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A B S T R A C T

Bovine Brucellosis, a zoonotic disease, can infect cattle in tropical and subtropical areas. It remains a critical
issue for both human and animal health in many parts of the world, especially those where livestock is an
important source of food and income. An efficient method for monitoring the illness’s increasing prevalence and
developing low-cost prevention strategies for both its effects and recurrence is brucellosis disease modeling. We
create a fractional-order model of Bovine Brucellosis using a discrete modified Atangana–Baleanu fractional
difference operator of the Liouville–Caputo type. An analysis of the suggested system’s well-posedness and
a qualitative investigation are both conducted. The examination of the Volterra-type Lyapunov function for
global stability is supported by the first and derivative tests. The Lipschitz condition is also used for the model
in order to meet the criterion of the uniqueness of the exact solution. We created an endemic and disease-free
equilibrium. Solutions are built in the discrete generalized form of the Mittag-Leffler kernel in order to analyze
the effect of the fractional operator with numerical simulations and emphasize the effects of the sickness due to
the many factors involved. The capacity of the suggested model to forecast an infectious disease like brucellosis
can help researchers and decision-makers take preventive actions.
Introduction

A bacterium of the genus Brucella causes the infectious and conta-
gious zoonotic disease known as bovine brucellosis, which affects both
animals and humans. In decreasing order, the four Brucella species that
cause the illness are: B. melitensis in small ruminants like goats and
sheep; B. abortus commonly found in cattle; B. suis in swine; and B.
canis in dogs. Direct contact with diseased animal tissues, urine, or
blood or with the environment that has been contaminated by dis-
charges from sick cattle are the two main ways that bovine brucellosis
is transmitted to vulnerable livestock. Moreover, it may be vertically
transmitted from sick mothers to their newborns [1]. Typically, biovars
of B. abortus induce brucellosis in cattle. The bacteria B. melitensis can
also infect cattle housed in close proximity to sheep or goats in various
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regions, particularly in southern Europe and western Asia. Both B.
abortus and B. melitensis can infect humans. The two main sources
of human brucellosis are environmental Brucella and contaminated
cattle. Contact with diseased animals or animal products in meals can
spread brucellosis to people. By consuming infected, unpasteurized
dairy products, the illness can also be spread indirectly [2]. In countries
all over the world, Brucella infections produce substantial financial
losses as well as societal health concerns. Brucellosis impedes the
trade of animals, animal products, and animal migration. In cattle, the
condition is known to cause abortion in the final stages of pregnancy,
followed by foetal membrane retention and infertility in subsequent
pregnancies [3]. The Brucella organism spreads through contact with
aborted cattle and aborted materials, as well as contaminated fomites.
Numerous risk variables connected to production methods, the biology
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of the particular host, and environmental factors affect the likelihood of
contracting brucellosis. Age, herd size and composition, farm hygiene,
the frequency of interaction between infected and vulnerable animals,
farm bio-security, and climate are a few of these factors [4]. Cattle that
are sexually mature and pregnant are more likely to contract Brucella
than cattle that are not sexually mature. This is due to the concentration
of erythritol sugar produced inside the foetal tissues of cattle, which
causes the Brucella organism to confer a reaction in the reproductive
tract and increases the growth of Brucella organisms [5]. The isolation
and identification of the brucellosis-causing bacteria is the gold stan-
dard for diagnosis, but this method is risky, requires a high-security lab
and highly qualified staff, and takes a while to complete. Therefore, the
mainstay of diagnosis relies on the identification of antibodies in serum
using serological tests like the Rapid Plate Agglutination Test (RPAT),
Rose Bengal Test (RBT), Standard Agglutination Test (SAT), 2-Mercapto
Ethanol Test (2ME), and the Complement Fixation Test (CFT). They
offer a helpful benefit in detecting the prevalence of Brucella infection
and are quite easy to carry out [6].

According to international data, approximately 500,000 instances
of bovine brucellosis are reported worldwide each year. According to
research, the illness causes an annual loss in cattle production of US 3.4
billion in economic terms. Consequently, it follows that the disease’s
toll in underdeveloped nations cannot be understated [7]. Therefore, if
we are to control or eradicate the disease, we must evaluate the current
control measures and their financial viability. We can better understand
how infectious diseases like bovine brucellosis propagate by using
mathematical modeling. In [8], a mathematical model was developed
to explain how bovine brucellosis spreads among cattle. According
to numerical simulation, control strategies should focus on lowering
the parameters for infectious cattle’s contact rate with susceptible and
recovered animals and raising the treatment rate for infected cattle.
Incorporating the impacts of seasonality, researchers have provided a
mathematical model for the dynamics of brucellosis transmission [9].
Their findings demonstrate that seasonality has a significant impact
on the long-term dynamics of brucellosis, which in turn affects how
its best control techniques are developed. A mathematical model for
the effects of various control options on the dynamics of Brucellosis
transmission was developed and examined by researchers [10]. They
concentrated on environmental hygiene and sanitation, personal pro-
tection in humans, progressive culling by killing seropositive cattle
and small ruminants, and livestock vaccination. An individual-based
model was presented by Nepomuceno et al. [11] to look at the dy-
namics and management of bovine brucellosis. The model concentrated
on geographical elements like herd motion and varied populations.
Additionally, it emphasized pulse interventions. In order to describe
both within- and between-herd transmission of Brucella abortus in
dairy cattle herds, a stochastic, age-structured model was constructed.
This project gave valuable information about brucellosis control in
India, which has the world’s biggest population of cattle, as well as a
basic framework for assessing control measures in endemic areas [12].
Researchers from all across the globe are paying close focus on math-
ematical modeling of novel infectious diseases that are emerging. An
analysis of the effects of varying contact rates and the usage of face
masks on the fluctuations of coronavirus infection in KSA was done
mathematically in [13]. A mathematical model was created by re-
searchers to examine the monkeypox infection in light of the epidemic’s
reported instances in the USA. They created a model and thoroughly
explored its fundamental findings [14].

Nearly all branches of science use fractional calculus. Fractional
differential equations have generated a lot of attention recently due
to their wide range of applications in the physics and engineering
areas [15–19]. Different mathematical models’ genetic and memory
qualities can be distinguished using fractional differential equations,
which is their most notable characteristic. Hence, fractional order mod-
els seem more factual and empirical when compared to normal integer
2

order models [20]. The Riemann–Liouville, Grünwald–Letnikov, and
Caputo definitions of fractional-order derivatives are the most well-
known and often applicable definitions. It is the most widely used
fractional-order derivative in mathematical modeling because the ini-
tial conditions in the definition owed to Caputo can be represented
in a way similar to the integer-order differentiation. To analyze the
local and global stability of the equilibrium point(s) of a fractional-
order system, the linearization, Lyapunov technique, and Lyapunov
direct method have emerged recently [21]. The existence and con-
trollability of nonlocal mixed Volterra–Fredholm type fractional delay
integro-differential equations have been proven in the same line. Sev-
eral derivatives of fractional differential operators, such as the Hilfer,
nonsingular kernel type, and Caputo–Fabrizio operator, have recently
been employed by a number of writers to study diverse scenarios. Each
operator has unique qualities and flaws [22]. The Caputo–Fabrizio non-
integer order Brucellosis model was studied in [23]. Using a set of
values for the model parameters that were taken from the literature
as their sources, the simulations were carried out using the itera-
tive Laplace transform technique. The simulations’ findings support
the reliability and effectiveness of the Caputo–Fabrizio derivative for
estimating the dynamics of the brucellosis disease. In [24], a new
fractional-order model for the dynamics of brucellosis transmission
with a focus on sheep-to-sheep transmission was investigated. Culling
and vaccination rates were two control strategies that were included
in the model. They specifically noticed that the disease disappears
from the population if the rate of culling and vaccination is higher
than 40% and 50%, respectively. It demonstrated the consistency,
originality, and applicability of the model for the regulation of blood
glucose concentration in healthy individuals and individuals with type
1 diabetes. The population of cattle and different animals, particularly
buffalo and cows, are mostly affected by lumpy skin disease (LSD).
By considering all potential paths for a disease to propagate within a
population, [25] created a mathematical model to comprehend LSD. A
fresh method for solving fractional order systems has been presented
and used with the suggested model.

In the fractional order models, chaos makes a number of biological
and physical elements extremely sensitive to the beginning condi-
tions. Chaos was studied in fractional-order bio-mathematical models
of the Ebola virus, diabetes, HIV, and dengue [26]. The existence
of chaos in these models accelerates the evolution of the disease,
making it undesirable. A modified Atangana–Baleanu Caputo deriva-
tive (MABC) fractional order model of the HIV/AIDS pandemic was
discussed in [27]. Using the Laplace Adomian decomposition approach,
the MABC model of HIV/AIDS was numerically solved. The reported
numerical method took advantage of the recently constructed Newton
polynomial. To study and monitor the dynamical transmission of the
disease under the influence of vaccination, researchers introduced a
novel fractional-order measles model employing a constant propor-
tional (CP) Caputo operator [28]. Due to its numerous significant
applications in resolving the complex dynamics of various complicated
systems originating from various branches of science and engineering,
discrete fractional calculus began to be a fascinating area of fractional
calculus [29–31]. In addition, readers will be particularly interested
in this area of fractional calculus due to the potential for using dis-
crete fractional calculus to enhance certain artificial intelligence (AI)
methodologies and procedures. Finding the discrete equivalent of a
modified or generalized fractional operator is also a fascinating topic,
largely because the continuous non-local operators’ discrete counter-
part has fundamentally distinct characteristics. Particularly interesting
are the fractional continuous and discrete operators involving the
Mittag-Leffler kernels [32,33]. A novel fractional discrete COVID-19
model was introduced and studied by Abbes et al. [34]. It was demon-
strated that the dynamic behaviors of the model shift from stable
to chaotic behavior by modifying fractional orders using maximum
Lyapunov exponents, phase attractors, bifurcation diagrams, the 0–
1 test, and approximation entropy. The fractional discrete model fits

the true data of the epidemic, according to the results. Atangana



Results in Physics 52 (2023) 106887M. Farman et al.

w

(

L
2
{

g
d

𝐴

Baleanu–Caputo derivative with a nonsingular Mittag-Leffler function
as its kernel served as the derivative in a study by Narayanan and
colleagues [35] on the stability of a new fractional Nabla difference
biological model of the glucose-insulin regulatory system in diabetes
mellitus. It was assumed that the model for diabetes mellitus was a
deterministic fractional Nabla difference model, which offers a better
control strategy at fractional values for the creation of an artificial
pancreas.

The discussion above served as the impetus for this study, which
proposes a fractional order model with discrete generalized Mittag-
Leffler kernels for the dynamics of the bovine brucellosis illness in
cattle. For system dynamics models, researchers have recently con-
centrated on fractional order operators. Currently, both singular and
nonsingular kernels have received much scholarly study. Though it can
be challenging to select the best operator, researchers are always exam-
ining various operators to uncover new findings. This work generalizes
the majority of the outcomes examined for the ABC operator however
such a system has not been investigated for the operator indicated.
Additionally, a lot of dynamical problems will have this work as a
foundation for existence, uniqueness, and numerical simulations.

The manuscript is organized as follows: Section ‘‘Introduction’’ of-
fers an evaluation of the literature and an introduction. We explain
the basics of the fractional operator utilized in the suggested model
in Section ‘‘Preliminaries’’. In Section ‘‘Proposed model’’, we propose a
fractional order Bovine Brucellosis disease model with discrete general-
ized Mittag-Leffler kernels. The analysis of equilibrium states, the fun-
damental reproductive number R0 and sensitivity analysis, the model’s
global asymptotic stability, potential region and well-posedness of re-
sponses, and positiveness and boundedness of solutions are all covered
in Section ‘‘Analysis of proposed model’’. Additional analysis of the
proposed operator is provided in Section ‘‘Further analysis on dis-
crete Atangana–Baleanu, and modified Atangana–Baleanu operators’’.
To analyze the impact of the proposed fractional operator, solutions
are developed in the discrete generalized version of the Mittag-Leffler
kernel in Section ‘‘Solution of proposed system of fractional differential
equations’’. The results’ discussion and significant conclusions of our
analysis are covered in Sections ‘‘Results and discussion’’, ‘‘Conclusion’’.

Preliminaries

Here, we give a few key definitions that might be useful to analyze
the system.

Definition 1 ([32]). For 𝜐, 𝜒, 𝜔, 𝑡 ∈ C with 𝑅𝑒(𝜐) > 0, the generalized
discrete Mittag-Leffler function is defined as:

𝐄 𝜔
𝜐,𝜒

(𝛬, 𝑡) =
∞
∑

𝑘=0
𝛬𝑘

𝑡𝑘𝜐+𝜒−1(𝜔)𝑘
𝛤 (𝑘𝜐 + 𝜒)

, {∀𝛬 ∈ R ∶ |𝛬| < 1}, (1)

here

𝜔)𝑘 =
𝛤 (𝜔 + 𝑘)
𝛤 (𝑘)

. (2)

The discrete Mittag-Leffler function of two parameters can be found as
follows when 𝜔 = 1 ∶

𝐄 1
𝜐,𝜒

(𝛬, 𝑡) =
∞
∑

𝑘=0
𝛬𝑘 𝑡𝑘𝜐+𝜒−1

𝛤 (𝑘𝜐 + 𝜒)
, {∀𝛬 ∈ R ∶ |𝛬| < 1}. (3)

The discrete Mittag-Leffler function of one parameter can be deter-
mined as follows when 𝜔 = 𝜒 = 1 ∶

𝐄 1
𝜐,1
(𝛬, 𝑡) = 𝐄𝜐(𝛬, 𝑡) =

∞
∑

𝑘=0
𝛬𝑘 𝑡𝑘𝜐

𝛤 (𝑘𝜐 + 1)
, {∀𝛬 ∈ R ∶ |𝛬| < 1}. (4)

emma 2 ([32]). Let 𝖧 and 𝖦 be functions defined on N𝑎 = {𝑎, 𝑎 + 1, 𝑎 +
,…}, 𝑎 ∈ R. Then, the discrete Laplace transform can be defined by

L𝑎𝖧(𝑡)
}

{S} =
∞
∑ 𝖧(𝑡)

𝑎+1−𝑡
. (5)
3

𝑡=𝑎+1 (1 − S)
Also, the discrete Laplace transform of convolution of 𝖧 and 𝖦 can be
defined by
{

L𝑎(𝖧◦𝖦)(𝑡)
}

{S} =
(

L𝑎𝖧
)

{S} ∗
(

L𝑎𝖦
)

{S}. (6)

Lemma 3 ([32,36]). Let 𝖧 be a function defined on N𝑎. Then, the following
result holds.
{

L𝑎
[

∇𝖧(𝑡)
]

}

{S} = S
{

L𝑎𝖧(𝑡)
}

{S} − 𝖧(𝑎). (7)

More generally,

{

L𝑎
[

∇𝑛𝖧(𝑡)
]

}

{S} = S𝑛
{

L𝑎𝖧(𝑡)
}

{S} −
𝑛−1
∑

𝑖=0
S(𝑛−1−𝑖) ∇𝑖 𝖧(𝑎 + 1). (8)

Lemma 4 ([32,36]). Let 𝜐 be any real number. Then, we find
{

L𝑎
[𝑅𝐿
𝑎 ∇−𝜐𝖧(𝑡)

]

}

{S} = 1
S𝜐

{

L𝑎𝖧(𝑡)
}

{S}. (9)

Lemma 5 ([37]). Let 𝜐, 𝜒, 𝛬, S ∈ C with 𝑅𝑒(𝜒) > 0. If |𝛬S−𝜐| < 1 with
𝑅𝑒(S) > 0, then we have
{

L𝜐𝐄𝜐,𝜒 (𝛬, 𝑡 − 𝑎)
}

{S} = 1
S𝜒 (1 − 𝛬S−𝜐)

. (10)

In particular,
{

L𝜐𝐄𝜐,𝜐(𝛬, 𝑡 − 𝑎)
}

{S} = 1
S𝜐 − 𝛬

. (11)

Definition 6 ([32,36]). Let 𝖧 be defined on N𝑎
⋂

𝑏N, 𝑎 < 𝑏, where
𝑏N = {𝑏, 𝑏 − 1,…} and 𝑏 ∈ R. Then, for 𝛬 = − 𝜐

1−𝜐 and 0 < 𝜐 < 1
2 ,

the left discrete generalized Atangana–Baleanu of the Liouville–Caputo
type fractional difference is defined by

𝐴𝐵
𝑎 ∇𝜐𝖧(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

𝑡
∑

𝑠=𝑎+1
𝐄𝜐(𝛬, 𝑡 − 𝑠 + 1)∇𝖧(𝑠) , ∀𝑡 ∈ N𝑎, (12)

where 𝐴𝐵(𝜐) > 0 such that 𝐴𝐵(0) = 𝐴𝐵(1) = 1. Also right discrete
eneralized Atangana–Baleanu of the Liouville–Caputo type fractional
ifference is defined by

𝐵∇𝜐𝑏𝖧(𝑡) =
−𝐴𝐵(𝜐)
1 − 𝜐

𝑏−1
∑

𝑠=𝑡
𝐄𝜐(𝛬, 𝑡 − 𝑠 + 1)𝛥𝖧(𝑠) , ∀𝑡 ∈ 𝑏N. (13)

The associated discrete Atangana–Baleanu fractional sum is defined by

𝐴𝐵
𝑎 ∇−𝜐𝖧(𝑡) = 1 − 𝜐

𝐴𝐵(𝜐)
𝖧(𝑡) + 𝜐

𝐴𝐵(𝜐)
[

𝑎∇−𝜐𝖧(𝑡)
]

, ∀𝑡 ∈ N𝑎. (14)

Where 𝑎∇−𝜐𝖧(𝑡) is the nabla left-sided Riemann–Liouville fractional sum
of order 𝜐, given by

𝑎∇−𝜐𝖧(𝑡) = 1
𝛤 (𝜐)

𝑡
∑

𝜙=𝑎+1
(𝑡 + 1 − 𝜙)𝜐−1𝖧(𝜙) , ∀𝑡 ∈ N𝑎+1. (15)

Definition 7 ([36]). Let 𝖧 be defined on N𝑎
⋂

𝑏N, 𝑎 < 𝑏. Then for
𝛬 = − 𝜐

1−𝜐 and 0 < 𝜐 < 1
2 , the left discrete modified Atangana–Baleanu

of the Liouville–Caputo type fractional difference is defined by

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝖧(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

{

𝖧(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝖧(𝑎)

+ 𝛬
𝑡

∑

𝑠=𝑎+1
𝐄𝜐,𝜐(𝛬, 𝑡 − 𝑠 + 1)𝖧(𝑠)

}

,∀𝑡 ∈ N𝑎. (16)

Also right discrete modified Atangana–Baleanu of the Liouville–Caputo
type fractional difference is defined by

𝑀𝐴𝐵𝐶∇𝜐𝑏𝖧(𝑡) =
𝐴𝐵(𝜐)
1 − 𝜐

{

𝖧(𝑡) − 𝐄𝜐(𝛬, 𝑏 − 𝑡)𝖧(𝑏)

+ 𝛬
𝑏−1
∑

𝐄𝜐,𝜐(𝛬, 𝑠 − 𝑡 + 1)𝖧(𝑠)
}

,∀𝑡 ∈ 𝑏N. (17)

𝑠=𝑡
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By generalizing using the same method as for 0 < 𝜐 < 1, we can get
the following conclusions:

Definition 8 ([36]). Let 𝖧 be defined on N𝑎
⋂

𝑏N, 𝑎 < 𝑏. Let 𝑗 ∈ N0
hen for 𝛬𝑗 = − 𝜐−𝑗

𝑗+1−𝜐 and 𝑗 < 𝜐 < 𝑗 + 1
2 , the left discrete modified

tangana–Baleanu of the Liouville–Caputo type fractional difference of
higher order is defined by

𝐴𝐵𝐶∇𝜐𝖧(𝑡) = 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐−𝑗∇𝑗𝑓 (𝑡) (18)

=
𝐴𝐵(𝜐 − 𝑗)
𝑗 + 1 − 𝜐

{

∇𝑗𝑓 (𝑡) − 𝐄𝜐−𝑗 (𝛬𝑗 , 𝑡 − 𝑎)∇
𝑗𝑓 (𝑎)

+ 𝛬𝑗
𝑡

∑

𝑠=𝑎+1
𝐄𝜐−𝑗,𝜐−𝑗 (𝛬𝑗 , 𝑡 − 𝑠 + 1)∇𝑗𝑓 (𝑠)

}

∀𝑡 ∈ N𝑎.
Moreover, ∀𝑡 ∈ N𝑎 right discrete modified Atangana–Baleanu of the

Liouville–Caputo type fractional difference of a higher order is defined
by

𝑀𝐴𝐵𝐶∇𝜐𝑏𝖧(𝑡) =
𝑀𝐴𝐵𝐶∇𝜐−𝑗𝑏 ∇𝑗𝑓 (𝑡) (19)

=
𝐴𝐵(𝜐 − 𝑗)
𝑗 + 1 − 𝜐

{

∇𝑗𝑓 (𝑡) − 𝐄𝜐−𝑗 (𝛬𝑗 , 𝑏 − 𝑡)∇
𝑗𝑓 (𝑎)

+ 𝛬𝑗
𝑏−1
∑

𝑠=𝑡
𝐄𝜐−𝑗,𝜐−𝑗 (𝛬𝑗 , 𝑠 − 𝑡 + 1)∇𝑗𝑓 (𝑠)

}

∀𝑡 ∈ 𝑏N.

Proposed model

To analyze the impact of various treatments on the spread of
bovine brucellosis, a deterministic model [7] is suggested. The cattle
population is separated into five classes, including the susceptible (S),
infected (I), recovered (R), biosecured (B), and vaccinated (V), Cattle
that are not immune and are prone to getting brucellosis are classified
as vulnerable. Cattle that have caught the disease and may infect other
animals are classified as belonging to the infected class. Cattle that have
recovered from infections with bovine brucellosis belong to the recov-
ered class. Cattle of the biosecured class are incapable of contracting
bovine brucellosis due to their strict adherence to biosecurity guide-
lines. Cattle who have received a temporary immunity vaccination are
represented by the vaccinated class. S(𝑡), I(𝑡), R(𝑡), B(𝑡), and V(𝑡) are the
abbreviations for the proportions of cattle in compartments S, I, R, B,
and V at time ‘‘t’’, respectively. We assume that

• the rate of cattle recruitment into the susceptible class is }}𝜗ε,
while the rate of livestock vaccination is }}𝜂Sε.

• the immune-boosted animals return to the susceptible compart-
ment at a rate of }}𝜎Vε and lose their protection. While thorough
biosecurity precautions are followed, cattle move from the vul-
nerable compartment to the biosecured compartment at a rate of
}}𝜌Sε.

• at a rate of }}𝛽ε, infected cattle spread bovine brucellosis to the
susceptibles.

• the diseased cattle infected with the infection recover and then
move into the compartment that has recovered at a rate of }}𝛿Iε.
Moreover, the diseased people are killed off at a rate of }}𝜁 Iε.

• the restored animals gradually lose their innate resistance before
rejoining the susceptible class at a rate of }}𝜆Rε.

• the rates of natural death and disease-induced death are seen as
being }}𝜑ε and }}𝜉ε, respectively.

The following non-linear fractional differential equations are used to
4

formulate the new fractional-order model under left discrete modified p
Atangana–Baleanu of the Liouville–Caputo type fractional difference:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑎
𝑀𝐴𝐵𝐶∇𝜐S(𝑡) = 𝜗 − 𝛽SI − (𝜑 + 𝜂 + 𝜌)S + 𝜆R + 𝜎V,

𝑎
𝑀𝐴𝐵𝐶∇𝜐I(𝑡) = 𝛽SI − (𝜑 + 𝜉 + 𝛿 + 𝜁 )I,

𝑎
𝑀𝐴𝐵𝐶∇𝜐R(𝑡) = 𝛿I − (𝜑 + 𝜆)R,

𝑎
𝑀𝐴𝐵𝐶∇𝜐B(𝑡) = 𝜌S − 𝜑B,
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐V(𝑡) = 𝜂S − (𝜑 + 𝜎)V.

(20)

ith non-negative initial constraints,

(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, B(0) ≥ 0, V(0) ≥ 0. (21)

here 0 < 𝜐 < 1
2 .

Analysis of proposed model

Positive-ness and bounded-ness of solutions

We investigate the conditions that ensure the positivity of the
proposed model’s solutions to show that they are fine and restricted,
assuming that they include real-world conditions with relevant values.
For this, we have

I(𝑡) ≥ I(0)𝑒−(𝜑+𝜉+𝛿+𝜁 )𝑡 , ∀𝑡 ≥ 0. (22)
R(𝑡) ≥ R(0)𝑒−(𝜑+𝜆)𝑡 , ∀𝑡 ≥ 0. (23)
B(𝑡) ≥ B(0)𝑒−(𝜑)𝑡 , ∀𝑡 ≥ 0. (24)
V(𝑡) ≥ V(0)𝑒−(𝜑+𝜎)𝑡 , ∀𝑡 ≥ 0. (25)

Define the norm

∥ U ∥∞= sup𝑡∈𝐷U
|U(𝑡)|, (26)

such that 𝐷U is the domain of U. Using this norm, we have for the
function S(𝑡);

𝑎
𝑀𝐴𝐵𝐶∇𝜐S(𝑡) = 𝜗 − 𝛽SI − (𝜑 + 𝜂 + 𝜌)S + 𝜆R + 𝜎V ≥ −𝛽SI − (𝜑 + 𝜂 + 𝜌)S

≥ −
[

𝛽|I| + (𝜑 + 𝜂 + 𝜌)
]

S ≥ −
[

𝛽sup𝑡∈𝐷I
|I| + (𝜑 + 𝜂 + 𝜌)

]

S

= −
[

𝛽|I|∞ + (𝜑 + 𝜂 + 𝜌)
]

S. (27)

One can find,

S(𝑡) ≥ S(0) 𝑒−
(

𝛽|I|∞+(𝜑+𝜂+𝜌)
)

𝑡 , ∀𝑡 ≥ 0. (28)

Positively invariant region

Lemma 9. If

M =
{

(S, I,R,B,V) ∈ R5
+ ∶ 0 ≤ 𝐍(𝑡) ≤ 𝜗

𝜑
}

, (29)

then the region M attracts all solutions of the proposed system in R5
+ and

is positively invariant when applied to non-negative starting conditions if
𝐍(0) ≤ 𝜗

𝜑 .

roof. We shall demonstrate the system (20)’s positive solution, and
he outcomes are given as follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑎
𝑀𝐴𝐵𝐶∇𝜐S(𝑡)||

|S=0
= 𝜗 + 𝜆R + 𝜎V ≥ 0,

𝑎
𝑀𝐴𝐵𝐶∇𝜐I(𝑡)||

|I=0
= 0,

𝑎
𝑀𝐴𝐵𝐶∇𝜐R(𝑡)||

|R=0
= 𝛿I ≥ 0,

𝑎
𝑀𝐴𝐵𝐶∇𝜐B(𝑡)||

|B=0
= 𝜌S ≥ 0,

𝑎
𝑀𝐴𝐵𝐶∇𝜐V(𝑡)||

|V=0
= 𝜂S ≥ 0.

(30)

he system (30) states that the vector field is located on each hyper-
5
lane containing the non-negative orthant with 𝑡 ≥ 0 in the area R+.
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After adding the component portions of the human population in model
(20), we get the following total population:

𝑎
𝑀𝐴𝐵𝐶∇𝜐𝐍(𝑡) = 𝑎

𝑀𝐴𝐵𝐶∇𝜐S(𝑡) + 𝑎
𝑀𝐴𝐵𝐶∇𝜐I(𝑡)

+ 𝑎
𝑀𝐴𝐵𝐶∇𝜐R(𝑡) + 𝑎

𝑀𝐴𝐵𝐶∇𝜐B(𝑡) + 𝑎
𝑀𝐴𝐵𝐶∇𝜐V(𝑡)

= 𝜗 − 𝜑(S + I + R + B + V) − (𝜉 + 𝜁 )I = 𝜗 − 𝜑𝐍 − (𝜉 + 𝜁 )I

≤ 𝜗 − 𝜑𝐍. (31)

uppose that 𝐍(0) ≤ 𝜗
𝜑

⇒ 𝐍(𝑡) ≤ 𝜗
𝜑
. (32)

Hence, for every 𝑡 > 0, a solution of the fractional model (20) exists
n M. As a result, the closed set M is positively invariant with regard
o the fractional model. Therefore, we can test our model (20) in the
easible region:

=
{

(S, I,R,B,V) ∈ R5
+ ∶ 𝐍(𝑡) ≤ 𝜗

𝜑
}

. □ (33)

Equilibrium points

Constant functions are used to represent the equilibrium states
of a system of differential equations with constant parameters. An
equilibrium in our case is represented by

𝑎
𝑀𝐴𝐵𝐶∇𝜐S(𝑡) = 𝑎

𝑀𝐴𝐵𝐶∇𝜐I(𝑡) = 𝑎
𝑀𝐴𝐵𝐶∇𝜐R(𝑡) = 𝑎

𝑀𝐴𝐵𝐶∇𝜐B(𝑡)

= 𝑎
𝑀𝐴𝐵𝐶∇𝜐V(𝑡) = 0. (34)

We have the disease-free equilibrium states (E0) as:

E0 = {S0, I0, R0, B0, V0}

=
{ (𝜑 + 𝜎)𝜗
𝜑(𝜑 + 𝜎 + 𝜂) + 𝜌(𝜑 + 𝜎)

, 0, 0,
𝜌(𝜑 + 𝜎)𝜗

𝜑
[

𝜑(𝜑 + 𝜎 + 𝜂) + 𝜌(𝜑 + 𝜎)
] ,

𝜂𝜗
𝜑(𝜑 + 𝜎 + 𝜂) + 𝜌(𝜑 + 𝜎)

}

. (35)

hen there is an infection, endemic equilibrium happens. To reach the
ndemic equilibrium values (E∗), the right side of the system’s Eqs. (20)
ust be set to zero. We have

∗ =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

S∗ = 𝛯1
𝛽 ,

I∗ = −
(𝜎+𝜑)

[

(𝜑2+𝜌𝜆)𝛯1+𝜑(𝜆+𝜌)𝛯4
]

+𝜑2𝜂𝛯1+𝜁(𝜆+𝜌)(𝜑2+𝜎)
𝛽(𝜎+𝜑)(𝜆𝛯3+𝜑𝛯2)

,

R∗ = −
𝛿
[

𝜑𝜂𝛯2+(𝜎+𝜑)(𝜌+𝜑)𝛯1−𝛽𝜗(𝜎+𝜑)
]

𝛽(𝜎+𝜑)(𝜆𝛯3+𝜑𝛯2)
,

B∗ = 𝛯1𝜌
𝛽𝜑 ,

V∗ = 𝛯1𝜂
𝛽(𝜎+𝜑) .

(36)

Where,

𝛯1 = 𝜁 + 𝜉 + 𝜑 + 𝛿 , 𝛯3 = 𝜁 + 𝜉 + 𝜑 ,

𝛯2 = 𝜁 + 𝜉 + 𝜆 + 𝛿 , 𝛯4 = 𝜉 + 𝜑 + 𝛿. (37)

Reproductive number

We utilize the next generation matrix technique [38] on system (20)
to obtain the reproductive number (R) as given below. next generation
matrices F and V are;

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝛽I −𝛽S 0 0 0
𝛽I 𝛽S 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

𝑉 =

⎛

⎜

⎜

⎜

⎜

⎜

𝜑 + 𝜂 + 𝜌 0 −𝜆 0 −𝜎
0 𝜑 + 𝜉 + 𝛿 + 𝜁 0 0 0
0 −𝛿 𝜑 + 𝜆 0 0
−𝜌 0 0 𝜑 0

⎞

⎟

⎟

⎟

⎟

⎟

,

5

⎝
−𝜂 0 0 0 𝜎 + 𝜑

⎠

Table 1
R Parameters sensitivity indices.

Parameter Index Parameter Index Parameter Index

𝛽 +1.0000 𝛿 −0.0293 𝜑 −0.5218
𝜗 +1.0000 𝜉 −0.5574 𝜁 −0.4107
𝜎 +0.4904 𝜌 −0.2425 𝜂 −0.7355

and

𝐹 (E0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 −𝛽S0 0 0 0
0 𝛽S0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

then 𝑑𝑒𝑡||
|

𝐹 (E0)𝑉 −1 − 𝜆𝐼||
|

= 0 yields the reproductive number (R):

R =
𝛽S0

𝜁 + 𝜉 + 𝜑 + 𝛿
, 𝑤ℎ𝑒𝑟𝑒 S0 =

(𝜑 + 𝜎)𝜗
𝜑(𝜑 + 𝜎 + 𝜂) + 𝜌(𝜑 + 𝜎)

. (38)

trength number

These days, the ‘‘Strength Number’’, an extension of the reproduc-
ion number, is currently undergoing numerous evaluations to see if it
an be utilized to detect spread complexity, or at the very least, if it
an detect waves in a diffusion. We determine the strength value ‘‘S0’’
y computing the second derivative of the infected compartments using
he next-generation matrix.

𝜕2

𝜕I2
( 𝛽SI

𝐍

)

= 𝛽S 𝜕
2

𝜕I2
( (𝐍 − I)

𝐍3

)

= −
2𝛽S||

|

𝐍 − I||
|

𝐍3
= −

2𝛽S(S + R + B + V)
(S + I + R + B + V)3

.

(39)

At disease-free equilibrium, we have
(

−
2𝛽S(S + R + B + V)
(S + I + R + B + V)3

)

= −
2𝛽S0

(S0 + B0 + V0)2
. (40)

ence, det ||
|

𝐹 (E0)V−1 − 𝜆𝐼||
|

= 0 produces strength number S0:

0 = −
2𝛽S0

(𝜁 + 𝜉 + 𝜑 + 𝛿)(S0 + B0 + V0)2
. (41)

An infection that declines quickly from the disease-free equilibrium and
then rises after a minimal point before stabilizing or ceasing later is
suggested by a negative strength value, as is an infection that has two
infection factors at the maximum indicating a single wave. This will be
confirmed by looking at the sign of the second derivative of infected
compartments.

Sensitivity indices of reproductive (R)′𝑠 parameters

If the major impact of each element in the dynamics of the disease
is taken into consideration, the incidence and prevalence of bovine bru-
cellosis can be decreased or managed. It explores how each parameter
affects the basic reproduction number R. The following table includes
all parameter’s sensitivity indices (see Table 1).

Existence and uniqueness of the proposed model

In this part, we demonstrate that the proposed system’s coefficients
meet the Lipschitz and linear growth conditions, demonstrating the
existence and uniqueness of the solution. We now recall our model

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝑎
𝑀𝐴𝐵𝐶∇𝜐S(𝑡) = 𝜗 − 𝛽SI − (𝜑 + 𝜂 + 𝜌)S + 𝜆R + 𝜎V,

𝑎
𝑀𝐴𝐵𝐶∇𝜐I(𝑡) = 𝛽SI − (𝜑 + 𝜉 + 𝛿 + 𝜁 )I,

𝑎
𝑀𝐴𝐵𝐶∇𝜐R(𝑡) = 𝛿I − (𝜑 + 𝜆)R,

𝑎
𝑀𝐴𝐵𝐶∇𝜐B(𝑡) = 𝜌S − 𝜑B,
𝑀𝐴𝐵𝐶∇𝜐V(𝑡) = 𝜂S − (𝜑 + 𝜎)V.

(42)
⎩
𝑎
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b

‖

a

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

u

t
w

|

T

⇒

Let  = (S, I,R,B,V) ∈ H, where H = [C([0,T],R+)]5 is a Banach space
uilt with the norm:

‖ = sup
0≤𝑡≤T

[

|S(𝑡)| + |I(𝑡)| + |R(𝑡)| + |B(𝑡)| + |V(𝑡)|
]

,

lso let M = (M1,M2,M3,M4,M5) such that

M1(𝑡,S, I,R,B,V) = 𝜗 − 𝛽SI − (𝜑 + 𝜂 + 𝜌)S + 𝜆R + 𝜎V
M2(𝑡,S, I,R,B,V) = 𝛽SI − (𝜑 + 𝜉 + 𝛿 + 𝜁 )I,
M3(𝑡,S, I,R,B,V) = 𝛿I − (𝜑 + 𝜆)R,
M4(𝑡,S, I,R,B,V) = 𝜌S − 𝜑B,
M5(𝑡,S, I,R,B,V) = 𝜂S − (𝜑 + 𝜎)V,

(43)

We can observe that the function M ∈ [0,T] ×H5 is continuous. And

(𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

S(𝑡)
I(𝑡)
R(𝑡)
B(𝑡)
V(𝑡)

0(𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

S0
I0
R0

B0

V0

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

M1(𝑡,S, I,R,B,V),
M2(𝑡,S, I,R,B,V),
M3(𝑡,S, I,R,B,V),
M4(𝑡,S, I,R,B,V),
M5(𝑡,S, I,R,B,V).

We must validate the following theorem in order to demonstrate the
existence and uniqueness of the solution.

Theorem 10. Assume the existence of positive constants, 𝜛𝑖, 𝜓𝑖, such that

(𝑖) |M𝑖(, 𝑡)|2 ≤ 𝜛𝑖(1 + ||2) , ∀(, 𝑡) ∈ R5 × [0,T]. (44)

(𝑖𝑖) |M𝑖(1, 𝑡) −M𝑖(2, 𝑡)|2 ≤ 𝜓𝑖|1 − 2|2 , ∀𝑖 ∈ {1, 2,… , 5}. (45)

Proof. We begin with the linear growth.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

|M1(S, 𝑡)|
2 = |𝜗 − 𝛽SI − (𝜑 + 𝜂 + 𝜌)S + 𝜆R + 𝜎V|2

= |𝜗 + 𝜆R + 𝜎V − (𝛽I + 𝜑 + 𝜂 + 𝜌)S|2,

|M1(S, 𝑡)|
2 ≤ 2{𝜗 + 𝜆|R| + 𝜎|V|}2 + 2{𝛽|I| + 𝜑 + 𝜂 + 𝜌}2|S|2,

|M1(S, 𝑡)|
2 ≤ 2{𝜗 + 𝜆 sup0≤𝑡≤𝑇 |R| + 𝜎 sup0≤𝑡≤𝑇 |V|}2

+2{𝛽 sup0≤𝑡≤𝑇 |I| + 𝜑 + 𝜂 + 𝜌}2|S|2,

|M1(S, 𝑡)|
2 ≤ 2{𝜗 + 𝜆|R|∞ + 𝜎|V|∞}2 + 2{𝛽|I|∞ + 𝜑 + 𝜂 + 𝜌}2|S|2,

|M1(S, 𝑡)|
2 ≤ 2{𝜗 + 𝜆|R|∞ + 𝜎|V|∞}2

[

1 + {𝛽|I|∞+𝜑+𝜂+𝜌}2

{𝜗+𝜆|R|∞+𝜎|V|∞}2
|S|2

]

≤ 𝜛1(1 + |S|2),

(46)

under the condition
{

{𝛽|I|∞+𝜑+𝜂+𝜌}2

{𝜗+𝜆|R|∞+𝜎|V|∞}2

}

< 1,

|M2(I, 𝑡)|
2 = |𝛽SI − (𝜑 + 𝜉 + 𝛿 + 𝜁 )I|2|M2(I, 𝑡)|

2 ≤ 2

+2{𝛽|S| + 𝜑 + 𝜉 + 𝛿 + 𝜁}2|I|2,

|M2(I, 𝑡)|
2 ≤ 2 + 2{𝛽 sup0≤𝑡≤𝑇 |S| + 𝜑 + 𝜉 + 𝛿 + 𝜁}2|I|2,

|M2(I, 𝑡)|
2 ≤ 2 + 2{𝛽|S|∞ + 𝜑 + 𝜉 + 𝛿 + 𝜁}2|I|2,

|M2(I, 𝑡)|
2 ≤ 2

[

1 + {𝛽|S|∞+𝜑+𝜉+𝛿+𝜁}2

2 |I|2
]

≤ 𝜛2(1 + |I|2),

(47)

under the condition
{

{𝛽|S|∞+𝜑+𝜉+𝛿+𝜁}2

2

}

< 1,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

|M3(R, 𝑡)|
2 = |𝛿I − (𝜑 + 𝜆)R|2 ≤ 2{𝛿|I|}2 + 2{𝜑 + 𝜆}2|R|2,

|M3(R, 𝑡)|
2 ≤ 2{𝛿 sup0≤𝑡≤𝑇 |I|}2 + 2{𝜑 + 𝜆}2|R|2,

|M3(R, 𝑡)|
2 ≤ 2{𝛿|I|∞}2 + 2{𝜑 + 𝜆}2|R|2,

|M3(R, 𝑡)|
2 ≤ 2{𝛿|I|∞}2

[

1 + {𝜑+𝜆}2
2 |R|

2
]

≤ 𝜛3(1 + |R|2),

(48)
6

⎩

{𝛿|I|∞}
under the condition
{

{𝜑+𝜆}2

{𝛿|I|∞}2

}

< 1,

|M4(B, 𝑡)|
2 = |𝜌S − 𝜑B|2 ≤ 2{𝜌|S|}2 + 2{𝜑}2|B|2,

|M4(B, 𝑡)|
2 ≤ 2{𝜌 sup0≤𝑡≤𝑇 |S|}2 + 2{𝜑}2|B|2 ≤ 2{𝜌|S|∞}2 + 2{𝜑}2|B|2,

|M4(B, 𝑡)|
2 ≤ 2{𝜌|S|∞}2

[

1 + {𝜑}2

{𝜌|S|∞}2
|B|2

]

≤ 𝜛4(1 + |B|2),

(49)

under the condition
{

{𝜑}2

{𝜌|S|∞}2

}

< 1,

|M5(V, 𝑡)|
2 = |𝜂S − (𝜑 + 𝜎)V|2 ≤ 2{𝜂|S|}2 + 2{𝜑 + 𝜎}2|V|2,

|M5(V, 𝑡)|
2 ≤ 2{𝜂 sup0≤𝑡≤𝑇 |S|}2 + 2{𝜑 + 𝜎}2|V|2,

|M5(V, 𝑡)|
2 ≤ 2{𝜂|S|∞}2 + 2{𝜑 + 𝜎}2|V|2,

|M5(V, 𝑡)|
2 ≤ 2{𝜂|S|∞}2

[

1 + {𝜑+𝜎}2

{𝜂|S|∞}2 |V|
2
]

≤ 𝜛5(1 + |V|2),

(50)

nder the condition
{

{𝜑+𝜎}2

{𝜂|S|∞}2

}

< 1.
The function thus meets the requirement for growth. We will check

he Lipschitz condition now. We start with the function M1(, 𝑡). Then,
e will show that

M1(S1, 𝑡) −M1(S2, 𝑡)|
2 ≤ 𝜓1|S1 − S2|

2. (51)

hen, we write

|M1(S1, 𝑡) −M1(S2, 𝑡)|
2 =| − (𝛽I)(S1 − S2) − (𝜑 + 𝜂 + 𝜌)(S1 − S2)|

2

= | − (𝛽I + 𝜑 + 𝜂 + 𝜌)(S1 − S2)|
2

= |(𝛽I + 𝜑 + 𝜂 + 𝜌)(S1 − S2)|
2

|M1(S1, 𝑡) −M1(S2, 𝑡)|
2 ≤

{

(2𝛽2|I|2 + 2𝜑2 + 2𝜂2 + 2𝜌2)
}

(S1 − S2)|2

≤
{

(2𝛽2 sup
0≤𝑡≤𝑇

|I|2 + 2𝜑2 + 2𝜂2 + 2𝜌2)
}

× (S1 − S2)|2

=
{

(2𝛽2|I|2∞ + 2𝜑2 + 2𝜂2 + 2𝜌2)
}

(S1 − S2)|2

|M1(S1, 𝑡) −M1(S2, 𝑡)|
2 ≤ 𝜓1|S1 − S2|

2. (52)

Where

𝜓1 =
{

(2𝛽2|I|2∞ + 2𝜑2 + 2𝜂2 + 2𝜌2)
}

. (53)

And

|M2(I1, 𝑡) −M2(I2, 𝑡)|
2 =|(𝛽S)(I1 − I2) − (𝜑 + 𝜉 + 𝛿 + 𝜁 )(I1 − I2)|

2

= |(𝛽S − 𝜑 − 𝜉 − 𝛿 − 𝜁 )(I1 − I2)|
2

|M2(I1, 𝑡) −M2(I2, 𝑡)|
2 ≤ {2𝛽2|𝐼|2 + 2𝜑2 + 2𝜉2 + 2𝛿2 + 2𝜁2}(I1 − I2)|2

≤ {2𝛽2 sup
0≤𝑡≤𝑇

|𝐼|2 + 2𝜑2 + 2𝜉2 + 2𝛿2 + 2𝜁2}

× (I1 − I2)|2

= {2𝛽2|𝐼|2∞ + 2𝜑2 + 2𝜉2 + 2𝛿2 + 2𝜁2}(I1 − I2)|2

⇒ |M2(I1, 𝑡) −M2(I2, 𝑡)|
2 ≤ 𝜓2|(I1 − I2)|

2. (54)

where

𝜓2 = {2𝜑2 + 2𝜉2 + 2𝛿2 + 2𝜁2}. (55)

|M3(R1, 𝑡) −M3(R2, 𝑡)|
2 = | − (𝜑 + 𝜆)(R1 − R2)|

2

= |(𝜑 + 𝜆)(R1 − R2)|
2

|M3(R1, 𝑡) −M3(R2, 𝑡)|
2 ≤ (2𝜑2 + 2𝜆2)|(R1 − R2)|

2

⇒ |M3(R1, 𝑡) −M3(R2, 𝑡)|
2 ≤ 𝜓3|(R1 − R2)|

2, (56)

where

𝜓3 = {2𝜑2 + 2𝜆2}. (57)

|M4(B1, 𝑡) −M4(B2, 𝑡)|
2 = | − (𝜑)(B1 − B2)|

2

2
= |(𝜑)(B1 − B2)|
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|M4(B1, 𝑡) −M4(B2, 𝑡)|
2 ≤ (2𝜑2)|(B1 − B2)|

2

⇒ |M4(B1, 𝑡) −M4(B2, 𝑡)|
2 ≤ 𝜓4|(B1 − B2)|

2, (58)

where

𝜓4 = {2𝜑2}. (59)

|M5(V1, 𝑡) −M5(V2, 𝑡)|
2 = | − (𝜑 + 𝜎)(V1 − V2)|

2

= |(𝜑 + 𝜎)(V1 − V2)|
2

|M5(V1, 𝑡) −M5(V2, 𝑡)|
2 ≤ (2𝜑2 + 2𝜎2)|(V1 − V2)|

2

⇒ |M5(V1, 𝑡) −M5(V2, 𝑡)|
2 ≤ 𝜓5|(V1 − V2)|

2, (60)

where

𝜓5 = {2𝜑2 + 2𝜎2}. (61)

Then, given the circumstances, the answer to our system exists and is
unique.

𝑀𝑎𝑥

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{ {𝛽|I|∞+𝜑+𝜂+𝜌}2

{𝜗+𝜆|R|∞+𝜎|V|∞}2
}

,
{ {𝛽|S|∞+𝜑+𝜉+𝛿+𝜁}2

2

}

,
{ {𝜑+𝜆}2

{𝛿|I|∞}2
}

,
{ {𝜑}2

{𝜌|S|∞}2
}

,
{ {𝜑+𝜎}2

{𝜂|S|∞}2
}

< 1. □ (62)

tability analysis

The global stability analysis of epidemiological algorithms plays a
rucial part in determining the stage of infection and offering sug-
estions for disease management strategies. The Volterra–Lyapunov
atrix theory phenomena has recently drawn significant attention in

he field of the prevention of diseases. The examination of disease-free
quilibrium’s global stability is first presented here. The risk endemic
quilibrium’s global stability is subsequently researched. First, we go
hrough a crucial Lemma, [39], which helps us analyze the proposed
ystem’s global stability.

emma 11. Let 𝐆 ∈ R+ be a continuous function such that for every
≥ 𝑡0;

𝑀𝐴𝐵𝐶∇𝜐
(

𝐆 −𝐆∗ −𝐆∗ log 𝐆
𝐆∗

)

≤
(

1 − 𝐆∗

𝐆

)

𝑎
𝑀𝐴𝐵𝐶∇𝜐𝐆, (63)

𝐆∗ ∈ R+,∀ 𝜐 ∈ (0, 12 ).

heorem 12. If the reproductive number R < 1, then the disease-free
quilibrium states (E0) are globally asymptotically stable.

roof. We establish a Volterra-type Lyapunov function as;

=
[

S−S0−S0 log S
S0

]

+I+R+
[

B−B0−B0 log B
B0

]

+
[

V−V0−V0 log V
V0

]

.

(64)

From Lemma 11, we have

𝑎
𝑀𝐴𝐵𝐶∇𝜐𝐆 ≤

(

1 − S0
S

)

𝑎
𝑀𝐴𝐵𝐶∇𝜐S + 𝑎

𝑀𝐴𝐵𝐶∇𝜐I + 𝑎
𝑀𝐴𝐵𝐶∇𝜐R

+
(

1 − B0

B

)

𝑎
𝑀𝐴𝐵𝐶∇𝜐B +

(

1 − V0

V

)

𝑎
𝑀𝐴𝐵𝐶∇𝜐V. (65)

ubstituting the values of 𝑎
𝑀𝐴𝐵𝐶∇𝜐S(𝑡), 𝑎

𝑀𝐴𝐵𝐶∇𝜐I(𝑡), 𝑎
𝑀𝐴𝐵𝐶∇𝜐R(𝑡),

𝑀𝐴𝐵𝐶∇𝜐B(𝑡), and 𝑎
𝑀𝐴𝐵𝐶∇𝜐V(𝑡) from (20), we find

𝑀𝐴𝐵𝐶∇𝜐𝐆(𝑡) ≤
(

1 − S0
S

)(

𝜗 − 𝛽SI − (𝜑 + 𝜂 + 𝜌)S + 𝜆R + 𝜎V
)

+
(

𝛽SI − (𝜑 + 𝜉 + 𝛿 + 𝜁 )I
)

7

+
(

𝛿I − (𝜑 + 𝜆)R
)

+
(

1 − B0

B

)(

𝜌S − 𝜑B
)

+
(

1 − V0

V

)(

𝜂S − (𝜑 + 𝜎)V
)

, (66)

utting S = S − S0, I = I − I0, R = R − R0, B = B − B0, V = V − V0, we
ave

𝑀𝐴𝐵𝐶∇𝜐𝐆(𝑡) ≤
(

1 − S0
S

)[

𝜗 − 𝛽(S − S0)(I − I0) − (𝜑 + 𝜂 + 𝜌)(S − S0)

+ 𝜆(R − R0) + 𝜎(V − V0)
]

+
[

𝛽(S − S0)(I − I0) − (𝜑 + 𝜉 + 𝛿 + 𝜁 )(I − I0)
]

+
[

𝛿(I − I0) − (𝜑 + 𝜆)(R − R0)
]

+
(

1 − B0

B

)[

𝜌(S − S0) − 𝜑(B − B0)
]

+
(

1 − V0

V

)[

𝜂(S − S0) − (𝜑 + 𝜎)(V − V0)
]

. (67)

e observe that

• 𝑎
𝑀𝐴𝐵𝐶∇𝜐𝐆 ≤ 0 for R < 1.

• 𝑎
𝑀𝐴𝐵𝐶∇𝜐𝐆 = 0 only when S = S0, I = I0, R = R0, B = B0, and
V = V0.

ence we conclude that disease-free equilibrium states E0 are globally
symptotically stable. □

For the endemic Lyapunov function, we set all independent vari-
bles in suggested model, in our case, {S, I,R,B,V}, 𝐆 < 0 is the
ndemic equilibrium (E∗).

heorem 13. If the reproductive number R > 1, the endemic equilibrium
oints of harmful impact equilibrium points E∗ of the survival of fractional
rder system are globally asymptotically stable.

roof. We can write Volterra-type Lyapunov function as;

=𝜇1
(

S − S∗ − S∗ log S
S∗

)

+ 𝜇2
(

I − I∗ − I∗ log I
I∗
)

+ 𝜇3
(

R − R∗ − R∗ log R
R∗

)

+ 𝜇4
(

B − B∗ − B∗ log B
B∗

)

+ 𝜇5
(

V − V∗ − V∗ log V
V∗

)

. (68)

Where 𝜇𝑖, 𝑖 = 1, 2, 3, 4, 5 are positive constants that we can choose later.
ubstituting Eq. (68) into system (20) and utilizing Lemma 11, we find

𝑎
𝑀𝐴𝐵𝐶∇𝜐𝐆 ≤𝜇1(

S − S∗
S

) 𝑎𝑀𝐴𝐵𝐶∇𝜐S + 𝜇2(
I − I∗
I

) 𝑎𝑀𝐴𝐵𝐶∇𝜐I

+ 𝜇3(
R − R∗

R
) 𝑎𝑀𝐴𝐵𝐶∇𝜐R

+ 𝜇4(
B − B∗

B
) 𝑎𝑀𝐴𝐵𝐶∇𝜐B + 𝜇5(

V − V∗

V
) 𝑎𝑀𝐴𝐵𝐶∇𝜐V, (69)

writing their expressions for derivatives (20) as follows;

𝑎
𝑀𝐴𝐵𝐶∇𝜐𝐆 ≤𝜇1

(S − S∗
S

)[

𝜗 − 𝛽SI − (𝜑 + 𝜂 + 𝜌)S + 𝜆R + 𝜎V
]

+ 𝜇2
( I − I∗

I
)[

𝛽SI − (𝜑 + 𝜉 + 𝛿 + 𝜁 )I
]

+ 𝜇3
(R − R∗

R
)[

𝛿I − (𝜑 + 𝜆)R
]

+ 𝜇4
(B − B∗

B
)[

𝜌S − 𝜑B
]

+ 𝜇5
(V − V∗

V
)[

𝜂S − (𝜑 + 𝜎)V
]

, (70)

putting S = S − S∗, I = I − I∗, R = R − R∗, B = B − B∗, V = V − V∗, we
have

𝑎
𝑀𝐴𝐵𝐶∇𝜐𝐆 ≤𝜇1

(S − S∗
S

)

[

𝜗 − 𝛽(S − S∗)(I − I∗) − (𝜑 + 𝜂 + 𝜌)(S − S∗)

+ 𝜆(R − R∗) + 𝜎(V − V∗)
]

+ 𝜇2
( I − I∗

I
)

[

𝛽(S − S∗)(I − I∗) − (𝜑 + 𝜉 + 𝛿 + 𝜁 )(I − I∗)
]

+ 𝜇
(R − R∗

)

[

𝛿(I − I∗) − (𝜑 + 𝜆)(R − R∗)
]

3 R



Results in Physics 52 (2023) 106887M. Farman et al.

w

𝑎

Z

w

𝑎

𝑎

t
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪
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⎪

⎪

⎪

⎪

⎪

⎩

W

𝑎

B
s

𝑎

W

𝑎

𝑎

+ 𝜇4
(B − B∗

B
)

[

𝜌(S − S∗) − 𝜑(B − B∗)
]

+ 𝜇5
(V − V∗

V

)[

𝜂(S − S∗) − (𝜑 + 𝜎)(V − V∗)
]

, (71)

e have

𝑀𝐴𝐵𝐶∇𝜐𝐆(𝑡) ≤ 𝜇1𝜗 − 𝜇1(
S∗
S
)𝜗 − 𝜇1

𝛽
(

S − S∗
)2(I − I∗)
S

− 𝜇1
(𝜑 + 𝜂 + 𝜌)(S − S∗)2

S
+ 𝜇1𝜆R

− 𝜇1𝜆R∗ − 𝜇1𝜆(
S∗
S
)R + 𝜇1𝜆(

S∗
S
)R∗ + 𝜇1𝜎V − 𝜇1𝜎V∗

− 𝜇1𝜎(
S∗
S
)V + 𝜇1𝜎(

S∗
S
)V∗

+ 𝜇2
𝛽
(

I − I∗
)2(S − S∗)
I

− 𝜇2
(𝜑 + 𝜉 + 𝛿 + 𝜁 )(I − I∗)2

I

+ 𝜇3𝛿I − 𝜇3𝛿I∗ − 𝜇3𝛿(
R∗

R
)I

+ 𝜇3𝛿(
R∗

R
)I∗ − 𝜇3

(𝜑 + 𝜆)(R − R∗)2

R
+ 𝜇4𝜌S

− 𝜇4𝜌S∗ − 𝜇4𝜌(
B∗

B
)S + 𝜇4𝜌(

B∗

B
)S∗

− 𝜇4
𝜑(B − B∗)2

B
+ 𝜇5𝜂S − 𝜇5𝜂S∗ − 𝜇5𝜂(

V∗

V
)S

+ 𝜇5𝜂(
V∗

V
)S∗ − 𝜇5

(𝜑 + 𝜎)(V − V∗)2

V
, (72)

Selecting 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 = 𝜇5 = 1 and simplifying above, we can
write

𝐹𝐹𝑀
0 𝐷𝛼,𝛽

𝑡 𝐆(𝑡) ≤ X − Z, (73)

where

X =𝜗 + 𝜆R + 𝜆( S
∗

S
)R∗ + 𝜎V + 𝜎( S

∗

S
)V∗ +

𝛽
(

I − I∗
)2(S − S∗)
I

+ 𝛿I

+ 𝛿( R
∗

R
)I∗ + 𝜌S + 𝜌( B

∗

B
)S∗ + 𝜂S + 𝜂(V

∗

V
)S∗. (74)

=(S
∗

S
)𝜗 +

𝛽
(

S − S∗
)2(I − I∗)
S

+
(𝜑 + 𝜂 + 𝜌)(S − S∗)2

S

+ 𝜆R∗ − 𝜆( S
∗

S
)R + 𝜎V∗ + 𝜎( S

∗

S
)V

+
(𝜑 + 𝜉 + 𝛿 + 𝜁 )(I − I∗)2

I
+ 𝛿I∗ + 𝛿( R

∗

R
)I +

(𝜑 + 𝜆)(R − R∗)2

R

+ 𝜌S∗ + 𝜌(B
∗

B
)S +

𝜑(B − B∗)2

B
+ 𝜂S∗ + 𝜂(V

∗

V
)S +

(𝜑 + 𝜎)(V − V∗)2

V
.

(75)

We observe that

• if X < Z ⇒ 𝑎
𝑀𝐴𝐵𝐶∇𝜐𝐆(𝑡) < 0.

• if S(𝑡) = S∗, I(𝑡) = I∗, R(𝑡) = R∗, B(𝑡) = B∗, V(𝑡) = V∗, then

X − Z = 0 ⟹ 𝑎
𝑀𝐴𝐵𝐶∇𝜐𝐆(𝑡) = 0. (76)

We find the proposed model’s largest compact invariant set in
{

(S∗, I∗,R∗,B∗,V∗) ∈ 𝛱 ∶ 𝑎
𝑀𝐴𝐵𝐶∇𝜐𝐆(𝑡) = 0

}

, (77)

is the point E∗, the endemic equilibrium of the proposed model. There-
fore, we can conclude that E∗ is globally asymptotically stable in 𝛱 if
X < Z. □

Second derivative of Lyapunov
Because the first derivative evaluation of an arbitrary function is

not a completely effective resource for illustrating its variations, extra
observation on the specifications of each variation is required. As a
result, we investigate the second derivative of the system’s correspond-
ingLyapunov function.
8

𝑎

𝑎
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐𝐆]

≤ 𝑎
𝑀𝐴𝐵𝐶∇𝜐

{

𝐪1(
S − S∗

S
) 𝑎𝑀𝐴𝐵𝐶∇𝜐S + 𝐪2(

I − I∗
I

) 𝑎𝑀𝐴𝐵𝐶∇𝜐I

+ 𝐪3(
R − R∗

R
) 𝑎𝑀𝐴𝐵𝐶∇𝜐R

+ 𝐪4(
B − B∗

B
) 𝑎𝑀𝐴𝐵𝐶∇𝜐B + 𝐪5(

V − V∗

V
) 𝑎𝑀𝐴𝐵𝐶∇𝜐V

}

. (78)

And we have

𝑎
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐𝐆(𝑡)]

≤ 𝐪1
(

𝑎
𝑀𝐴𝐵𝐶∇𝜐S

S

)2
S∗ + 𝐪2

(

𝑎
𝑀𝐴𝐵𝐶∇𝜐I

I

)2
I∗ + 𝐪3

(

𝑎
𝑀𝐴𝐵𝐶∇𝜐R

R

)2
R∗

+ 𝐪4
(

𝑎
𝑀𝐴𝐵𝐶∇𝜐B

B

)2
B∗ + 𝐪5

(

𝑎
𝑀𝐴𝐵𝐶∇𝜐V

V

)2
V∗

+ 𝐪1
(

1 − S∗
S
)

𝑎
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐S]

+ 𝐪2
(

1 − I∗
I
)

𝑎
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐I]

+ 𝐪3
(

1 − R∗

R
)

𝑎
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐R]

+ 𝐪4
(

1 − B∗

B
)

𝑎
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐B]

+ 𝐪5
(

1 − V∗

V
)

𝑎
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐V], (79)

here

𝑎
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐S(𝑡)] =𝜗 − 𝛽

(

[ 𝑎𝑀𝐴𝐵𝐶∇𝜐S]I + [ 𝑎𝑀𝐴𝐵𝐶∇𝜐I]S
)

− (𝜑 + 𝜂 + 𝜌)[ 𝑎𝑀𝐴𝐵𝐶∇𝜐S]

+ 𝜆[ 𝑎𝑀𝐴𝐵𝐶∇𝜐R] + 𝜎[ 𝑎𝑀𝐴𝐵𝐶∇𝜐V],

𝑎
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐I(𝑡)] =𝛽

(

[ 𝑎𝑀𝐴𝐵𝐶∇𝜐S]I + [ 𝑎𝑀𝐴𝐵𝐶∇𝜐I]S
)

− (𝜑 + 𝜉 + 𝛿 + 𝜁 )[ 𝑎𝑀𝐴𝐵𝐶∇𝜐I],
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐R(𝑡)] =𝛿[ 𝑎𝑀𝐴𝐵𝐶∇𝜐I] − (𝜑 + 𝜆)[ 𝑎𝑀𝐴𝐵𝐶∇𝜐R],
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐B(𝑡)] =𝜌[ 𝑎𝑀𝐴𝐵𝐶∇𝜐S] − 𝜑[ 𝑎𝑀𝐴𝐵𝐶∇𝜐B],

𝑎
𝑀𝐴𝐵𝐶∇𝜐[ 𝑀𝐴𝐵𝐶

𝑎 ∇𝜐V(𝑡)] =𝜂[ 𝑎𝑀𝐴𝐵𝐶∇𝜐S] − (𝜑 + 𝜎)[ 𝑎𝑀𝐴𝐵𝐶∇𝜐V], (80)

hen we have

𝑎
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐𝐆(𝑡)] ≤ 𝑎

𝑀𝐴𝐵𝐶∇𝜐𝛩(S, I,R,B,V)

+𝐪1
(

1 − S∗
S

)

{

𝜗 − 𝛽
(

[ 𝑎𝑀𝐴𝐵𝐶∇𝜐S]I + [ 𝑎𝑀𝐴𝐵𝐶∇𝜐I]S
)

−(𝜑 + 𝜂 + 𝜌)[ 𝑎𝑀𝐴𝐵𝐶∇𝜐S]
}

+𝐪2
(

1 − I∗
I

)

{

𝛽
(

[ 𝑎𝑀𝐴𝐵𝐶∇𝜐S]I

+ [ 𝑎𝑀𝐴𝐵𝐶∇𝜐I]S
)

−(𝜑 + 𝜉 + 𝛿 + 𝜁 )[ 𝑎𝑀𝐴𝐵𝐶∇𝜐I]
}

+𝐪3
(

1 − R∗

R

)

{

𝛿[ 𝑎𝑀𝐴𝐵𝐶∇𝜐I]

− (𝜑 + 𝜆)[ 𝑎𝑀𝐴𝐵𝐶∇𝜐R]
}

+𝐪4
(

1 − B∗

B

)

{

𝜌[ 𝑎𝑀𝐴𝐵𝐶∇𝜐S] − 𝜑[ 𝑎𝑀𝐴𝐵𝐶∇𝜐B]
}

+𝐪5
(

1 − V∗

V

)

{

𝜂[ 𝑎𝑀𝐴𝐵𝐶∇𝜐S] − (𝜑 + 𝜎)[ 𝑎𝑀𝐴𝐵𝐶∇𝜐V]
}

.

here
𝑀𝐴𝐵𝐶∇𝜐𝛩(S, I,R,B,V)

= 𝐪1
(

𝑎
𝑀𝐴𝐵𝐶∇𝜐S

S

)2
S∗ + 𝐪2

(

𝑎
𝑀𝐴𝐵𝐶∇𝜐I

I

)2
I∗ + 𝐪3

(

𝑎
𝑀𝐴𝐵𝐶∇𝜐R

R

)2
R∗

+ 𝐪4
(

𝑎
𝑀𝐴𝐵𝐶∇𝜐B

B

)2
B∗ + 𝐪5

(

𝑎
𝑀𝐴𝐵𝐶∇𝜐V

V

)2
V∗, (81)

now substituting 𝑎
𝑀𝐴𝐵𝐶∇𝜐S(𝑡), 𝑎

𝑀𝐴𝐵𝐶∇𝜐I(𝑡), 𝑎
𝑀𝐴𝐵𝐶∇𝜐R(𝑡), 𝑎

𝑀𝐴𝐵𝐶∇𝜐
(𝑡), and 𝑎

𝑀𝐴𝐵𝐶∇𝜐V(𝑡) with their relative formula from the proposed
ystem (20) and after arranging the above equation, we can write
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐𝐆(𝑡)] ≤ 𝜗1 − 𝜗2. (82)

e observe that
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐𝐆(𝑡)] > 0 𝑖𝑓 𝜗1 > 𝜗2,
𝑀𝐴𝐵𝐶∇𝜐[ 𝑎𝑀𝐴𝐵𝐶∇𝜐𝐆(𝑡)] < 0 𝑖𝑓 𝜗1 < 𝜗2,
𝑀𝐴𝐵𝐶 𝜐 𝑀𝐴𝐵𝐶 𝜐
∇ [ 𝑎 ∇ 𝐆(𝑡)] = 0 𝑖𝑓 𝜗1 = 𝜗2. (83)
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⎨
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⎪

⎨

⎪

⎪

⎪

⎩

f

P

⇒

W
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⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

Further analysis on discrete Atangana–Baleanu, and modified
Atangana–Baleanu operators

Theorem 14. For 𝜐 ∈ (0, 12 ), the following results hold true:

𝐴𝐵
𝑎 ∇−𝜐[ 𝑀𝐴𝐵𝐶

𝑎 ∇𝜐S(𝑡)] = S(𝑡) − S(𝑎),
𝐴𝐵
𝑎 ∇−𝜐[ 𝑀𝐴𝐵𝐶

𝑎 ∇𝜐I(𝑡)] = I(𝑡) − I(𝑎),
𝐴𝐵
𝑎 ∇−𝜐[ 𝑀𝐴𝐵𝐶

𝑎 ∇𝜐R(𝑡)] = R(𝑡) − R(𝑎),
𝐴𝐵
𝑎 ∇−𝜐[ 𝑀𝐴𝐵𝐶

𝑎 ∇𝜐B(𝑡)] = B(𝑡) − B(𝑎),
𝐴𝐵
𝑎 ∇−𝜐[ 𝑀𝐴𝐵𝐶

𝑎 ∇𝜐V(𝑡)] = V(𝑡) − V(𝑎).

(84)

nd

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐[ 𝐴𝐵𝑎 ∇−𝜐S(𝑡)] = S(𝑡) − S(𝑎)𝐄𝜐(𝛬, 𝑡 − 𝑎),
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐[ 𝐴𝐵𝑎 ∇−𝜐I(𝑡)] = I(𝑡) − I(𝑎)𝐄𝜐(𝛬, 𝑡 − 𝑎),
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐[ 𝐴𝐵𝑎 ∇−𝜐R(𝑡)] = R(𝑡) − R(𝑎)𝐄𝜐(𝛬, 𝑡 − 𝑎),
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐[ 𝐴𝐵𝑎 ∇−𝜐B(𝑡)] = B(𝑡) − B(𝑎)𝐄𝜐(𝛬, 𝑡 − 𝑎),
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐[ 𝐴𝐵𝑎 ∇−𝜐V(𝑡)] = V(𝑡) − V(𝑎)𝐄𝜐(𝛬, 𝑡 − 𝑎),

(85)

or 𝑡 ∈ N𝑎+1.

roof. Define the following:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐S(𝑡) = 𝐐1(𝑡), ∀𝑡 ∈ N𝑎+1,
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐I(𝑡) = 𝐐2(𝑡), ∀𝑡 ∈ N𝑎+1,
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐R(𝑡) = 𝐐3(𝑡), ∀𝑡 ∈ N𝑎+1,
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐B(𝑡) = 𝐐4(𝑡), ∀𝑡 ∈ N𝑎+1,
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐V(𝑡) = 𝐐5(𝑡), ∀𝑡 ∈ N𝑎+1.

(86)

Taking discrete Laplace transform L𝑎 on both sides of (86) and utilizing
Lemma 5, we have

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐴𝐵(𝜐)
1−𝜐

{

𝐒(S) − S𝜐−1(1−S)𝜐
S𝜐−𝛬 S(𝑎) + 𝛬

S𝜐−𝛬𝐒(S)
}

= 𝐐1(S),
𝐴𝐵(𝜐)
1−𝜐

{

𝐈(S) − S𝜐−1(1−S)𝜐
S𝜐−𝛬 I(𝑎) + 𝛬

S𝜐−𝛬 𝐈(S)
}

= 𝐐2(S),
𝐴𝐵(𝜐)
1−𝜐

{

𝐑(S) − S𝜐−1(1−S)𝜐
S𝜐−𝛬 R(𝑎) + 𝛬

S𝜐−𝛬𝐑(S)
}

= 𝐐3(S),
𝐴𝐵(𝜐)
1−𝜐

{

𝐁(S) − S𝜐−1(1−S)𝜐
S𝜐−𝛬 B(𝑎) + 𝛬

S𝜐−𝛬𝐁(S)
}

= 𝐐4(S),
𝐴𝐵(𝜐)
1−𝜐

{

𝐕(S) − S𝜐−1(1−S)𝜐
S𝜐−𝛬 V(𝑎) + 𝛬

S𝜐−𝛬𝐕(S)
}

= 𝐐5(S).

(87)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬𝐒(S) −
S𝜐−1(1−S)𝜐

S𝜐−𝛬 S(𝑎)
}

= 𝐐1(S),

𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬 𝐈(S) −
S𝜐−1(1−S)𝜐

S𝜐−𝛬 I(𝑎)
}

= 𝐐2(S),

𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬𝐑(S) −
S𝜐−1(1−S)𝜐

S𝜐−𝛬 R(𝑎)
}

= 𝐐3(S),

𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬𝐁(S) −
S𝜐−1(1−S)𝜐

S𝜐−𝛬 B(𝑎)
}

= 𝐐4(S),

𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬𝐕(S) −
S𝜐−1(1−S)𝜐

S𝜐−𝛬 V(𝑎)
}

= 𝐐5(S).

(88)

here L𝑎[S(𝑡)] = 𝐒(S), L𝑎[I(𝑡)] = 𝐈(S), L𝑎[R(𝑡)] = 𝐑(S), L𝑎[B(𝑡)] = 𝐁(S),
𝑎[V(𝑡)] = 𝐕(S), and L𝑎[𝐐𝑖(𝑡)] = 𝐐𝑖(S) for 𝑖 = 1, 2, 3, 4, 5.

Solving for 𝐒(S), 𝐈(S), 𝐑(S), 𝐁(S), and 𝐕(S), we have

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝐒(S) = 1−𝜐
𝐴𝐵(𝜐)𝐐1(S) +

𝜐
𝐴𝐵(𝜐)S𝜐𝐐1(S) +

(1−S)𝜐
S

S(𝑎),

𝐈(S) = 1−𝜐
𝐴𝐵(𝜐)𝐐2(S) +

𝜐
𝐴𝐵(𝜐)S𝜐𝐐2(S) +

(1−S)𝜐
S

I(𝑎),

𝐑(S) = 1−𝜐
𝐴𝐵(𝜐)𝐐3(S) +

𝜐
𝐴𝐵(𝜐)S𝜐𝐐3(S) +

(1−S)𝜐
S

R(𝑎),

𝐁(S) = 1−𝜐
𝐴𝐵(𝜐)𝐐4(S) +

𝜐
𝐴𝐵(𝜐)S𝜐𝐐4(S) +

(1−S)𝜐
S

B(𝑎),
1−𝜐 𝜐 (1−S)𝜐

(89)
9

⎩

𝐕(S) = 𝐴𝐵(𝜐)𝐐5(S) + 𝐴𝐵(𝜐)S𝜐𝐐5(S) + S
V(𝑎).

⎩

It follows from [32]

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐒(S) =
{

L𝑎[ 𝐴𝐵𝑎 ∇−𝜐𝐐1(𝑡)]
}

{S} + (1−S)𝜐
S

S(𝑎),

𝐈(S) =
{

L𝑎[ 𝐴𝐵𝑎 ∇−𝜐𝐐2(𝑡)]
}

{S} + (1−S)𝜐
S

I(𝑎),

𝐑(S) =
{

L𝑎[ 𝐴𝐵𝑎 ∇−𝜐𝐐3(𝑡)]
}

{S} + (1−S)𝜐
S

R(𝑎),

𝐁(S) =
{

L𝑎[ 𝐴𝐵𝑎 ∇−𝜐𝐐4(𝑡)]
}

{S} + (1−S)𝜐
S

B(𝑎),

𝐕(S) =
{

L𝑎[ 𝐴𝐵𝑎 ∇−𝜐𝐐5(𝑡)]
}

{S} + (1−S)𝜐
S

V(𝑎).

(90)

aking discrete inverse Laplace transform on both sides of (90), we
ave

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

S(𝑡) = 𝐴𝐵
𝑎 ∇−𝜐[𝐐1(𝑡)] + S(𝑎),

I(𝑡) = 𝐴𝐵
𝑎 ∇−𝜐[𝐐2(𝑡)] + I(𝑎),

R(𝑡) = 𝐴𝐵
𝑎 ∇−𝜐[𝐐3(𝑡)] + R(𝑎),

B(𝑡) = 𝐴𝐵
𝑎 ∇−𝜐[𝐐4(𝑡)] + B(𝑎),

V(𝑡) = 𝐴𝐵
𝑎 ∇−𝜐[𝐐5(𝑡)] + V(𝑎).

(91)

he first portion of the theorem is satisfied by using Eq. (86) in Eq. (91).
Now let

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐴𝐵
𝑎 ∇−𝜐S(𝑡) = 𝐖1(𝑡), ∀𝑡 ∈ N𝑎+1
𝐴𝐵
𝑎 ∇−𝜐I(𝑡) = 𝐖2(𝑡), ∀𝑡 ∈ N𝑎+1
𝐴𝐵
𝑎 ∇−𝜐R(𝑡) = 𝐖3(𝑡), ∀𝑡 ∈ N𝑎+1
𝐴𝐵
𝑎 ∇−𝜐B(𝑡) = 𝐖4(𝑡), ∀𝑡 ∈ N𝑎+1
𝐴𝐵
𝑎 ∇−𝜐V(𝑡) = 𝐖5(𝑡), ∀𝑡 ∈ N𝑎+1.

(92)

⇒

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐[ 𝐴𝐵𝑎 ∇−𝜐S(𝑡)] = 𝑀𝐴𝐵𝐶

𝑎 ∇𝜐𝐖1(𝑡),
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐[ 𝐴𝐵𝑎 ∇−𝜐I(𝑡)] = 𝑀𝐴𝐵𝐶

𝑎 ∇𝜐𝐖2(𝑡),
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐[ 𝐴𝐵𝑎 ∇−𝜐R(𝑡)] = 𝑀𝐴𝐵𝐶

𝑎 ∇𝜐𝐖3(𝑡),
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐[ 𝐴𝐵𝑎 ∇−𝜐B(𝑡)] = 𝑀𝐴𝐵𝐶

𝑎 ∇𝜐𝐖4(𝑡),
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐[ 𝐴𝐵𝑎 ∇−𝜐V(𝑡)] = 𝑀𝐴𝐵𝐶

𝑎 ∇𝜐𝐖5(𝑡).

(93)

Taking discrete Laplace transform L𝑎 on 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖𝑖(𝑡), 𝑖 = 1, 2, 3, 4, 5.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖1(𝑡)]

}

{S} = 𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬
𝐖1(S) −

S𝜐−1(1−S)𝜐

S𝜐−𝛬
𝐖1(𝑎)

}

.
{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖2(𝑡)]

}

{S} = 𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬
𝐖2(S) −

S𝜐−1(1−S)𝜐

S𝜐−𝛬
𝐖2(𝑎)

}

.
{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖3(𝑡)]

}

{S} = 𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬
𝐖3(S) −

S𝜐−1(1−S)𝜐

S𝜐−𝛬
𝐖3(𝑎)

}

.
{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖4(𝑡)]

}

{S} = 𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬
𝐖4(S) −

S𝜐−1(1−S)𝜐

S𝜐−𝛬
𝐖4(𝑎)

}

.
{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖5(𝑡)]

}

{S} = 𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬
𝐖5(S) −

S𝜐−1(1−S)𝜐

S𝜐−𝛬
𝐖5(𝑎)

}

.

(94)

From (89) and (90), we have

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐖1(S) =
1−𝜐
𝐴𝐵(𝜐)𝐒(S) +

𝜐
𝐴𝐵(𝜐)S𝜐 𝐒(S),

𝐖2(S) =
1−𝜐
𝐴𝐵(𝜐) 𝐈(S) +

𝜐
𝐴𝐵(𝜐)S𝜐 𝐈(S),

𝐖3(S) =
1−𝜐
𝐴𝐵(𝜐)𝐑(S) +

𝜐
𝐴𝐵(𝜐)S𝜐𝐑(S),

𝐖4(S) =
1−𝜐
𝐴𝐵(𝜐)𝐁(S) +

𝜐
𝐴𝐵(𝜐)S𝜐 𝐁(S),

𝐖5(S) =
1−𝜐
𝐴𝐵(𝜐)𝐕(S) +

𝜐
𝐴𝐵(𝜐)S𝜐𝐕(S).

(95)

lso, from (14), we find

𝐖1(𝑎) = 𝐴𝐵
𝑎 ∇−𝜐S(𝑎) = 1−𝜐

𝐴𝐵(𝜐)S(𝑎),

𝐖2(𝑎) = 𝐴𝐵
𝑎 ∇−𝜐I(𝑎) = 1−𝜐

𝐴𝐵(𝜐) I(𝑎),

𝐖3(𝑎) = 𝐴𝐵
𝑎 ∇−𝜐R(𝑎) = 1−𝜐

𝐴𝐵(𝜐)R(𝑎),

𝐖4(𝑎) = 𝐴𝐵
𝑎 ∇−𝜐B(𝑎) = 1−𝜐

𝐴𝐵(𝜐)B(𝑎),

𝐴𝐵 −𝜐 1−𝜐

(96)
𝐖5(𝑎) = 𝑎 ∇ V(𝑎) = 𝐴𝐵(𝜐)V(𝑎).
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f

P

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑎

𝑎

W

𝑎

𝑎

F

𝑀
𝑎

Eq. (94) becomes:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖1(𝑡)]

}

{S} = 𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬

[ 1−𝜐
𝐴𝐵(𝜐)

𝐒(S) + 𝜐
𝐴𝐵(𝜐)S𝜐 𝐒(S)

]

− S𝜐−1(1−S)𝜐

S𝜐−𝛬

[ 1−𝜐
𝐴𝐵(𝜐)

S(𝑎)
]

}

,
{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖2(𝑡)]

}

{S} = 𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬

[ 1−𝜐
𝐴𝐵(𝜐)

𝐈(S) + 𝜐
𝐴𝐵(𝜐)S𝜐 𝐈(S)

]

− S𝜐−1(1−S)𝜐

S𝜐−𝛬

[ 1−𝜐
𝐴𝐵(𝜐)

I(𝑎)
]

}

,
{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖3(𝑡)]

}

{S} = 𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬

[ 1−𝜐
𝐴𝐵(𝜐)

𝐑(S) + 𝜐
𝐴𝐵(𝜐)S𝜐 𝐑(S)

]

− S𝜐−1(1−S)𝜐

S𝜐−𝛬

[ 1−𝜐
𝐴𝐵(𝜐)

R(𝑎)
]

}

,
{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖4(𝑡)]

}

{S} = 𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬

[ 1−𝜐
𝐴𝐵(𝜐)

𝐁(S) + 𝜐
𝐴𝐵(𝜐)S𝜐 𝐁(S)

]

− S𝜐−1(1−S)𝜐

S𝜐−𝛬

[ 1−𝜐
𝐴𝐵(𝜐)

B(𝑎)
]

}

,
{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖5(𝑡)]

}

{S} = 𝐴𝐵(𝜐)
1−𝜐

{

S𝜐

S𝜐−𝛬

[ 1−𝜐
𝐴𝐵(𝜐)

𝐕(S) + 𝜐
𝐴𝐵(𝜐)S𝜐 𝐕(S)

]

− S𝜐−1(1−S)𝜐

S𝜐−𝛬

[ 1−𝜐
𝐴𝐵(𝜐)

V(𝑎)
]

}

.

(97)

⇒

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖1(𝑡)]

}

{S} = 𝐒(S) − S𝜐−1(1−S)𝜐
S𝜐−𝛬 S(𝑎),

{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖2(𝑡)]

}

{S} = 𝐈(S) − S𝜐−1(1−S)𝜐
S𝜐−𝛬 I(𝑎),

{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖3(𝑡)]

}

{S} = 𝐑(S) − S𝜐−1(1−S)𝜐
S𝜐−𝛬 R(𝑎),

{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖4(𝑡)]

}

{S} = 𝐁(S) − S𝜐−1(1−S)𝜐
S𝜐−𝛬 B(𝑎),

{

L𝑎[ 𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖5(𝑡)]

}

{S} = 𝐕(S) − S𝜐−1(1−S)𝜐
S𝜐−𝛬 V(𝑎).

(98)

Taking inverse Laplace transform on both sides of (98), we find

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖1(𝑡) = S(𝑡) − S(𝑎)L−1

𝑎

{

S𝜐−1(1−S)𝜐

S𝜐−𝛬

}

= S(𝑡) − S(𝑎)𝐄𝜐(𝛬, 𝑡 − 𝑎),

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖2(𝑡) = I(𝑡) − I(𝑎)L−1

𝑎

{

S𝜐−1(1−S)𝜐

S𝜐−𝛬

}

= I(𝑡) − I(𝑎)𝐄𝜐(𝛬, 𝑡 − 𝑎),

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖3(𝑡) = R(𝑡) − R(𝑎)L−1

𝑎

{

S𝜐−1(1−S)𝜐

S𝜐−𝛬

}

= R(𝑡) − R(𝑎)𝐄𝜐(𝛬, 𝑡 − 𝑎),

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖4(𝑡) = B(𝑡) − B(𝑎)L−1

𝑎

{

S𝜐−1(1−S)𝜐

S𝜐−𝛬

}

= B(𝑡) − B(𝑎)𝐄𝜐(𝛬, 𝑡 − 𝑎),

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐𝐖5(𝑡) = V(𝑡) − V(𝑎)L−1

𝑎

{

S𝜐−1(1−S)𝜐

S𝜐−𝛬

}

= V(𝑡) − V(𝑎)𝐄𝜐(𝛬, 𝑡 − 𝑎).

(99)

In view of Eq. (92), the second portion of Theorem is satisfied. □

Theorem 15. For 𝜐 ∈ (0, 12 ), the following result gives an alternative
series representation of the discrete modified Atangana–Baleanu of the
Liouville–Caputo type fractional difference:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐S(𝑡) = 𝐴𝐵(𝜐)

1−𝜐

{

S(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)S(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

[

𝑎∇−(𝜐𝑘+𝜐)S(𝑡)
]

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐I(𝑡) = 𝐴𝐵(𝜐)

1−𝜐

{

I(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)I(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

[

𝑎∇−(𝜐𝑘+𝜐)I(𝑡)
]

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐R(𝑡) = 𝐴𝐵(𝜐)

1−𝜐

{

R(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)R(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

[

𝑎∇−(𝜐𝑘+𝜐)R(𝑡)
]

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐B(𝑡) = 𝐴𝐵(𝜐)

1−𝜐

{

B(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)B(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

[

𝑎∇−(𝜐𝑘+𝜐)B(𝑡)
]

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐V(𝑡) = 𝐴𝐵(𝜐)

1−𝜐

{

V(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)V(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

[

𝑎∇−(𝜐𝑘+𝜐)V(𝑡)
]

}

,

(100)

or 𝑡 ∈ N𝑎+1.

roof. From definitions 1 and 7, we have

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐S(𝑡) = 𝐴𝐵(𝜐)

1−𝜐

{

S(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)S(𝑎) + 𝛬
𝑡

∑

𝑠=𝑎+1
𝐄𝜐,𝜐(𝛬, 𝑡 − 𝑠 + 1)S(𝑠)

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐I(𝑡) = 𝐴𝐵(𝜐)

1−𝜐

{

I(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)I(𝑎) + 𝛬
𝑡

∑

𝑠=𝑎+1
𝐄𝜐,𝜐(𝛬, 𝑡 − 𝑠 + 1)I(𝑠)

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐R(𝑡) = 𝐴𝐵(𝜐)

1−𝜐

{

R(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)R(𝑎) + 𝛬
𝑡

∑

𝑠=𝑎+1
𝐄𝜐,𝜐(𝛬, 𝑡 − 𝑠 + 1)R(𝑠)

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐B(𝑡) = 𝐴𝐵(𝜐)

1−𝜐

{

B(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)B(𝑎) + 𝛬
𝑡

∑

𝑠=𝑎+1
𝐄𝜐,𝜐(𝛬, 𝑡 − 𝑠 + 1)B(𝑠)

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐V(𝑡) = 𝐴𝐵(𝜐)

1−𝜐

{

V(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)V(𝑎) + 𝛬
𝑡

∑

𝐄𝜐,𝜐(𝛬, 𝑡 − 𝑠 + 1)V(𝑠)
}

,

(101)
10

𝑠=𝑎+1
= 𝐴𝐵(𝜐)
1−𝜐

{

S(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)S(𝑎) + 𝛬
𝑡

∑

𝑠=𝑎+1

∞
∑

𝑘=0
𝛬𝑘

(𝑡 − 𝑠 + 1)𝜐𝑘+𝜐+1

𝛤 (𝜐𝑘 + 𝜐)
S(𝑠)

}

,

= 𝐴𝐵(𝜐)
1−𝜐

{

I(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)I(𝑎) + 𝛬
𝑡

∑

𝑠=𝑎+1

∞
∑

𝑘=0
𝛬𝑘

(𝑡 − 𝑠 + 1)𝜐𝑘+𝜐+1

𝛤 (𝜐𝑘 + 𝜐)
I(𝑠)

}

,

= 𝐴𝐵(𝜐)
1−𝜐

{

R(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)R(𝑎) + 𝛬
𝑡

∑

𝑠=𝑎+1

∞
∑

𝑘=0
𝛬𝑘

(𝑡 − 𝑠 + 1)𝜐𝑘+𝜐+1

𝛤 (𝜐𝑘 + 𝜐)
R(𝑠)

}

,

= 𝐴𝐵(𝜐)
1−𝜐

{

B(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)B(𝑎) + 𝛬
𝑡

∑

𝑠=𝑎+1

∞
∑

𝑘=0
𝛬𝑘

(𝑡 − 𝑠 + 1)𝜐𝑘+𝜐+1

𝛤 (𝜐𝑘 + 𝜐)
B(𝑠)

}

,

= 𝐴𝐵(𝜐)
1−𝜐

{

V(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)V(𝑎) + 𝛬
𝑡

∑

𝑠=𝑎+1

∞
∑

𝑘=0
𝛬𝑘

(𝑡 − 𝑠 + 1)𝜐𝑘+𝜐+1

𝛤 (𝜐𝑘 + 𝜐)
V(𝑠)

}

,

(102)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

= 𝐴𝐵(𝜐)
1−𝜐

{

S(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)S(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1 1

𝛤 (𝜐𝑘 + 𝜐)

𝑡
∑

𝑠=𝑎+1
(𝑡 − 𝑠 + 1)𝜐𝑘+𝜐+1S(𝑠)

}

,

= 𝐴𝐵(𝜐)
1−𝜐

{

I(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)I(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1 1

𝛤 (𝜐𝑘 + 𝜐)

𝑡
∑

𝑠=𝑎+1
(𝑡 − 𝑠 + 1)𝜐𝑘+𝜐+1I(𝑠)

}

,

= 𝐴𝐵(𝜐)
1−𝜐

{

R(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)R(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1 1

𝛤 (𝜐𝑘 + 𝜐)

𝑡
∑

𝑠=𝑎+1
(𝑡 − 𝑠 + 1)𝜐𝑘+𝜐+1R(𝑠)

}

,

= 𝐴𝐵(𝜐)
1−𝜐

{

B(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)B(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1 1

𝛤 (𝜐𝑘 + 𝜐)

𝑡
∑

𝑠=𝑎+1
(𝑡 − 𝑠 + 1)𝜐𝑘+𝜐+1B(𝑠)

}

,

= 𝐴𝐵(𝜐)
1−𝜐

{

V(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)V(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1 1

𝛤 (𝜐𝑘 + 𝜐)

𝑡
∑

𝑠=𝑎+1
(𝑡 − 𝑠 + 1)𝜐𝑘+𝜐+1V(𝑠)

}

,

(103)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

= 𝐴𝐵(𝜐)
1−𝜐

{

S(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)S(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

[

𝑎∇−(𝜐𝑘+𝜐)S(𝑡)
]

}

.

= 𝐴𝐵(𝜐)
1−𝜐

{

I(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)I(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

[

𝑎∇−(𝜐𝑘+𝜐)I(𝑡)
]

}

.

= 𝐴𝐵(𝜐)
1−𝜐

{

R(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)R(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

[

𝑎∇−(𝜐𝑘+𝜐)R(𝑡)
]

}

.

= 𝐴𝐵(𝜐)
1−𝜐

{

B(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)B(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

[

𝑎∇−(𝜐𝑘+𝜐)B(𝑡)
]

}

.

= 𝐴𝐵(𝜐)
1−𝜐

{

V(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)V(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

[

𝑎∇−(𝜐𝑘+𝜐)V(𝑡)
]

}

.

□ (104)

Solution of proposed system of fractional differential equations

Our proposed system is:

𝑎
𝑀𝐴𝐵𝐶∇𝜐S(𝑡) = 𝜗 − 𝛽SI − (𝜑 + 𝜂 + 𝜌)S + 𝜆R + 𝜎V,

𝑎
𝑀𝐴𝐵𝐶∇𝜐I(𝑡) = 𝛽SI − (𝜑 + 𝜉 + 𝛿 + 𝜁 )I,
𝑀𝐴𝐵𝐶∇𝜐R(𝑡) = 𝛿I − (𝜑 + 𝜆)R,
𝑀𝐴𝐵𝐶∇𝜐B(𝑡) = 𝜌S − 𝜑B,
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐V(𝑡) = 𝜂S − (𝜑 + 𝜎)V.

(105)

e can write above as:

𝑎
𝑀𝐴𝐵𝐶∇𝜐S(𝑡) = 𝐌1(𝑡,S, I,R,B,V),

𝑎
𝑀𝐴𝐵𝐶∇𝜐I(𝑡) = 𝐌2(𝑡,S, I,R,B,V),
𝑀𝐴𝐵𝐶∇𝜐R(𝑡) = 𝐌3(𝑡,S, I,R,B,V),
𝑀𝐴𝐵𝐶∇𝜐B(𝑡) = 𝐌4(𝑡,S, I,R,B,V),
𝑀𝐴𝐵𝐶
𝑎 ∇𝜐V(𝑡) = 𝐌5(𝑡,S, I,R,B,V).

(106)

rom Theorem 15, we obtain

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐S(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

{

𝐌1(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌1(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

[

𝑎∇−(𝜐𝑘+𝜐)𝐌1(𝑡)
]

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐I(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

{

𝐌2(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌2(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

[

𝑎∇−(𝜐𝑘+𝜐)𝐌2(𝑡)
]

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐R(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

{

𝐌3(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌3(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

[

𝑎∇−(𝜐𝑘+𝜐)𝐌3(𝑡)
]

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐B(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

{

𝐌4(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌4(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

[

𝑎∇−(𝜐𝑘+𝜐)𝐌4(𝑡)
]

}

,

𝐴𝐵𝐶∇𝜐V(𝑡) =
𝐴𝐵(𝜐){𝐌5(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌5(𝑎) +

∞
∑

𝛬𝑘+1
[

𝑎∇−(𝜐𝑘+𝜐)𝐌5(𝑡)
]

}

.

(107)
1 − 𝜐 𝑘=0
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Fig. 1. The solutions’ trajectories of bovine brucellosis illness in cattle using reproducing kernel Hilbert space method with 𝜐 = 0.4.
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Fig. 2. The solutions’ trajectories of bovine brucellosis illness in cattle using reproducing kernel Hilbert space method with 𝜐 = 0.3.
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𝑀𝐴𝐵𝐶
𝑎 ∇𝜐S(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

{

𝐌1(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌1(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

(𝑡 − 𝑎)𝜐𝑘+𝜐

𝛤 (𝜐𝑘 + 𝜐 + 1)
𝐌1(𝑡)

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐I(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

{

𝐌2(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌2(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

(𝑡 − 𝑎)𝜐𝑘+𝜐

𝛤 (𝜐𝑘 + 𝜐 + 1)
𝐌2(𝑡)

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐R(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

{

𝐌3(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌3(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

(𝑡 − 𝑎)𝜐𝑘+𝜐

𝛤 (𝜐𝑘 + 𝜐 + 1)
𝐌3(𝑡)

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐B(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

{

𝐌4(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌4(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

(𝑡 − 𝑎)𝜐𝑘+𝜐

𝛤 (𝜐𝑘 + 𝜐 + 1)
𝐌4(𝑡)

}

,

𝐴𝐵𝐶∇𝜐V(𝑡) =
𝐴𝐵(𝜐)
1 − 𝜐

{

𝐌5(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌5(𝑎) +
∞
∑

𝑘=0
𝛬𝑘+1

(𝑡 − 𝑎)𝜐𝑘+𝜐

𝛤 (𝜐𝑘 + 𝜐 + 1)
𝐌5(𝑡)

}

.

(108)

⇒

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐S(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

{

𝐌1(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌1(𝑎) +
∞
∑

𝑘=1
𝛬𝑘

(𝑡 − 𝑎)𝜐𝑘

𝛤 (𝜐𝑘 + 1)
𝐌1(𝑡)

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐I(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

{

𝐌2(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌2(𝑎) +
∞
∑

𝑘=1
𝛬𝑘

(𝑡 − 𝑎)𝜐𝑘

𝛤 (𝜐𝑘 + 1)
𝐌2(𝑡)

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐R(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

{

𝐌3(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌3(𝑎) +
∞
∑

𝑘=1
𝛬𝑘

(𝑡 − 𝑎)𝜐𝑘

𝛤 (𝜐𝑘 + 1)
𝐌3(𝑡)

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐B(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

{

𝐌4(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌4(𝑎) +
∞
∑

𝑘=1
𝛬𝑘

(𝑡 − 𝑎)𝜐𝑘

𝛤 (𝜐𝑘 + 1)
𝐌4(𝑡)

}

,

𝑀𝐴𝐵𝐶
𝑎 ∇𝜐V(𝑡) =

𝐴𝐵(𝜐)
1 − 𝜐

{

𝐌5(𝑡) − 𝐄𝜐(𝛬, 𝑡 − 𝑎)𝐌5(𝑎) +
∞
∑

𝑘=1
𝛬𝑘

(𝑡 − 𝑎)𝜐𝑘

𝛤 (𝜐𝑘 + 1)
𝐌5(𝑡)

}

.

(109)

Results and discussion

In this section, we simulate the outcomes for the specified initial
circumstances and the parameter values from [7]. For the simulations,
we use the fractional orders 𝜐 = 0.3 and 𝜐 = 0.4 to examine the dynamics
of the suggested model. To demonstrate how the discovered solution
works, we use graphs. The behavior of the suggested approach solutions
at fractional orders 𝜐 = 0.4 and 𝜐 = 0.3 is depicted in Figs. 1 and 2,
respectively.

• The susceptible (S) compartment is examined in Figs. 1(a) and
2(a) for the fractional orders 𝜐 = 0.4, 0.3, respectively, which
demonstrate a significant reduction in the susceptible population
after a short period of time. We see a rapid decline in the
susceptible class as we raise the fractional order.

• The infected (I) compartment exhibits similar behavior, as seen
in Figs. 1(b) and 2(b). As we increase the fractional order, we
observe a sharp reduction in the infected class.

• For the fractional orders 𝜐 = 0.4, 0.3, the recovered (R) com-
partment is analyzed in Figs. 1(c) and 2(c), which show a rapid
decline in the recovered population at higher fractional orders.
In contrast, at lower fractional orders, we initially see a quick fall
and, after a little period, an increase in the population that has
recovered.

• Additionally, the bio-secured (B) and vaccinated (V) compart-
ments are studied in Fig. 1(d), Figs. 1(e) and 2(d), Fig. 2(e),
respectively. Both the bio-secured and immunized groups show
a large rise. Both of these groups rapidly rise as fractional order
is increased.

ll classes in the model exhibit the effects of fractional order. The
ractional order affects the progression. The model under consideration
xtends the classical model since graphs offer a wide range of compart-
ents’ geometrical information. It demonstrates that global behavior,

ather than integer order, is provided by the fractional model of the
ovine brucellosis illness.

onclusion

In this study, a fractional-order model of the bovine brucellosis
isease in cattle was constructed using discrete generalized Mittag-
effler kernels. The fundamental reproduction number, the analysis
f equilibrium states, the solutions’ positivity and boundedness, the
ositively invariant region, and existence and uniqueness were all
13
opics we covered. We also looked at the fractional-order model’s global
symptotic stability. A sensitivity analysis has been performed on the
ariables that are most responsive to the fundamental reproduction
umber. The recently updated fractional differences were carefully
eviewed. We argue that numerical simulations of the proposed method
ould be used to track the dynamics of the bovine brucellosis disease
n cattle. The results of this investigation may be useful in delivering
nformation to public health experts and policymakers in order to stop
he spread of bovine brucellosis. By using the best control strategy and
n adequate variable or parameter to reduce the affected population,
e can stop the spread of disease.
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