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ARTICLE INFO ABSTRACT

Keywords: Using generalized cyclic contractions, we establish some fixed point results in controlled rectangular metric
Cyclic mapping spaces. Some subsequent outcomes are obtained. Moreover, some necessary conditions to demonstrate the
Ple?ewfse Caputo-Fabrizio fractional existence of solutions for the multi-term fractional delay differential equations with wth order and the
derivatives ) . ) piecewise equations under the setting of non-singular type derivative are established in this paper. In order to
Fractional delay differential equations . . .

Fixed point demonstrate the effectiveness of our results, we provided some numerical examples.

Introduction theorem. It provides an approximate method to effectively identify

The area of “Fractional Differential Equations” (FDEs) has risen in
the past few years due to its applicability in a wide range of real-world
perspectives in science, thermodynamics, economics, modelling, and
perhaps other disciplines [1,2]. It is well recognized that traditional
calculus may be used to explain and simulate important complex
behaviour in various disciplines. Nevertheless, fractional differential
equations can provide more accurate assessment of many complicated
natural systems (see for instance, mathematical modelling of infectious
deceases, diffusion for image reconstruction, and interaction between
cancer cells and the immune system). Such kind of stated abnormal
approaches are unable to characterize actual behaviour of complex
dynamics. So it is preferable to use fractional differential equations
rather than ordinary differential equations [3]. Consequently, novel
scientific findings and techniques are developed explicitly for fractional
differential equations. For this reason, a significant number of scientists
focus on initial and boundary value problems with different types
of derivatives, including Atangana-Baleanu, Caputo-Fabrizio, and Ca-
puto. In recent past, it can be seen a tremendous expansion of the
existing research on the topic, with a variety of intriguing and practical
outcomes (see [4-14]).

The fixed-point theory first appeared in an article, establishing the
existence of solutions to nonlinear equations. Later, this method was
enhanced as a sequential approximation method, and in the context of
complete normed space, it was illustrated and described as a fixed-point

the fixed point. It also guarantees the existence and uniqueness of a
fixed point. In the theory of metric spaces, it is a crucial tool. We can
guarantee the existence of a solution to the initial problem by using
fixed-point theorems, which provide constraints under which a fixed
point persists for a particular function. The existence of a solution is
equivalent to the existence of a fixed point for an appropriate mapping
in a wide range of scientific problems, starting from many disciplines
of mathematical problems. Some of those mathematical proofs relating
to a conversion of a set’s points into points of the same set where it can
be demonstrated that at least one point still stands fixed are referred to
as fixed-point results. To determine whether an equation has a solution,
fixed-point scientific theories are highly helpful.

In this paper, we will introduce different classes of contractive
mappings in controlled rectangular metric spaces and prove related
fixed point results. Moreover, we establish some necessary conditions
to demonstrate the existence of solutions for the multi-term fractional
delay differential equations with wth order and the piecewise equations
under the setting of Caputo—Fabrizio derivative.

Karpagam-Zamfirescu type results

In the 21st century, metric fixed point theory has widely used in
economics, medical biology, theoretical semantics, space exploration,
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and epidemiological data collection. Metric fixed point theory, in con-
trast to the majority of either of the computational sub-fields, has really
become the subject of independent classical works. Metric fixed point
theory is frequently used for the refinement of various metric spaces
and to generalize contraction principle. These improvements frequently
strive to dissect difficult Banach space geometric features and optimal
approximates.

Definition 1 ([15]). Given a non-empty set M and w : M X M —
[1,+c0). The function R : M X M — [0,+00) is called a controlled
rectangular metric if

c Rx,y)=0 & x=y;
* R(x,y) = R, x);
* R(x,y) < w(x, )R(x, @) + w(a, )R (a, 1) + w (L, )Rt ¥)

for all x, y € M and for all distinct points &, it € M. As in [15], (M, R)
referred to a controlled rectangular metric space (shortly, CRMS).
Additionally, notations for this space’s topological structures like con-
vergence, Cauchy, and completeness are available in [15].

Definition 2 ([16]). . : 0 U .# — O U J is said to be a cyclic map
if 7(0) C # and T () C O, where 0 and % be non-empty closed
subsets of a complete metric space (M, R).

Contractive mapping definitions.

1. (Karpagam et al. [17]). Let .4 and /3 be non-empty closed subsets
of a complete metric space is denoted by X, with distance
function d, $ be a cyclic mapping there exists some x € A and
there exists a k, € (0,1) such that

d(H?"x, 9y) < k,d(H* ' x,y).

2. (Zamfirescu [18]). There exist real numbers a, b,c,0 <a < 1,0 <
b,c < %, such that, for each x,y € X, and $ a function mapping
X into itself; at least one of the following statements is correct:

d(H(x), H(y) < ad(x,y);

d($(x), H(y) < bld(x, H(x)) + d(y, HO)I:
d($H(x), H(y)) < cld(x, H() + d(y, H(xX))].

Now we introduce the following definition.

Definition 3. Let ¢ and J# be non-empty subsets of controlled
rectangular metric space (M, R). Suppose .- from &'U ¥ to O U be
a cyclic mapping such that for some x € 0, there exists k € (0, 1) such
that

R(SMx, 7y) < kR(SH x, ) @D

for all w e N and y € &. Then . is so called a Karpagam type mapping.

Theorem 1. Let & and ¢ be non-empty subsets of complete controlled
rectangular metric space (M, R). Suppose .¥ : O U . — O U be a
Karpagam type mapping. For x, € O, take x,, = .#"“x,. Suppose that,

@ (Xpy 15 Xp12) + T (12, Xpy3)

<1
@ (Xy, Xpy1) + @(Xpy1s Xpyo)

lim sup w(xy,q, X,,)
=00 m>1

Assume that, lim,,_ . @(x,,x),lim,_ . @(x,x,) and lim,, . @
(X, X,y) exist and are finite for all w,m € N,w # m. Then ¢ n J is
non-empty and . possess a unique fixed point in & n .

Proof. Let x = x, € ¢ be an arbitrary point. Define the iterative
sequence x,, = .¥"x,. Since x, € ¢ and . is cyclic, we have, x,, € &
and x,,,; € J for all w > 0. By using (1), we get,

R(S*x,.7x) < kR(Sx, x). (2)

Results in Physics 46 (2023) 106313

Again,

R(S3x,.9%x) = R(S*x, 9°x)
= R(S%x, S(S?x))

s 3)
<kR(Sx,.S°x)
< KPR(Ix, X).
Similarly,
R(S*x,.73x) = R(S>(S?x), S (X))
< kR(S(S?x), S?x)
= kR(S*x, 9*x)
< IKPR(Ix, x).
By induction we obtain that
R(xy Xppi1) < k" R(xy,x;) forall w > 0. 4

Since k € (0, 1), taking the limit of the above inequality as w — oo, we
deduce that

lim R(x,,, X,41) = 0. 5)

w—o0

We shall prove that lim,,_,, R(x,,, X,,4») = 0. We assume that x,, # x,,
for every w, m € N. Indeed suppose that x,, = x,, for some w =m+r,
with r > 0, so we have .*x, = .¥x,,, and

R X 1) = R(Xyps Xpp41)
S KR(X 15 Xyp)-
Since k € (0, 1), therefore R(x,,, X,,1) = R(xy Xyp1) < R(Xp_1,> X,)- By
continuing this process, we have R(x,,, x,,,1) < R(x,,,X,,41), Which is a
contradiction.
Therefore R(x,,, x,,) > 0 for every w,m € N,w # m.
To prove lim,,_,,, R(x,,, X,,;») = 0, by using (1) we get,
R(xy,x3) = R(x3,%)
= R(S*(IX),. LX)
< R(L(Lx),x)
= kR(S?x,x)
= kR (x5, ()
= kR (xg, x,).

Again we have,
R(xy,x4) = R(x4, %)
= R(FUI*x), S(Fx))
< kR(S(S?x), Sx)
= kR(Sx, #x)
= kR(x3,x)
= kR(xy,x3)
< KPR (xg, X,).
By induction we obtain that,
R(X s Xp12) < ka(x(), X3)-
If we take the limit of the above inequality as w — oo we deduce that
lim R(x, X42) = 0. (6)
w—00

We shall prove that {x,,} is a Cauchy sequence in (M, R), i.e.,

lim R(x,,x, =0 where w,meN.
w,m—»oo

For this we will take the following two cases.
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Denote R, = R(x,,x,,;) for allb € N.

Casel: Assume that p be odd, i.e., p = 24 + 1, where 4 > 1. Then by

hypotheses we have m = w + p > w, we have,

R(X s X)) = R(X s Xyyi0541)

< w(xw’ Xw+1 )R(xw’ xw+1) + w(xw+1 ’ xw+2)R(xw+1 ) xw+2)
+ WX 420 X244 DR X 25 Xppp2241)

S @(Xyy Xy 1) R(X s X 1) + @ (X oy 15 X104 2) R(X 15 X002)
+ WX 420 X424 DT X2 X3 R(X 12, X1p43)
+ WX 420 X424 DT X3 X1 ) R(X 13 Xip44)
+ T (X125 X254 DT (X4 X104200 D R(X 445 Xp42041)

< w(xw’ X141 )R(xw’ xw+1) + w(xw+1 > xw+2)R(xw+1 > xw+2)
+ w(xw+2’ xw+2/1+1)w(xw+2! xw+3)R(xw+2’ xw+3)
+ T (X125 X244 DT (X435 X048 R(X 13, Xppga)
+ (X425 X424+ 1) Koy ds X422 (X445 Xppy5)
R(xw+4’ xw+5)
+ T (X125 X254 DT (X ppds X424 T X5, Xypp6)
R(xw+57 xw+6)
+ w(xw+2, Xy424+1 )w(xw+4, Xw+24+1 )w(waré’ xw+21+1)
R(x w465 Xwr2441)

< w(xw’ xw+1)R(xw’ xw+1) + w(xw+17 xw+2)R(xw+l’ xw+2)
+ WX 425 X424 DT X2 X013 R(X 12, Xip43)
+ (X 12, X124+ DT (X135 Xyt R(X 4 35 X44)
+ T X125 X422+ 1T Ko X004254 1) T X445 X 45)
R(xw+4’ xw+5)
+ (X120 X422+ T Kot Xp42441) T X455 X 46

R(xw+5 ’ xw+6)

+ (X 12 X244 1) T (X ds Xppp2 ) X ooee

X @(Xy125-25 Xi42041)%

[@ (X 421-2 Xip4244 DR X 42425 Xip42441)

+ (X 424-1 X2 DR 4221 X424)]

+ T (X125 X244 DT (X4 X g2 ) X oo

X W (X124-25 X422+ X420 X120+ DRX 0420 Xip42241)
< w(xw’ xw+1)Rw + w(xw+l > xw+2)Rw+1

+ WX 420 X244 DT X2, X103 R w42

+ (X425 Xi0424+ 1) T (X435 Xy 1) Rpy3

+ (X ypi2> X204 1) T X ppids X424 T (X i as X5 R

+ T X120 X4 224D P X X042, DT X5 X46) R

+ T(X g2 Xppg2i41) X oo X W (Xyp25-05 Xppp2441)%

(@ (Xy122-2> X221 D Rwr24-2 + (X125 15 Xwi2) Ripp2a-1]
+ T (X125 X244 DT (X g Xy ) X oo

X W (X 423-25 X 204D Kpo1240 X244 Rws21-

)
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From above Egs. (4) and (7), and Definition 1, we get

R(X 5 X)) < @ (X0 X4 1)R(xg, XK + @ (X4 1, Xppy) R (X, xl)k'”Jrl

b=1w+24 ph=b
+ 2ty Mm@ Xy Xwi2i41) ®

[w(x,,, Xpe DK + (s xm)k“‘] R(xg. x))-

There just, we use that w(x,y) > 1.
Let

Sz = B @y X)) [0 %0 K + w(xm,m)k“‘] R(xg, x)-
Then Eq. (8) can be written as,

R(x,, x,) < R(xg, x )@ (x, Xy DK + @ (X011, xwﬂ)kerl +S,_1 =Sl
Now let,

ay = I"_ w(x,.%,) [w(x,,,xb_H)kb + m(x,,+1,x|,+2)kb+l] .

Now consider,

. Ay
lim sup —
booom>1 @

b+1 b+1 b+2
I @ (% %) [ 041 %042k + (x40, %543)k" ]

N blin;c 'Snli[]) m°_ wx,, x,) [w(x b b+l
2 =0 (X X b %o DK+ W (Xpy 15 Xp42)K0F ]
@ (xp11, Xpyp)k + W(Xp 40, xl7+3)k2
@ (Xp, Xpp1) + W (Xpy 15 Xpi2)k
@(Xp41s Xpyo) + T(Xp oy, Xpy3)

@ (Xps Xp 1) + W(Xpy 15 Xpy2)

= lim sup w(xy,1,x,,)
—om>1

< lim sup @ (x4, X,,)
— m>1

<l

Thus the series

b=c0 n=b

b b+1
b=n+2 q:n+2w(xnvxw+u+1)[W(vaxbﬂ)k + @(Xpy15 Xpi2)k ]

R(xq,x;) is converges.
On the other-side,

H w_ 1; w+l _
ul)l_rgo @ (X, X1y 1 VR (X, X DK = ngrgow(xw+l,xw+2)R(x0,xl)k =0.

From this, we can conclude that

lim R(x,,x,)=0.

w,m—oo

Case2: Let p be even, i.e., p = 24, where 1 > 1 with similarly to casel,
we have,

R(xw’ xw+2l) < w(xw’ Xw+2)R(xw’ xw+2) + 1H(XW+2’ xw+3)R(xw+2’ Xw+3)
+ (X435 X2 D R(X 435 Xpp12)
S @(Xyy X 10)R(X s Xpp10) + T (X y0s X 3)R(X 05 X 1043)
+ W(Xw+3, xw+2l)[w(xw+3s Xw+4)R(Xw+3, Xw+4)
+ T (X440 Xy Ry a5 X pi5) + T (X450 X42,4)
R(X 150 Xipp22)]
= (X X1y 2)R(X s X 1py2) + @ (X 1y 00 X400 3) R(Xyi0s X1y 3)

+ (X435 X2 (X435 X g a) R (X135 X yp44)
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+ (%13, X2 DT (X g g X 5)R(X g X oy5)
+ T(X 435 X420 T X455 X2 D R(X 115 X10422)
L@ (X 0 X100 R(X s X1y 2) + @ (X405 X1 3) R(X pyns X003)
+ w(xw+3’ xw+2/1)[w(xw+3’ xw+4)R(xw+3’ xw+4)
+ w(xw+4’ xw+5)R(xw+4’ xw+5) + w(xw+5’ xw+21)
R(xw+5’ xw+2/l)]
< w(xw’ xw+2)R(xw’ xw+2) + w(xw+2’ xw+3)R(xw+2’ xw+3)
+ w(xw+3’ xw+2/1)w(xw+3’ xw+4)R(xw+3’ xw+4)
+ WX 430 X420 T X440 X4 )R X445 Xp45)
+ (X435 X420 T Xpp55 X2 D [T (X 55 X46)
R(xw+5’ xw+6)
+ w(xw+6’ xw+7)R(xw+6’ xw+7) + w(xw+7’ xw+21)
R (X175 Xp122)]
< w(xw’ xw+2)R(xwv xw+2) + w(xw+2’ xw+3)R(xw+2’ xw+3)
+ (X135 X2 )T (X35 Xy ) R(X 435 X p044)
+ W (X435 X4 2T X440 Xy ) R(X 440 X4 5)
+ T(X 13, X 2) T (X yp55 X2 )T (X5, Xyp6)
R(xw+5’ xw+6)
+ WX 435 X4 2T X450 X4 2) T X465 Xp47)
R(xu.'+6’ xw+7)
+ WX 435 X2 )T Xppy50 X2 )T (X475 Xip122)
R(Xy47> X1p422)
< W(Xw, xw+2)R(xw’ xw+2) + ‘lD'(Xw+2, xw+3)R(xw+2’ xw+3)
+ @ (X435 X420 [T (435 X4 ) R(X 5435 Xpp4a)
+ w(xw+4’ xw+5)R(xw+4’ xw+5)]
+ T (X435 X420 T K55 X2 ) [T (K55 Xp46)
7z(xw+5’ xw+6)
+ T (X465 X4 R (X6 Xi047)]
+ T(X 435 Xu42) T Xppg55 X2 )T X475 X1p122)

R(xw+7’ xw+2/1)'

Upon carrying out this methodology repeatedly and applying the CRMS
triangle inequality, we obtain,

R(X s Xyp422) £ (X0 Xy ) R (X0 Xy 42) + @ (X125 X104 3)R(X 125 Xp43)
+ @ (X435 X2 ) [T (X435 X0 g a)R(X 435 Xy44)
+ 1H(Xw-*-éb xw+5)R(xw+4’ xw+5)]
+ @ (X435 X042 T Xppp50 X2 ) [T (X450 Xp46)
R(warS’ xw+6)
+ w(xu)+6’ Xw+7)R(xw+67 xw+7)] R
+ (X435 X2 )T (X455 X042 2) T (X7, X0
W (Xy424-3> X10422)
X [@ (X p124-3> X1p122-2) R (X 421235 Xip424-2)
+ T(Xp424-25 Xipr24- DR X 42-25 Xpp422-1)]
+ (X435 X2 )T (X455 X042 T (X7, X0
W (X424-3 X1p424)
X @ (Xp24-15 X2 ) [T X420-15 Xip422)
R(X 121> Xo424)
+ T (X2 X224 DR X w4245 Xpps241)]

< (X Xy 2K R(X X2) + T (X425 X104 3)K P R(x0, %)
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H o (X435 X122 T X5y X)) X o0
X W (Xy424-3> Xip422)
[ (X r21-3> X212k P4 R(xg, 1)
+ O (X2i-25 Xup2ie DK R(x0, %] ©
T W(Xy435 X2 )T Xpy55 Xipp22) X oo
X @ (X 424-35 Xp42) T X241 X1p422)
(X pi24 1> Xpora )PP R (3, 1)
+ D (X040 Xipyaar DK AR (g, x))]
Thus we conclude,
R(X,5 X ) < @ (X5 X 42) R (X0, X))k + @ (X 40, X1y 3) R (X, xl)k’”Jr2

4 Sh=wt2i-1 Vi

b=w+3 r1=w+3w(x’l’ Xw+24)

[w(xb, Xpp DK+ @(xpy s xb+2)kb+]] R(xg, x1)-

10

There just, we use that w(x,y) > 1.
Let

Sy = ZE I w0y X yi0) [m(x,,, oK + w(xbﬂ,x”z)kb“] R(xg.x).
Then we have,
R(xy, X)) < R(xg, X)W (X X140k + R(x, x )@ (X105 xw+3)k’”+2
+ Syt = Spaal.
Now let,
a, = ﬂzzow(xﬂ,xm) [w(xb,xbﬂ)kb + @w(xpy g, xb+2)kb+l] .

i1
ay

Now consider, lim,_, ., sup,,,

(X415 Xpip)k + (X0, Xb+3)k2
@ (Xp, Xpy1) + @ (Xpy 15 Xpip)k
@ (Xp41> Xpin) + T(Xp10, Xpy3)

@ (xy, Xpp1) + (K41, Xpio)

= lim sup w(xp,,x,,)
—Om>1

< lim sup w(xy4q, X,,)
b—o0 p>1

<1

By using the Ratio Test, we conclude that the series

= =b
ZL(‘;"H::()m(xﬂ,warﬂ) @ (%, XK+ W(xb+l,xb+1)kb+l]
R(xg,x,) converges.

Hence R(x,, x,,) is converges as w, m go towards co. Thus by casel and
case2, we have
lim R(x,,x,)=0.

w,m—>o0o

We conclude that the {#*“x} is a Cauchy sequence. As a result there
exist a ¢ € 0'UJ such that .#”“x — o. Note that {.#?*x} is a sequence
in ¢ and {.#?*~!x} is a sequence in . such that both sequences tends
to same limit ¢. As ¢ and . are closed, ¢ € O'n#. Hence ONJ# + @.

We prove that .¢ = ¢. Consider,

R(So,0) = Mh_r)rgo R(Fe, .7 x)
= lim R(Sx,.7c)
< Jlim kR(7*x, 6) an
=kR(o,0)
=0,

which yields R(¥o,0) = 0. Therefore, .”¢ = o.

We can easily prove uniqueness. For this, Suppose that the sequence
{x,} has two limit points 6,0, in &' n 7.

ie., lim,_ x, = o and lim,_  x,, = 0,. Here {x,} is a Cauchy
sequence for x,, # x, for w # m. Hence from hypotheses, we have
R(oy,07) < w(oy,x,)R(07,x,) + (X, X, )R(X,,, X,,) + ©(X,,, 02)R(x,,,
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0,). Letting w, m — oo in the above inequality, R(6,,0,) =0 = 0, = 05.
Hence the sequence {.#x,,} has unique limit point in &'n s#. Thus .
has a unique fixed point in &' n 7.

Theorem 2. Let {.<, }le be non-empty closed subsets of a complete CRMS
and suppose .7 : UL G > UL | % is a cyclical operator and there exists

real numbers r € [0, %), s € [0, %) and t € [0, %) such that for each pair
(x,y) € o, X ., for 1 <b < p, at-least one of the following is true.

(@), R(LMx, SLy) < rR(S*7Ix, y);

(Z%). R(IHx, Ly) < s[R(F* 1 x, S20x) + R(y, )]
(Z). R(FSx, Ly) S HR(SIx, L y) + R(SHx, )]
Let us suppose following conditions:

1. For xy € 4, take x,, = .7 x,. Suppose that,

@ (Xp 41> Xpr2) + @ (X102, Xpy3)

(X, Xpy1) + W(Xpyp, Xpio)

lim sup w(xy 1, X,,) <1

b—00 p>1

Assume that, lim,,_,, o w(x,,x),lim,_, @, x,) and

1imy,, s 4 oo @ (X, X,,) exist and are finite for all w,m € N, w # m;
+T(Xu—1:%m) ST Xp—1) TS YXo-1)
2.0 < max{r, S 2w—1:X2w R w , w s
= { 1=5w(x2,,Fy) " 1=5w(x24,Fy)" 1=tw(x9,, S y)
10 (Xp-1,Y) y< 1
1=tw(xy,,7y) 2’

Then . has a unique fixed point y in ﬂle <f,. Moreover, the Picard
iteration x,, given by .“x,, = x,,,;, w > 0 converges to y for any starting
point xy € Uf_, <.

Proof. Suppose there exists x = x, € <4,. Define the iterative sequence
x, = S"x,. Since x, € o, and . is a cyclical operator, we have
Xy, € o, and xy,,,1 € 4, for all w > 0.

Using the CRMS conditions, we will prove that each of the three
relations (Z*), (Z*) and (Z*) can be written in the following equivalent
manner.

R(Zx,.7y) SYyR(S* X, y) + y RS x,.72%)
and

R(Sx, y) S yR(Sx, L y) + wR(SHx, y),

s+w (o1 %0w) _ STWXow-1) 1+ y.x00-1)

wher =
ere v T l=sw(x0, L) T 1=sw(x90, Ly) 1=tw (x4, L)’

max{r

1w (X2-1.Y) }
=@ (3, 9) |
For proving the above two inequalities let b € 1,2,3, ..., p and two

points x € &,y € &,,. At-least one of the (Z*),(Z*) or (Z°) is true.
If (Z*) holds, then we have,

R(Sx,.7y) < sS[R(S?x, 727 x) + R(y, 7]
<S[R(Z2x, 727 ) +{w (y, 72 I OR(y, 720 x)
+ w(SW x, SRS x, S
+ WX, S YRS x, Sy}
which implies,
[1 — sw(L?Yx, SPIR(CL?x, Ly) < [s + w(F 2 x, 72 x)]
X R(SHx, 72 x)
+ sw(y, .S OR©G, S %)
this can be deduced as,
s+ w(FHlx, F20yx)
1 — sw(Swx, 7y)
_son 2
1 - sw(Swx, . 7y)
If (Z°) holds, then we have,
R(SMx, . 7y) < IR x, Zy) + R(Sx, y)]
<RI M x, Sy) + {w (S x, YRS x, L y)
+ w(Ly, SRSy, S0 x)
+ (S RSP X N

R(S*x, Sy) < R(S*x, 27! x)

R(y, /2 1x). (12)
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which implies,
[1 - tw (L ?x, S WIR(S?x, S y) < [t + w(SLy, L7 x)]
X R(S 1y, Sy)
+ 1w (S X Y R(SH X, ),
this can be deduced as,
2w—1
t+w(Sy, S X) Ry, 7y)
1 —tw(S?wx,.7y)
tw (L2 x, y)
1 —tw(Swx, 7y)
Therefore by denoting,

R(S*x,.7y) <

RS> 1x, ). 13)

sw(y, Xo—1) tH+ (LY, X001)
1 = sw(xp,,-Ly) " 1 = sw0(x0,Ly) 1 = tw(xp,,-Sy)’
1w (Xp-15 )

1 = tw(xy,, L y) } ’

S+ (X 15 Xow)

u/:max{r,

We have 0 < y < l, then Egs. (12) and (13) reduces to

R(Sx, Sy) S yR(S?x, 727 0) + yR(y, 727 x) a4
and
R(Sx, y) S yR(S?7x, L y) + yR(SH 7 x, y). @s)

Let x € Uf_, o and let x,, = #“xp, w = 1,2,... It follows that there
exists b € {1,2,.....p} such that x, € 4 and x; = .“x;, € 4, due to
L() C A, forallb e (1,2,3,...,p}.

In addition, from Eq. (14), we get,

R(S?*x,.Ix) < wyR(S*x, %) + wR(x, x)
= (1 —p)R(S?x, Lx) < yR(LX, x)
= R(S%x, %) < 1 Ld R(Sx, x)
-y
= R(xp,x1) < AR(xy, xg),

where A = ll which lies between 0 and 1. Similarly,

_V/ 2
R(Sx, 9%x) = R(L*(Sx), S (Fx))
< YRS %), L (IX) + yR(Ix, L (LX)
=y R(Ix, 7*x) + yR(S?x, X)
= (1= )RS x, 72x) < wR(S2x, %)
which implies,

1772
-y
= AR(x,, %)
< A*R(xy, xq)

R(S3x,.9%x) < R(S*x,.7x)

which gives,

R(x3, %) < A2R(x1, Xg).

Which can be generalized by induction, such as,

R(X 5 X 41) < AYR(xg, x1), w 2 0. ae)
Since 0 < A < 1, taking lim,,_, ,, both sides of Eq. (16), then we get,
Jim R (X0, Xy41) = 0. a7n

We shall prove that lim,,_,, R(x,, X,,4,) = 0. We assume that x,, # x,,
for every w,m € N. Indeed suppose that x,, = x,, for some w =m +r,
with r > 0, so we have .x, = .¥x,,, and

R(xm’ xm+l) = R(xw’ xw+l)
< KR(xy_1, Xyp)-
Since k € (0, 1), therefore R(x,,, x,,41) = R(x,, X,p11) < R(X,_1,X,,). By

continuing this process, we have R(x,,, X,,,1) < R(x,,, X,,.;.1), Which is a
contradiction.



S.K. Panda et al.

Therefore R(x,,,x,,) > 0 for every w,m € N,w # m.
To prove lim,,_, o, R(x,,, X,,4») = 0, by using Eq. (14), we get,
R(xy,x3) = R(x3,x)
= R(SSx), LX)
< y/R(ESﬂx, F2x) + wR(x, F2x) (18)
=yR(x3, %) + WR(xg, X5)
< wAPR(xg, %) + wR(Xg, X,).

Now consider,

R(x,x4) = R(x4,%,)
= R(FAS*x), S (S )
< y/R(é"‘x, I3x) + Y R(Sx, 73x%)
= WR(xy, x3) + WR(xy, x3)
< 1//A3R(x0, x)+ W[WAZR(XO, x1) +wR(xg, x5)]
= (y/A3 + W2A2)R(x0, X))+ WZR(xO, X5).

19)

Similarly by using Egs. (14) and (19)

R(x3,x4) L WR(X5,x4) + WR(X3,X4)
< WAMR(xp, x1) + WA + w2 AR (xg, X1) + W R(xg, X))
= A + 2 A% P AHR(xg, x1) + W R(xg x,).
(20)
By induction, we can easily prove that
R(X s Xppi0) < WA Ly 2 A% 4o 1y ADR(x, %)) + W R(xg, X5)
2 w
— Vw2 v w+2 v w+2
= <XA + FA + et FA )R(xo,xl)
+ Wy R(xg, x,)

w2 yw-1 (¥ b+l w
= (Av2zs <X> R(xg.x1) + WOR (X0, Xo).
Letting w — oo on both sides, we get,

lim R(x,,, X,,4,) =0. @D

w—00

Similarly to the proof of Theorem 1, we can easily prove that /"x is
a Cauchy sequence in (M, R).

i.e., lr}1r_r>100 R(x,,x,) =0, Vw,m €N,

w.
for each x, € Ué’zl <, and hence a convergent sequence too. Let y be
its limit.
ie., lim R(S%x,y)=0.
w—0o0

By using definition of cyclical operator of an infinite number of

terms of this sequence lie in each ., for all b = 1,2,3, ..., p. Therefore,

ye|[ | #9.

p
b=1

Note that .7?*x is a sequence in <4, and .7?~Ix is a sequence in %,
such that both sequences tend to same limit y.
To prove that y is a fixed point of .7, we will use Eq. (14),

R(S7.y) = lim R(Sy, Sy

lim R(S*y,.y)

Ww—00

<y lim R(S?y, 7% y) +y lim R(y, 7% 'y)
w—00 w—oo

=yR(®y,y) +wR(®Y,7)

which gives R(.y,y) = 0. Therefore, .y =y.
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To prove uniqueness, let us suppose .” has another fixed point
r* €Nl_, @, v #r*. Thus, #y* = y*. By using Eq. (14), we obtain,
R(y,y*) = lim R(S*y,.Sy*)

w—oo
<y lim RS2y, 27y lim RG>, 727 1y)
w=oo w—oo
= YR +WRE™Y),
which gives,

(I-y)R(*.y) <0.

= R(*,y) =0, since 0 <y < %

Hence y = y*. This completes the proof.

Example 1. Let & = 7 = M = [0, 1]. Define R : M x M — [0, ) by
M(x,y) = |x—-y|? and w : M X M = [1,00) by w(x,y) = x + y+ 3 for
all x,y e M.

Define .¥ : M — M by

0, if xelo,1
P {1 . x [1 51
g if xe [E,l]
Fix any x € [0, l).
Casel: If y € [0, %), then .y = 0 and since x € [0, %),

Fx=0,7*x=0;...9"x =0, forall w.
Then,
R(SMx, Sy) =0

<kR(S* 1x,y) for ke (0,1).
Case2: If ye [%, 1) then .y = 411 and .¥“x =0, forall w. Thus,

R(#20x,.7 )= 10~ 1
- L
T 16

2

<kl0—yl

= kR(S* x,y) for ke (0,1).

Thus all the conditions of Theorem 1 satisfied and 0 is the unique fixed
point of ..

Theorem 3. Let . be a self mapping on M, and let (M, R) be a complete
controlled rectangular metric space. Assume that the axioms listed below are
true.

1. For all x,y € M, we have R(Zx,.%y) < kR(x,y), k €[0,1);

2. . is continuous.

3. For x; € M, take x, = .#*“x,. Suppose that
W(Xpy 1, Xpip) + W (Xp10, Xpy3)

(X, Xpyy) + W(Xpyp, Xpio)

lim sup w(xy1,X,,) <1

b—>00 >1

We assume that, for x € M, we have lim,_  w(x,,x),
lim,,_,, w(x,x,) and lim w(x,,x,,) exist and are finite
Yw,m € N and w # m.

w,m—+00

Then .# has a unique fixed point in M.

Theorem 4. Let 0 and ¢ be non-empty closed subset of a complete
CRMS and . : OU. — O'U S be a cyclic map. If there exists k € (0, 1)
such that

R('x,7y) < kR(x.y) (22)
forall x e 0 and y € 5. For x € 0, take x,, = ./"x,. Suppose that

(X415 Xpyo) + T(Xp i, Xp13)

@ (Xy, Xpy1) + @(Xpy1s Xpyo)

<1

lim sup w(x,,1, X,,)
b—o00 y>1
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We assume that, for x € M, we have lim,,_, , ., w(x,,,x),lim,,_,  @w(x,x,)
and lim,,, ,,_, , o, W(X,,. X,,) exist and are finite Vw,m € N and w # m. Then
. has a unique fixed point in &' n .

Proof. Fix, x(say) x, in ¢ U J#. Define the iterative sequence x,
S"xq. Thus for x, € & n s, by hypotheses we have, R(xy,x,)
kR(xq, x1).

By induction we can obtain that R(x,,, x,,,) < k"R(xy,x;) for all
w > 0. Then the above equation yields that {#*(x)} is a Cauchy
sequence. Consequently {.'“(x)} converges to some point v € R.
However in view of Eq. (22) an infinite number of terms of the sequence
{#%(x)} lie in ¢ and an infinite number of terms lie in 7. Therefore
vEO NI, S0, 0N +0.

Since . is cyclic, .(0) C A and . () C ' leadsto .¥ : ONH —
Ons# and Eq. (22) implies that . restricted to &'n.77 is a contraction
mapping. Since Banach contraction mapping principle applies to . on
O n . By following same pattern in Theorem 4, we can easily prove
that .# has a unique fixed point in &' n 7.

IA I

Remark 1. Theorem 4 has the fascinating quality that continuity of .
is no longer required.

To demonstrate that discontinuous maps can meet every require-
ment of Theorem 4, we used the following example.

Example 2. Let M2= NuU{c} and let R : M X M — [0, o0) be defined
by R(x,y) = -—1‘ and @ : MxM — [1, ) by w(x,y) = x|+ |y +3.

Then (M, R) is a CRMS.
Let . : M — M defined by

Py = 4x,
00, if x=o

Let 0 =NU{oo} and # = {4x : x € N} U {oo} then M = 0 U J# and
S(0) C A and .¥() C O. One can easily prove that R(x,.y) <
kR(x,y) for all x € 0 and y € 7.

Thus the discontinuous mapping . satisfies all the conditions of
Theorem 4.

if xeN

Connecting fixed point methods to piecewise Caputo-Fabrizio
derivative

Several classifications of differential equations have been seen in re-
cent years. Analytical and numerical approaches have been developed
by many authors to address complex problems. These problems have
been successfully used to model a number of real-world concerns. We
noted that the fractional differential operators are utilized to address a
huge variety of real-world challenges better progressively.

During recent years, a variety of approaches have been proposed
to illustrate the behaviours of some complicated global issues that
have emerged in a range of scientific domains. The idea of piece-
wise equations (PEs) of under fractional order derivative was indeed
newly proposed by the authors of [19] with the purpose of modelling
nonlinear behaviour of real-world issues.

Thus, under the conceptual theory of piecewise equations with
Caputo fractional derivative (shortly, ¢.% %) as,

ZECTDI0(w) = O(w,0w),” T DXO(w)), € [0,4], where >0

(23)
6(0) = 0, + a(w), O, € R,

such that y € (0,1], « € C([0,4]) and O : [0,7] X Rx R — xR.
Here we prove the existence and unique solution for the above-stated
general Cauchy nonlocal implicit problems while keeping in mind the
importance and usefulness. The term 2% .% refers to piecewise ¢.% 7,
which uses a non-singular exponential kind kernel to depict the power
law singular kernel. Piecewise versions of fractional Calculus is further
described in [20]-[21], which we recommend for readers.
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Definition 4. The piecewise integral of fractional order y € (0,1] is
formulated as having if ¢ is a continuous function:

P 31 oo )_{ o o(p)dp. if @€ l0.0]

[ ep)dp.

@ £ o(w) + £~ if welw,nl,

EF () GS({)

where the normalizing function is €F(y).

Definition 5. Considering that ¢ is a continuous function, the piece-
wise derivative with a classical and exponential decay kernel and
fractional order ¢ € (0, 1] is expressed in terms:

do .
PeF o if wel0,w]
@lg(a)) {%?@Z

here, ¢ D7 exhibit €.7 2, for o € [w,,#] that has always been
described like,

CF D2 o(w) = 9”f()()/ <

o), if w€lw,nl,

) o' (pdp. > 0.

Lemma 1. If O is indeed a continuous function, then the piecewise

equation-based ¢.% & solution to the specific problem will follow:
PET D1 0(w) = V(). z € (0.1],

provided by,

(@) = (0)+/“" O(p)dp, if »€[0,m]
0 @ (2] .
o) + F50@) + G [ Op)dp. i € [w).n).
Then the CRMS is defined as, M = {o : [0,q] - R/c € C([0,w;] U

[w;,n])} endowed with a norm:

R(6 (@), 02(®) = llo) (@) — o2 (@)

sup oy (@) — oy(@)]*.
@1 €[0,n]

Remark 2. By utilizing above Lemma, the solution of the problem
with piecewise linear equation

PECT Dl5(w) = Vw) x€l0,1], 24
0(0) = 6 + a(o).

which can be deduced as,

oo+ a(o) + /w' O(p)dp, where w € [0,w]

o(w) = 1-y _x g

o@D + 5 0@) + Fs /w] O(p)dp, where w € [wy,7].
Proof. When both sides of Eq. (24) are subjected to the piecewise
integral, we have

o(@)) + =L 0(w) + —<— [ B(p)dp, where o € [w;,7].

c(0) + f O(p)dp, where w € [0,w,]
o(w) =
CF () GS(/) /“’

(25)

By taking ¢(0) = o + a(0) in Eq. (24), we have

1
(@) + o550@) + s [, Olp)dp, where o € [oy, 7).

{o‘o +a(0)+ [ O(p)dp, where w €[0,m,]

o(w) =

Corollary 1. The solution to the desired problem Eq. (23) is provided by
Remark 2.

oo+ a(0) + [ Op,o(p), 7 ¢ T Dfo(p)dp, » € [0,w];
o(@) = o(w)) + @16{)@(60 6(@),7C 7 DX o(w))

+ 2 Jo ©0.0(0). 7T D o(p)dp. @ & [y, n].
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Theorem 5. Let M = {6 : [0,7] » R/c € C([0,w,]V [w;,n])} and
R : M XM — [0, 00) be given by R(6(), 05(@)) = ||(61(@) = 62(@))*|| =
SUPse(0.4] |‘71(w)—02(w)|2 with w(o)(w),05(w)) = |oj(@)] + |oy(@)| + 3,
where w : M X M — [1,0). Clearly (M, R) is a complete CRMS.

O = A = M. It is obvious that € and ¢ are closed subsets of (M, R).
Define . : O U — O U by

oo +a(0) + [ O, o(p), 7 €T Dio(p)dp, » €[0,0,];
o‘(a)l)+ =L 9w, 6(w), P €T DX o(w))

0
+ oy Jo ©.00). 7T D o(p)dp. w € [oy.1].

So(w) =

(26)
Clearly, (0) c  and &(¢) C 0. Thus G is a cyclic map on 0 U .

The accompanying premise must exist for this investigation of being
valid:

(A,) For every ¢,& € M and element ¢, > 0, we have
la(o) — a(®)] < ,lo —&l;
(A,) Forevery o, g,E,E € M and the elements .%, > 0and 0 < .7y < 1,
10,0, - 0@,5,8)| < Lplo -5l +.Mplé - & II;
(A3) For oy € M, take 6, = ."“o,. Suppose that

< 1.

i @W(Op415 Op42) + @(0h12, 0p43)
im sup @ (Cpt150p)
b—co @(0), Oy41) + @ (0115 Ohy2)

We assume that, for o € M, we have lim,,_, ,, w(0,,,0),lim,,_,
w(o,0,) and lim,, ,,, ., w(o,,6,) exist and are finite Vio,m € N
and w # m.

(Ay) lczmax{(% + ;‘";2) (

a-0nZLe
CF(n(1-A o)

2
1 ZLolw-0) >
* Goi—te } <l

In view of hypotheses, A, — A,, our problem Eq. (23) has a unique

solution.

Proof. Consider o,o € M, then we have,

|ZCF D (0(w) -7 ¢ T DX (G ()
= 0(@. 0(0),7 7 DX (c(w))) - O.5(®).”C 7 DI(G(w))) 27
< ZLolo(@) = 5(@)| + M| P T DX (0(@) -FC T DL @ (w))|

in light of this, we have Eq. (27)

| 7€ D1 (6(w) -7 CT DFG ()] < ; lo(@) — ()| (28)

6]
— '/ﬂ@
As a result, we suppose ¢,c € M, and using (28),
|6 - 75|
la(e) — a@)| + /" 10, o(p), 7 €T D} o(p)
—@(p 5(p), 7 ¢ 7 D5(p)ldp, w€[0,0,];
wm |6(w, 6(@), 7 7 DEo(w)) — O@,5(0), 7 ¢ DE5(w))|
+ &2 S 1000077 D6 (p) - €(p. 5 (p).
ZECTDIGP)Idp, o € [0, 7).

(29)
Thus, Eq. (29) leads to,
|6 — 5
Colo =51+ [ (Lolow) =) + 4| 7 ¢ 7 D} o(p)
W‘fff’@’a(pn)dp, w € [0,0,];
= G?(;{) (jfgla(w)—a(w)l +///@|9<€9©Za(w) PECF @A/a(w)l)
+ ez Jon (Lolow) =) + Mo| 77 D 0(p)

9‘59@%@”) dp, o € [o,n].
(30

Results in Physics 46 (2023) 106313

If we simplify further, Eq. (30) provides
|76 — 0|

Glo -1+ " (e )|a<p>—6cp>|dp, € (0.

-y £ Z, ® —

=1\ Tt T 0@ —T@) + FEs 5= fo lo@) —o(p)ldp,  BD
€ [o,7].

|.Lo(w) — S5(w)|*

@20 ~52 + (i (722-) o) ~ o)

2%, (22 ) 1o =5 ;" dp.o € 0,0, ;
-y 2o _ =2 1 %o \?
ah (¢S(1) l—fﬂ@) lo =l ) (csm 1—//:@>

(/s o) - 5wldp)

2
1- 2L, -
2HD (Ze ) o) - TP [ dp. @ € Loyl

(€10 -5 + (722 ) 1otr) - 5P
126, (22 ) 1o - 500y, @€ Dol
= (1—1 z@ )2|6_6|2+<‘5 Lo )2

S0 -ty () -l
lo(p) - 5(P)*(@ — @ )?

A-p (%o \? =2
2EL (o) o) - TP @), @€ o1l
LL0? 2€. L, —
2 0”1 aZ0?] _ 2 .
<(‘bﬂa) Yot e, lo(p) —o(p)|”, we€[0,m];
=3 -2 £ A

20(1-) LR (0-w))
(€F()? (I-AMo)P ~ (€F()(1-Mp) €T~ AMo)

X|o(p) — o(P)|?, w € [, 1]

(0 + 2o ) o) 5P, @€ [0,0];

_ (-Ao) ,
(1-0ZLe xZLo(w-w)) ) =2
((e‘m»(l—//t@) Soi-de) 0P oI5 @ Elwp, ]

Thus, by taking supremum on both sides,

sup |.70(@) — ZT(@)|* <

2 Low| = 2 .
sup (%( (=M )> le(p) —a(p)|*, ®€[0,0];

( A-N%e
(€FC(1-A o)

+ o) Vo) G, € o]
(- M) ’ 1>

Which implies,
|7 0(w) - So(w)|l <

2
(% + Z225) o) -5, @e0.o);

(- o) )
(1-ZLe 1 Lo(w—mw)) ) =
((cm»u—/fz@) Sy ) 100 —o@l, @ €lo,nl.

Hence the inequality can be written as,
|7 0(@) — Lo(w) < Kllo(@) - ()]

Thus, all of Theorem 3 requirements have been met. Thus, . possesses
a unique fixed point, indicating that the solution to the Eq. (23) is
unique.

Connecting fixed point results to wth order multi-term fractional
delay differential equation

Differential equations of any order can be used to model the mem-
ory and genetic characteristics of diverse materials and processes. In
comparison to the conventional integer-order structures, fractional-
order models appear to be more acceptable and practical. Hypothetical
advancements in regularity, catastrophic dynamics, and mathematical
analysis for fractional equations have increased significantly. Numerous
real-world problems have computational methods that use multi-term
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fractional differential equations, which contain multiple fractional or-
der differential operators. For the most significant characteristics of this
category of mathematical analysis, the readers may refer to [22]-[23].
Additionally, the authors of [24] have demonstrated the existence and
uniqueness of the solution and examined the findings in relation to four
distinct categories of functional stability.

A model of an wth order multi-term fractional delay differential
equation was indeed proposed by G.U. Rahaman et al. [25] as below:

I & “D%0(a) = 0(a, 0(a), 6(ua)),

9, ew-Lwl, 0<9 <1, b=23.,wue©1.€R,

aeg=1[01]; (32)
;

o) =0, LD =0, o(1)= T 2y,0(r,), 7, €R, and

7, €(0,1) here £ =1,2,3, ..., w ~2.

In addition to presenting existing and unique solutions to the wth order
multi-term fractional delay differential equation, the authors of [25]
also focused on findings pertaining to different kinds of functional
stability. For more related results see, [26] and [27].

Theorem 6. The CRMS of all continuous functions defined on [0, 1] which
is denoted by C([0,1],R) and endowed with R(c(a),0,(a)) = ||(6,(a) —
0@ = sup{lo,(@) -0y, a € [0,1]}. Let w : C([0,1],R) x
C([0,1],R) — [1, o0) defined by w(o,(a), 05(a)) = | (a) + o,(a) + 3|, where
C([0,1],R) = {c/c : [0,1] » R} then (C([0, 1],R), R) is a complete CRMS.

Let 0 = # = C([0,1],R). It is clear that & are closed subsets of
(C([0, 1], R), R).

Define ¥ : O'u I — O U by

7
Fo@ =T z;’:—fyfm / (2 = N"710r, 6(r), o (ur))dr
w— w é L B>
-2z sz 2, yfm/ (r, — N1~ e(rydr

_ o+ _ a9l
flr(’gl)./o A =r1=0(r,o(r), o(ur))dr

w & 1 ! o
ZHE r(&l—s-)/ (= la(r)dr]

/ (a =710, o(r), o(ur))dr

(33)

§1F(t91)

w &
* 5 T, —s)/ (a= P a)dr.

Clearly, #(0) c 2 and /() C 0. Thus . is a cyclic map on 0 U J#.
We need the following presumptions in order to demonstrate the existence
and uniqueness outcomes for the problem (32):

(A). The function 6 : GX R xR — R is continuous;

(A). 10(a,61.07) — 0(a, By, Br)| < Ajloy = pyl+Azlop —
and ¢,,0,, P, 5, € R where A, A, > 0.

(A3).

p,| foreacha € G

— 1
A= 22 414 0)—— A, )2
[( et Vle Tolre, +n™?

161 9,-9
sw2 5w (71, ™" + 1+ 10y |
< =20 e T =8, +1)" ¢ !
+2 5022 (Il ™ (A + o + 1+ I et ) + (o + 1D
b=2=r=1 \177 01T, relt, 01

A
x - - |'§I> 3| 2 <1
€120 ]2 01 = 8 + DI + 1)

Then the wth order multi-term fractional delay differential problem (32) has
unique solution.
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Proof. 6, € O and o, € H, i.c.,
Consider, |.6,(a) — L 0,(a)|

01,05 € C([0, 1], R).

|

_ [ Sw- 2|},/| B |]“(& )/ (tp —r)v91 1|9(r o1(r),o1(ur))

loi]
— 0(r, 05(r), oo (ur))|dr

w2 gw 15! .
+ 2%2|;|lmm/ (@ =" oy () = oy()ldr

+ m /0 (1 =110, 0,(r). 0, (ur)) = 6(r.o(r). o (ur)ldr  (34)

w 16l 1

1
b=2Hm/ (1 =n"=5" e, (r) = oy()ldr

5 / (a=nr"17100, 6,(r), 01 (ur) = 0(r, 65(r), 02 (ur))|dr

|§1|T(19

w 16l 9, -9 —
2b=2ﬁm/) (a—r)91 % llO'l(r)—O'z(r)ldr
ja!|

= o] [Zg:ﬁ}’ﬂlé |1"(19)/ (zp =171 (Ao} — o

+ Ayloy — o, )dr

51 9,9,
+ 20 22;”2“: ||7f|m/ (7, =" oy — 0, |dr

+ m/o (A =n"""(Aloy = 03] + Agloy = oa])dr (35)

1% 1 /1 o
sw 2 [ (1= o) — o, ldr
b=21g| T8 - 9) T

m/ (a—r"17"(Alo) = o3| + Ayloy — o3 dr
1 1

161 1 / 9,-9,~1
+ ZY (@a—nr"17" o —oyldr.
=216, 7@, - 8) o1 =2l

Since A3 = A; + A,, we get

1

1
|-Lo1(a) — L oy(a)l < |0y — 0] < ol [A3 W2y IR

/K(rf—r)‘gl_ldr
+ 27 22“’ |§b||y |—/ (r, =101,
=211 09, - 9) ‘
3 _ a9l
* |§1|r<f91>/“ o
w 161 9,-9,-1
”“wrwl s)/“ DR
|¢|r<8>/(“ e
1 1

w 161 1 9,-9,~1
%121, T, — ) ,9)/(“ LA

(36)
The integral in Eq. (36) is evaluated, and the result is,
|-Lo1(a) — L oy(a)l < |0y — 03] [ Zw_l (|}’f|T +1+0)
1€ 1 |lr<8 i
11101 1 37)

Zw 2 w |§b|
=21g || oI T(9; — 9, + 1)

9,9
(rele,' ™ + 1+ |01|)] .
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Now, we get

|.L6,(a) — L o,(a)|?

2 -2 9
<loy =P | [ Z42r, 122 + 140,

1 2
A
e Talr®, +D 3)

+ | ety 15| Uy 10" + 1+ 1o, )?

LT o) I T, =9, + 1)
22Uy, 17l + 1+ o)y )
« 1€, A3

1§ 2lo) 2L =8, + DI, + 1)

"t 1410

2 -2 9
<loy =0yl 2 vl + 1+ 0

1 2
A
el @, + 1 3)
151

+ [z Uy 27" + 1410 )?
< SR o ITO, -8, + D :

+2

e 9 9,-9
ZLZZ;:]Z(D’HT/ +1+o)relr,"” ™ + 1+ 0,

)|

X 2 2
& 12loyPT(9) — 9, + DI, + 1)
y—! 9
<loy =0yl | | Z2Urelr, +1+0)

. (2 . 16|

EETR2E oy [T 9, + 1)

+A 2
& o[ T (9 +1) }

9,-9,
Urele, ™ + 1+ 10,D) |

, — 2 28,-9 9 9
+2( 2,2 P2 4 e + el oy

9,9 9,-9
+lrele," " + 1+ 1oy +olvelz,! b‘f‘Ol‘f'(Jf)
& As] 2

X
& 1210 12T, = 9, + DI, + 1)

, 1
< — 2 2“‘2 9, +1+4 R — 2
<loy— oyl £=1 (|7f|ff 01) EAEAOED) 3
: 151 9,-9
+ | Ze2zw JURE S 2
< B oo, o, + b o

- 9,-9, 9 9, 9,
+2 zbﬁzz;f:f(wr/ b(mw +7l 4l 1 +ol) +(0 + 1)2)

)|

x 2 2
&1 12101 P9y = 8, + DIy + 1)

(38)

This can be reduced to,
- 9
|Z61(a) — Loy @I* < |o) — 0] [( S rele, + 1+ 0p)

1 2
_—A
& o179, + 1) 3)

_ 151
+ Fw 22w
( ELT20E | 0y IT(9) — 8, + 1)

9,-9,
(rele,! b+1+|o1|)>2
9,-9,

+2 < (1l

eIl ) +oy + 17 )

% 1€, 45
1€ 12101219 — 9, + DT (9, + 1)

< Alo; - 62|2.

Sw Zw—Z

9,
. (a+ena +1)

)]

(39)
By taking supremum on both sides, we get

(Lo (@) — Lo (@) < Alitey = 62)*l.
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Fig. 1. Graphical representation of given discontinuous function.

Thus, all of Theorem 3 requirements have been met. Thus, . possesses
a unique fixed point, indicating that the solution to the problem (32)
is unique.

Numerical study

Example 3. Let M = [0,1]. Define R M X M — [0,00) by
R(x,y) = [x—y*>and w : M x M = [l,00) by w(x,y) = x+y+3
for all x,y € M. Then (M, R) is a complete CRMS.

Let ¢ = [0,0.56] and 7 = [0.25,1]. Clearly, ¢ and ¢ are closed
subsets of M = [0, 1].
Define . : O U - 0 U by

042, if 0<x<0.25
S x =
0.75(1 —x), if 025<x<1,

which is discontinuous as shown in Fig. 1.
First we will prove that . is a cyclic map. For this we need to prove
S (O)C .
So,if x=0€ 0, then .¥x=.70=042 € .
If x =0.56 € 0, then .“x = .0.56 = 0.75(1 — 0.56) = 0.33 € 7.
If 0 < x < 0.56, suppose 0 < x < 0.25 then .x = 0.42 € 7. Suppose
0.25 < x < 0.56, then
—-0.25> —x > —-0.56
- 056 < —x<-0.25
>1-056<1-x<1-025
= 0.33 < 0.75(1 — x) < 0.56
= 0.33 < .¥x <0.56
= .¥x € (0.33,0.56) € [0.25,1]
which implies, .#x € 5, thus ./ (0) C .
Now we will prove () C 0.
If x =0.25 then ¥x =.7025=042€ 0.
If x=1then ¥x=1=0€ 0.
If 0.25 < x < 1, then —0.25 > —x > —1 which implies
-1 <-x<-025
>0<1-x<0.75
= 0<0.75(1 —x) < 0.56
=>0<.Yx<0.56
= .¥x € (0,0.56) € [0,0.56]
which implies, .x € 0, thus /() C 0.
Hence . (0) C 2 and /() C O. Therefore . is a cyclic map.
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Fig. 2. The value of the comparison of the L.H.S. and the R.H.S. of Eq. (1) in Case-2.

Table 1
Numerical comparisons of L.H.S and R.H.S of Example 3 of subcase-I of
Case-3.
X y R(FHx, Zy) kR(F# 201y, »)
0 0.025 0 0.1404
0 0.075 0 0.1075
0 0.125 0 0.0783
0 0.175 0 0.0540
0 0.225 0 0.0342

Fix any x € [0, 0.56]
Let x =0, then .¥x = .%x =.93x = - .9"x = 0.42.
Therefore, /?%x = ./?W~1x = 0.42.
Case:1 If y =0, then .y = .0 = 0.42.
Consider,

R(S*x,.7y) =0
<kR(S* 1x,y) for ke (0,1).

Thus, R(S?“x, Sy) < kR(S?*~x, ).
Case:2 If y = 0.56, then .y = .0.56 = 0.75(1 — 0.5) = 0.33.
Consider,

R(S*x,.7y) = R(0.42,0.33) = 0.00081
< kR(0.42,0.56)
= kR(S* 1x,y) for k=09 e (0,1).

Thus, R(S*"x,.7y) < kR(#*~1x,y) (see Fig. 2).
Case:3 If 0 < y < 0.56.

Sub-case:I If 0 < y < 0.25, then .y = 0.42.

Consider,

R(S*x, #y) = R(0.42,0.42) = 0
<kl042—y?
= kR(S* 1x,y) for ke (0,1).

Therefore, R(#*"x,.7y) < kR(.Z**1x,y) (See Tables 1-3)

Sub-case:II If 0.25 < y < 0.56, then .y = 0.75(1 — y).

11
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Table 2

Numerical comparisons of L.H.S and R.H.S of Example 3 of subcase-II of Case-3.
x y R(F2x, L) kR(#*"Ix,y) with k=09
0 0.062 0.080372 0.115348
0 0.186 0.03629 0.04928
0 0.31 0.009506 0.01089
0 0.434 0.00002 0.000176
0 0.558 0.007832 0.01714

Table 3

Picard iterations.
X xo =0.08 xy =0.16 xy =0.26 xo =0.32
X0 0.05 0.15 0.35 0.75
X 0.42 0.42 0.42 0.42
X, 0.435 0.435 0.435 0.435
X3 0.42375 0.42375 0.42375 0.42375
Xy 0.432188 0.432188 0.432188 0.432188
X5 0.425859 0.425859 0.425859 0.425859
X4 0.428571 0.428571 0.428571 0.428571
X3 0.428571 0.428571 0.428571 0.428571
Xyy 0.428571 0.428571 0.428571 0.428571
X45 0.428571 0.428571 0.428571 0.428571

Consider,

R(SMx, . 7y) = R(0.42,0.75(1 — y))

=10.42 - 0.75(1 — y)|?

=10.75y — 0.33)2

= 0.56]y — 0.44)2

<0.9]y— 042

=0.9]0.42 — y|?

= kR(S*1x,y) for k=09€(0,1).
Thus all the conditions of Theorem 1 satisfied, and 0.428571 is the
unique fixed point of .#. In Figs. 6, 3, 4 and 5, we give some 2D
graphs and 3D surfaces, which show the comparison of the left hand

side (L.H.S.) and the right hand side (R.H.S.) of condition (1) by using
MATLAB.

Next, we carry out some numerical and analytical experiments and
for approximating the fixed point of . in Fig. 4. Furthermore, the
convergence behaviour of these iterations is shown in Fig. 4.

Analytical version of Convergence behaviour: Let A(x) = x—0.75(1—
x)=0.

Here, x,,,1 =0.75(1 - x,,); w=1,2,3,....

Let x, = 0.05; x, =.%x, = .#(0.05) = 0.42.

Then,

X+l = ‘yj(xw)
S(x) =0.75(1 — x)
S(x) = =0.75.

Let root of A(x) is 0.42857 (say r). Then .7’ (r) = .7/ (0.42857) = —0.75.
Thus, |.7'(r)| = |.#7(0.42857)| = | — 0.75| = 0.75, since |.¥’(r)| < 1.

The iteration x,,; = .*x, converges and it converges to 0.42857
which is the unique fixed point of .. Moreover, differentiating .’ (x)
w.r.t x, thus .%”(x) = 0 which implies .#”'(r) = 0. Hence the function
Converges with order 3.

Example 4.
. exp(—x)cos|o(®)] + sin| Do (w
BT 035y = SPCXOSlO@) +5in TR (@] -
x 70 +
_ cos|o|
c(0)=0.5+ 00
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Fig. 3. The comparison of the value of L.H.S. and the R.H.S. of Eq. (1) in Case-3 of subcase-1 and Case-3 of subcase-2.
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Fig. 4. The comparison of the value of L.H.S. and the R.H.S. of Eq. (1) in Case-3 of subcase-1 and Case-3 of subcase-2.

Solution: Taking » = 1 and w; = 0.5 Convergence behavior

0.8 T T
lexp(-w)cos|o(w)| + sin|FET D3 6(w))| —— Initial point x, = 0.08
CF 0.3 _ x
|O(w, o‘(a)),‘p Dx Jo(o)| = 70 + ° 0.7 —6— Initial point x, = 0.16 |
e““’cos|6(w)| sinlmQ‘S@Oja(w)l —&— Initial point X, = 0.26
< 5 5 5 x 5 0.6 —o&— Initial point x, = 0.32 |
70+ @ 70+ @
since w € [0, 1]; _05F 1
x
lo@)| | 1 |pegqa03 s BB
< —Z 4 = S0 P
<= *7 | D o(w)‘, o 04f §
© f
_ 1. —Ll.p _ L >
Therefore, Lo=5 Mo =5 €, = 00" 031 1
It is easy, one can prove that by using hypotheses:
ZLow ) — N2 . 02 |
(% + 7225 ) 1o -F@)P. 0 el0.0):
_ 2
.76(w) — F5(@)|| < ( (1-N%e 1 Lolw—o) ) =2 0.1 1
Go—de T Ty ) 170 @I !
o € [wq,7n]. 0 . . . . . . . .
0 5 10 15 20 25 30 35 40 45
Consider, Iteration number (n)
X = max <(€ . wlfg )2 ( a- )()3’@ ng(a) —w)) )2 Fig. 5. Convergence behaviour for Example 3.
-y ) T\~ Me) T I — M)
= max{0.0002, 0.0001}
=0.0002 < 1.
(40) Numerical simulation via Cobra attractor

Hence by using Theorem 5, we have unique solution. The unique

solution of Theorem 5 s, In this section we shall consider the well-known Cobra attractor:

P sin| P €8 0.3
cosll | 0.5 ¢ Peoslo()|+sin| 930(p)|
0.5+ ==+ /,

dp, o €[0,0.5]

100 70+p° x(w) =a(y — x) + byz
_ 0.7 e‘“’cos|6(a))|+sin|r’p6892,‘30‘@7” . 2
o(w) =406(0.5) + 503 201aP y(w) =cx + dxz
03 1 ePeos|o(@)|+sin|F €S D35 (p)| 2(w) =yz + ¢|x|
+€C€(0.3) 05 70157 dp w€[0.5,1].

12
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A Black King Cobra

N
T

A Black King Cobra

A Black King Cobra

Fig. 6. The above represented King-Cobra attractors are in x — y,x — z,x — y — z planes.
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Fig. 6. (continued).
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We now apply the suggested piecewise derivative:

x(k) =a(y—x)+byz, if xk €[0,w,]

y(x) =cx + dxz?

z(k) =yz+elx| 1)
ng’r@ix(x) =a(y—x)+byz

(;ggz@iy(lc) =cx+dxz? ifx e [w;,&]

Sgg@ﬁz(x) =yz+elx|.

For simplicity, we let,
f1(x,y,2,x) =a(y — x) + byz
fo(x,y,z,x) =cx + dxz?
f3(x, 9, 2,x) =yz + €lx|

The functions (f;),-; ,; satisfying the conditions under which the exis-
tence of the unique solution is achieved. Therefore due to its nonlin-
earity we shall rely on the numerical solution. using existing method
for the classical case we have,

3 h
X+l =X+ Ehfl(xw’ yw’zw”(w) - Efl(xw—l’yw—l’zw—l”(w—l)
3 h
Yw+1 =Yw + Ehf2(xw’ ywvzuﬂkw) - EfZ(xw—I’yw—l’Zw—l’Kw—l) (42)
3 h
Zw+l = 2w + Ehf3(xw’ Yws Zw» Kw) - Ef3(xw—1’yw—l’ Zy—1» Kw—l)
if x,, < ;.
St =X+ U= OLAGE 3 2 K = F1 s Vi Zus Ko)]
3 h
+5[Ehf1(xw» Vs Zus Kip) — zfl(xw—l’yw—l’ Zyp 15 Kp—1)]
Vot =Yt U= OGP K)) = Fa(Eu Y Zue k)]
3 h
3 +5[Ehf2(xw’yw’ Zw» Kw) - EfZ(xw—]’yw—l’ Zpw—1» Kw—l)]
Zuort = 20+ A= OO0, 2 Kunt) = 3G Vs Zaos K]
3 h
O[5S 3(X s Vi Zus Kiw) = 5 F3 K1 Y10 Zip— 12 K 1)]
ifx,>T.

(43)

In the above x” .y" .20~ are predictor of x,.i, V1 and z,

respectively and are calculated as,

P -
X =X ARSI (X0 Yips Zis Kip)
Vool = Ve T A (X Vips Zus Ki) (44)
ZZ)H = 2, + A [3(X 10 Vips Zis Ki)-

Thus the final scheme as given by,

Xppp1 = X + (L =8 f1(x,,
+ hfl(xw’ yw’ Zw’ Kw)’ yw + hfZ(xw’yw’ Zw, Kw)’ hfS(xw’yw’zw’ Kw))

3
= [1(X0s Vios Zir K1 + 5[5hf1(xw,yw,zw, Ky)

h
- Efl(xw—l’.})w—l’ Zw—-1> Kw—l)]

We shall present numerical simulation figures as shown below.

To perform this simulation the following parameters were used
¢ =5d = -1,y = =5,d = —l,e = —6 for the figure with King-
Cobra x — y,x — z,x — y — z, and the used initial conditions are x(0) =
—10.1, y(0) = =2, z(0) = —7.1 for the appropriate King-kobra figure we
used x(0) = —20.1, y(0) = —10, z(0) = —20.1.

Conclusion

The existence results for fractional differential equations has drawn
the attention of many researchers. In the current work, we have dis-
cussed some new fixed point results for cyclic mapping in controlled
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rectangular metric spaces with application to the existence of solutions
to the multi-term fractional delay differential equations with wth order
and the piecewise equations under the setting of non-singular type
derivative. Numerical simulations were carried out for various values
of fractional orders; a system of nonlinear equations was presented and
numerically solved.
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