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A B S T R A C T

In this work, the distributed-order time fractional 2D Sobolev equation is introduced. The orthonormal
Bernoulli polynomials, as a renowned family of basis functions, are employed to solve this problem. To
effectively use of these polynomials in constructing a suitable methodology for this equation, some operational
matrices regarding the ordinary and fractional derivative of them are derived. In the developed method, by
approximating the unknown solution by means of these polynomials and using the mentioned matrices, as
well as applying the collocation technique, a system of algebraic equations (in which the unknowns are the
expansion coefficients of the solution function) is obtained, which by solving it, a solution for the main problem
is obtained. By providing four test problems, the capability and accuracy of the scheme are studied.
Introduction

The importance of fractional derivatives is increasing daily due
to their high capabilities in modeling fundamental problems of the
real world. In fact, from a mathematical point of view, their greater
degree of freedom compared to ordinary derivatives makes it possible
to provide more accurate and suitable models for various problems [1].
Usually, these types of derivatives have memory retention property [1].
This means that in a period of time, the next behavior of a dynamical
system will be affected by the behavior of the entire previous period. It
should be noted that various forms of fractional derivatives have been
presented. Distributed-order (DO) fractional derivatives are a special
form of fractional derivatives that are obtained by integrating ordinary
fractional derivatives with respect to their fractional order in a specific
range [2,3]. In fact, ordinary fractional derivatives are a special case of
these derivatives. This type of fractional derivatives has been widely
considered in better modeling of various problems. Applications of
these derivatives have been used in signal processing [4], electrochem-
istry [5], viscoelastic [6], diffusion [7], control [8], etc. We remind that
the most important challenge in facing the fractional problems involv-
ing this type of derivatives is to find their solution, which in most cases
is not possible with analytical methods. For this reason, in recent years,
researchers have proposed numerical methods as a useful tool for this
category of problems. Some of the numerical techniques proposed in
recent years to solve such problems are: the fractional Taylor wavelets
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method [9], Polynomial-Sinc collocation method [10], Petrov–Galerkin
method [11], Chebyshev wavelets method [12], Müntz–Legender poly-
nomials method [13], Jacobi polynomials method [14], Galerkin spec-
tral method [15], finite difference scheme [16], Legendre polynomials
method [17,18], Chebyshev cardinal polynomials method [19] and
piecewise Jacobi functions method [20].

The Sobolev equation (as a renowned partial differential equation)
possesses a wide range of applications in important problems, such as
the problem of humidity movement in the soil, fluid flow through frac-
tured rocks, heat flow through different materials, propagation of long
waves, etc. [21]. In recent years, various algorithms have been applied
to solve the fractional forms of this equation. Some of these methods
are: Crank–Nicolson finite element method [22], Crank–Nicolson finite
volume element method [23], finite difference method [24], local
discontinuous Galerkin method [25], a hybrid technique based on
the Müntz–Legender wavelets and Müntz–Legender functions [26] and
discrete Legendre polynomials method [27].

Due to the wide applications of the Sobolev equation in the math-
ematical modeling of various problems and with the knowledge of
the high capabilities of DO fractional derivatives, in this study, we
introduce a DO fractional form of this equation and develop a suitable
computational method to solve it. So, we focus on the below equation:

∫

1

0
𝜇(𝛾) 𝐶0𝐷

𝛾
𝑡 𝜑(𝑥, 𝑦, 𝑡)𝑑𝛾 − 𝜆𝛥𝜑𝑡(𝑥, 𝑦, 𝑡) − 𝜎𝛥𝜑(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦, 𝑡),
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(𝑥, 𝑦, 𝑡) ∈ [0, 1] × [0, 1] × [0, 𝑇 ], (1)

where 𝜑 is the unknown solution (which is assumed to be continuous),
𝛥 = 𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
is the Laplacian operator, 𝜆 and 𝜎 are given constants,

0𝐷
𝛾
𝑡 𝜑 is the fractional differentiation of order 𝛾 with respect to tem-

oral variable of 𝜑 in the Caputo form [1]. Here, 𝜇 ∶ [0, 1] ⟶ R+ is
the distribution function that possesses the property 0 < ∫ 1

0 𝜇(𝛾)𝑑𝛾 <
[28].
In numerical approaches developed using basis functions for differ-

ntial and integral equations, polynomials-based approaches are often
ore efficient. For instance, see [29–32]. In particular, in the case

f fractional equations, the calculation of their fractional derivatives
s usually straightforward, and with appropriate methods, the matrix
orms of their fractional derivatives can be obtained and used in related
umerical approaches.

A family of polynomial basis functions that have been employed in
he past decades to solve diverse problems is the Bernoulli polynomials
BPs). They are successfully employed to solve different, such as ordi-
ary integral equations [33], stochastic integral equations [34], frac-
ional delay differential equations [35], fractional coupled Boussinesq-
urger’s equations [36], fractional reaction–advection–diffusion equa-
ion [37], fractional Benjamin–Bona–Mahony equation [38], fractional
artial integro-differential equations [39] and fractional Lane–Emden
quation [40]. We remind that if the solution of the problem under
onsideration is sufficiently smooth, the numerical results obtained by
hese polynomials are very accurate.

In this study, we use the orthonormal BPs to solve the above DO
ractional Sobolev equation. First of all, we derive some formulas
or computing operational matrices regarding ordinary and fractional
erivatives of these polynomials. The established approach works in
uch a way that first the unknown solution is approximated by these
olynomials. Then, using the derivative matrices, approximations for
he derivatives in the equation are provided. Next, by inserting these
pproximations into the equation and employing the collocation tech-
ique, we generate an algebraic system of equations. At the end,
y solving this system, a solution for the DO fractional equation is
btained. Several test problems are considered to verify the formulation
f the approach as well as its accuracy.

The remainder of this study is as follows: Some prerequisites are
ollected in Section ‘‘Preliminaries’’. The orthonormal BPs and their
perational matrices are given respectively in Sections ‘‘Orthonor-
al Bernoulli polynomials’’ and ‘‘Operational matrices’’. The proposed

cheme and test problems are given respectively in Sections ‘‘ The
roposed method’’ and ‘‘Test problems’’. The conclusion of this work
s reviewed in Section ‘‘Conclusion’’.

reliminaries

Here, we have reviewed a few preparations that will be used in this
tudy.

efinition 1 ([1]). Suppose that 𝑓 is a differentiable function in its
omain and 0 < 𝛾 ≤ 1 is a given constant. The Caputo fractional
ifferentiation of order 𝛾 of this function is defined as

𝐶
0𝐷

𝛾
𝑡 𝑓 (𝑡) =

⎧

⎪

⎨

⎪

⎩

1
𝛤 (1 − 𝛾) ∫

𝑡

0
(𝑡 − 𝑠)−𝛾𝑓 ′(𝑠)𝑑𝑠, 0 < 𝛾 < 1,

𝑓 ′(𝑡), 𝛾 = 1.
(2)

Note that for 𝛾 = 0, we have 𝐶
0𝐷

0
𝑡 𝑓 (𝑡) = 𝑓 (𝑡).

Corollary 1 ([1]). For 𝑘 ∈ N ∪ {0}, we achieve

𝐶
0𝐷

𝛾
𝑡 𝑡
𝑘 =

⎧

⎪

⎨

⎪

0, 𝑘 = 0,
𝑘!

𝛤 (𝑘 − 𝛾 + 1)
𝑡𝑘−𝛾 , 𝑘 ≥ 1.

(3)
2

⎩

Definition 2 ([41,42]). An (𝑁̂ + 1)-point Legendre Gauss–Lobatto
quadrature integration can be defined over [0, 1] as follows:

∫

1

0
ℎ(𝑡)𝑑𝑡 ≃ 1

2

𝑁̂
∑

𝑖=0
𝑤̄𝑖ℎ

(1
2
(

𝑡𝑖 + 1
)

)

, (4)

where 𝑡0 = −1, 𝑡𝑁̂ = 1 and 𝑡𝑖 (𝑖 = 1, 2,… , 𝑁̂ − 1) are the zeros of 𝐿′
𝑁̂

(where 𝐿𝑁̂ is the 𝑁̂th Legendre polynomial), and

𝑤̄𝑖 =
2

𝑁̂(𝑁̂ + 1)
1

(

𝐿𝑁̂
(

𝑡𝑖
))2

. (5)

In this work, we set 𝑁̂ = 25 in all computations.

Orthonormal Bernoulli polynomials

For a given number 𝑚1 ∈ Z+, a set containing (𝑚1 + 1) elements of
he orthonormal BPs can be defined over [0, 1] by the formula [36]:

𝑚1 ,𝑖(𝑥) =
𝑖

∑

𝑘=0
𝜚𝑖𝑘𝑥

𝑘, 𝑖 = 0, 1,… , 𝑚1, (6)

here

𝑖𝑘 = (−1)𝑖+𝑘
√

2𝑖 + 1
(

𝑖
𝑖 − 𝑘

)(

𝑖 + 𝑘
𝑘

)

. (7)

he orthonormal property of these functions allows us to represent any
unction 𝜓̄ ∈ 𝐿2[0, 1] as follows:

̄ (𝑥) ≃
𝑚1
∑

𝑖=0
𝜓̄𝑖𝐵𝑚1 ,𝑖(𝑥) ≜ 𝜳 ⊺

𝑚1
𝐁𝑚1

(𝑥), (8)

where

𝜳𝑚1
=
[

𝜓̄0 𝜓̄1 … 𝜓̄𝑚1

]⊺
,

ith

̄ 𝑖 = ∫

1

0
𝜓̄(𝑥)𝐵𝑚1 ,𝑖(𝑥)𝑑𝑥, (9)

nd

𝑚1
(𝑥) =

[

𝐵𝑚1 ,0(𝑥) 𝐵𝑚1 ,1(𝑥) … 𝐵𝑚1 ,𝑚1
(𝑥)

]⊺
. (10)

lso, for given numbers 𝑚1, 𝑚2 ∈ Z+, we can define the 2D orthonormal
Ps as follows:

̄𝑚1𝑚2 ,𝑖𝑗 (𝑥, 𝑦) = 𝐵𝑚1 ,𝑖(𝑥)𝐵𝑚2 ,𝑗 (𝑦), 𝑖 = 0, 1,… , 𝑚1, 𝑗 = 0, 1,… , 𝑚2.

(11)

oreover, for any two variables function 𝜓̄ ∈ 𝐿2 ([0, 1] × [0, 1]), we can
onsider the following representation:

𝜓̄(𝑥, 𝑦) ≃
𝑚1
∑

𝑖=0

𝑚2
∑

𝑗=0
𝜓̄𝑖𝑗 𝐵̄𝑚1𝑚2 ,𝑖𝑗 (𝑥, 𝑦) ≜ 𝜳̄ ⊺

𝑚1𝑚2
𝐁̄𝑚1𝑚2

(𝑥, 𝑦), (12)

where

𝜳̄𝑚1𝑚1
=
[

𝜓̄00 𝜓̄01 … 𝜓̄0𝑚2
|𝜓̄10 𝜓̄11 … 𝜓̄1𝑚2

|… |𝜓̄𝑚10 𝜓̄𝑚11 … 𝜓̄𝑚1𝑚2

]⊺
,

with

𝜓̄𝑖𝑗 = ∫

1

0 ∫

1

0
𝜓̄(𝑥, 𝑦)𝐵̄𝑚1𝑚2 ,𝑖𝑗 (𝑥, 𝑦)𝑑𝑥𝑑𝑦.

and

𝐁̄𝑚1𝑚2
(𝑥, 𝑦) =

[

𝐵̄𝑚1𝑚2 ,00(𝑥, 𝑦) 𝐵̄𝑚1𝑚2 ,01(𝑥, 𝑦)

… 𝐵̄𝑚1𝑚2 ,0𝑚2
(𝑥, 𝑦)|𝐵̄𝑚1𝑚2 ,10(𝑥, 𝑦) 𝐵̄𝑚1𝑚2 ,11(𝑥, 𝑦)

… 𝐵̄𝑚1𝑚2 ,1𝑚2
(𝑥, 𝑦)|… |𝐵̄𝑚1𝑚2 ,𝑚10(𝑥, 𝑦) 𝐵̄𝑚1𝑚2 ,𝑚11(𝑥, 𝑦)

… 𝐵̄𝑚1𝑚2 ,𝑚1𝑚2
(𝑥, 𝑦)

]⊺
. (13)
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Note that for simplicity we can rewrite (12) as

̄ (𝑥, 𝑦) ≃
(𝑚1+1)(𝑚2+1)−1

∑

𝑟=0
𝜓̃𝑟𝐵̃𝑚1𝑚2 ,𝑟(𝑥, 𝑦) ≜ 𝜳̄ ⊺

𝑚1𝑚1
𝐁̄𝑚1𝑚2

(𝑥, 𝑦), (14)

where 𝜓̃𝑟 = 𝜓̄𝑖𝑗 and 𝐵̃𝑚1𝑚2 ,𝑟(𝑥, 𝑦) = 𝐵̄𝑚1𝑚2 ,𝑖𝑗 (𝑥, 𝑦) with 𝑟 =
(

𝑚2 + 1
)

𝑖 + 𝑗
for 𝑖 = 0, 1,… , 𝑚1 and 𝑗 = 0, 1,… , 𝑚2. Similarly, we can approxi-
mate any three variables function 𝜑̄ ∈ 𝐿2 ([0, 1] × [0, 1] × [0, 𝑇 ]) by the
orthonormal BPs as follows:

𝜑̄(𝑥, 𝑦, 𝑡)

≃
(𝑚1+1)(𝑚2+1)−1

∑

𝑟=0

𝑚3
∑

𝑙=0
𝜑̃𝑟𝑙𝐵̃𝑚1𝑚2 ,𝑟(𝑥, 𝑦)𝐵̂𝑚3 ,𝑙(𝑡) ≜ 𝐁̄⊺

𝑚1𝑚2
(𝑥, 𝑦)𝜱̄𝑚1𝑚2𝑚3

𝐁̂𝑚3
(𝑡),

(15)
where

𝜱̄𝑚1𝑚2𝑚3
=

⎛

⎜

⎜

⎜

⎜

⎝

𝜑̃00 𝜑̃01 … 𝜑̃0𝑚3

𝜑̃10 𝜑̃11 … 𝜑̃1𝑚3

⋮ ⋮ … ⋮

𝜑̃(𝑚1𝑚2+𝑚1+𝑚2)0 𝜑̃(𝑚1𝑚2+𝑚1+𝑚2)1 … 𝜑̃(𝑚1𝑚2+𝑚1+𝑚2)𝑚3

⎞

⎟

⎟

⎟

⎟

⎠

,

with

𝜑̃𝑟𝑙 = ∫

𝑇

0 ∫

1

0 ∫

1

0
𝜑̄(𝑥, 𝑦, 𝑡)𝐵̃𝑚1𝑚2 ,𝑟(𝑥, 𝑦)𝐵̂𝑚3 ,𝑙(𝑡)𝑑𝑥𝑑𝑦𝑑𝑡,

and

𝐁̂𝑚3
(𝑡) =

[

𝐵̂𝑚3 ,0(𝑡) 𝐵̂𝑚3 ,1(𝑡) … 𝐵̂𝑚3 ,𝑚3
(𝑡)
]⊺
, (16)

where for a given 𝑚3 ∈ Z+, the functions 𝐵̂𝑚3 ,𝑙(𝑡) (𝑙 = 0, 1,… , 𝑚3) are
defined in [36] as

𝐵𝑚3 ,𝑙(𝑡) =
𝑙

∑

𝑘=0
𝜚̂𝑙𝑘𝑡

𝑘, (17)

such that

𝜚̂𝑙𝑘 = (−1)𝑙+𝑘
√

(2𝑙 + 1)
𝑇

1
𝑇 𝑘

(

𝑙
𝑙 − 𝑘

)(

𝑙 + 𝑘
𝑘

)

. (18)

perational matrices

This section is dedicated to deriving some operational matrices for
rthonormal BPs.

heorem 1. The below relation is valid for the second order derivative of
he vector 𝐁𝑚1

(𝑥) defined in (10):

𝑑2𝐁𝑚1
(𝑥)

𝑑𝑥2
= 𝐃(2)

𝑚1
𝐁𝑚1

(𝑥), (19)

where

𝐃(2)
𝑚1

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 … 0 0 0
0 0 0 … 0 0 0

𝑑(2,𝑚1)
20 0 0 … 0 0 0

𝑑(2,𝑚1)
30 𝑑(2,𝑚1)

31 0 … 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑑(2,𝑚1)
(𝑚1−1)0

𝑑(2,𝑚1)
(𝑚1−1)1

𝑑(2,𝑚1)
(𝑚1−1)2

… 0 0 0

𝑑(2,𝑚1)
𝑚10

𝑑(2,𝑚1)
𝑚11

𝑑(2,𝑚1)
𝑚12

… 𝑑(2,𝑚1)
𝑚1(𝑚1−2)

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and

𝑑(2,𝑚1)
𝑖𝑗 =

{

𝑎(2,𝑚1)
𝑖𝑗 , 2 ≤ 𝑖 ≤ 𝑚1, 0 ≤ 𝑗 ≤ 𝑖 − 2,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

in which

𝑎(2,𝑚1)
𝑖𝑗 =

√

(2𝑖 + 1)(2𝑗 + 1)

×
𝑖

∑

𝑗
∑ (−1)𝑖+𝑗+𝑘+𝑟𝑘(𝑘 − 1)

(

𝑖
)(

𝑖 + 𝑘
)(

𝑗
)(

𝑗 + 𝑟
)

.

3

𝑘=2 𝑟=0 𝑘 + 𝑟 − 1 𝑖 − 𝑘 𝑘 𝑗 − 𝑟 𝑟 𝐐
roof. From (6), we have

𝑑2𝐵𝑚1 ,𝑖(𝑥)

𝑑𝑥2
= 0, 𝑖 = 0, 1, (20)

nd

𝑑2𝐵𝑚1 ,𝑖(𝑥)

𝑑𝑥2
=

𝑖
∑

𝑘=2
𝜚𝑖𝑘𝑘(𝑘 − 1)𝑥𝑘−2, 𝑖 = 2, 3,… , 𝑚1, (21)

where 𝜚𝑖𝑘 is defined in (7). Expanding the results obtained in (21) by
the orthonormal BPs and considering the orthogonal property of these
functions, results in

𝑑2𝐵𝑚1 ,𝑖(𝑥)

𝑑𝑥2
=

𝑖−2
∑

𝑗=0
𝑑(2,𝑚1)
𝑖𝑗 𝐵𝑚1 ,𝑗 (𝑥), (22)

where

𝑑(2,𝑚1)
𝑖𝑗 = ∫

1

0

𝑑2𝐵𝑚1 ,𝑖(𝑥)

𝑑𝑥2
𝐵𝑚1 ,𝑗 (𝑥)𝑑𝑥 =

𝑖
∑

𝑘=2
𝜚𝑖𝑘𝑘(𝑘 − 1)∫

1

0
𝑥𝑘−2𝐵𝑚1 ,𝑗 (𝑥)𝑑𝑥.

(23)

From the definition regarding the functions 𝐵𝑚1 ,𝑗 (𝑥) in (6), the out-
comes extracted in (23) can be calculated as

𝑑(2,𝑚1)
𝑖𝑗 =

𝑖
∑

𝑘=2

𝑗
∑

𝑟=0
𝜚𝑖𝑘𝜚𝑗𝑟𝑘(𝑘 − 1)∫

1

0
𝑥𝑘+𝑟−2𝑑𝑥 =

𝑖
∑

𝑘=2

𝑗
∑

𝑟=0

𝜚𝑖𝑘𝜚𝑗𝑟𝑘(𝑘 − 1)
𝑘 + 𝑟 − 1

. (24)

Thus, from (22), we obtain

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑑2𝐵𝑚1 ,0(𝑥)

𝑑𝑥2
𝑑2𝐵𝑚1 ,1(𝑥)

𝑑𝑥2
𝑑2𝐵𝑚1 ,2(𝑥)

𝑑𝑥2
⋮

𝑑2𝐵𝑚1 ,𝑚1−1(𝑥)

𝑑𝑥2
𝑑2𝐵𝑚1 ,𝑚1

(𝑥)

𝑑𝑥2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑑2𝐁𝑚1 (𝑥)

𝑑𝑥2

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 … 0 0 0

0 0 0 … 0 0 0

𝑑(2,𝑚1)
20 0 0 … 0 0 0

𝑑(2,𝑚1)
30 𝑑(2,𝑚1)

31 0 … 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑑(2,𝑚1)
(𝑚1−1)0

𝑑(2,𝑚1)
(𝑚1−1)1

𝑑(2,𝑚1)
(𝑚1−1)2

… 0 0 0

𝑑(2,𝑚1)
𝑚10

𝑑(2,𝑚1)
𝑚11

𝑑(2,𝑚1)
𝑚12

… 𝑑(2,𝑚1)
𝑚1(𝑚1−2)

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐃(2)
𝑚1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐵𝑚1 ,0(𝑥)

𝐵𝑚1 ,1(𝑥)

𝐵𝑚1 ,2(𝑥)

⋮

𝐵𝑚1 ,𝑚1−1(𝑥)

𝐵𝑚1 ,𝑚1
(𝑥)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝐁𝑚1 (𝑥)

.

ence, by applying the definition expressed in (7) for calculating
𝑖𝑘 and 𝜚𝑗𝑟, and inserting them into (24), the desired result will be
btained. □

As a numerical example, we have

(2)
7 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

12
√

5 0 0 0 0 0 0 0

0 20
√

21 0 0 0 0 0 0

120 0 84
√

5 0 0 0 0 0

0 56
√

33 0 36
√

77 0 0 0 0

84
√

13 0 72
√

65 0 132
√

13 0 0 0

0 324
√

5 0 88
√

105 0 52
√

165 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Theorem 2. The second order derivatives of the vector 𝐁̄𝑚1𝑚2
(𝑥, 𝑦) defined

in (13) can be given as follows:

𝜕2𝐁̄𝑚1𝑚2
(𝑥, 𝑦)

𝜕𝑥2
= 𝐐(2)

𝑚1𝑚2
𝐁̄𝑚1𝑚2

(𝑥, 𝑦), (25)

here

(2) = 𝐃(2) ⊗ 𝐈
𝑚1𝑚2 𝑚1 𝑚2
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P

T

w

𝐃

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐎𝑚2
𝐎𝑚2

𝐎𝑚2
… 𝐎𝑚2

𝐎𝑚2
𝐎𝑚2

𝐎𝑚2
𝐎𝑚2

𝐎𝑚2
… 𝐎𝑚2

𝐎𝑚2
𝐎𝑚2

𝑑(2,𝑚1)
20 𝐈𝑚2

𝐎𝑚2
𝐎𝑚2

… 𝐎𝑚2
𝐎𝑚2

𝐎𝑚2

𝑑(2,𝑚1)
30 𝐈𝑚2

𝑑(2,𝑚1)
31 𝐈𝑚2

𝐎𝑚2
… 𝐎𝑚2

𝐎𝑚2
𝐎𝑚2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑑(2,𝑚1)
(𝑚1−1)0

𝐈𝑚2
𝑑(2,𝑚1)
(𝑚1−1)1

𝐈𝑚2
𝑑(2,𝑚1)
(𝑚1−1)2

𝐈𝑚2
… 𝐎𝑚2

𝐎𝑚2
𝐎𝑚2

𝑑(2,𝑚1)
𝑚10

𝐈𝑚2
𝑑(2,𝑚1)
𝑚11

𝐈𝑚2
𝑑(2,𝑚1)
𝑚12

𝐈𝑚2
… 𝑑(2,𝑚1)

𝑚1(𝑚1−2)
𝐈𝑚2

𝐎𝑚2
𝐎𝑚2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

in which 𝐐(2)
𝑚1𝑚2

is an
(

𝑚1 + 1
) (

𝑚2 + 1
)

-order square matrix, 𝐃(2)
𝑚1

is the
matrix obtained in Theorem 1, ⊗ denotes the tensor product, 𝐎𝑚2

is an
(

𝑚2 + 1
)

-order zero matrix and 𝐈𝑚2
is an

(

𝑚2 + 1
)

-order identity matrix,
and
𝜕2𝐁̄𝑚1𝑚2

(𝑥, 𝑦)

𝜕𝑦2
= 𝐏(2)

𝑚1𝑚2
𝐁̄𝑚1𝑚2

(𝑥, 𝑦), (26)

where 𝐏(2)
𝑚1𝑚2

is an
(

𝑚1 + 1
) (

𝑚2 + 1
)

-order square matrix in the form of

𝐏(2)
𝑚1𝑚2

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐃(2)
𝑚2

𝐎𝑚2
𝐎𝑚2

… 𝐎𝑚2
𝐎𝑚2

𝐎𝑚2
𝐃(2)
𝑚2

𝐎𝑚2
… 𝐎𝑚2

𝐎𝑚2

⋮ ⋮ ⋮ … ⋮ ⋮

𝐎𝑚2
𝐎𝑚2

𝐎𝑚2
… 𝐃(2)

𝑚2
𝐎𝑚2

𝐎𝑚2
𝐎𝑚2

𝐎𝑚2
… 𝐎𝑚2

𝐃(2)
𝑚2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

in which 𝐃(2)
𝑚2

is an
(

𝑚2 + 1
)

-order square matrix that can be obtained
similar to Theorem 1 as
[

𝐃(2)
𝑚2

]

𝑖𝑗
=

{

𝑏(2,𝑚2)
𝑖𝑗 , 2 ≤ 𝑖 ≤ 𝑚2, 0 ≤ 𝑗 ≤ 𝑖 − 2,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

for 0 ≤ 𝑖, 𝑗 ≤ 𝑚2, in which

𝑏(2,𝑚2)
𝑖𝑗 =

√

(2𝑖 + 1)(2𝑗 + 1)

×
𝑖

∑

𝑘=2

𝑗
∑

𝑟=0

(−1)𝑖+𝑗+𝑘+𝑟𝑘(𝑘 − 1)
𝑘 + 𝑟 − 1

(

𝑖
𝑖 − 𝑘

)(

𝑖 + 𝑘
𝑘

)(

𝑗
𝑗 − 𝑟

)(

𝑗 + 𝑟
𝑟

)

.

roof. The proof is straightforward. So, we leave it to the reader. □

heorem 3. The first derivative of 𝐁̂𝑚3
(𝑡) given in (16) can be stated as

𝑑𝐁̂𝑚3
(𝑡)

𝑑𝑡
= 𝐃(1)

𝑚3
𝐁̂𝑚3

(𝑡), (27)

here

(1)
𝑚3

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 … 0 0 0

𝑑(1,𝑚3)
10 0 0 … 0 0 0

𝑑(1,𝑚3)
20 𝑑(1,𝑚3)

21 0 … 0 0 0

𝑑(1,𝑚3)
30 𝑑(1,𝑚3)

31 𝑑(1,𝑚3)
32 … 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑑(1,𝑚3)
(𝑚3−1)0

𝑑(1,𝑚3)
(𝑚3−1)1

𝑑(1,𝑚3)
(𝑚3−1)2

… 𝑑(1,𝑚3)
(𝑚3−1)(𝑚3−2)

0 0

𝑑(1,𝑚3)
𝑚30

𝑑(1,𝑚3)
𝑚31

𝑑(1,𝑚3)
𝑚32

… 𝑑(1,𝑚3)
𝑚3(𝑚3−2)

𝑑(1,𝑚3)
𝑚3(𝑚3−1)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and

𝑑(1,𝑚3)
𝑖𝑗 =

{

𝑐(1,𝑚3)
𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑚3, 0 ≤ 𝑗 ≤ 𝑖 − 1,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

in which

𝑐(1,𝑚3)
𝑖𝑗 =

√

(2𝑖 + 1)(2𝑗 + 1)
𝑇

×
𝑖

∑

𝑗
∑ (−1)𝑖+𝑗+𝑘+𝑟𝑘

(

𝑖
)(

𝑖 + 𝑘
)(

𝑗
)(

𝑗 + 𝑟
)

.

4

𝑘=1 𝑟=0 𝑘 + 𝑟 𝑖 − 𝑘 𝑘 𝑗 − 𝑟 𝑟
Proof. The proof method is similar to the one expressed for Theorem 1.
So, we omit it. □

Theorem 4. The fractional differentiation of order 0 < 𝛾 ≤ 1 of 𝐁̂𝑚3
(𝑡)

defined in (16) can be approximated as
𝐶
0𝐷

𝛾
𝑡 𝐁̂𝑚3

(𝑡) ≃ 𝐒(𝛾)𝑚3
𝐁̂𝑚3

(𝑡), (28)

where

𝐒(𝛾)𝑚3
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 … 0 0

𝑠(𝛾,𝑚3)
10 𝑠(𝛾,𝑚3)

11 … 𝑠(𝛾,𝑚3)
1(𝑚3−1)

𝑠(𝛾,𝑚3)
1𝑚3

𝑠(𝛾,𝑚3)
20 𝑠(𝛾,𝑚3)

21 … 𝑠(𝛾,𝑚3)
2(𝑚3−1)

𝑠(𝛾,𝑚3)
2𝑚3

⋮ ⋮ … ⋮ ⋮

𝑠(𝛾,𝑚3)
𝑚30

𝑠(𝛾,𝑚3)
𝑚31

… 𝑠(𝛾,𝑚3)
𝑚3(𝑚3−1)

𝑠(𝛾,𝑚3)
𝑚3𝑚3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and

𝑠(𝛾,𝑚3)
𝑖𝑗 =

{

𝑣(𝛾,𝑚3)
𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑚3, 0 ≤ 𝑗 ≤ 𝑚3,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

in which

𝑣(𝛾,𝑚3)
𝑖𝑗 =

√

(2𝑖 + 1)(2𝑗 + 1)
𝑇 𝛾

×
𝑖

∑

𝑘=1

𝑗
∑

𝑟=0

(−1)𝑖+𝑗+𝑘+𝑟𝑘!
(𝑘 + 𝑟 − 𝛾 + 1)𝛤 (𝑘 − 𝛾 + 1)

(

𝑖
𝑖 − 𝑘

)(

𝑖 + 𝑘
𝑘

)(

𝑗
𝑗 − 𝑟

)(

𝑗 + 𝑟
𝑟

)

.

Proof. From Corollary 1 and the formula expressed in (17), we have
𝐶
0𝐷

𝛾
𝑡 𝐵̂𝑚3 ,0(𝑡) = 0, (29)

and

𝐶
0𝐷

𝛾
𝑡 𝐵̂𝑚3 ,𝑖(𝑡) =

𝑖
∑

𝑘=1

𝜚̂𝑖𝑘𝑘!
𝛤 (𝑘 − 𝛾 + 1)

𝑡𝑘−𝛾 , 𝑖 = 1, 2,… , 𝑚3. (30)

Approximating the above result by the orthonormal BPs, gives

𝐶
0𝐷

𝛾
𝑡 𝐵̂𝑚3 ,𝑖(𝑡) ≃

𝑚3
∑

𝑗=0
𝑠(𝛾,𝑚3)
𝑖𝑗 𝐵̂𝑚3 ,𝑗 (𝑡), (31)

where

𝑠(𝛾,𝑚3)
𝑖𝑗 = ∫

𝑇

0

(

𝐶
0𝐷

𝛾
𝑡 𝐵̂𝑚3 ,𝑖(𝑡)

)

𝐵̂𝑚3 ,𝑗 (𝑡)𝑑𝑡

=
𝑖

∑

𝑘=1

𝜚̂𝑖𝑘𝑘!
𝛤 (𝑘 − 𝛾 + 1) ∫

𝑇

0
𝑡𝑘−𝛾 𝐵̂𝑚3 ,𝑗 (𝑡)𝑑𝑡

=
𝑖

∑

𝑘=1

𝑗
∑

𝑟=0

𝜚̂𝑖𝑘𝜚̂𝑗𝑟𝑘!
𝛤 (𝑘 − 𝛾 + 1) ∫

𝑇

0
𝑡𝑘+𝑟−𝛾𝑑𝑡

=
𝑖

∑

𝑘=1

𝑗
∑

𝑟=0

𝜚̂𝑖𝑘𝜚̂𝑗𝑟𝑘!𝑇 𝑘+𝑟−𝛾+1

(𝑘 + 𝑟 − 𝛾 + 1)𝛤 (𝑘 − 𝛾 + 1)
. (32)

Hence, from (31), we get

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐶
0𝐷

𝛾
𝑡 𝐵̂𝑚3 ,0(𝑡)

𝐶
0𝐷

𝛾
𝑡 𝐵̂𝑚3 ,1(𝑡)

𝐶
0𝐷

𝛾
𝑡 𝐵̂𝑚3 ,2(𝑡)
⋮

𝐶
0𝐷

𝛾
𝑡 𝐵̂𝑚3 ,𝑚3

(𝑡)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶
0𝐷

𝛾
𝑡 𝐁̂𝑚3 (𝑡)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 … 0 0

𝑠(𝛾,𝑚3)
10 𝑠(𝛾,𝑚3)

11 … 𝑠(𝛾,𝑚3)
1(𝑚3−1)

𝑠(𝛾,𝑚3)
1𝑚3

𝑠(𝛾,𝑚3)
20 𝑠(𝛾,𝑚3)

21 … 𝑠(𝛾,𝑚3)
2(𝑚3−1)

𝑠(𝛾,𝑚3)
2𝑚3

⋮ ⋮ … ⋮ ⋮

𝑠(𝛾,𝑚3)
𝑚30

𝑠(𝛾,𝑚3)
𝑚31

… 𝑠(𝛾,𝑚3)
𝑚3(𝑚3−1)

𝑠(𝛾,𝑚3)
𝑚3𝑚3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐒(𝛾)𝑚3

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐵̂𝑚3 ,0(𝑡)
𝐵̂𝑚3 ,1(𝑡)
𝐵̂𝑚3 ,2(𝑡)

⋮

𝐵̂𝑚3 ,𝑚3
(𝑡)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝐁̂𝑚3 (𝑡)

.

Finally, by considering the definitions of 𝜚̂𝑖𝑘 and 𝜚̂𝑗𝑟 from (18) and
inserting them into (32), the expressed assertion will be proved. □

Remark 1. In the case of 𝛾 = 1, the matrix 𝐒(𝛾)𝑚3
will be equal to 𝐃(1)

𝑚3
.

Moreover, for 𝛾 = 0, we have 𝐶
0𝐷

𝛾
𝑡 𝐁̂𝑚3

(𝑡) = 𝐈𝑚3
𝐁̂𝑚3

(𝑡), where 𝐈𝑚3
is an
(𝑚3 + 1)-order square identity matrix.
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w

w

𝜱

F

F

Corollary 2. For 0 ≤ 𝛾 ≤ 1, we have
𝐶
0𝐷

𝛾
𝑡 𝐁̂𝑚3

(𝑡) ≃ 𝐒̄(𝛾)𝑚3
𝐁̂𝑚3

(𝑡), (33)

where

𝐒̄(𝛾)𝑚3
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑠̄(𝛾,𝑚3)
10 0 … 0 0

𝑠̄(𝛾,𝑚3)
10 𝑠̄(𝛾,𝑚3)

11 … 𝑠̄(𝛾,𝑚3)
1(𝑚3−1)

𝑠̄(𝛾,𝑚3)
1𝑚3

𝑠̄(𝛾,𝑚3)
20 𝑠̄(𝛾,𝑚3)

21 … 𝑠̄(𝛾,𝑚3)
2(𝑚3−1)

𝑠̄(𝛾,𝑚3)
2𝑚3

⋮ ⋮ … ⋮ ⋮

𝑠̄(𝛾,𝑚3)
𝑚30

𝑠̄(𝛾,𝑚3)
𝑚31

… 𝑠̄(𝛾,𝑚3)
𝑚3(𝑚3−1)

𝑠̄(𝛾,𝑚3)
𝑚3𝑚3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and

𝑠̄(𝛾,𝑚3)
𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{

1, 𝑖 = 𝑗,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝛾 = 0,
[

𝐒(𝛾)𝑚3

]

𝑖𝑗
, 0 < 𝛼 ≤ 1,

Theorem 5. The distributed-order fractional differentiation of 𝐁̂𝑚3
(𝑡) given

in (16) can be approximated as

∫

1

0
𝜇(𝛾) 𝐶0𝐷

𝛾
𝑡 𝐁̂𝑚3

(𝑡)𝑑𝛾 ≃ 𝐙𝑚3
𝐁̂𝑚3

(𝑡), (34)

where

𝐙𝑚3
=

⎛

⎜

⎜

⎜

⎜

⎝

𝑧00 𝑧01 … 𝑧0𝑚3

𝑧10 𝑧11 … 𝑧1𝑚3

⋮ ⋮ … ⋮

𝑧𝑚30 𝑧𝑚31 … 𝑧𝑚3𝑚3

⎞

⎟

⎟

⎟

⎟

⎠

, (35)

and 𝑧𝑖𝑗 =
1
2

𝑁̂
∑

𝑟=0
𝑤̄𝑟𝜇

(1
2
(

𝑡𝑟 + 1
)

)

𝑠̄

(

1
2 (𝑡𝑟+1),𝑚3

)

𝑖𝑗 , in which 𝑠̄(𝛾,𝑚3)
𝑖𝑗 is expressed

in Corollary 2.

Proof. According to Corollary 2, we have

∫

1

0
𝜇(𝛾) 𝐶0𝐷

𝛾
𝑡 𝐁̂𝑚3

(𝑡)𝑑𝛼 ≃

(

∫

1

0
𝜇(𝛾)𝐒̄(𝛾)𝑚3

𝑑𝛾

)

𝐁̂𝑚3
(𝑡) ≜ 𝐙𝑚3

𝐁̂𝑚3
(𝑡),

where 𝐙𝑚3
is in the form expressed in (35), and its elements are

obtained as follows:

𝑧𝑖𝑗 = ∫

1

0
𝜇(𝛾)𝑠̄(𝛾,𝑚3)

𝑖𝑗 𝑑𝛾. (36)

Hence, computing the integrals in (36) using an (𝑁̂ +1)-point Legendre
Gauss–Lobatto quadrature technique, results in

𝑧𝑖𝑗 =
1
2

𝑁̂
∑

𝑟=0
𝑤̄𝑟𝜇

( 1
2
(

𝑡𝑟 + 1
)

)

𝑠̄

(

1
2 (𝑡𝑟+1),𝑚3

)

𝑖𝑗 ,

which ends the proof. □

The proposed method

This section is dedicated to developing a computational technique
for the equation introduced in (1) under the following conditions:

𝜑(𝑥, 𝑦, 0) = 𝜑̄0(𝑥, 𝑦), (37)

and
𝜑(0, 𝑦, 𝑡) = 𝜑̄1(𝑦, 𝑡), 𝜑(1, 𝑦, 𝑡) = 𝜑̄2(𝑦, 𝑡)
𝜑(𝑥, 0, 𝑡) = 𝜑̄3(𝑥, 𝑡), 𝜑(𝑥, 1, 𝑡) = 𝜑̄4(𝑥, 𝑡),

(38)

where 𝜑̄𝑟, 𝑟 = 0, 1,… , 4 are given continuous functions. To this purpose,
e approximate the unknown solution as follows:
5

𝜑(𝑥, 𝑦, 𝑡)

≃
(𝑚1+1)(𝑚2+1)−1

∑

𝑟=0

𝑚3
∑

𝑙=0
𝜑𝑟,𝑙𝐵̃𝑚1𝑚2 ,𝑟(𝑥, 𝑦)𝐵𝑚3 ,𝑙(𝑡) ≜ 𝐁̄⊺

𝑚1𝑚2
(𝑥, 𝑦)𝜱𝑚1𝑚2𝑚3

𝐁̂𝑚3
(𝑡),

(39)

here

𝑚1𝑚2𝑚3
=

⎛

⎜

⎜

⎜

⎜

⎝

𝜑00 𝜑01 … 𝜑0𝑚3

𝜑10 𝜑11 … 𝜑1𝑚3

⋮ ⋮ … ⋮

𝜑(𝑚1𝑚2+𝑚1+𝑚2)0 𝜑(𝑚1𝑚2+𝑚1+𝑚2)1 … 𝜑(𝑚1𝑚2+𝑚1+𝑚2)𝑚3

⎞

⎟

⎟

⎟

⎟

⎠

.

rom (39) and Theorems 2 and 3, we get

𝛥𝜑(𝑥, 𝑦, 𝑡) ≃ 𝐁̄⊺
𝑚1𝑚2

(𝑥, 𝑦)
[(

𝐐(2)
𝑚1𝑚2

)⊺
+
(

𝐏(2)
𝑚1𝑚2

)⊺]

𝜱𝑚1𝑚2𝑚3
𝐁̂𝑚3

(𝑡),

𝛥𝜑𝑡(𝑥, 𝑦, 𝑡) ≃ 𝐁̄⊺
𝑚1𝑚2

(𝑥, 𝑦)
[(

𝐐(2)
𝑚1𝑚2

)⊺ (

𝐏(2)
𝑚1𝑚2

)⊺]

𝜱𝑚1𝑚2𝑚3
𝐃(1)
𝑚3
𝐁̂𝑚3

(𝑡).

(40)

Also, using (39) and Theorem 5, we obtain

∫

1

0
𝜇(𝛾) 𝐶0𝐷

𝛾
𝑡 𝜑(𝑥, 𝑦, 𝑡)𝑑𝛾 ≃ 𝐁̄⊺

𝑚1𝑚2
(𝑥, 𝑦)𝜱𝑚1𝑚2𝑚3

𝐙𝑚3
𝐁̂𝑚3

(𝑡). (41)

Substituting (40) and (41) into (1) yields to the following residual
function:

𝐁̄⊺
𝑚1𝑚2

(𝑥, 𝑦)
[

𝜱𝑚1𝑚2𝑚3
𝐙𝑚3

− 𝜆
[(

𝐐(2)
𝑚1𝑚2

)⊺
+
(

𝐏(2)
𝑚1𝑚2

)⊺]

𝜱𝑚1𝑚2𝑚3
𝐃(1)
𝑚3

−𝜎
[(

𝐐(2)
𝑚1𝑚2

)⊺
+
(

𝐏(2)
𝑚1𝑚2

)⊺]

𝜱𝑚1𝑚2𝑚3

]

𝐁̂𝑚3
(𝑡) − 𝑔(𝑥, 𝑦, 𝑡) ≜ 𝑅(𝑥, 𝑦, 𝑡) ≃ 0.

(42)

Moreover, from (37)–(39), we define

𝐁̄⊺
𝑚1𝑚2

(𝑥, 𝑦)𝜱𝑚1𝑚2𝑚3
𝐁̂𝑚3

(0) − 𝜑̄0(𝑥, 𝑦) ≜ 𝛬0(𝑥, 𝑦) ≃ 0, (43)

and
𝐁̄⊺
𝑚1𝑚2

(0, 𝑦)𝜱𝑚1𝑚2𝑚3
𝐁̂𝑚3

(𝑡) − 𝜑̄1(𝑦, 𝑡) ≜ 𝛬1(𝑦, 𝑡) ≃ 0,
𝐁̄⊺
𝑚1𝑚2

(1, 𝑦)𝜱𝑚1𝑚2𝑚3
𝐁̂𝑚3

(𝑡) − 𝜑̄2(𝑦, 𝑡) ≜ 𝛬2(𝑦, 𝑡) ≃ 0
𝐁̄⊺
𝑚1𝑚2

(𝑥, 0)𝜱𝑚1𝑚2𝑚3
𝐁̂𝑚3

(𝑡) − 𝜑̄3(𝑥, 𝑡) ≜ 𝛬3(𝑥, 𝑡) ≃ 0,
𝐁̄⊺
𝑚1𝑚2

(𝑥, 1)𝜱𝑚1𝑚2𝑚3
𝐁̂𝑚3

(𝑡) − 𝜑̄4(𝑥, 𝑡) ≜ 𝛬4(𝑥, 𝑡) ≃ 0.

(44)

Now, from (42)–(44), we generate the below system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑅
(

𝑥𝑖, 𝑦𝑗 , 𝑡𝑙
)

= 0, 𝑖 = 2, 3,… , 𝑚1, 𝑗 = 2, 3,… , 𝑚2,
𝑙 = 2, 3,… , 𝑚3 + 1,

𝛬0
(

𝑥𝑖, 𝑦𝑗
)

= 0, 𝑖 = 1, 2,… , 𝑚1 + 1, 𝑗 = 1, 2,… , 𝑚2 + 1,
𝛬𝑟

(

𝑦𝑗 , 𝑡𝑙
)

= 0, 𝑟 = 1, 2, 𝑗 = 1, 2,… , 𝑚2 + 1, 𝑙 = 2, 3,… , 𝑚3 + 1,
𝛬𝑟

(

𝑥𝑖, 𝑡𝑙
)

= 0, 𝑟 = 3, 4, 𝑖 = 2, 3,… , 𝑚1, 𝑙 = 2, 3,… , 𝑚3 + 1,

(45)

where

𝑥𝑖 =
1
2

(

1 − cos

(

(2𝑖 − 1)𝜋
2
(

𝑚1 + 1
)

))

, 𝑦𝑗 =
1
2

(

1 − cos

(

(2𝑗 − 1)𝜋
2
(

𝑚2 + 1
)

))

,

𝑡𝑙 =
1
2

(

1 − cos

(

(2𝑙 − 1)𝜋
2
(

𝑚3 + 1
)

))

.

inally, by solving the system generated in (45) and assigning 𝜱𝑚1𝑚2𝑚3
,

we obtain a solution for the main distributed-fractional problem using
(39). In this paper, we have used the ‘‘fsolve’’ command of Maple 18
(with precision 25 decimal digits) to solve the above system.

Test problems

Here, we inquire the reliability of the explained technique on four
test problems. The below formulas are considered to measure the

accuracy of the outcomes:
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Table 1
The errors produced of the yielded outcomes with some values of

(

𝑚1 , 𝑚2 , 𝑚3
)

in Example 1.
(

𝑚1 , 𝑚2 , 𝑚3
)

(4, 3, 3) (5, 4, 4) (6, 5, 5) (7, 6, 6) (8, 7, 7)

𝐸∞
𝜑 3.8093 × 10−04 1.3028 × 10−05 1.0766 × 10−06 1.3047 × 10−07 7.1811 × 10−08

𝐸2
𝜑 1.5748 × 10−04 4.2093 × 10−06 5.0174 × 10−07 6.6659 × 10−08 3.8147 × 10−08
Fig. 1. The outcomes obtained for 𝜑(𝑥, 𝑦, 1) (left) and related absolute error (right) with (𝑚1 = 8, 𝑚2 = 𝑚3 = 7) in Example 1.
Fig. 2. The outcomes obtained for 𝜑(𝑥, 𝑦, 1) (left) and related absolute error (right) with (𝑚1 = 𝑚2 = 7, 𝑚3 = 8) in Example 2.
7

E

𝑔

T
m
T
r
F

𝐸∞
𝜑 = max

(𝑥,𝑦)∈[0,1]×[0,1]
|𝜑(𝑥, 𝑦, 𝑇 ) − 𝜑̃(𝑥, 𝑦, 𝑇 )| ,

𝐸2
𝜑 =

(

∫

1

0 ∫

1

0
(𝜑(𝑥, 𝑦, 𝑇 ) − 𝜑̃(𝑥, 𝑦, 𝑇 ))2 𝑑𝑥𝑑𝑦

)1∕2

,

in which 𝜑 is the true solution and 𝜑̃ is the extracted solution of the
mentioned scheme.

Example 1. Consider Eq. (1) with 𝜇(𝛾) = 𝛤 (4 − 𝛾), 𝜆 = 𝜎 = 1, 𝑇 = 1
and

𝑔(𝑥, 𝑦, 𝑡) =
(

6𝑡2(𝑡 − 1)
ln(𝑡)

+ 2𝑡3 + 6𝑡2
)

sin(𝑥) cos(𝑦),

where the analytic solution is 𝜑(𝑥, 𝑦, 𝑡) = 𝑡3 sin(𝑥) cos(𝑦). Other infor-
mation can be found using this solution. The methodology of Section
‘‘The proposed method’’ is used with some values of

(

𝑚1, 𝑚2, 𝑚3
)

for
this example. The appeared errors are shown in Table 1. These results
confirm that the numerical solutions converges to the analytic solution.
In addition, with a small number of bases, high accuracy results can be
obtained. We have provided Fig. 1 to illustrate the results obtained by
(𝑚1 = 8, 𝑚2 = 𝑚3 = 7).

Example 2. Consider the problem (1) where 𝜇(𝛾) = 𝛤 (5 − 𝛾), 𝜆 = 1,
𝜎 = 2, 𝑇 = 1 and

𝑔(𝑥, 𝑦, 𝑡) =
(

24𝑡3(𝑡 − 1)
ln(𝑡)

)

cos(𝑥)𝑒−𝑦.

The true solution is 𝜑(𝑥, 𝑦, 𝑡) = 𝑡4 cos(𝑥)𝑒−𝑦. We have utilized the
expressed algorithm for this problem and provided the extracted out-
6

comes in Table 2. The high capability of the stated method can be
clearly seen from these results. The acquired outcomes for (𝑚1 = 𝑚2 =
, 𝑚3 = 8) are shown in Fig. 2.

xample 3. Consider the problem (1) where 𝜇(𝛾) = 𝛤
(

11
2 − 𝛾

)

,
𝜆 = 𝜎 = 2, 𝑇 = 1 and

𝑔(𝑥, 𝑦, 𝑡) =

⎛

⎜

⎜

⎜

⎝

𝛤
(

11
2

)

𝑡
7
2 (𝑡 − 1)

ln(𝑡)
− 18𝑡

7
2 − 4𝑡

9
2

⎞

⎟

⎟

⎟

⎠

𝑒𝑥−𝑦.

The true solution is 𝜑(𝑥, 𝑦, 𝑡) = 𝑡
9
2 𝑒𝑥−𝑦. The explained technique is

applied for this test problem. The errors produced of the extracted
outcomes with some values of

(

𝑚1, 𝑚2, 𝑚3
)

are provided in Table 3. We
deduce from this table, very accurate results can be obtained using the
stated method. The obtained outcomes for (𝑚1 = 𝑚2 = 8, 𝑚3 = 9) are
shown graphically in Fig. 3.

Example 4. Consider the problem (1) where 𝜇(𝛾) = 𝛤 (6 − 𝛾), 𝜆 = 𝜎 =
1∕2, 𝑇 = 2 and

(𝑥, 𝑦, 𝑡) =
(

10𝑡4(𝑡 − 1)
ln(𝑡)

)

𝑒−𝑥 sin(𝑦).

he true solution is 𝜑(𝑥, 𝑦, 𝑡) = 𝑡5𝑒−𝑥 sin(𝑦). We have used the proposed
ethod for this problem and listed the obtained outcomes in Table 4.
he high accuracy of the method can be clearly observed from these
esults. The obtained outcomes for (𝑚1 = 𝑚2 = 8, 𝑚3 = 9) are shown in
ig. 4.
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Table 2
The errors produced of the yielded outcomes with some values of

(

𝑚1 , 𝑚2 , 𝑚3
)

in Example 2.
(

𝑚1 , 𝑚2 , 𝑚3
)

(3, 3, 4) (4, 4, 5) (5, 5, 6) (6, 6, 7) (7, 7, 8)

𝐸∞
𝜑 7.4884 × 10−04 2.7261 × 10−05 1.4295 × 10−06 4.9140 × 10−08 4.9824 × 10−09

𝐸2
𝜑 3.0392 × 10−04 1.0068 × 10−05 4.7857 × 10−07 1.9651 × 10−08 2.7157 × 10−09
Table 3
The errors produced of the yielded outcomes with some values of

(

𝑚1 , 𝑚2 , 𝑚3
)

in Example 3.
(

𝑚1 , 𝑚2 , 𝑚3
)

(4, 4, 5) (5, 5, 6) (6, 6, 7) (7, 7, 8) (8, 8, 9)

𝐸∞
𝜑 1.4700 × 10−04 8.0105 × 10−06 1.4971 × 10−06 3.3446 × 10−07 9.4196 × 10−08

𝐸2
𝜑 4.7601 × 10−05 2.7756 × 10−06 6.7180 × 10−07 1.4639 × 10−07 4.5926 × 10−08
Fig. 3. The outcomes obtained for 𝜑(𝑥, 𝑦, 1) (left) and related absolute error (right) with (𝑚1 = 𝑚2 = 8, 𝑚3 = 9) in Example 1.
Table 4
The errors produced of the yielded outcomes with some values of

(

𝑚1 , 𝑚2 , 𝑚3
)

in Example 4.
(

𝑚1 , 𝑚2 , 𝑚3
)

(4, 4, 5) (5, 5, 6) (6, 6, 7) (7, 7, 8) (8, 8, 9)

𝐸∞
𝜑 9.5734 × 10−04 2.2825 × 10−05 1.0905 × 10−06 6.2312 × 10−07 9.4196 × 10−08

𝐸2
𝜑 3.0603 × 10−04 6.8508 × 10−06 4.0792 × 10−07 4.3150 × 10−07 4.5926 × 10−08
Fig. 4. The outcomes obtained for 𝜑(𝑥, 𝑦, 2) (left) and related absolute error (right) with (𝑚1 = 𝑚2 = 8, 𝑚3 = 9) in Example 1.
Conclusion

This paper introduced the distributed-order time fractional 2D
Sobolev equation. The one variable and two variables Bernoulli poly-
nomials were introduced to construct a numerical method for this
equation. Several operational matrices regarding derivatives of these
polynomials were obtained. In the developed method, by approximat-
ing the unknown solution using these polynomials and applying derived
matrix relations, an algebraic system of equations was obtained, and
by solving it, a solution for the main equation was obtained. By
solving four test problems, it was proved that the introduced method
for solving this problem is a suitable method with high accuracy.
Considering that if the solution of a problem is sufficiently smooth, the
7

numerical methods based on polynomials give numerical results with
high accuracy, the method presented in this article can be developed for
other fractional problems with smooth solutions. For problems which
their solutions are in fractional form (not sufficiently smooth), the frac-
tional form of Bernoulli functions can be used to obtain high-accuracy
solutions.
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