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ABSTRACT

The present article introduces and studies the Fredholm-type inte-
gral equation with an incomplete /-function (I/F) and an incomplete
I-function (I/F) in its kernel. First, using fractional calculus and the
Mellin transform principle, we solve an integral problem involving
IIF. The idea of the Mellin transform and fractional calculus is then
used to analyse an integral equation using the incomplete I-function.
This is followed by the discovery and investigation of several impor-
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tant exceptional cases. This article’s general discoveries may yield
new integral equations and solutions. The desired outcomes seem
to be very helpful in resolving many real-world problems whose
solutions represent different physical phenomena. And also, find-
ings help solve introdifferential, fractional differential, and extended
integral equation problems.

MATHEMATICS SUBJECT
CLASSIFICATIONS:

33C60; 26A33; 33B20; 44A20;
45B05

1. Introduction

Over the last four decades, mathematicians and scientists have been attracted to fractional
calculus and special functions because of their wide range of applications and significance
in fields such as medical science, biological science, computer science, communication the-
ory, fluid dynamics, viscoelasticity, diffusive transport, electrical finance networks, signal
processing, probability theory, control theory, ecology, environmental science, and so on
[1-4].

The scope of special functions is extensive, yet it constantly expands due to the develop-
ment of new issues in engineering and applied science fields. In addition, the development
of the H-function and the I-function is facilitated by dissemination. Jangid et al. [5] pro-
posed the incomplete I-function and developed various integral transformations for it. A
few applications are also presented [6, 7]. The integral equation has been observed in var-
ious response-related problems, including diffusion, queuing theory, reaction-diffusion,
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quantum mechanics and a variety of other areas of physics, biology, and probability theory,
to name a few [8-10].

Fractional calculus is an augmentation of integer-order calculus and provides more
accurate results than classical calculus. Therefore, it is widely used in the mathematical
modelling of almost all science and engineering, medicine, and education areas [11-13].
Several fractional operators are available to deal with real-world problems, such as the Rie-
mann-Liouville integral, Caputo derivative, Caputo-Fabrizio derivatives, Weyl integral,
Weyl derivatives, Atangana-Balneau derivatives, Atangana—Balneau fractional integral,
Hilfer fractional derivatives, and many others.

Methods for obtaining solutions to integral equations (IE) are typically beneficial in sci-
ence and engineering. That is why we choose Fredholm IE, which consists of incomplete I-
function, which are extensions and generalizations of higher transcendental functions. The
most commonly used functions in mathematics, physics, engineering, and mathematical
biology are special cases of the incomplete I-function.

The Fredholm IE, which incorporates special functions like Hypergeometric functions,
Legendre functions, and Fox H-functions, is presented and explored by many authors
[14-20]. We present the integral equation of the Fredholm type involving the IIF and ITF
in the kernel, which was inspired by a recent research endeavour on fractional calculus and
special functions.

2. Mathematical preliminaries

The present part defines some basic definitions of the special functions and fractional
operators.

Incomplete Gamma Function: The usual incomplete Gamma functions y (¢, s) and I'(c, s)
represented by Chaudhry and Zubai [21]

N
y(c,s) ::/ 0 le7%d, (M(c) > 0;s > 0), 1)
0
and
o
I(cs) ;:/ 0 le?do,  (M(c) > 035> 0), )
N
satisfy the subsequent rule of decomposition:
y(6,s) + T (c,s) :=T(c), N(c)>0), (3)

where ) (c) stands for real part of the parameter c.

Moreover, if we set s = 0, then we have I'(c,s) = I'(¢).

I-Function: Rathie [22] discovered the I-function in 1997, which is defined as follows
by the Mellin-Barnes kind contour integral:

(lpl) é‘l;Al)"" ’(lpﬁ;r;Ar) 1
Iu,v — Iu,v - \IJ w ) 4
s () =1 M (@1, B1B1), -+ » (P, Bs B) } 2 Jy Y7 Tdwe ()

where
L AT(@; — BB [T T (A — Wi + gw) )
[T (T = ew) A [T, (D (1 — @i + Biw)} B

W(w) =
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The appropriate conditions for the $ contour convergence described in (4) and other

representations, in addition to documentation about the I-function, can be seen in [22].
The Incomplete I-Functions: Now, we present a family of the incomplete I-functions [23]

VIV (V') and 1"Iﬁ‘,’s"(”}‘/), which leads to a natural generalization of a variety of I-functions:

(qjl) gl;Al : Y)) (lI/Z’ €2;A2)> ) (qjﬁ é‘r;Ar)
yIuv yIuv
= [”y (D1, 81 B1), (P, a3 Ba)y - » (@, i By) ]

= L / U(w, V)V "dw, (6)
2wi Jg

and

(¢l’ﬂl;Bl)) (¢2’ /32;32)) Tt (¢S’ IBS;BS)

= L / & (w, V)V "dw, (7)
2wi Jg

FIuV(aj/) _ I"Iu,v [/7/‘ (qjl’;l;Al . Y):(II/2:§2;A2):' < (Y é'r;Ar) i|

for all 7" # 0, where

{y(1 -y + aw, N TL 1{F(¢i BwB [T (T (1 — W + Giw)}A

Y(w,Y) = )
oy iz (LW = w4 [T, (DL — @5 + Biw)}B
(8)
and
O(w,Y) = {TA =¥ 4 aw, NI LT (@i — Bw)}P [T AT (1 — & + i)}

[Ty (D = Gw)A T T, (T (1 — @i + Biw)}Bi

)
The following division relation is immediately produced by the definitions (6) and (7) for
the value of A} = 1:

I+ T = 1Y), (for Ay = D). (10)

The Incomplete I-Function: When we fixed By =B, = --- =B, =1land A,y = A, =
-+ = A, = 1, then define the following new incomplete I-function (IIF) [5]:

(QDI’CI)AI Y) (4)2’{2)142) >(¢V’§V;AV)>
yIuv yIuv
)= M (@1, 815 1), (@2, s D+ (B P B,

(Py+1, 8o 1)+ (W, 83 1) 1 / y
= U(w, )7 Vdw, 11
(Pu+15 But1: But1)s -+ - 5 (P, B Bs) :| i (w, Y) w (11)

and

Fju,v — l"ju,v (¢1> §1§A1 . Y)> ((DZ’ CZQAZ)’ Tt (¢v> §v§Av)a
w(="1 M (@1 B35 1), (B2 B 1)y - » (Bus B Bu),

(@V—Hafv-i-l; 1)a e ,('1/,«, Crs 1) 1 / w
O(w, )V "dw, 12
(@us1, Busts Bus)s -+ » (@s, s By) } 2 J OO VT dw, o (12)
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for all 7" # 0, where
ly(L =¥ + aw, VI [T (AT (@ — B [T AT A — W + Giw))A

U(w,Y) = ’
(1) [Tm (T = Gw) [T (T (1 — @ + Biw) )i
(13)
and
dw,Y) = LA =+ aw, DI TTL D (@ = B} [T (T = @i + Gw))

[Tiey i T = Gw [[i (T (L — @ 4 Biw)}Bi
(14)
It we put Y = 0 in (12), then we get familiar I suggest by Rathie [22].
The IIF 7’1}{’5"("// ) and 1“Iﬁ"’s"(“l/) identified in (6) and (7) appear for Y > 0, according to
the family of restrictions provided by Rathie [22], such as

1
8 >0, larg(¥)| < E(Sn,

where
u N 4 r
§=Y Bfi— Y Bfi+ Y Aii— Y A (15)
i=1 i=ut1 i=1 i=v+1
Remark 2.1: Setting Y = 0, in (6) and (7) gives the I-Function determined by Rathie

ey [ay ) (91,813 A1 2 0), (92, 825 A), -+ (¥, L3 Ay) }
ns (¢1) ﬂl;Bl)’(¢2’ ﬂZ;B2)>' o ’((ps’ IBS;BS)

— WY |:4f/ ’ (lpl) ;1;A1)> Tt (wra §r§Ar) i|
i (¢1),31;Bl):"' ’(¢S)IBS;BS) '

Remark 2.2: When A; = 1,Bj = 1(i=1,2,...,1,j=1,2,...,5) is set to (6) and (7), it
becomes the Incomplete H-Function proposed by Srivastava

}’IM,V |:aj/ (lpl) ;1; 1: Y)) (WZ’ ;2; 1)) ) (ll/r) §r§ 1) :|
s (@1,/31;1),(@2, ,32;1)" o ’(¢S) ,35;1)

(16)

_ouy V1,60 :Y),(¥2,80), -+ (¥ &)
= Vs M (@1, 1), (@2, B2), -+, (B, i) } (17)
and
T v |:7/' (D1,6151: V), (D2, 825 1), -+ 5 (Pry &3 1) :|
s (¢1>ﬂ1;1)>(¢2’ﬂ2;1)"" ’(¢5’ﬁs; 1)
R T/RY W1,6:Y), (Y2, 8), -+ (¥ &)
= [7/ (@1, 1), (D, By » (@, Bo) ] (18)

Remark 2.3: Next, we take Y = 0,4; = LBi=1(i=12,...,r,j=12,...,5) in (6).
The IIF is reduced to the well-known Fox H-function, defined and illustrated as follows
(wl’ ;1’ 1 : O)a (lI/2> {2) l)a ) (Wr’ gr, 1) }

(¢la /31’ ]-)) ((p2> /32) 1): D) (¢S> ,BS> 1)

_ v W, 0), W2, 82), -+ s (W &r)
= HY, [7/‘ (@1, 1), (@2, Bo), -+ (Ds, B) ] (19)

FIz;v |:7/
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Weyl Fractional Integral: The standard definition of the Weyl fractional integral (WFI)
as given by Miller and Ross [24]:

1 oo
W Ee(w) = m/ E —w)"lp&)ds,  w) > 0). (20)

Mellin Transform: The standard definition of the Mellin transform (MT) is given as follows
[25, 26]:

M) P] = $(P) = /0 WP (w)dw, (21)
and
R 1 V4100 R
MTBPEW = ) = - / wPG(P)dP, (22)
Tl JV—i00

where RW(P) > 0 and V is constant.
Next, we provide two significant results incorporated into our main findings.

(1) The MT of 1IF [5] is defined as follows:

I puv s| (W1, C1A1:Y),(¥2,00542), -+, (¥ & Ay) :|; }
4 { [W (@1, Br: B)y (B Boi Ba)y -+ (D5, Bs By |P T

P
VoS P
= vi——Y], 23
v (%) @3

where \IJ(—B, Y) is defined in Equation (8) and the terms are given in [5].
(2) The MT of ITF is defined as follows:

("pls {l;Al : Y)s (lPZ’ gZ;AZ)) ) (qjvs §V§Av),
(¢1)ﬂl; 1)! (¢2) 132; 1)’ ) (q)m ﬂu;Bu)’

_P
(WV+1’€V+1;1)J"' :(wr)fﬁl) :|7)} — 7/ $ - <_2 Y) (24)

V4 {Fi;jg [wﬁ‘

((pu+1r ﬁu+1§Bu+l)) w5 (D ,BS;BS) $ $
where CTD(—%, Y) is defined in Equation (14).

Assume that o7 is the space with whole functions F that satisfy and are properly
characterized on Ry = [0, 00).

(@) F € C(Rot)s
(b) limy_s oo {x*F(x)} = 0, (Forall a,M € Zo+); (Zo+ =0,1,2,...),and
(¢) F(x) =0(),x— 0.

See Lighthill’s [27] work for more information on the space of suitable functions
expressed on the entire real line (—o00, 00).



6 (& S.BHATTERETAL.

3. Solution of an integral equation of Fredholm type utilizing I/F

In this section, using the MT method and the well-recognized WFI, we provide the solution
to the Fredholm-type integral problem involving the ITE.

Lemma 3.1: Let

(A) u,v,r,s € Zog suchthat (s.t.)0 <v<randl <u <s,

(B) R(A — k) > 0;R(k) + $R(F) >0, (i=1,2,...,u),

(C) Y>0,8>0andAeC,

(D) |arg(O)| < %mﬁ, provided § is characterized in the relation (15).

Then,

Al X\ (W, 013A;1 0 Y), (W2, Ca3 Aa), - -5 (¥, i3 Ay)
K—A AFIM,V <7> 1,61541 > 2>62542)5 > >G> Ar
W {V s |:C % (¢l>ﬂl;Bl)) (¢2)ﬁ2;B2))"' )(qu):BS;BS)

_ Tt |6 <X>$ @141 V), (1=K, 851, (32,85 42), s (B G A |y
rlstl % (<p1>ﬁ1;Bl)>((p2’ﬂ2;B2))" . )(¢S’ﬂS;BS)) (1 - A,$>l)

Proof: We first consider the integral contour framework of the IIF provided in relation (6)
and then change the sequence of integrals to demonstrate the assertion along with (25). We
next apply the WFI defined in Equation (20) (within the specified permitted conditions).

V (@1, B13B1), (P2, B2; B2), - - -, (Dss, Bs; Bs)

—¥/OO(U—V)A‘K‘1 U_AI/CW(X>$W¢( Y)dw | dU
“Tha-0 Ml ) \U W Haw

1 1
T 2m (A —k) Js

e b w (XY™ Tl +8w)
=V 2711/$¢(W’Y)C <V) F(A—l—$w)dW

s {v-“zﬁ‘»g [c <X>$ (V1815 AL 2 Y), (92,623 A2), o (P i Ay) }}
oo
cY XM ow,Y) - (/ (U= p)A=x-1 U_A_$WdU> dw
%

st v (@1, B15B1); (P2, B2; B2)s - -+ 5 (Ps; Bss Bs), (1 — A, $511)

— V—KFIM,V+1 |:C <X>$ (‘I’],C];Al : Y)>(1 - K:$; 1)>("I/2: KZ;AZ))' o >(l1/r> f’ﬁAr) :|
1%

We can easily achieve the desired result by evaluating the power function at the WFI and
thereupon trying to interpret the arising Mellin Barnes contour integral in terms of IIE. W

Lemma 3.2: Suppose

(A) u,v,r,se€e Zopst.1<u<sand0<v<r,

(B) M(A —k) > 0;R(k) +$R(F) >0, (i=1,2,...,u),

(C) Y>0,8$>0,and A € C, !

(D) |arg(O)| < %mﬁ, provided § is characterized in the relation (15).
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Then,

A, X\ (05411 Y), (W0, 003 A), -+, (W Ers Ay)
K—A Ay qu,v it 1,61>41 > (¥2,62,42), > (Frs 6rs Ar
” {V frs [C<v> (@1, 813 Bu), (@2, 25 Ba), -+, (P s B)

-y~ KVIuV+1 C<X>$ (lpb{l;Al : Y))(l _K>$;1))(W2){2;A2)>"' >(lpr);r§Ar) (26)
rLstl % (d)l’lgl;Bl)) (4)2’ ﬁZ;BZ)> Y (d)S’ ﬂS;BS)’ (1 — A, $; 1) ’

Proof: We won’t describe it in detail here because the proof is identical to Lemma 3.1. W
Theorem 3.3: Letting

(A) uyv,r,se Zorst.0<v<randl <u<s,

(B) ¥, s are posztwe real numbers,

(C) NR(x) +$(lp’ ) < 0; N(x) —|—$‘R((D’) >0,((=12,...,u),({(=12,...,v),

(D) Y20$>0 and A € C.

Consequently, the subsequent integral relationship formula holds:

/ r ] [C<§>$‘ (1, 61341 : V), (1= 16,8 1), (¥, 623 Az, -+, (P s Ay) }
v

r+lstl (¢l’ IBI;BI)’ (¢2’ ,BZ;BZ)’ Tt (¢S> .BS;BS)’ (1 - A; $; 1)
x V¢ (V)dV
_ f‘” | o <§ >$ (W1, 61341 V), (92,805 A2), -+, (W, G Ap)
0 i % (¢1)ﬂl;Bl)>((p2>ﬂ2;BZ)>' v >((p$’ IBS;BS)
x VP Mp(W)}dY, (27)

with the result that ¢ € of and X > 0.

Proof: Suppose ¢ denotes the first component of the statement in Equation (27) of
Theorem 3.3. Thereupon, using Lemma 3.1 and the definition in Equation (20), we obtain

00 OO(U_V)Afl(fl N
9 = V —U
./0 . )(/v (A —«)

xX\* W1, C1A1:Y), (W, 825 A42), -+, (Y, &3 Ay)
Flu,v - 161,411 > 2>625412)5 > >8> Ay ]
[C<U> (@181 B0, (@2, BriBo), -+ (@ paB) |1V )Y

Next, by altering the order of integration under the allowable circumstances, we obtain

¥ = / UAT (§>$ (W1, i3 A1 2 ), (B, 03 An), -+, (W, 05 Ay)
U (¢1’ IBI;Bl)’ (¢2’ IBZ;BZ)s Y (¢S’ IBS;BS)

U (U V)A Kk—1
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Moreover, using the widely used definition of the Riemann Liouville (RL) fractional
derivative, we get

o= [T le(z)

x UMM (U)dU,

;I’Al Y)) (WZ’ gZ;AZ), Tt (lpﬁ é‘r;Ar)
(21, ﬂl)Bl)) (P2, ﬁ2§32)) s (D ,35; Bs)

which is the right-handed component of Equation (27). |
Theorem 3.4: Let

(A) uv,r,se Zprst.l1<u<sand0<v<r,

(B) ¥, s are p051t1ve real numbers,

(©) M) +8(A) <0 (= 1,2,...,v), R(K) +$R(F) > 0, (1 =1,2,...,u),

(D) Y20$>0 and A € C.

Consequently, the subsequent integral relationship formula holds:

/oo Y V1 |:C <§)$ (‘plaé‘l;Al : Y)’ (1 — K, 8 1), (lp2> {Z;AZ)’ s, (W ;r;Ar) :|
1%

rHLst (@1, B3 B1), (P a3 Br), -+ » (D Bis Be), (1 — A, 83 1)
x Vo (V)dV
_ / ) [C (§>$ W1, 13 A1 2 V), (W, 003 A), -+, (W £ Ay) }
o ST ) | @1 BB, (@, B Ba), - (o s Bo)
x VD Mp(V)}dV, (28)

with the result that ¢ € o/ and X > 0.

Proof: We won't describe it in detail here because the proof is identical to Theorem 3.3.

Theorem 3.5: Make the assumption that
(A) u,v,r,s€ Zppst.l1<u<sand0<v<r,
(B) ¥, s are p051t1ve real numbers,
(©) %) +8(A) <0 (i=1,2,...,v), R(k) + $R(F) > 0, (1 =1,2,...,u),
(D) Y>0$>0A€(C and ¢, € .
Then, the consequent IE:
/ V- KFIMV ( ) (Wlxé‘laAl Y)x(lp2>§2§A2);"' > (¥, griAr)
V (¢1)ﬂ1)B1)>(¢2)ﬁ2;B2)>'" )(¢S’ﬂS;BS)

x ¢(V)dV = ¢ (X), (29)
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has now been solved by

$C X! P N\
P00 = = —— /X_P [CD <— Y)] Z(P)dP, (30)
T $ $

where
o0
E(P) = / XPly (0dX,
0
and CID(%, Y) is shown in Equation (9).

Proof: ¢ is substituted for 2“2 “¢ in Equation (27) to determine the integral
equation’s (29) solution; we get

/ V_Krlfi/is{i-l
0
e (J_()$ WAL V), (1= S0, (W2, 805 A2), -, (W B3 Ay)
V (@1, B13B1), (D2, B2:B2), - -+, (P, Bs; Bs), (1 — A, $; 1)
x P22 p W)}V = ¢ (X).

By multiplying both sides by X7 ~!, integrating from 0 to oo with respect to X, and
thereupon altering the order of integration together with the allowable circumstances, we
get

EZ(P) :/ Xp_llﬁ(X)dXZ/ VA (V) x </ xP-1
0 0 0

. [c<X>$‘ (1, 00541 1 Y), (1= k6,831), (W, E5 )+, (W, £rs Ar) }dx> .

rtlstl 9 (¢1’ﬁ1;Bl)’((p2a ﬂ2;32)>“ . ’(¢S’ﬂs;BS)’(l — A, $;1)

Now, using Equation (23), we obtain

- _ Fk—-P) _» i * P—k cpA—k
EP) = ra—m© W( $ Y>/o [ S

Moreover, by using the Mellin inversion theorem, we obtain

Ak _ji/K$4Fm—P>P[(:g ﬂq”
9 {¢(V)}—2m $V F(K—P)C$ d 3 Y Z(P)dP.

Next, by operating on each side with 24, we obtain

_ 5 e-n «-p-1 LA =P) 2\ =
¢(V)—2m@ {/$V 1,(K_P)c [cb( 5 Y)] EP)dP},

which eventually gives

$CS XA P A\
$(X) = 2—/x7’ [cb (—,Y)] 2(P)dP.
U $ $

«l9
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Theorem 3.6: Let

(A) uv,r,se Zprst.l1<u<sand0<v<r,

(B) ¥, s are posztwe real numbers,

(©) %) +8(A) < 0 (i =1,2,...,v), Rk) + $R(F) > 0, (i =1,2,...,u),
(D) Y>O$>0A€(C and ¢, € .

Whereupon, the subsequent IE:

/ V KVIMV ( > (lpl’ gl’Al Y))(WZ’ §2;A2)a" : ’(lpﬁ {r;Ar)
V (¢1)IBI)BI)) (¢2);32;BZ))‘ v J(¢S’ﬂS;BS)
x ¢(WV)dV = ¥ (X), (31)

has a solution given by

P A—1 _ —1
pon = ST / X-P [\p (—P y)} 5(P)dP, (32)
Tl $ $

where

E(P)= / X7y (x)dX,

0
and lll(%, Y) is shown in Equation (8).

Proof: Since the proofis identical to that of Theorem 3.5, we will skip the details here. W

4. Solution of an integral equation of Fredholm type utilizing IIF

In this section, using the MT method and the well-recognized WFI, we provide the solution
to the Fredholm-type integral problem implicating the IIE.

Lemma 4.1: Let

(A) u,v,r,se€ Zprst.0<v<randl <u<s,

(B) R(A — k) > 0;R(k) + $N(E) >0, (i=1,2,...,u),
(C) Y>0,$>0,and A € C, l

(D) |arg(O)| < %mS, where § is provided in Equation (15).

Then,

WK_A V—AFju,v C (§)$ (‘I/Isgl;Al : Y):(Wb §2§A2)>‘ - (Y, gr;Ar)
s V (¢1s ,Bl;Bl)a(CDZa ,BZ;BZ)a" . )(¢S’ ,BS;BS)

_ y—«TFuv+1
=V Ir+ls+1

. (33)

e ({) W15 A1 V), (1= K, 8§ 1, (92, G2, (WG A |
V (¢1’ IBI;Bl)’ (¢2s ﬂZ;BZ)a Y (¢S’ IBS; BS)> (1 - A, $; 1)
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Proof: We first demonstrate the integral contour form of the ITF provided in Equation (11),
thereupon change the pattern of integrals to demonstrate the assertion in Equation (33).
We next apply the WFI defined in Equation (20) (within the specified permitted condi-
tions). We can easily achieve the desired result by evaluating the power function at the
WFI and thereupon trying to interpret the arising Mellin Barnes contour integral in terms
of IIE. |

Lemma 4.2: Let

(A) u,v,r,se Zprst.0<v=<randl <u<s,

(B) M(A —K) > 0; %R (c) + $R(F) >0, (i=1,2,...,u),
(C) Y>0,$>0,and A € C, l

(D) |arg(O)| < %mS, where § is provided in Equation (15).

Then,

N X\ (W, 03412 Y), (W, 003 As), -+, (W Er3 AY)
K—A Ay Fuv -~ 1,61, 41 > \F2> 62> 42)5 > AT S AT
v {V I”’S |:C (V) ‘ (@1,,31;31),(¢2, ,32;32)," 5 (Ps, IBS;BS)

= V_Kyj;ti/i_sl-‘rl
< <§>$ (W1, 83A1:Y), (1= 1,85 1), (W2, 805 A2), -+, (W G Ar) (34)
V (¢1’131;Bl)a(¢2’,32;32)a"' a(gpsaﬁS;BS))(]- _A>$;1) '

Proof: We first demonstrate the integral contour form of the ITF provided in Equation (12),
then change the process of integrals to demonstrate the assertion in Equation (34). We next
apply the WFI defined in Equation (20) (within the specified permitted conditions). We can
easily achieve the desired result by evaluating the power function at the WFI and thereupon
trying to interpret the arising Mellin Barnes contour integral in terms of ITF. |

Theorem 4.3: Let

(A) u,v,r,s€ 2o st.0<v<randl <u<s,
(B) Y, Bs are positive real numbers,
(©) M) +8(A) <0 (i=1,2,...,v), R(K) + $R(F) > 0, (1 =1,2,...,u),

i

D) Y>0,8$>0and A €C.

Consequently, the subsequent integral relationship holds:

rlstl v (¢1: IBI;BI)’ (¢2) IBZ;BZ)’ ) (d)S) IBS;Bs)a (1 - A’ $; 1)
X V™ p(V)dV

/OO [‘j”w—&-l |:C <X>$ (IIII’ gl;Al : Y), (1 — K, $; 1)’ (WZ’ {Z;AZ)) ) (Wr’ §r5Ar) :|
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- /°° | (§>$ (1,615 A1 2 V), (W2, £23 A2, 5 (P G Ar)
s V ((151)/31;31))(@2)/32;32))' . >(d)5’ IBS;BS)
x VX Mp(V)}dVY, (35)

with the result that ¢ € o/ and X > 0.

Proof: Suppose & denotes the first component of the statement in Equation (35) of
Theorem 4.3. Thereupon, using Lemma 4.1 and the definition in Equation (20), we have

_ [ OO(U_V)A—K—I A
G = V —FU
/0 ! )(./v (A =)

- x\* W1, C15A1:Y), (W, 825 A2), -+, (Y, &3 Ay)
FIu,V - 1,61,41] > 2>62542), > > Sr> Ar )
|:C<U> (@1, BB, (@2, B Ba), -, @ By |1V Y

Next, by altering the order of integration under the allowable circumstances, we obtain

G /°° AT C<§>$ (W, 815 AL YD, (B2, 853 A), -+, (¥, 03 AY)
0 s U (¢1) ,BI;BI))(¢2) ﬂZ;BZ))" : )(®S) IBS;BS)

U (U _ V)Afkfl

Moreover, using the widely used definition of the RL fractional derivative, we get

g; — /OO Fju,v C (£)$ (‘1’1, é‘l;Al . Y)s (WZ) ;2;A2)) ) (lIIr’ ;r;Ar)
0 18 U (®1) ,Bl;Bl)a(®2’ :32;BZ)a' o ’(@S) IBS;BS)

x UTA9*=Me¢(U))dU,

which is the right-handed component of Equation (35). |

Theorem 4.4: Let

(A) u,v,r,se Zprst.1<u<sand0<v<r,

(B) ¥, Bs are positive real numbers,

(©) M) +8(A) <0 (1= 1,2,...,v), Rk) + $R(F) > 0, (i =1,2,...,u),
D) Y>0,8$>0and A €C.

Consequently, the subsequent integral relation holds true:

/ Ty c(%ﬂ (W, £13A1 2 V), (L= 16,85 1), (¥, £23A), - (i G5 Ap)
rls+l V (®1’ ﬂl;Bl)’ (®2’ ﬂ2;32)’ ) (®S) ,355 BS)) (1 - A) $; 1)

x V¢ (V)dV
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= /ooyju,v C (§)$ (W1, 05A1 1Y), (W2, 00 42), -+ (s Er3 Ay)
o 7 v (@1, B13B1), (P2, B3 Ba), - -+, (Ps, B3 B)

x VXM p(V)}dV, (36)

provided that ¢ € </ and X > 0.
Proof: Since the proof is identical to that of Theorem 4.3, we will skip the details here. W

Theorem 4.5: Considering
(A) u,v,r,se Zprst.1<u<sand0<v<r,
(B) ¥, s are posztzve real numbers,
(©) M) +8(E) < 0 (1= 1,2,...,v), k) + $R(F) > 0, (i =1,2,...,u),
(D) Y=>0, $>0 AeC andp,y € .

Hence, the subsequent IE:

[Ty (§)$ (V1,015 A1 5 V), (92,65 A2), s (s Gy
% (¢1’I31;Bl),(¢2:ﬁ2;32))' © ’(QS’ IBS;BS)
x ¢(WV)dV = ¥ (X), (37)

has a solution, and it is provided by

P A—1 _ —1
d(X) = WZL /X‘P [d_) (—P Y)] E(P)dP, (38)
Tl $ $

where
E(P) = / X7y (x)dX,
0

and @(%, Y) is shown in Equation (9).

Proof: ¢ is substituted for 22 “¢ in Equation (35) to determine the integral
equation’s (37) solution; we get

> I'u,v+1
k[ qu,v
/0 V Ir+1$+1

% C(§)$ (wl’gl;Al : Y)’(l _K,$;1)>(II/2’§2;A2)"" ’(lIIr’ gr;Ar)
V (d)l’ /31;31), (¢2’ IBZ;BZ)’ ) (¢$’ /35; BS)’ (]- — A, $§ 1)

x P e (W)Y = v (X).
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By multiplying both sides by X”~!, integrating from 0 to oo in relation to X, and
thereafter altering the order of integration along with the allowable circumstances, we get

E(P>=/°°X7’—1w<X)dX=/ VDA (V) x (f xP-1
0 0 0

T yu,v+1 X>$ (lpb{l;Al :Y))(l_K>$;1))(W2>;Z;A2)>"' »(Wr)§r§Ar) ax ) d
Tisn [C (v (@1, 13B1), (@2, 23 Ba), -+, (B s B), (1 — A, $51) v

Now, using Equation (24), we obtain

= _ T'k=P) _»- i % Pk ph—r
“(P)_$F(A—P)C w( $ Y)./o voro ey

Moreover, by using the Mellin inversion theorem, we obtain

A _i/ c-p1 DA =P) [(i )}‘15
77 oW} = — $V =P C |25 Y)| EPP.

Next, by operating on each side with 24, we obtain

$ K—A KPIF(A P) |: (i )]_15
sV =7 {/v rompct ()| Emary,

which eventually gives

B A1 _
b0 = X /X—P [cp(
$

«|9

-1
P, Y)] Z(P)dP.

21t T
[ |
Theorem 4.6: Let
(A) u,v,r,e Zpp st 1 <u<sandd<v<r,
(B) ¥, s are posztwe real numbers,
(©) %) +8(A) < 05 (1= 1,2,...,v), Rk) + $R(F) > 0, (i =1,2,...,u),
(D) YZO$>0A€(C and ¢, € .
Then, the preceding IE:
f Yo Ty <§>$ W1, 81411 Y), (W2, 825 A2), -+, (P §s Ap)
V (¢l,ﬂl;Bl)’(¢2>ﬂ2;B2)"" >(¢S>ﬁS;BS)
x ¢(V)dV = ¢ (X), (39)

has a solution given by

Eya-1 _ -1
po0 = X / xP [\D (pr)} Z(P)dP, (40)
$

21t
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where
_ o0
EP) = f X7y (x0dX,
0
and \i/(%, Y) is shown in Equation (8).

Proof: Since the proofis identical to that of Theorem 4.5, we will skip the details here. W

5. Remarks

This section presents some of the already available findings, which directly follow our
major findings. Later, we develop more fascinating outcomes achieved by focusing on the
parameters of the ITF and the ITF of our main result.

Remark 5.1: If setting A; = 1,B;=1(i=1,2,...,r,j=1,2,...,5) in Equations (27)
and (28), then the outcome is as reported by Bansal et al. [15].

Remark5.2: Ifwe considersettingY = 0,A; = 1,B;j =1(i=1,2,...,r,j=1,2,...,s)in
Equations (27) and (28), then the outcome is as reported by Srivastava et al. [10].

Now, we present some essential examples based on the main findings.

Example 5.3: If we substitute u=1,v=r, s=s+ 1,C(%)$ = —C()—\g)$,ﬂ1 =1,¢; =
0L,W;=1—-VY, &;=1— &;, A; = 1,B; = 1in Theorem 3.3, then we obtain the Fredholm
integral equation solution that uses the incomplete Fox-Wright function ,¥!".

/OO lI»/F C ()_(>$ (lpb gl : Y)) (1 — K, $)’ ("1/2> 4‘2)3 Y (Wr’ fr)
o sy (@1, B1), (B2, B2)s -+ » (D, Bo), (1 — A, $)

x V¢ (V)dV. (41)

Solution: Suppose ¢ denotes the component of Equation (41) of Example 5.3. Thereupon,
using Lemma 3.1 and the definition in Equation (20), we obtain

00 00 (U_V)A—K—l A
9 = 1% —U
/o e (/1‘/ I'(A —«)

r X $ W, Y), (W, 0), > (W &)
f\IJS |:C ( U) (¢1) ,81), (@2,/32), cee, (¢s) IBS) j| dU) dy.

Next, by altering the order of integration under the allowable circumstances, we obtain

Y S B0 o S U /N RS ON( 2N RENN( oh)
g_\/() v ”q}s [C<U) (gplxﬂl)’(@ZnBZ))"' >(¢)Sa,85) i|

U (U _ V)A—K—l
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Moreover, using the widely used definition of the RL fractional derivative, we get

o A (XN ), W), (W)
g_/o s [C<U> (@1, 1), (P2, B2), - » (Ps, B) }
x U A9 Mep(U))dU.

Now, replacing V = U, then we get the final solution of Equation (41).

g / \IJF < > ‘ ('J/l, é‘l Y)’(WZ’ §2)"' : ’(lI/ﬁ {r)
r v (®17/31))(¢2) /32))‘ o J(¢S’ﬁ5)
x VP p(V)}dV. (42)

Example 5.4: If we substitute u=1,v=r, s=s+ 1,C(%)$ = —C()—\g)$,ﬁ1 =1,¢; =
0L,V =1-V;,0;,=1—P;,A; =1,B;=1, {;=1,8=1 in Theorem 3.3, then we
obtain the Fredholm integral equation solution that uses the incomplete generalized
hypergeometric function ,I's.

;e [C (v)

Solution: Suppose ¢ denotes the component of Equation (43) of Example 5.4. Thereupon,
using Lemma 3.1 and the definition in Equation (20), we obtain

00 00 (U _ V)A—K—l 3
oo ([
0 v T(A—x)
WY)W, L9
o [o() [ o o)
Next, by altering the order of integration under the allowable circumstances, we obtain

A (llll Y)) 11/2,.”"1/7,
7= / v F‘[ (U) D1, Dy, ..., D }
y < U (U—V)A_K_l

o T(A—x)

V), (0 =«,9,%,....¥
D1, D,..., D5, (1 — A, $)

} x VE¢(V)dV. (43)

¢ (V)dV) dU
Moreover, using the widely used definition of the RL fractional derivative, we get
(Wl Y))lIIZM -'>lpt' —A opk—A
G = f |: ( ) DL Dy, .... D i| x U 22" Me(U)}dU

Now, replacing ¥V = U, then we get the final solution of Equation (43).

W :Y),¥,..., ¥, kA
7= / [() D1, P,..., D5 }XV D Mo}V, (44)

Similarly, as above examples, we find a new instance for Theorems 3.3, 3.4, 4.3 and 4.4.
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6. Conclusions

This paper introduces the Fredholm-type IE involving the IIF and the IIF in the kernel.
After, we acquire the Mellin transformation of the incomplete I-function. By figuring out
the precise values of the various parameters of the IIF and the IIF, we also highlight some
known outcomes. Given this observation, the results presented here, being of a general
character, can yield numerous generating functions for a particular class of incomplete I-
function and other special functions expressible in terms of I-functions. Our conclusions
are crucial in many different fields. With their aid, a wide range of fascinating and use-
ful fractional integral equations with applications in engineering, communication theory,
probability theory, and science can be created. In the near future work, solutions to other
differential and integral equations may be obtained by including an incomplete I-function
in the kernel for more generalization to transcendental problems.
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