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Abstract
This article introduces a new scheme for the fractional stochastic advection–diffusion equation (FSA-DE) in time where

the fractional term is expressed in Caputo sence of order a ð0\a\1Þ. First, an L1 approximation is employed to estimate

the Caputo derivative. Then, the spatial derivative is approximated by a second-order finite difference scheme. Moreover,

we combine the implicit finite difference (IFD) scheme with the proper orthogonal decomposition (POD) method to reduce

the used CPU time. In other words, the POD based reduced-order IFD scheme is obtained. The proposed scheme can be

regarded as the modification of the exiting work (Mirzaee et al. in J Sci Technol Trans Sci 45:607–617, 2001). The

numerical results are provided to confirm the feasibility and efficiency of the proposed method.

Keywords Fractional stochastic advection–diffusion equation � Implicit finite difference scheme � Proper orthogonal

decomposition method � Reduced implicit finite difference scheme

Mathematics Subject Classification 37L55 � 65M06 � 35R11

1 Introduction

Considering (Oksendal 2000), the question arises why one

should learn more about stochastic calculus? Stochastic

partial differential equations (SPDEs) play an important

role in a wide range of active research in mathematics,

chemistry, fluid mechanics, microelectronics, theoretical

physic and finance (Ren and Tian 2022; Li et al. 2019;

Yoon et al. 2022).

Fractional differential equations have attracted increas-

ing attention by reason of their application in several field

including mathematics, fluid mechanics, physics, chem-

istry, hydrology and finance.

Despite the enormous number of studies fractional dif-

ferential equations of deterministic type, a few papers exist

in connection with fractional stochastic equations (FSDEs)

especially Caputo time fractional derivative. Previous

studies have been limited to the existence and uniqueness

of mild solution. Interesting papers for existence and

uniqueness are found in Ciprian (2013); Pedjeu and Ladde

(2012); Sakthivel et al. (2013).

In the past few years, there has been a big development

in numerical solution of SPDEs. For example, authors of

Sweilam et al. (2020) solved the stochastic advection–

diffusion equation of fractional order in space by fourth-

order finite difference scheme of Itô type. They used

Fourier analysis to prove stability and convergence of

presented scheme similar to Roth (2002). In Zou (vvv), a

Galerkin finite element method was considered for time

fractional stochastic diffusion equation with multiplicative

noise. A numerical method for the nonlinear stochastic

reaction–diffusion equation of fractional order in time was

carried out in Liu and Yang (2021) wherein mixed finite

element and BDF2-h were considered to discretize in

spatial and temporal directions, respectively. Kamrani
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(2015) investigated the numerical solution of FSDEs using

Galerkin method based on Jacobi polynomials. The main

aim of Zhou et al. (2021) was to develop a fourth-order

central difference scheme and the semi-implicit Crank–

Nicolson scheme for obtaining a new fully discrete

scheme of space-fractional wave equation by additive and

multiplicative noise. In Peng and Huang (2019), a nonlocal

problem as backward was proposed for FSDEs wherein the

eigenfunction expansion of the solution was reduced to an

integral equation. Authors of He and Peng (2019)

explained an approximate controllability for fractional

stochastic wave equation of Riemann–Liouville type.

The POD technique has a long-standing history. It was

derived from eigenvector analysis method which was ini-

tially proposed by K. Pearson in 1901. The POD (Holmes

et al. 2012) was known as an efficient technique to

decrease the degrees of freedom. The essential features of

the POD based reduced are in the following two aspects,

i.e., preserve the accuracy of numerical solutions and

reduce the computational time. Known studies are reduced

order for finite differences, finite element and finite volume

element methods which are found in the book (Luo and

Chen 2018). The POD method is needed more for

scheme that are on fine grids. For example, there is more

computation cost in the Richardson extrapolation algo-

rithms on fine grids. Hence, we are able to use POD

technique instead of parallel computing to overcome with

this problem.

A finite element method combined with POD

scheme for Tricomi-type equation of fractional order was

considered in Liu et al. (2016). Authors of Abbaszadeh and

Dehghan (2020); Xu and Zhang (2019); Zhang and Zhang

(2018) presented some efficient compact finite difference

schemes combined with POD for PDEs such as Riesz

space-fractional diffusion equation of distributed-order

type in two-dimensions, multidimensional parabolic equa-

tion and Korteweg–de Vries equation. Some reduced finite

difference schemes based on POD scheme for parabolic

and hyperbolic equations were utilized in Luo et al.

(2009, 2016), Sun et al. (2010). Abbaszadeh et al. (2022)

developed a fast and robust numerical formulation to

simulate a system of fractional PDEs using a reduced-order

method based upon the POD technique. Authors Dehghan

and Abbaszadeh (2018a) combined the EFG method based

on the RPIM (EFG-RPIM) with POD technique for solving

two-dimensional solute transport problems. Fu et al. (2018)

investigated a reduced order for fractional diffusion equa-

tion in time based on POD technique and disceret experi-

mental interpolation method. Luo and Wang (2020)

developed an extrapolation and finite difference schemes as

reduced order by POD for diffusion-wave equation of

time–space tempered type in two-dimensional case. The

POD scheme was included in fluid dynamics as well, for

example in Kunisch and Volkwein (2001, 2002) a Galerkin

POD method for parabolic and general equations was uti-

lized. For further details about POD method see (Abbas-

zadeh and Dehghan 2020; Abedini et al. 2021; Dehghan

and Abbaszadeh 2017, 2018b; Luo et al. 2007, 2009,

2012).

In this article, we consider the FSA-DE in time as

follows:

0CDa
t uðx; tÞ ¼ðbþ c

dBðtÞ
dt

Þ o
2uðx; tÞ
ox2

þ r
ouðx; tÞ

ox

þ f ðx; tÞ; ðx; tÞ 2 ðL0; LÞ � ð0; T �;
ð1Þ

with the initial and boundary conditions:

uðx; 0Þ ¼ wðxÞ; x 2 ½L0; L�;
uðL0; tÞ ¼ u1ðtÞ; t 2 ð0; T �;
uðL; tÞ ¼ u2ðtÞ; t 2 ð0; T �;

here C
0D

a
t is the fractional derivative operator of Caputo

type defined as

C
0D

a
t uðx; tÞ

¼ 1

Cð1 � aÞ

Z t

0

o2uðx; tÞ
os2

ðt � sÞ�a
ds; 0\a\1;

here, b; c; r are constants, wðxÞ;u1ðtÞ;u2ðtÞ are the

stochastic process defined on the propability space

ðX;F ;PÞ, f(x, t) a known function and u(x, t) is an

unknown stochastic process which should be estimated.

The term B(t) denotes one-dimensional standard Brownian

motion process which satisfy in the following properties:

1) Bð0Þ ¼ 0.

2) For all 0� s\t\T , BðtÞ � BðsÞ is random variable

with variance t � s and expectation zero. Therefore,

BðtÞ � BðsÞ�
ffiffiffiffiffiffiffiffiffiffi
t � s

p
N ð0; 1Þ denotes normal distri-

bution with variance 1 and expectation zero.

3) For 0� s\t\u\v\T , the increments BðtÞ � BðsÞ
and BðvÞ � BðuÞ are independent. We point that the

Brownian motion is a function very commonly used

in stochastic calculus. It is a continuous process but it

is not a differentiable function.

In this paper, first, we employ the classical L1 formula to

approximate the Caputo fractional derivative and then we

discretize the spatial derivative using the second-order IFD

scheme. Afterward, combination of POD technique and

IFD scheme is considered for FSA-DE wherein POD-IFD

is constructed. It can not be only reduced into a

scheme with lower dimension number, but also guarantee

high accuracy. The error analysis is discussed as well.

What distinguishes the current paper from previous works

is its numerical solution aspect. To our knowledge, the

POD-IFD scheme has not ever applied to solve FSA-DE in
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time. Although L1 is an elementary approach for Caputo

fractional derivative, it produces efficient and reasonable

results in terms of numerical convergence order and

numerical stability in time direction compared to higher

order schemes (Gao et al. 2014; Mirzaee et al. 2020).

The outline of this article is arranged as follows: In

Sect. 2, the IFD scheme is employed to approximate spatial

derivatives and the classical L1 formula to discretize time

Caputo fractional derivative. In Sect. 3, we turn to the POD

method and then we combine the POD technique with the

IFD scheme. In Sect. 4, the analysis of errors for the IFD

and RIFD schemes is discussed. in Sect. 5, two numerical

examples have been given to verify the accuracy and

efficiency of our proposed method. Finally, some conclu-

sions are drawn in Sect. 6.

2 Numerical Scheme

This section is devoted to establish difference approxima-

tion to the Eq. (1). For this purpose, we define xi ¼ L0 þ ih,

for i ¼ 0; 1; . . .;M and tn ¼ ns for n ¼ 0; 1; . . .;N, wherein

h ¼ L�L0

M and s ¼ T
N be the spatial and temporal step sizes,

respectively, where M, N are two given positive integers.

For any grid function u ¼ funi j0� i�M; 0� n�Ng,

denote

d̂xu
n
i ¼

uniþ1 � uni�1

2h
; d2

xu
n
i ¼

uniþ1 � 2uni þ uni�1

h2
;

dB

dt

¼ Bn � Bn�1

s
:

ð2Þ

Here, C
0D

a
t uðx; tnÞ can be approximated by the L1 formula

(Zhuang and Liu 2006) as follows:

C
0D

a
t uðx; tnÞ ¼

1

Cð1 � aÞ
Xn�1

k¼0

Z tkþ1

tk

ouðx; sÞ
os

ðtn � sÞ�a
ds

� 1

Cð1 � aÞ
Xn�1

k¼0

uðx; tkþ1Þ � uðx; tkÞ
sZ tkþ1

tk

ðtn � sÞ�a
ds

¼ s�a

Cð2 � aÞ
Xn�1

k¼0

ak
�
uðx; tn�kÞ � uðx; tn�k�1Þ

�

þ Oðs2�aÞ;
ð3Þ

Lemma 1 The coefficients

ak ¼ ðk þ 1Þ1�a � ðkÞ1�a; k ¼ 0; 1; . . .; n� 1, satisfy

(1) 1 ¼ a0 [ a1 [ a2 [ . . .[ ak. . . �! 0,

(2) ð1 � aÞðk þ 1Þ�a\ak\ð1 � aÞðkÞ�a
.

Substituting Eqs. (2) and (3) into Eq. (1), the IFD is

obtained as follows:

s�a

Cð2 � aÞ uni �
Xn�1

k¼1

an�k�1 � an�kð Þuki � an�1u
0
i

" #

¼ bþ c
Bn � Bn�1

s

� �
uniþ1 � 2uni þ uni�1

h2

þ r
uniþ1 � uni�1

2h
þ f ni ;

i ¼ 1; 2; . . .;M � 1; n ¼ 1; 2; . . .;N:

ð4Þ

After simplification, we can rewrite the Eq. (4) as follows:�
� l
h2

�
bþ cðBn � Bn�1

s
Þ
	
� lr

2h



uniþ1

þ
�

1 þ 2l
h2

�
bþ cðBn � Bn�1

s
Þ
	

uni

þ ð� l
h2

ðbþ cð�Bn � Bn�1

s
ÞÞ þ lr

2h
Þuni�1

¼
Xn�1

k¼1

ðan�k�1 � an�kÞuki � an�1u
0
i þ lf ni ;

i ¼ 1; 2; . . .;M � 1;

ð5Þ

where l ¼ saCð2 � aÞ. In order to facilitate computations,

the difference scheme (5) can be represented to the fol-

lowing matrix–vector multiplication:

Knu
1 ¼ lF1 þ G1;

Knu
n ¼ c1u

n�1 þ c2u
n�2 þ . . .

þcn�1u
n�1 þ an�1u

0 þ lFn þ Gn; n[ 1:

8><
>: ð6Þ

Notice that Kn;F
n and Gn are tridiagonal matrices defined

by:

Kn ¼ tri

�
� l
h2

�
bþ cðBn � Bn�1

s
Þ
	
� lr

2h
; 1

þ 2l
h2

�
bþ cðBn � Bn�1

s
Þ
	
;

� l
h2

�
bþ cðBn � Bn�1

s
Þ
	
þ lr

2h



;

Fn ¼
�
f n1 ; f

n
2 ; . . .; f

n
M�1


T
;

Gn ¼
�
� l
h2

�
bþ cðBn � Bn�1

s
Þ
	
þ lr

2h
; 0; . . .; 0;

� l
h2

�
bþ cðBn � Bn�1

s
Þ
	
� lr

2h


T
;

and cn ¼ an�1 � anðn ¼ 1; 2; . . .;NÞ. The approximate

solutions funi g ði ¼ 1; 2; . . .;M � 1Þ are obtained from

solving IFD scheme (6).

Theorem 2 The IFD scheme (6) has a unique solution.
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For any possible values of l; b; c; s and h, the coefficient

matrix Kn is strictly diagonal dominant, so it is non-sin-

gular, thus it is invertible. Consequently, the difference

scheme (6) has a unique solution.

3 The RIFD Scheme Based on POD Method

We devote this section to employ the POD method for

creating the RIFD scheme. Up to now, there have been

different interpretations for the POD method. Three of the

most methods are Karhunen–Loeve decomposition (KLD),

the principal component analysis (PCA) and the singular

value decomposition (SVD). In this article, we utilize the

direct form of the POD based on SVD (Luo et al. 2016).

3.1 Formulate the POD Basis

Step 1. Form snapshots

For this aim, we choose first G 	 N sequence of solu-

tions funi g
G
n¼1 from the N sequence of approximate solu-

tions funi g
N
n¼1 ði ¼ 1; 2; . . .;M � 1Þ of IFD (6).

S ¼

u1
1 u2

1 . . . uG1
u1

2 u2
2 . . . uG2

..

. ..
. . .

. ..
.

u1
M u2

M . . . uGM

0
BBBB@

1
CCCCA

M�1�G

; ð7Þ

Step 2. Apply the SVD form on Matrix S

S ¼ U
Dr 0

0 0

� �
VT ;

where Dr ¼ diagðr1; r2; . . .; rrÞ. The singular values ri can

be arranged as r1 
 r2 
 . . .
 rr [ 0 and r ¼ rankðSÞ.
U ¼ UM�1�M�1 and V ¼ VG�G are orthogonal matrices.

The matrice U ¼ ðU1;U2; . . .;UM�1Þ and V ¼
ðw1;w2; . . .;wM�1Þ include the eigenvalues with orthogo-

nality property to the SST and STS, respectively, and also

ki ¼ r2
i ði ¼ 1; 2; . . .; rÞ. We define a projection PM by

PMðSGÞ ¼
Xm
j¼1

ðUj; S
gÞUj; ðg ¼ 1; 2; . . .;GÞ; ð8Þ

where Sg ¼
�
ug1; u

g
2; . . .; u

g
M�1

�
, besides, m\r and ðUj; S

gÞ
is inner product of vectors Uj and Sg. The following

inequality for orthogonal projection is result:
��sg � PmðsgÞ

��
2
� rmþ1 ¼

ffiffiffiffiffiffiffiffiffiffi
kmþ1

p
: ð9Þ

The fUigmi¼1 is a set of optimal basis and U ¼
ðU1;U2; . . .;UmÞ is a matrix created by the eigenvectors

with property UTU ¼ I. Now, we establish a RIFD scheme,

if un of (6) is substituted by

PmðunÞ ¼ bun ¼ Uwn

¼ UðM�1Þ�mðwnÞm�1; n ¼ 0; 1; . . .;N:
ð10Þ

Considering UTU ¼ I, we obtain RIFD scheme as follows:

Hw1 ¼ lHUTF1 þ UTB1;

Hwn ¼ c1w
n�1 þ c2w

n�2 þ . . .þ cn�1w
n�1

þan�1w
0 þ lUTFn þ UTBn; n[ 1;

8><
>: ð11Þ

where H ¼ UTKU. Having computed wn from (11), we

obtain POD optimal solution bun ¼ Uwn. The RIFD only

contains m� N equations, while IFD contains ðM � 1Þ �
N equations (usually m 	 M � 1). In fact, the number of

degrees of freedom in RIFD scheme (11) reduces in

comparision with IFD (6). Henece, we use RIFD method.

4 Error Estimation

This section is devoted in analyzing the errors of the IFD

and RIFD solutions. First, we state the following remark

and that which is basic in the whole theory.

5 Remark

Matrix Kn in IFD scheme (6) is not a symmetric tridiagonal

matrix. By numerical computations, assume that each

product of off-diagonal entires is strictly positive bici.

A transform matrix D define as follows:

D ¼ diagðd1; . . .; dnÞ;

and

di ¼
1; i ¼ 1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ci�1. . .c1

bi�1. . .b1

r
; i ¼ 2; . . .n� 1:

8<
:

Based on bts (bts), a symmetric tridiagonal matrix J can be

obtained as follows:

J ¼ D�1TD ¼

a1 sgnb1

ffiffiffiffiffiffiffiffiffi
b1c1

p

sgnb1

ffiffiffiffiffiffiffiffiffi
b1c1

p
a2 sgnb2

ffiffiffiffiffiffiffiffiffi
b2c2

p

. .
. . .

. . .
.

sgnbn�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn�1cn�1

p

sgnbn�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn�1cn�1

p

an

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

;

ð12Þ

For simplicity, we assume that the entires of Kn define as

follows:

1302 Iranian Journal of Science (2023) 47:1299–1311

123



T ¼

a1 b1

c1 a2 b2

. .
. . .

. . .
.

bn�1

cn�1 an

0
BBBBBBB@

1
CCCCCCCA
:

Now, matrices of J and T have the same eigenvalues. Here,

matrix Kn ¼ T . Now, we can obtain the eigenvalues of

martix Kn by Thomas (1995):

kiðKnÞ ¼1 þ 2l
h2

�
bþ c

Bn � Bn�1

s

� ��

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
l2

h4

�
bþ c

�Bn � Bn�1

s

		2 � l2r2

4h2

�s

cos
ip
M

� �
:

ð13Þ

Theorem 3 Let un be the solution of IFD scheme (6) and

Un the exact solution (6), then

kUn � unk�C
Xn
k¼1

hn;kðh2 þ s2�aÞ:

Proof From (6), we get:

KnU
n ¼

Xn
k¼1

ðan�k�1 � an�kÞUk þ an�1U
0

þ lFn þ Bn þ Tn; 1� n�N;

ð14Þ

where Tn be the local truncation error. Let en ¼ Un � un

and e0 ¼ 0. Subtracting (6) from (14), we obtain:

Kne
n ¼

Xn
k¼1

ðan�k�1 � an�kÞek þ Tn; 1� n�N:

Taking the inner product by en, we get:

ðKne
n; enÞ ¼

Xn�1

k¼1

ðan�k�1 � an�kÞðek; enÞ

þ ðT; enÞ; 1� n�N:

ð15Þ

For any symmetric matrix R, the following property of

Rayleigh–Ritz ratio (Horn and Johnson 1985) is obtained:

Table 1 Comparison of

approximate and exact solutions

with h ¼ s ¼ 1
200

of Experiment

1

x Exact Approximate

a ¼ 0:2 a ¼ 0:4 a ¼ 0:6 a ¼ 0:8

0.1 0.30901699 0.30904178 0.30904202 0.30904760 0.30903757

0.2 0.58778525 0.58783269 0.58783312 0.58784369 0.58782973

0.3 0.80901699 0.80908265 0.80908321 0.80909770 0.80908988

0.4 0.95105652 0.95113401 0.95113470 0.95115169 0.95116014

0.5 1.00000000 1.00008110 1.00008256 1.00010037 1.00013076

0.6 0.95105694 0.95113489 0.95113536 0.95115226 0.95120253

0.7 0.80901694 0.80908400 0.80908435 0.80909869 0.80915854

0.8 0.58778525 0.58783420 0.58783441 0.58784480 0.58789851

0.9 0.30901699 0.30904287 0.30904297 0.30904842 0.30908019

Table 2 Numerical convergence orders in spatial direction with s ¼
1

100
for Experiment 1

a h L1 Ch � Order

0.25 1
10

8:2650 � 10�3 -

1
20

2:2813 � 10�3 1.8572

1
40

5:3933 � 10�4 2.0806

1
80

1:3220 � 10�4 2.0284

0.5 1
10

8:4028 � 10�3 -

1
20

2:0929 � 10�3 2.0054

1
40

5:1753 � 10�4 2.0158

1
80

1:2555 � 10�4 2.0434

0.75 1
10

8:3987 � 10�3 -

1
20

2:0744 � 10�3 2.0175

1
40

5:0072 � 10�4 2.0506

1
80

1:0772 � 10�4 2.2167

Table 3 Numerical convergence orders in temporal direction with

a ¼ 0:5 and h ¼ 1
100

for Experiment 1

s L1 Cs � Order

1
8

3:3085 � 10�3 -

1
16

1:1448 � 10�3 1.5311

1
32

2:6419 � 10�4 2.1154

1
64

8:6190 � 10�5 1.6160
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kminðRÞ�
ðRv; vÞ
ðv; vÞ � kmaxðRÞ; ð16Þ

which vector v is in RM�1 and nonzero. Hence, we have:

kminðKnÞkenk2
2 ¼ kminðKnÞðen; enÞ� ðKne

n; enÞ:

From the above equation, Eq. (15) becomes:

kenk2 �
1

kminðKnÞ

�Xn�1

k¼1

ðan�k�1 � an�kÞkekk2 þ kTnk2

�
;

1� n�N:

From (13), we have 1
kminðKnÞ � 1. Therefore, we obtain:

kenk2 �
�Xn�1

k¼1

ðan�k�1 � an�kÞkekk2 þ kTnk2

�
; 1� n�N:

By mathematical induction, we can obtain:

kenk2 �
Xn�1

k¼1

hn;kkTkk2; 1� n�N;

where

hn;j ¼
Xn�j

k¼1

Ckþj�1ðan�ðkþj�1Þ�1 � an�ðjþj�1ÞÞhkþj�1;j:

From Eqs. (2) and (3), we obtain:

kenk�C
Xn
k¼1

hn;kðh2 þ s2�aÞ:

h

Theorem 4 Suppose un and bun are the solution vectors of

(6) and (11), respectively. We work on the assumption that

the first G 	 N sequence of solutions funi g
G
n¼1 are from the

N sequence solutions funi g
N
n¼1; i ¼ 1; 2; . . .;M � 1, as

snapshots, then

Fig. 1 Plots of the exact and numerical solutions at T ¼ 1 with h ¼ s ¼ 1
200

of Experiment 1
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kbun � unk2 � rmþ1; n ¼ 1; 2; . . .;G;

and

kbun � unk2 �CLrmþ1; n ¼ Gþ 1; . . .;N:

Proof Suppose e�n ¼ bun � un. From (9), we get:

ke�nk2 ¼ kbun � unk2 � rmþ1; n ¼ 1; 2; . . .;G; ð17Þ

once n ¼ Gþ 1; . . .;N, we replace un in (6) by bun, then we

obtain:

Knbun ¼ Xn�1

k¼1

ðan�k�1 � an�kÞbun þ an�1bu0 þ lFn þ Bn:

ð18Þ

By subtracting (18) from (6) and utilizing the inner product

with e�n, we can obtain:

Fig. 2 Plots of the expected values E½uðx; tÞ� using the mean of 100 samples of Experiment 1

Table 4 Errors and CPU time in scheme (6) of Experiment 1

N M a ¼ 0:25 a ¼ 0:5 a ¼ 0:75

25 50 3:45 � 10�4 4:05 � 10�4 7:29 � 10�4

0.28 s 0.24 s 0.23 s

50 100 7:94 � 10�5 6:04 � 10�5 2:08 � 10�4

6.08 s 6.38 s 6.48 s

100 200 2:03 � 10�5 1:06 � 10�4 7:10 � 10�5

39.01 s 36.30 s 41.66 s

Table 5 Errors and CPU time in scheme (11) of Experiment 1

(N, G, m) M a ¼ 0:25 a ¼ 0:5 a ¼ 0:75

(25, 5, 4) 50 3:45 � 10�4 4:05 � 10�4 7:29 � 10�4

0.09 s 0.14 s 0.1 s

(50, 5, 4) 100 7:94 � 10�5 6:04 � 10�5 2:08 � 10�4

1.10 s 1.12 s 1.06 s

(100, 5, 4) 200 2:03 � 10�5 1:06 � 10�4 7:10 � 10�5

2.71 s 3.02 s 2.93 s
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ðKne
�n; e�nÞ ¼

Xn�1

k¼1

ðan�k�1 � an�kÞðKne
�k; e�nÞ; n

¼ Gþ 1; . . .;N:

From (12), the above equation can be rewritten as:

ke�nk2 �
1

kminðKnÞ
Xn�1

k¼1

ðan�k�1 � an�kÞke�kk2:

From Lemma 1, it follows that

an�k�1 � an�k � an�k�1\a0 � 1:

Now, from the above inequality and mathematical induc-

tion, we obtain:

ke�nk2 �
Xn�1

k¼1

ke�kk2 ¼ �
XG
k¼1

ke�kk2 þ
Xn�1

k¼Gþ1

ke�kk

�Grmþ1 þ
Xn�1

k¼Gþ1

ke�kk2 �CGrmþ1:

Therefore, the theorem is proved.

Theorem 5 By applying the assumptions of Theorem 4,

suppose that bun be the solution vector of the RIFD

scheme (11) and un be the solution vector of the IFD

scheme(6), then:

kbun � unk� rmþ1 þ Cðh2 þ s2�aÞ; n ¼ 1; 2; . . .;G;

and

kbun � unk�CGrmþ1 þ Cðh2 þ s2�aÞ; n

¼ Gþ 1; 2; . . .;N;

Fig. 3 The error curves RIFD

(right) and IFD (left) schemes at

T ¼ 1 and h ¼ s ¼ 1
200

of

Experiment1

Table 6 Comparison of

approximate and exact solutions

with h ¼ s ¼ 1
200

of Experiment

2

x Exact Approximate

a ¼ 0:2 a ¼ 0:4 a ¼ 0:6 a ¼ 0:8

0.1 0.01326569 0.01326496 0.01327203 0.01327957 0.01254461

0.2 0.06819635 0.06819635 0.06821064 0.08822284 0.06688063

0.3 0.19186883 0.19185156 0.19187281 0.19188511 0.19039249

0.4 0.41611839 0.41608838 0.41611604 0.41612591 0.41512638

0.5 0.77573986 0.77569711 0.77572984 0.77574066 0.77543421

0.6 1.30589132 1.30583877 1.30587406 1.30589462 1.30592716

0.7 2.03897571 2.03891953 2.03895351 2.03899038 2.03930321

0.8 3.00114581 3.00109540 3.00112301 3.00117005 3.00218402

0.9 4.20868958 4.20865723 4.20867307 4.20870845 4.20996679
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here m is the number of POD bases.

6 Numerical Experiments

This section is devoted to implement two experiments. We

illustrate the effectiveness of the RIFD scheme by the POD

method. The programming code for simulating Wiener

process over the interval [0, 1] has been given in Algorithm

1.

Algorithm 1. Simulating Wiener process.

T ¼ 1

s ¼ T
N

W=zerosðN þ 1; 1Þ;
for n ¼ 2: N þ 1

Wðn; 1Þ ¼ Wðn� 1; 1Þ þ
ffiffiffi
s

p
� randn;

To show the accuracy of the proposed scheme, we use

the following error norm:

L1 ¼ max
1� i�M�1

juðxi; tN � uNi j

We denote the numerical convergence orders by

Fig. 4 Plots of the exact and approximate solutions at T ¼ 1 and h ¼ s ¼ 1
200

of Experiment 2

Table 7 Numerical convergence orders in spatial direction with s ¼
1

100
for Experiment 2

a h L1 Ch � Order

0.25 1
10

4:6029 � 10�3 -

1
20

1:1515 � 10�3 1.9990

1
40

2:8751 � 10�4 2.0018

1
80

7:1472 � 10�5 2.0082

0.5 1
10

4:5830 � 10�3 -

1
20

1:4141 � 10�3 2.0021

1
40

2:8304 � 10�4 2.0151

1
80

6:7771 � 10�5 2.0623

0.75 1
10

4:5396 � 10�3 -

1
20

1:1208 � 10�3 2.0180

1
40

2:6480 � 10�4 2.0816

1
80

5:0587 � 10�5 2.3881

Iranian Journal of Science (2023) 47:1299–1311 1307

123



Ch � Order ¼ log2

�
L1ð2h; sÞ
L1ðh; sÞ

�
;

Cs � Order ¼ log2

�
L1ðh; 2sÞ
L1ðh; sÞ

�
:

7 Experiment 1

Consider the FSA-DE in time as follows Mirzaee et al.

2020:

0CDa
t uðx; tÞ� ¼

�
1

p2
þ dBðtÞ

dt

�
o2uðx; tÞ

ox2
þ ouðx; tÞ

ox

þ f ðx; tÞ; ðx; tÞ 2 ð0; 1Þ � ð0; 1Þ;
ð19Þ

along with the initial and the boundary conditions,

respectively:

uðx; 0Þ ¼ 0;

uð0; tÞ ¼ 0;

uð1; tÞ ¼ 0;

where f ðx; tÞ ¼ 2t2�a sinðpxÞ
Cð3�aÞ þ

�
1
p2 þ dB

dt

�
p2t2 sinðpxÞ�

pt2 cosðpxÞ: uðx; tÞ ¼ t2 sinðpxÞ is considered as the exact

solution.

Equation (19) is solved with the help of IFD scheme (6)

with the M;N ¼ 100 wherein exact and approximate

solutions for different values of a ¼ 0:2; 0:4; 0:6 and 0.8

are tested. Table 1 confirms that the approximate solutions

are close to exact solutions. It can be observed from

Tables 2 and 3 that the numerical convergence orders are

close to the theoretical orders. Figure 1 verifies the above

mentioned solutions for values of a ¼ 0:2; 0:4; 0:6 and 0.8.

Figure 2 shows the expected values E½uðx; tÞ� with different

values a, a ¼ 0:25; 0:5; 0:75, where the expected values are

computed by mean of 100 samples.

What extracts from Tables 4 and 5 is that in RIFD

scheme the computational time is less than IFD

scheme while the accuracy is preserved. The above

tables confirm preference of the RIFD than IFD. Figure 3

shows this fact for m ¼ 4 and G ¼ 7.

8 Experiment 2

Consider the FSA-DE in time as follows Mirzaee et al.

2020:

Table 8 Numerical convergence orders in temporal direction with

a ¼ 0:5 and h ¼ 1
100

for Experiment 2

s L1 Cs � Order

1
8

5:4223 � 10�3 -

1
16

1:7124 � 10�3 1.6629

1
32

5:4333 � 10�4 1.6561

1
64 2:2955 � 10�5 1.2430

Fig. 5 Plots of the expected

values E½uðx; tÞ� using the mean

of 200 samples of Experiment 2

Table 9 Errors and CPU time in scheme (6) of Experiment 2

N M a ¼ 0:25 a ¼ 0:5 a ¼ 0:75

50 50 2:38 � 10�4 3:58 � 10�4 8:29 � 10�4

4.82s 5.00s 5.14s

100 100 1:70 � 10�5 3:79 � 10�5 3:69 � 10�5

29.95s 27.18s 28.45s

Table 10 Errors and CPU time in scheme (11) of Experiment 2

(N, G, m) M a ¼ 0:25 a ¼ 0:5 a ¼ 0:75

(50, 10, 6) 50 2:38 � 10�4 3:58 � 10�4 8:29 � 10�4

2.15s 2.10s 1.81s

(100, 11, 7) 100 1:70 � 10�5 3:79 � 10�5 3:69 � 10�5

5.53s 5.64s 5.42s
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C
0D

a
t uðx; tÞ ¼

�
1 þ dBðtÞ

dt

�
o2uðx; tÞ

ox2
þ ouðx; tÞ

ox

þ f ðx; tÞ; ðx; tÞ 2 ð0; 1Þ � ð0; 1Þ;
ð20Þ

along with the initial and the boundary conditions,

respectively:

uðx; 0Þ ¼ x3 sin2ðxÞ;
uð0; tÞ ¼ 0;

uð1; tÞ ¼ ðt þ 1Þ3
sin2ð1Þ:

uðx; tÞ ¼ ðt þ xÞ3
sin2ðxÞ is considered as the exact

solution.

In Table 6, exact and approximate solutions for values

of a ¼ 0:2; 0:4; 0:6 and 0.8 for M;N ¼ 100 are tested.

Table 4 confirms that the approximate solutions are close

to exact solutions that this fact is shown in Fig. 4. Tables 7

and 8 show that the numerical convergence orders are

compatible with the theoretical orders. Figure 4 verifies the

above mentioned solutions for values of a ¼ 0:2; 0:4; 0:6

and 0.8. Figure 5 exhibits the expected values E½uðx; tÞ�
with different values a ¼ 0:1 and 0.5, where the expected

values are computed by mean of 200 samples.

From Tables 9 and 10, we conclude that RIFD scheme is

better than in sence that time taken is less compared with

IFD scheme.

we exhibit the error curves for the IFD scheme in Fig. 6

with h ¼ t ¼ 1
200

and G ¼ 11;m ¼ 7 for RIFD

scheme which are observing alike.

9 Conclusions

In this article, we have benefitted from the POD technique

to derive RIFD scheme for FSA-DE in order to make the

proposed scheme better and useful than previous studies.

The main features of the paper are to introduce a new

scheme for FSA-DE in order to preserve accuracy and

alleviate CPU time. We have tested the correctness of our

scheme with two numerical experiments. Tables and fig-

ures confirm the efficiency of the presented scheme.
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