such as the fractional advection-diffusion equation, on the calciumconcentration
characteristics. Several theoretical studies have also been conducted in recent decades. Jha
et al. [10] utilized an FVM to examine the influence of buffer on cytosolic Ca. A model to
describe the calcium distribution in neuron cells has been proposed by Tripathi et al. [11].
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Agarwal et al. [12] used a fractional model to investigate the buffer over cytosol calcium
concentration distribution.

Signaling depends on how calcium impacts Ca+2 mobility in cells. We’ve discussed
buffers’ influence on intracellular calcium diffusion. We created a fractional model with
a non-singular kernel. The fractional model preserved all memory effects, which makes it
more able to analyse the buffer’s influence on intracellular calcium concentration. Non-
locality of the fractional operator helps get intracellular calcium concentration at the
entrance site. This work employs a mathematical model to examine calcium convective
diffusion in various buffers. Integral transform methods were used to solve the fractional
mathematical model. Results are accepted to analyse calcium concentration in time and
space at varied buffer concentrations.

Over the last four decades, mathematicians and scientists have been attracted to frac-
tional calculus and special functions because of their wide range of applications and
significance in fields such as computer science, biological science, fluid dynamics, vis-
coelasticity, diffusive transport, electrical finance networks, medical science, signal pro-
cessing, social sciences, control theory, ecology, environmental science, and so on [13,14].
Mathematical modelling translates real-world events into manageable mathematical mod-
els whose theoretical and numerical analysis gives insight, explanation, and guidance for
new applications. Numerous disciplines use mathematical modelling, including biology,
fluid dynamics, engineering, chemistry, physics, etc [15–17].

Fractional calculus is an augmentation of integer-order calculus and provides more
accurate results than classical calculus [18–20]. Therefore, it is widely used in the math-
ematical modelling of almost all science and engineering, medicine, and education areas
[21,22]. Several fractional derivatives are available to deal with real-world problems, such
as the RL (Riemann-Liouville) derivative [23], Caputo derivative [24], Caputo-Fabrizio
derivatives, Atangana-Balneau derivatives [25], HFD [26], and many others. This study
gives an analytical solution to the time and space variable advection usage equation using
the HFD (Hilfer fractional derivatives), which is an extension of the Caputo and RL
derivatives.

The article is structured as follows: The second part describes various vital opera-
tors’ definitions, characteristics, and integral transformations. The third part discusses
solutions of fractional mathematical models and integral transform approaches. Section
four discusses unusual instances and applications. Section five covers the parameter table,
illustration, and discussion section. Section six finally presents the conclusion.

2. Essential preliminaries

The present study’s mathematical model is solved using the HFD, Laplace transform (LT),
and Fourier transform (FT) techniques. The basic definitions of the fractional derivative
and Integral transform are provided here that can be used to solve the model.

Definition 2.1: The special function of the form

Eρ(Y) =
∞∑
k=0

Yk

�(ρk + 1)
(Y , ρ ∈ C,Re(ρ) > 0) ,
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and

Eρ,ζ (Y) =
∞∑
k=0

Yk

�(ρk + ζ )
(Y , ρ, ζ ∈ C,Re(ρ) > 0,Re(ζ ) > 0)

are know as Mittag-Leffler function.

Eρ(Y) was developed by Mittag-Leffler [27] and Eρ,ζ (Y) was introduced by Wiman [28].

Definition 2.2: Let g be a real-valued piecewise continuous function on (0,∞). The
Laplace transform of g(z) [29] of exponential order α > 0 with respect to (w.r.t) parameter
z is given as follows;

L [g(z); s] = ḡ(s) = L [g(z)](s) =
∫ ∞

0
e−szg(z) dz, �(s) > α, z ≥ 0.

and inverse LT of the function ḡ(s) is defined by

L −1[ḡ(s); z] = g(z) = 1
2π i

∫ Γ +i∞

Γ −i∞
eszḡ(s) ds,

here Γ ∈ R is a constant.

Definition 2.3: The usual FT of �(z) function w.r.t z is described as follows [29]:

F [�(z);ϒ] = �̂(ϒ) =
∫ ∞

−∞
eιϒz�(z) dz, (ϒ > 0),

and inverse FT of the function �̂(ϒ) is defined by

F−1[�̂(ϒ); z] = �(z) = 2
π

∫ ∞

−∞
e−ιϒz�̂(ϒ) dϒ .

Definition 2.4: Let h be a function of real value and its rth-order derivatives (r =
1, 2, 3, . . . , n) continuous on (0,∞). Then, HFD of order 0 ≤ ϑ ≤ 1, and 0 ≤ µ ≤ 1 with
respect to y [26,30] is defined as:

Dϑ ,µ
a+

(
h(y)

) =
(
Iϑ(1−µ)

a+
d
dy

(
I(1−µ)(1−ϑ)

a+ h
))

(y), a ≥ −∞, (1)

in particular if ϑ = 0, then D0,µ
a+ = Dµ

a+ RL derivative, if ϑ = 1, then D1,µ
a+ = Dµ

a+ Caputo
Derivative.

Definition 2.5: The usual RL fractional integral of h of order Re(ν) > 0 is defined as [31]:

0D−ν
y h(y) = Iνh(y) = 1

�(ν)

∫ y

0
(y − ξ)ν−1h(ξ) dξ . (2)

Definition 2.6: The usual LT of the HFD is given by as [32]:

L [Dϑ ,µh(y); s] = sL [h(y)](s)
s1−ϑ

− I(1−µ)(1−ϑ)h(0)
s(1−ϑ)µ

= sϑL [h(y)](s) − I(1−µ)(1−ϑ)h(0)
s(1−ϑ)µ

.

(3)
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Figure 1. Diagrammatic representation of calcium buffering.

Table 1. List of physiological parameters [34].

Symbol Parameter Values

Ω Diffusion coefficient 200–300µm2s−1

v Velocity 10–100µms−1

X∞ Background calcium concentration 0.1µM
Y Buffer concentration 2–350µM
L1 EGTA Buffer association rate 1.5µM−1s−1

L1 Troponine Buffer association rate 90µM−1s−1

L1 Calmodulin Buffer association rate 250µM−1s−1

L1 BAPTA Buffer association rate 600µM−1s−1

3. Mathematical modelling

Diagrammatically showed in Figure 1, the main element of the Ca+2 buffering in central
neurons. Free Ca+2 ions enter the cytoplasm through the voltage-gated Ca+2 channels
(VGCC). And buffers bind to calcium ions to form a calcium-bound buffer.

The following is the bidirectional reaction between Ca+2 and buffer:

C+ B
L+
j

�
L−
j

CB,

hereB denotes the free buffer,C the free Ca+2 ion, andCB the buffer that is calcium-bound.
The following equations for changes inCa concentration, free buffer, and calciumbound

buffers are generated based on the assumption that the calcium-buffer association process
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Figure 2. Graph among of W(x, t) and t for various σ values for µ = 0 which corresponds to the RL
derivative. (a) EGTA, (b) Troponine, (c) Calmodulin, and (d) BAPTA.

follows mass action kinetics.

∂[C]
∂t

= Ω∇2[C] +
∑
j

ζj,

∂[B]
∂t

= γ∇2[B] +
∑
j

ζj,

∂[CB]
∂t

= ω∇2[CB] −
∑
j

ζj,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

here Ω denotes the diffusion coefficient for free Ca+2 ion, γ the free buffer, and ω the
buffer that is calcium bound. For the buffer concentration, ζj represents the reaction term,
which becomes represented including a conjunction with the association rate constant and
the dissociation rate constant:

ζj = −L+
j [B][C] + L−

j [CB], (5)
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Figure 3. Graph among ofW(x, t) and t for variousσ values forµ = 0which corresponds to the Caputo
derivative. (a) EGTA, (b) Troponine, (c) Calmodulin, and (d) BAPTA.

and L1 and L2 represent the association and dissociation rate constants, respectively, while
buffer j.

Assuming [C] = X , [B] = Y thus [CB] = Z . Setting γ = ω = 0 is used to account for
those buffers that do not disperse and are categorized as permanent and immovable. The
model’s mathematical form is

∂X
∂t

= Ω
∂2X
∂x2

− v
∂X
∂x

− LjY(X − X∞). (6)

The conditions are as follows:

X (x, 0) = f (x), t = 0, x > 0,

X (0, t) = X0, t > 0, x ≥ 0,

∂X
∂x

= 0, t ≥ 0, x → ∞.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7)

Now, replacingW withX − X∞ and also assuming LjY = g, the above system reduces to:



8 S. BHATTER ET AL.

Figure 4. Graph among of W(x, t) and x for various σ values for µ = 0 which corresponds to the RL
derivative. (a) EGTA, (b) Troponine, (c) Calmodulin, and (d) BAPTA.

∂W
∂t

= Ω
∂2W
∂x2

− v
∂W
∂x

− gW, (8)

with conditions:

W(x, 0) = f (x) − X∞, t = 0, x > 0,

W(0, t) = X0 − X∞, t > 0, x ≥ 0,

∂W
∂x

= 0, t ≥ 0, x → ∞.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9)

On utilizing non-dimensionalization variables x∗ = x
√

g
Ω
, t∗ = gt, W∗ = W

X0
, q = v√

gΩ
in the set of Equation (8) we get

∂W
∂t

= ∂2W
∂x2

− q
∂W
∂x

− W, (10)
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Figure 5. Graph amongofW(x, t) and x for variousσ values forµ = 0which corresponds to the Caputo
derivative. (a) EGTA, (b) Troponine, (c) Calmodulin, and (d) BAPTA.

conditions:

W(x, 0) = f (x) − X∞
X0

, t = 0, x > 0,

W(0, t) = X0 − X∞
X0

, t > 0, x ≥ 0,

∂W
∂x

= 0, t ≥ 0, x → ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(11)

When W(x, t) = e
qx
2 φ(x, t) [33] is implemented, then Equation (10) is simplified to the

following form:

∂φ

∂t
= ∂2φ

∂x2
−

(
q2

2
+ 1

)
φ. (12)

Now, substituting ϑ2 = q2
2 + 1 in Equation (12) then obtains:

∂φ

∂t
= ∂2φ

∂x2
− ϑ2φ, (13)
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Figure 6. Graph among of W(x, t) and t for various σ values for µ = 0.9. (a) EGTA, (b) Troponine, (c)
Calmodulin, and (d) BAPTA.

corresponding conditions:

φ(x, 0) = f (x) − X∞
X0

, t = 0, x > 0,

φ(0, t) = X0 − X∞
X0

, t > 0, x ≥ 0,

limx→∞ φ(x, t) = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(14)

Now, using the Hilfer fractional derivative, fractionalize (13) w.r.t time variable,

Dµ,σ
t φ(x, t) = ∂2φ

∂x2
− ϑ2φ, (15)
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Figure 7. Graph among of W(x, t) and x for various σ values for µ = 0.9. (a) EGTA, (b) Troponine, (c)
Calmodulin, and (d) BAPTA.

with conditions:

φ(x, 0) = f (x) − X∞
X0

, t = 0, x > 0,

φ(0, t) = X0 − X∞
X0

, t > 0, x ≥ 0,

limx→∞ φ(x, t) = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(16)

Applying the LT on Equation (15) concerning the time variable, we obtain:

Sσ φ̄(x,S) − Sµ(σ−1)I(1−µ)(1−σ)φ(x, 0) = ∂2φ̄(x,S)

∂x2
− ϑ2φ̄(x,S),

taking I(1−µ)(1−σ)φ(x, 0) = F(x),

Sσ φ̄(x,S) − Sµ(σ−1)F(x) = ∂2φ̄(x,S)

∂x2
− ϑ2φ̄(x,S). (17)
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Figure 8. Graph for the buffers EGTA and BAPTA with σ = 0.9 between W(x, t) and t. (a) µ = 0, (b)
µ = 0.8, (c)µ = 0.9, and (d)µ = 1.

The LT of φ(x, t) w.r.t time variable t is represented by φ̄(x,S). Now we apply the FT to
the space variable using Equation (17), and we get:

Sσ ˆ̄φ(P ,S) − Sµ(σ−1)F̂(P) = −P2 ˆ̄φ(P ,S) − ϑ2 ˆ̄φ(P ,S), (18)

ˆ̄φ(P ,S) = Sµ(σ−1)F̂(P)

Sσ + ϑ2 + P2 , (19)

the FT of φ(x,S) w.r.t space variable x is represented by ˆ̄φ(P ,S).
Applying the inverse LT to Equation (19) obtains:

φ̂(P , t) = tσ−σµ+µ−1Eσ ,σ−σµ+µ

(−(P2 + ϑ2)tσ
) F̂(P). (20)

Now, applying the inverse FT to Equation (20) yields,

φ(x, t) = 1
2π

∫ ∞

−∞
tσ−σµ+µ−1 e−ιPxEσ ,σ−σµ+µ

(−(P2 + ϑ2)tσ
) F̂(P) dP ,
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Figure 9. Graph between W(x, t) and t for buffers EGTA and Calmodulin with σ = 0.9. (a) µ = 0, (b)
µ = 0.8, (c)µ = 0.9, and (d)µ = 1.

φ(x, t) = tσ−σµ+µ−1

2π

∫ ∞

−∞
e−ιPxEσ ,σ−σµ+µ

(−(P2 + ϑ2)tσ
) (∫ ∞

−∞
eιPyF(y) dy

)
dP .

(21)

As a result, by applyingW(x, t) = e
qx
2 φ(x, t), we arrive at the following conclusions:

W(x, t) = tσ−σµ+µ−1

2π
e
qx
2

∫ ∞

−∞
e−ιPxEσ ,σ−σµ+µ

(−(P2 + ϑ2)tσ
)

×
(∫ ∞

−∞
eιPyF(y) dy

)
dP ,

= e
qx
2

∫ ∞

−∞

(
tσ−σµ+µ−1

2π

∫ ∞

−∞
e−ιP(x−y)Eσ ,σ−σµ+µ

(−(P2 + ϑ2)tσ
)
dP

)

× F(y) dy,

= e
qx
2

∫ ∞

−∞
G(x − y, t)F(y) dy, (22)
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Figure 10. Graph for the buffers EGTA and BAPTA with σ = 0.9 between W(x, t) and x. (a) µ = 0, (b)
µ = 0.8, (c)µ = 0.9, and (d)µ = 1.

here

G(x, t) = tσ−σµ+µ−1

2π

∫ ∞

−∞
e−ιPxEσ ,σ−σµ+µ

(−(P2 + ϑ2)tσ
)
dP . (23)

4. Special cases and application

In this section, we study exceptional cases and applications. Taking some particular val-
ues of fractional order derivatives in Hilfer derivatives, we get Caputo and RL derivatives.
Here, if we put µ = 1 and µ = 0 in the Hilfer derivative, we get Caputo and RL fractional
derivatives, respectively.

Theorem 4.1: Consider the following fractionalized Equation (15) with respect to time,

CDσ
t φ(x, t) = ∂2φ

∂x2
− ϑ2φ, (24)

where CDσ
t is the fractional derivative in Caputo sense. The corresponding conditions are,

φ(x, 0) = f (x) − X∞
X0

, t = 0, x > 0,
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Figure 11. Graph for the buffers EGTA and Calmodulin with σ = 0.9 betweenW(x, t) and x. (a)µ = 0,
(b)µ = 0.8, (c)µ = 0.9, and (d)µ = 1.

φ(0, t) = X0 − X∞
X0

, t > 0, x ≥ 0,

limx→∞ φ(x, t) = 0,

and W(x, t) = e
qx
2 φ(x, t).

With the given condition, the solution to the above equation is

W(x, t) = e
qx
2

∫ ∞

−∞
G(x − y, t)F(y) dy, (25)

here

G(x, t) = 1
2π

∫ ∞

−∞
e−ιPxEσ ,1

(−(P2 + ϑ2)tσ
)
dP . (26)

Theorem 4.2: Consider the following fractionalized Equation (15) with respect to time,

RLDσ
t φ(x, t) = ∂2φ

∂x2
− ϑ2φ, (27)
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Figure 12. Graph for the buffers Troponine and BAPTA with σ = 0.9 betweenW(x, t) and t. (a)µ = 0,
(b)µ = 0.8, (c)µ = 0.9, and (d)µ = 1.

where RLDσ
t is the fractional derivative in RL sense. The corresponding conditions are,

φ(x, 0) = f (x) − X∞
X0

, t = 0, x > 0,

φ(0, t) = X0 − X∞
X0

, t > 0, x ≥ 0,

limx→∞ φ(x, t) = 0,

and W(x, t) = e
qx
2 φ(x, t).

With the given condition, the solution to the above equation is

W(x, t) = e
qx
2

∫ ∞

−∞
G(x − y, t)F(y) dy, (28)

here

G(x, t) = tσ−1

2π

∫ ∞

−∞
e−ιPxEσ ,σ

(−(P2 + ϑ2)tσ
)
dP . (29)
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Figure 13. Graph for the buffers Troponine and BAPTA with σ = 0.9 betweenW(x, t) and x. (a)µ = 0,
(b)µ = 0.8, (c)µ = 0.9, and (d)µ = 1.

Application:Here we discuss the certain applications of our main theorem in Section 3
for the function f (x) = δ(x).

Corollary 4.3: Consider the following fractionalised equation w.r.t time,

Dµ,σ
t φ(x, t) = ∂2φ

∂x2
− ϑ2φ,

with (1)

I(1−µ)(1−σ)φ(x, 0) = 0, 0 < µ ≤ 1, 0 ≤ σ ≤ 1,

φ(0, t) = X0 − X∞
X0

, t > 0, x ≥ 0,

limx→∞ φ(x, t) = 0. (30)

$The concentration W(x, t) is

W(x, t) = e
qx
2

∫ ∞

−∞
G(x − y, t)δ(y) dy, (31)
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here

G(x, t) = tσ−σµ+µ−1

2π

∫ ∞

−∞
e−ιPxEσ ,σ−σµ+µ

(−(P2 + ϑ2)tσ
)
dP . (32)

5. Illustration and discussion

This segment shows the Ca profile against various biophysical parameters via Matlab,
which shows in Table 1. Figure 2 shows that the calcium profile is different over time for the
RL case, which corresponds to µ = 0, and plots are taken for σ = 1, 0.9, 0.8. The cytoso-
lic concentration level drops below the 0.5µM level and reaches a steady state close to
0.3µM. As the fractional derivative order drops, the whole flow behaviour stays at sub-
stantially reduced levels, and the concentration declines separately. This is due to the ions
diffusing out and interacting with the buffers.

Figure 3 shows that the calcium profile is different over time for the Caputo case, which
corresponds to µ = 1, and plots are taken for σ = 1, 0.9, 0.8. The cytosolic concentra-
tion level drops below the 0.15µM level and reaches a steady state close to 0.3µM. As
the fractional derivative order drops, the whole flow profile stays at lower levels, and the
concentration declines separately. This is due to the ions diffusing out and interacting with
the buffers.

Figures 4 and 5 show the space-related variation in the RL case and Caputo derivative,
which corresponds to µ = 0, and µ = 1 respectively. Figures 4 and 5 show the interpreta-
tion of the Ca concentration profile including a location by various qualities through the
fractional order σ = 1, 0.9, 0.8. The concentration of free Ca+2 ions is seen to be high at
the entrance site; when calcium ions spread and bind to the buffer, the concentration of
free Ca+2 ions diminishes.

As it interacts with the buffer, the greatest amount near the entrance site lowers the
cytosolic calcium concentration. Thewhole pattern shifts to the upper side as the fractional
order rises.

The curves in Figures 4, 5, and 7 demonstrate that the overall flowprofile diminishes and
enters a steady state when the order σ of the fractional derivative decreases. Additionally,
it drops sharply for the integral value of σ .

The increase in concentration levels after reaching the cytosol and right before interact-
ing with the buffer is due to a non-local characteristic of the fractional operator. Cytosolic
calcium concentration level in Figure 6 at the starting level, Ca+2 ions react with the buffer
species and, therefore, theCa concentration decreases significantly. After this, a steady state
is obtained.

Figures 8 and 10 show the temporal distribution for the endogenous buffers EGTA and
BAPTA. On the starting position, the concentration level for both buffers is extremely high
and gradually decreases; It reflects that kind of change in the amount of free Ca+2 ion
concentration. Near the entry point, their concentration approaches 0.4µMand decreases
as Ca+2 ions begin associating with the buffer, reaching the lowest level of 0.4µM.

It is also observed that the overall pattern for EGTA is (little) higher than that for
BAPTA, indicating so it EGTA is a slower buffer than BAPTA.

Figures 9 and 11 depict spatial Ca concentration patterns for exogenous buffers EGTA
along with calmodulin. The intracellular Ca content grows, whereas calmodulin falls as it
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spreads and attaches to the buffer, even so the overall pattern regarding EGTA buffer stays
high.

Similarly, Figures 12 and 13 demonstrate the calcium distribution for troponine and
BAPTA, respectively. It is obvious from the troponine curve that the Ca concentration
level increases quickly and then declines fast. Nonetheless, the overall calcium concentra-
tion profile remained greater than BAPTA. The variation in calcium concentrations about
different buffers results from their affinity for other Ca. With a low Ca+2 affinity buffer,
there are less binding of Ca+2 ions in the cytosol and a higher concentration of free Ca+2

ions.
When thewhole intracellular calcium concentration profile is compared, it is discovered

that the concentration of freeCa+2 ions for EGTA ismore than for BAPTA.This distinction
is because EGTA moves slowly while BAPTA is a quick chelator. BAPTA aids between the
reduction of cellular Ca and protects cells against calcium toxicity.

6. Conclusions

This paper presents the physiological phenomenon of the distribution of cytosolic calcium
concentration using a Hilfer derivative. The model uses advection diffusion with calcium-
binding buffers. Concentration effects are discussed for EGTA, Troponine, Calmodulin,
and BAPTA. Calcium buffers affect signalling. The fractional order derivative is more
favourable than the integer order since the future state of the system relies on its present
state and all its previous circumstances. The model solution is found using integral trans-
form and removing RL and Caputo derivatives. Simulations indicate fractional ordering’s
influence on calcium profile. Combined, for every buffer taking into account in this work,
is therefore noticed that calcium concentration begins to decrease after entering the cell as
Ca+2 ions initiate to react among the buffer species. Different buffers reduce concentration
in a different manners. EGTA’s concentration profile is greater than BAPTA’s. EGTA is a
slow buffer, whereas BAPTA is a quick chelator. The fractional operator’s non-locality is
reflected in this same increase in concentration and upon attempting to enter the cytosol
and before interacting along the buffer. Clearly, buffers affect the calciumprofile. The buffer
decreases cellular calcium and avoids toxicity. Calcium-binding buffer impacts temporal
and spatial calcium transients.

Calcium profile is of great importance in the biological sciences. In this paper, we
describe the processing of calcium buffer bonding in humans with the help of a calcium
buffer bonding model, which is essential from a mathematical and computational point of
view. Calcium buffer bonding will be more precisely understood if the paper’s numerical
results are used in a medical environment. Parameters such as a person’s blood volume,
blood pressure, weight, body temperature, abdominal size, age, etc., can be included in the
simulation to increase its accuracy. By analysing the critical facts discussed in all sections
and concluding remarks, the clinician or researcher may use the results of this article to
evaluate calcium buffer binding.

These models can be improved to produce spatiotemporal patterns of calcium-buffered
concentration in reaction to a particular activity through precise synchronization of
transport mechanisms. The information generated by these models can be beneficial for
biomedical researchers to comprehend the accurate physical coordination of cellular pro-
cesses and the disruptions of this coordination, which can lead to the creation of protocols
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for detecting and treating neuronal diseases. Its accuracy for the general populace can
also be tested with additional studies. The connection between biophysical factors, such
as pump, leak, diffusion, coefficient, and others, can be further explored using efficient
models. They can also be used to examine the effects of fractional convective diffusion on
the spread of calcium buffer in the presence of an intrinsic process.
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