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ABSTRACT

In the present paper, the numerical solution of Itô type stochastic parabolic equation with a time white noise process
is imparted based on a stochastic finite difference scheme. At the beginning, an implicit stochastic finite difference
scheme is presented for this equation. Some mathematical analyses of the scheme are then discussed. Lastly, to
ascertain the efficacy and accuracy of the suggested technique, the numerical results are discussed and compared
with the exact solution.
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1 Introduction

Stochastic partial differential equations (SPDEs) driven by white noise are one of the essential
classes of partial differential equations (PDEs). This class of equations arises in many branches
of applied sciences and engineering, such as nonlinear filtering [1], turbulent flows [2], population
biology [3], microscopic particle dynamics [4], groundwater flow [5], etc. Few numbers of SPDEs can
be solved by analytical techniques [6], most of which cannot be analyzed by well-known analytical
schemes suitably. Due to this reason, various numerical methods have been discussed to solve such
equations [7–9]. For instance, the authors in [10] proposed an explicit scheme to obtain the approximate
solution of stochastic equations. In [11], a compact finite difference method for solving a stochastic
advection-diffusion equation was proposed. In [12], two techniques on the basis of Saul’yev method
and finite difference scheme were suggested for solving linear SPDEs. In [13], explicit and implicit
finite difference methods were proposed to obtain the solution of general SPDEs. In [14], a stochastic
compact finite difference scheme was suggested for solving a stochastic fractional advection-diffusion
equation. In [15], high-resolution finite volume methods were used to solve SPDEs. In [16], the
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authors proposed a spectral collocation method for the numerical solution of SPDEs driven by infinite
dimensional fractional Brownian motions. More than these, some authors used spectral methods for
the discretization of spatial variables and applied a Crank-Nicolson scheme or a stochastic Runge-
Kutta method for solving the resultant system of stochastic differential equations [17].

In [18,19], the authors investigated the convergence and stability of two stochastic finite difference
schemes for a class of SPDEs. In more detail, the study [19] employed a Crank-Nicolson technique for
the approximation of second-order derivatives. Although the reported results in [18,19] are interesting
in some senses, the solution methods presented are only conditionally stable. To overcome this issue,
here we extend a type of finite difference scheme to a stochastic version in order to approximate
the solution of a stochastic advection-diffusion equation. To do so, instead of the Crank-Nicolson
method used in [19], we consider a convex combination of discretized second-order derivatives in two
consecutive time grid points. As a result, the proposed method in our case is unconditionally stable
under a necessary condition, so there will be no limitation for the selection of space and time step sizes.
This important feature makes the computational cost of our suggested technique less than the other
methods available in the literature [18,19]. In the following, the main contributions of our study are
summarized and highlighted as below:

• In this paper, a stochastic finite difference scheme is developed for the numerical solution of Itô
type stochastic parabolic equation.

• As a theoretical investigation, some mathematical results for the proposed scheme are studied.

• In addition, the convergence of the suggested technique is discussed, and the necessary
conditions for its conditional and unconditional stability are explored.

• Finally, the efficiency of the proposed method is shown by some numerical examples, and its
key qualifications are examined as well.

The rest of this paper is structured as follows. An implicit finite difference scheme is proposed in
Section 2, where some mathematical analyses are also investigated. Next, some numerical results are
given in Section 3. Finally, the paper is closed by some concluding remarks in the last section.

2 Proposed Scheme

In this work, the following problem for the stochastic equation of Itô type is considered:

∂v
∂t

= ρ
∂2v
∂x2

(x, t) + σ v (x, t) ξ̇ (t) ,

v(x, 0) = v0(x),

v(0, t) = f1(t),

v(1, t) = f2(t), (1)

for x ∈ (0, 1) and t ∈ (0, 1]. In this problem, the coefficients ρ and σ are constants, and ξ(t) indicates
a standard Wiener process. Also, the noise term ξ̇ (t) is introduced to present a time white noise.
Formally, ξ̇ (t) is a Gaussian distribution with zero mean value [20].

Finite difference schemes are the most natural way of solving PDEs numerically. Furthermore,
these methods are widely used in approximating the solution of SPDEs like (1). The idea behind these
schemes is to discretize the continuous time and space into a finite number of discrete grid points.
Then the values of state variables are calculated at any point of the grid. By considering a uniform
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space grid �x and time grid �t in the time-space lattice, the solution of the equation can be estimated
at the lattice points. The value of the approximate solution at the point (h�x, m�t) is indicated by the
random variable vm

h , where m and h are integer. The later stage is to approximate the problem (1) on
the mentioned grid. For this purpose, the time and the space derivatives in the SPDE (1) are replaced
by the following finite difference approximations:

vt (h�x, m�t) ≈ vm+1
h − vm

h

�t
,

vxx (h�x, m�t) ≈ λ
vm+1

h−1 − 2vm+1
h + vm+1

h+1

�x2
+ (1 − λ)

vm
h−1 − 2vm

h + vm
h+1

�x2
, (2)

where 0 ≤ λ ≤ 1. Indeed, we use a forward finite difference scheme for the approximation of
vt(h�x, m�t) as

vt (h�x, m�t) = v(h�x, (m + 1)�t) − v(h�x, m�t)
�t

+ O (�t) , (3)

and employ a convex combination of second-order derivatives in the time steps m and m + 1 for the
approximation of vxx(h�x, m�t) by

vxx (h�x, m�t) = λ
v((h − 1)�x, (m + 1)�t) − 2v(h�x, m�t) + v((h + 1)�x, (m + 1)�t)

�x2

+ (1 − λ)
v((h − 1)�x, m�t) − 2v(h�x, m�t) + v((h + 1)�x, m�t)

�x2
+ O

(
�x2

)
. (4)

For more details, the interested reader can refer to [21]. Substituting the approximations from (2)
into (1), we can find

− λrvm+1
h−1 + (1 + 2λr)vm+1

h − λrvm+1
h+1 = (1 − λ)rvm

h−1 + (1 − 2(1 − λ)r)vm
h + (1 − λ)rvm

h+1 + σvm
h �ξm, (5)

where r = ρ�t
�x2 , and �ξm = ξ((m + 1)�t) − ξ(m�t) is a Gaussian distribution with zero mean value

and variance �t, i.e., �ξm ∼ N(0, �t).

Remark 2.1. In the proposed scheme, the Wiener process increments are not dependent on the
state vm

h .

Substantially, the convergence of the stochastic difference scheme to the SPDE solution is very
important. To achieve this, consider an SPDE in the form of Lu = F , wherein F is an inhomogeneity
and L represents the differential operator. Suppose that the random variable vm

h be a solution that
is approximated by a stochastic finite difference scheme indicated by Lm

h . By applying the stochastic
scheme to this SPDE, we obtain

Lm
h vm

h = Fm
h , (6)

where Fn
h is the approximation of inhomogeneity F . In favor of accessing the consistency, stability,

and convergence results, a norm is needed. Because of this, for the sequence v = {. . . , v−1, v0, v1, . . .},
we define the sup–norm as ‖v‖∞ = √

sup
h

|vh|2. For additional details concerning the concepts of

consistency, stability and convergence, see [10].

Definition 2.1. A stochastic finite difference scheme Lm
h vm

h = Fm
h is said to be point-wise consistent

in mean square with PDE Lu = F at point (x, t), if for any continuously differentiable solution ϒ =
ϒ(x, t) of this equation, we have

E‖ (Lϒ − F) |m
h − [

Lm
h ϒ(h�x, m�t) − Fm

h

] ‖2 → 0,
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as (�x, �t) → (0, 0) and (h�x, (m + 1)�t) → (x, t).

Theorem 2.1. The numerical scheme (5) is consistent in mean square in the sense of Definition 2.1.

Proof. For the smooth function ϒ(x, t), we have

L(ϒ)|m
h = ϒ(h�x, (m + 1)�t) − ϒ(h�x, m�t) − ρ

∫ (m+1)�t

m�t

ϒxx(h�x, w) dw

− σ

∫ (m+1)�t

m�t

ϒ(h�x, w) dξ(w), (7)

and

Lm
h ϒ = ϒ(h�x, (m + 1)�t) − ϒ(h�x, m�t) − σϒ(h�x, m�t)(ξ((m + 1)�t) − ξ(m�t))

− ρλ�t
ϒ((h − 1)�x, (m + 1)�t) − 2ϒ(h�x, (m + 1)�t) + ϒ((h + 1)�x, (m + 1)�t)

�x2

− ρ (1 − λ)�t
ϒ((h − 1)�x, m�t) − 2ϒ(h�x, m�t) + ϒ((h + 1)�x, m�t)

�x2
. (8)

Accordingly,

E|L(ϒ)|mh − Lm
h ϒ |2

≤ 2ρ2
E|

∫ (m+1)�t

m�t
[ϒxx(h�x, w) − 1

�x2
(λ[ϒ((h − 1)�x, (m + 1)�t) − 2ϒ(h�x, (m + 1)�t)

+ ϒ((h + 1)�x, (m + 1)�t)] + (1 − λ)[ϒ((h − 1)�x, m�t) − 2ϒ(h�x, m�t) + ϒ((h + 1)�x, m�t)])]dw|2

+ 2σ 2
∫ (m+1)�t

m�t
|ϒ(h�x, w) − ϒ(h�x, m�t)|2 dw. (9)

In as much as ϒ(x, t) is a deterministic function, E|L(ϒ)|m
h − Lm

h ϒ |2 → 0 as m, h → ∞. Hence,
the numerical scheme (5) is consistent with the SPDE (1).

By the assumption that v̂m+1 is the Fourier transform of vm+1, the Fourier inversion formula results
in

vm+1
n = 1√

2π

∫ π
�x

− π
�x

ein�xηv̂m+1 (η) dη, (10)

where

v̂m+1 = 1√
2π

∑∞

n=−∞
e−in�xηvm+1

n �x, (11)

and η is a real variable. We utilize the Von Neumann method to investigate the stability of the stochastic
difference scheme. By substituting Eq. (11) into the stochastic difference equation and using the
equality of Fourier transformation, one achieves

v̂m+1 (η) = v̂m (η) g (�xη, �t, �x) , (12)

where v̂m is the Fourier transform of vm. Therefore,

E|g(�xη, �t, �x)|2 ≤ 1 + K�t, (13)

will be the necessary and sufficient condition for the stability [10].
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Theorem 2.2. For the stochastic advection-diffusion Eq. (1), the stochastic scheme (5) is uncondi-
tionally stable for λ ≥ 1

2
based on the Fourier transformation analysis, and is conditionally stable for

λ ≤ 1
2

under the condition r ≤ 1
2(1−2λ)

.

Proof. Substituting (11) into (5), we get(−λre−i�xη + (1 + 2λr) − λrei�xη
)

v̂m+1 (η) = (
(1 − λ) re−i�xη + (1 − 2 (1 − λ) r)

+ (1 − λ) rei�xη + σ�ξm

)
v̂m (η) . (14)

Then we have

v̂m+1 (η) = (1 − λ)re−i�xη + (1 − 2(1 − λ)r) + (1 − λ)rei�xη

−λre−i�xη + (1 + 2λr) − λrei�xη

+ σ�ξm

(1 − λ)re−i�xη + (1 − 2(1 − λ)r) + (1 − λ)rei�xη
v̂m (η) . (15)

Hence, the stochastic difference scheme amplification factor is

g (�xη, �t, �x) = (1 − λ)re−i�xη + (1 − 2(1 − λ)r) + (1 − λ)rei�xη

−λre−i�xη + (1 + 2λr) − λrei�xη

+ σ�ξm

(1 − λ)re−i�xη + (1 − 2(1 − λ)r) + (1 − λ)rei�xη

=
1 − 4 (1 − λ) r sin2 �xη

2

1 + 4λr sin2 �xη

2

+ σ 2

1 + 4λr sin2 �xη

2

�t. (16)

Set χ (�xη) = 1−4(1−λ)r sin2 �xη
2

1+4λr sin2 �xη
2

, so χ (θ) = 1−4(1−λ)r sin2 θ
2

1+4λr sin2 θ
2

. Now, by setting the derivative of χ(θ) equal

to zero, the critical points are obtained as θ = 0, ±π . Then one notes that χ(0) = 1 and

χ (±π) = 1 − 4(1 − λ)r
1 + 4λr

. (17)

It is easy to see that 1−4(1−λ)r
1+4λr

≤ 1. Since the equation

− 1 ≤ 1 − 4(1 − λ)r
1 + 4λr

, (18)

is equivalent to 4r(1−2λ) ≤ 2, clearly if λ ≥ 1
2
, then the inequality (18) is always satisfied, and if λ < 1

2
,

then the inequality (18) is satisfied only if

r ≤ 1
2(1 − 2λ)

. (19)

And also∣∣∣∣∣
1

1 + 4λr sin2 �xη

2

∣∣∣∣∣ ≤ 1,

is always satisfied. Hence, we see that if λ ≥ 1
2
, the scheme (5) is unconditionally stable, and if λ < 1

2
,

the difference scheme (5) is conditionally stable with the condition for the stability given by (19).
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Definition 2.2. The stochastic difference scheme Lm
h vm

h = Fm
h , which approximates the SPDELu = F ,

is convergent in mean square at time t when (m + 1)�t converges to t, E‖vm+1 − um+1‖2 → 0 for
(m + 1)�t = t, �x → 0, and �t → 0.

Theorem 2.3. The numerical scheme (5) for the Eq. (1) is convergent in mean square with respect
to ‖ · ‖∞ = √

sup
h

| · |2 with r ≤ 1
2(1−λ)

and t = (m + 1)�t.

Proof. The stochastic finite difference scheme is given by

vm+1
h = vm

h + ρ�t
(

(1 − λ)
vm

h+1 − 2vm
h + vm

h−1

�x2
+ λ

vm+1
h+1 − 2vm+1

h + vm+1
h−1

�x2

)

+ σvm
h (ξ((m + 1)�t) − ξ(m�t)). (20)

The solution um+1
h is represented by the Taylor’s expansion uxx(x, w) with respect to the space

variable as follows:

um+1
h = um

h + ρ

∫ (m+1)�t

m�t

uxx(xh, w)dw

+ σ

∫ (m+1)�t

m�t

u(xh, w)dξ(w)

= um
h + ρ

∫ (m+1)�t

m�t

(
(1 − λ)

um
h+1 − 2um

h + um
h−1

�x2
+ λ

um+1
h+1 − 2um+1

h + um+1
h−1

�x2

−�x2

4!
((1 − λ) [uxxxx ((h + β1)�x, w)

+uxxxx((h + β2)�x, w)] + λ[uxxxx((h + β3)�x, w + �t)

+uxxxx((h + β4)�x, w + �t)]) − λ�t uxxt(h�x, w + δ�t)) dw

+ σ

∫ (m+1)�t

m�t

u(xh, w)dξ(w), (21)

where β1, β2, β3, β4, � ∈ (0, 1). Then we have

um+1
h = um

h + ρ

∫ �t+m�t

m�t

(
λ

um+1
h+1 − 2um+1

h + um+1
h−1

�x2
+ (1 − λ)

um
h+1 − 2um

h + um
h−1

�x2

−�x2

4!
((1 − λ) [uxxxx ((h + β1)�x, w)

+uxxxx((h + β2)�x, w)] + λ[uxxxx((h + β3)�x, w + �t)

+uxxxx((h + β4)�x, w + �t)]) − λρ�t uxxxx(h�x, w + δ�t)) dw

− �tλσ

∫ �t+m�t

m�t

uxx(xh, w)dξ(w)

+ σ

∫ �t+m�t

m�t

u(xh, w)dξ(w). (22)
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Let zm
h = um

h − vm
h , so we get

zm+1
h = zm

h + ρ

∫ �t+m�t

m�t

(
(1 − λ)

zm
h+1 − 2zm

h + zm
h−1

�x2
+ λ

zm+1
h+1 − 2zm+1

h + zm+1
h−1

�x2

−�x2

4!
((1 − λ) [uxxxx ((h + β1)�x, w)

+uxxxx((h + β2)�x, w)] + λ[uxxxx((h + β3)�x, w + �t)

+uxxxx((h + β4)�x, w + �t)]) − λρ�t uxxxx(h�x, w + δ�t)) dw

− λσ�t
∫ �t+m�t

m�t

uxx(x, w)|x=xh
dξ(w)

+ σ

∫ �t+m�t

m�t

(u(x, w)|x=xh
− vm

h )dξ(w). (23)

It gives that

− λrzm+1
h−1 + (1 + 2λr)zm+1

h − λrzm+1
h+1

= (1 − λ)rzm
h−1 + (1 − 2(1 − λ)r)zm

h + (1 − λ)rzm
h+1

+ ρ

∫ �t+m�t

m�t

[−�x2

4!
((1 − λ)[uxxxx((h + β1)�x, w)

+ uxxxx((h + β2)�x, w)] + λ[uxxxx((h + β3)�x, w + �t)

+ uxxxx((h + β4)�x, w + �t)]) − λρ�t uxxxx(h�x, w + δ�t)]dw

− λσ�t
∫ �t+m�t

m�t

uxx(x, w)|x=xh
dξ(w)

+ σ

∫ �t+m�t

m�t

(u(x, w)|x=xh
− vm

h )dξ(w), (24)

where r = ρ �t
�x2 . Applying E| · |2 to the above equation and using the following inequality:

E|X + Y + Z + R|2 ≤ 8E|Z|2 + 8E|Y |2 + 2E|R|2 + 4E|X |2,

we have

E|λrzm+1
h−1 + (1 + 2λr)zm+1

h − λrzm+1
h+1 |2

≤ 4E|(1 − λ)rzm
h−1 + (1 − 2(1 − λ)r)zm

h + (1 − λ)rzm
h+1|2

+ 8E|ρ
∫ �t+m�t

m�t

[−�x2

4!
((1 − λ)[uxxxx((h + β1)�x, w)

+ uxxxx((h + β2)�x, w)] + λ[uxxxx((h + β3)�x, w + �t)

+ uxxxx((h + β4)�x, w + �t)]) − λρ�t uxxxx(h�x, w + δ�t)]dw|2

+ 8(λσ�t)2
E|

∫ �t+m�t

m�t

uxx(x, w)|x=xh
dξ(w)|2
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+ 4σ 2

∫ �t+m�t

m�t

E|u(x, w)|x=xh
− um

h |2dw + 4σ 2

∫ (m+1)�t

m�t

E|um
h − vm

h |2dw︸ ︷︷ ︸
E|zm

h |2�t

, (25)

and so

E|λrzm+1
h−1 + (1 + 2λr)zm+1

h − λrzm+1
h+1 |2

≤ 4[σ 2�t + |(1 − λ)rzm
h−1 + (1 − 2(1 − λ)r)zm

h + (1 − λ)rzm
h+1|2]sup

h

E|zm
h |2

+ 8sup
h

E|ρ
∫ �t+m�t

m�t

[−�x2

4!
((1 − λ)[uxxxx((h + β1)�x, w)

+ uxxxx((h + β2)�x, w)] + λ[uxxxx((h + β3)�x, w + �t)

+ uxxxx((h + β4)�x, w + �t)]) − λρ�t uxxxx(h�x, w + δ�t)]dw|2

+ 8(λσ�t)2sup
h

∫ �t+m�t

m�t

E|uxx(x, w)|x=xh
|2dw

+ 4σ 2sup
h

∫ �t+m�t

m�t

E|u(x, w)|x=xh
− um

h |2dw. (26)

By introducing the notation �1h = uxxxx((h+β1)�x, s) < ∞, �2h = uxxxx((h+β2)�x, s) < ∞, �3h =
uxxxx((h + β3)�x, s + �t) < ∞, �4h = uxxxx((h + β4)�x, s + �t) < ∞, �5h = uxxxx(h�x, s + δ�t) < ∞,
ψ1h = uxx(x, s) < ∞, taking into account∫ �t+m�t

m�t

E|u(xh, w) − um
h |2 = E

∫ �t+m�t

m�t

|u(xh, w) − um
h |2dw

≤ sup
w∈[m�t,(m+1)�t]

|u (h�x, m�t) − u (xh, w) |2�t ≤ �tψ′, (27)

and the usage of supposition r ≤ 1
2(1−λ)

, one concludes that

sup
h

E|λrzm+1
h−1 + (1 + 2λr) zm+1

h − λrzm+1
h+1 |2

≤ 4
(
σ 2�t + 1

)
sup

h

E|zm
h |2

+ 8sup
h

E|ρ
∫ (m+1)�t

m�t

[
−�x2

4!
((1 − λ) (�1h + �2h) + λ (�3h + �4h)) − λρ�t �5h

]
dw|2

+ 8 (λσ�t)2 sup
h

∫ (m+1)�t

m�t

E|ψ1h|2dw + 4σ 2ψ′�t. (28)

Therefore,

(−|λr| + |1 + 2λr| − |λr|)2 sup
h

E|zm+1
h |2 ≤ 8sup

h

E|ψ1|2�t + 8sup
h

E|ψ2|2�t

+ ψ4�t + 4sup
h

E|zm
h |2

(
1 + σ 2�t

)
, (29)
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and

sup
h

E|zm+1
h |2 ≤ ψ�t + 4sup

h

E|zm
h |2

(
1 + σ 2�t

)
. (30)

It gives that

E‖zm+1‖2
∞ ≤ ψ�t + (4 + 4σ 2�t)E‖zm‖2

∞

≤ ψ�t +
(

σ 2t
m + 1

+ 1
)m+1 ∑m

k=1
(4ψ�t)k

≤ eσ2t
∑m

k=1
(4ψ�t)k + ψ�t. (31)

When �t → 0, we have

E‖zm+1‖2
∞ ≤ 4eσ2tψ�t + ψ�t + (m − 1)eσ2t(4ψ�t)2

≤ teσ2t�t(4ψ)2 + (4eσ2t + 1)ψ�t

≤ (16teσ2tψ + 4eσ2t + 1)ψ�t, (32)

and so E‖zm+1‖2
∞ → 0.

Here, it is worth mentioning that according to the inequality (32), the error of the proposed scheme
(5) is of first order with respect to the time.

3 Numerical Results and Discussion

In this part, we demonstrate the efficacy and accuracy of the suggested technique, developed
in the previous section, by solving some numerical examples. Indeed, we investigate the theoretical
consequences of previous section about the stability and convergence of the proposed scheme (5). In
more detail, we discuss the convergence of the scheme (5) for each example and explore the necessary
conditions for its conditional and unconditional stability. Numerical results in this section verify the
previously presented theoretical analysis.

Example 3.1. Consider an SPDE in the following form:

vt (x, t) = ρvxx (x, t) + σv (x, t) ξ̇ (t) , (x, t) ∈ (0, 1) × (0, 1] , (33)

supplemented with the initial and boundary conditions

v (x, 0) = exp
(

−(x − 0.2)2

ρ

)
, x ∈ (0, 1) ,

v (0, t) = 1√
4t + 1

exp
(

− 0.04
ρ(4t + 1)

)
, t ∈ (0, 1] ,

v (1, t) = 1√
4t + 1

exp
(

− 0.64
ρ(4t + 1)

)
, t ∈ (0, 1] . (34)

The exact solution is

v (x, t) =
exp

(
− (x−0.2)2

ρ(1+4t)

)
√

1 + 4t
, (35)
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if there is no noise term. Following the proposed idea developed in this paper, the stochastic finite
difference scheme can be written as follows:

− λrvm+1
h−1 + (1 + 2λr)vm+1

h − λrvm+1
h+1 = (1 − λ)rvm

h−1 + (1 − 2(1 − λ)r)vm
h + (1 − λ)rvm

h+1 + σvm
h �ξn, (36)

where r = ρ�t
�x2 . To qualify the numerical results obtained in this example, the exact and numerical

solutions are plotted in Fig. 1. Let M and N be the total numbers of grid points for the space and time
discretization, respectively. If we set ρ = 0.01, σ = 1, and M = 125 (�x = 0.008), then according to
Theorem 2.2, the stochastic finite difference scheme (36) is unconditionally stable for all λ ≥ 1

2
(see

Table 1), and it is conditionally stable for λ < 1
2

with 1
2(1−2λ)

≥ r where r = ρ �t
�x2 . To test the conditional

stability as well, let λ = 0.01; then Theorem 2.2 implies that the numerical scheme (36) is stable for
N ≥ 303, a fact which is verified by the reported results in Table 2. Also, the absolute errors of the
numerical scheme (36) with σ = 1.5, �x = 0.01, ρ = 0.001, λ = 0.25, and �t = 0.01, 0.04, 0.05 are
reported in Table 3.
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Figure 1: Comparison between the exact solution and the stochastic numerical solution of (33) with
ρ = 0.01, �x = 0.008, σ = 1, �t = 0.008, λ = 0.75 (right figure), and σ = 1.5, �x = 0.01, ρ = 0.001,
�t = 0.01, λ = 0:25 (left figure) (Example 3.1)

Table 1: Examination of unconditional stability for the stochastic scheme (36) (Example 3.1)

λ N E(v(0.2, 1))

0.5 20 0.4658
0.52 25 0.4481
0.6 80 0.4732
0.7 100 0.4552
0.8 125 0.4442
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Table 2: Examination of conditional stability for the stochastic scheme (36) (Example 3.1)

N E(v(0.2, 1))

50 6.2493 × 1037

100 −1.1401 × 1059

200 −8.2924 × 1052

303 0.4181
400 0.4460
600 0.4191

Table 3: Absolute errors of the numerical scheme (36) for Example 3.1 with σ = 1.5, �x = 0.01,
ρ = 0.001, �t = 0.01, 0.04, 0.05, and λ = 0.25

�t

x 0.01 0.04 0.05

0.1 4.3000 × 10−3 5.8578 × 10−5 6.0000 × 10−3

0.2 3.6800 × 10−2 2.2000 × 10−3 4.7400 × 10−2

0.3 4.3000 × 10−3 5.8578 × 10−5 6.0000 × 10−3

0.4 3.4287 × 10−5 5.0582 × 10−6 6.1739 × 10−6

0.5 9.7327 × 10−9 7.3834 × 10−10 2.2026 × 10−9

0.6 6.7303 × 10−14 1.0652 × 10−15 1.6669 × 10−15

0.7 2.3412 × 10−20 3.8851 × 10−22 2.1245 × 10−22

0.8 7.7082 × 10−28 5.1278 × 10−30 4.8151 × 10−30

0.9 3.4080 × 10−36 1.5900 × 10−37 2.9264 × 10−38

1 6.4864 × 10−70 6.4864 × 10−70 6.4864 × 10−70

Example 3.2. Let us consider the following problem for the next example:

vt (x, t) = v (x, t) ξ̇ (t) + vxx (x, t) , (x, t) ∈ (0, 1) × (0, 1] ,
v(x, 0) = sin(πx), x ∈ (0, 1),
v(0, t) = v(1, t) = 0, t ∈ (0, 1],

(37)

with the exact solution

v(x, t) = sin(πx)e−π2t. (38)

In Fig. 2, the exact solution and the stochastic numerical solution of (37) are compared for the
two sets of M = 100, N = 100, λ = 0.5 (left plot) and M = 120, N = 120, λ = 0.55 (right plot).
More comparisons between the exact and the numerical solutions are given in Fig. 3 for the values
of ρ = 1, σ = 1, λ = 0.55, �x = 1

120
, �t = 0.01 (left plot) and ρ = 1, σ = 1, λ = 0.5, �x =

0.01, �t = 0.02 (right plot). From the numerical results in Figs. 2 and 3, one can see the high accuracy
of the presented method for solving the SPDE (37). In Table 4, the unconditional stability of the
proposed scheme (5) is shown for λ ≥ 1

2
. For λ = 0.4 and M = 100, Table 5 portrays the conditional

stability of the suggested technique (5) when N ≥ 4000, a fact which is also shown in Fig. 4. In addition,
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the absolute errors of the numerical scheme (5) with M = 100, N = 100, λ = 0.5, �x = 0.01, and
�t = 0.01, 0.02, 0.2 are reported in Table 6.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

−5

x

u(
x,

1)

Numerical Solution
Exact Solution

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

−5

x

u(
x,

1)

Numerical Solution
Exact Solution

Figure 2: Comparison between the exact solution and the stochastic numerical solution of (37) with
M = 100, N = 100, λ = 0.5 (left figure), and M = 120, N = 120, λ = 0.55 (right figure) (Example 3.2)
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Figure 3: Comparison between the exact solution and the stochastic numerical solution of (37) with
ρ = 1, σ = 1, λ = 0.55, �x = 1

120
, �t = 0.01 (left plot), and ρ = 1, σ = 1, λ = 0.5, �x = 0.01,

�t = 0.02 (rightplot) (Example 3.2)
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Table 4: Examination of unconditional stability for the stochastic scheme (5) (Example 3.2)

λ N E(v(0.5, 1))

0.5 50 5.4067 × 10−05

0.52 80 5.5825 × 10−05

0.6 100 5.7715 × 10−05

0.7 120 5.8729 × 10−05

0.8 200 5.6157 × 10−05

Table 5: Examination of conditional stability for the stochastic scheme (5) (Example 3.2)

N E(v(0.9, 1))

500 5.1365 × 1060

1000 1.3167 × 10115

2000 5.2079 × 10157

4000 1.4083 × 10−05

4100 1.3973 × 10−05

4200 1.4054 × 10−05
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Figure 4: (Continued)
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Figure 4: Display of conditional stability for various values of N = 400, 1000, 4000, 4100 (Example 3.2)

Table 6: Absolute errors of the numerical scheme (5) for Example 3.2 with M = 100, N = 100, λ = 0.5,
�x = 0.01, and �t = 0.01, 0.02, 0.2

�t

x 0.01 0.04 0.05

0.1 2.2049 × 10−7 7.2438 × 10−7 1.0274 × 10−6

0.2 4.1940 × 10−7 1.3779 × 10−6 1.9542 × 10−6

0.3 5.7726 × 10−7 1.8965 × 10−6 2.6897 × 10−6

0.4 6.7861 × 10−7 2.2294 × 10−6 3.1619 × 10−6

0.5 7.1353 × 10−7 2.3441 × 10−6 3.3247 × 10−6

0.6 6.7861 × 10−7 2.2294 × 10−6 3.1619 × 10−6

0.7 5.7726 × 10−7 1.8965 × 10−6 2.6897 × 10−6

0.8 9.1940 × 10−7 1.3779 × 10−6 1.9542 × 10−6

0.9 2.2049 × 10−7 7.2438 × 10−7 1.0274 × 10−6

1 6.3343 × 10−21 6.3343 × 10−21 6.3343 × 10−21

Example 3.3. As the third example, consider the following problem:

vt (x, t) = 0.01vxx (x, t) + v (x, t) ξ̇ (t), (x, t) ∈ (0, 1) × (0, 1] ,

v(x, 0) = x − x2, x ∈ (0, 1),

v(0, t) = v(1, t) = 0, t ∈ (0, 1]. (39)

Fig. 5 shows the approximation of SPDE (39) using the stochastic difference scheme (5) with the
values N = 50, 60, 80, 100. In Table 7, the unconditional stability of the proposed method is depicted
for λ ≥ 1

2
. To test the conditional stability for ρ = 0.01, M = 100, and λ = 0.3, simulation results

of (39) for various values of N are presented in Fig. 5 and Table 8. According to these results for
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Example 3.3, it is apparent that the stochastic finite difference scheme (5) is stable when N ≥ 80, a
fact which coincides with the stability condition provided by Theorem 2.2.
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Figure 5: Display of conditional stability for various values of N = 50, 60, 80, 100 (Example 3.3)

Table 7: Examination of unconditional stability for the stochastic scheme (5) (Example 3.3)

λ N E(v(0.5, 1))

0.5 50 0.2566
0.52 80 0.2880
0.6 100 0.2783
0.7 110 0.2429
0.8 150 0.2263
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Table 8: Examination of conditional stability for the stochastic scheme (5) (Example 3.3)

N E(v(0.03, 2))

20 0.3828
50 1.6972
80 0.0245
110 0.0233
140 0.0234
170 0.0226

4 Conclusion

This study presented a numerical method based on the weighted average finite difference scheme
for the solution of SPDEs. In this paper, we provided some mathematical analyses for the proposed
numerical scheme. To ascertain the accuracy and efficacy of the proffered technique, we presented
three numerical examples with different boundary conditions, and compared the associated numerical
results with the exact solution. Additionally, we explored the necessary conditions for the conditional
and unconditional stability of the presented method and verified the theoretical consequences in this
regard by some figures and tables.

Future works can be focused on applying some new discrete schemes, such as those discussed
in [22] with a second-order time convergence rate, for the numerical solution of stochastic problem
studied in this paper.
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