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1. Introduction

Among the other improvements of the Zadeh-originally-proposed theory of fuzzy sets [1],
progress has been made in discovering the fuzzy counterparts of the classical set theory. In actuality,
over the past forty years, the fuzzy theory has developed into a topic of active study. Numerous
scientific and technical fields have used it, including population dynamics [2], chaos control [3],
computer programming [4], non-linear dynamical systems [5], and medicine [6]. Naschie [7—13]
described the relationship of fuzzy Kéhler interpolation of e to the latest work on Cosmo-topology
and the Poincaré dodecahedral conjecture and gave different applications and results of e“—theory
from nanotechnology to brain research. This is, where the most fascinating application of fuzzy
topology in quantum physics arises. Atanassov [14,15] presented the idea of intuitionistic fuzzy sets,
and Oker [16] explored it in more details. We refer to [17,18] for intuitionistic fuzzy topological
features. Recently, Park [19] presented the idea of intuitionistic fuzzy metric spaces. Kirisci and
Simsek [20] introduced Neutrosophic metric spaces (NMSs). The concepts of intuitionistic fuzzy 2-
normed spaces and intuitionistic fuzzy 2-metric spaces were introduced in [21,22], respectively.
Schweizer and Sklar [23] worked on statistical metric spaces and Géhler [24] did work on 2-metric
spaces. Certainly, there are some circumstances when the conventional metric is ineffective, and in
these circumstances the intuitionistic fuzzy metric notion seems to be more appropriate. In other words,
we may handle these circumstances by simulating the imperfection of the norm in some circumstances.
In intuitionistic fuzzy 2-metric spaces (IF2MS), Mursaleen and Lohani [25] demonstrate Baire’s and
Cantor’s Theorems ((B&C)-Theorems). On IF2MS Bakry [26] established the Common fixed-point
Theorem, see [27-29] for more details.

The main objectives of this manuscript are:
e  To describe the notion of Neutrosophic 2-metric spaces (N2MSs), which would offer a more
practical tool to address the inexactness of the metric or 2-metric in particular circumstances.
e  To present (B&(C)-Theorems.
e In N2MS, we establish the common fixed-point theorem.

This article has four parts, in first section we will discuss some relevant definitions and examples.
In second section, we will introduce the definition of N2MSs and prove some theorems in sense of
N2MSs, in third section, we will prove (B&C)-Theorem in the sense of N2MSs, and in last section,
we find common fixed point for contraction mappings in the context of N2MS.

2. Preliminaries

In this section, we provide some basic definitions that are helpful for readers to understand the
main section.

Definition 2.1. [23] A binary operation *: [0,1] X [0,1] = [0,1] be a continuous t-norm if it met the
conditions listed below:

(a) = is associative and commutative;

(b) * is continuous;

() tx1=rtforallt € [0,1];

(d) 70 < c *xd whenevert < cand ¢ < d foreach 7,0,c,d € [0,1].

Definition 2.2. A binary operation ¢:[0,1] X [0,1] = [0,1] be continuous t-conorm if it satisfies the
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above circumstance (a), (b), (d) and
(cht00=rtforallt e [0,1].

Definition 2.3. [20] Let Z # @. Given a six tuple (£, ¥, ®, 9, *, 0), where * is a CTN, 0 is a CTCN,
¥,® and ¥ are neutrosophic sets on = X = X (0,0). If (Z,¥,®,, *, 0) satisfies the following
conditions that are given below for all @, 8, w, € Z and t,s > 0:

(N1) ¥(w,0,t) + &(w,0,t) + Y(w,0,t) < 3,

(N2)0 < ¥(w,0,t) <1,

(N3) ¥(w, 0,t) = 1ifand only ifw = 0,

N ¥Y(w,0,t) =¥(0,w,t),

N ¥Y(w,w,t+5) =¥ (w,0,t)*¥Y(0,w,s),

(N6) Y (w, 0,"):[0,0) — [0,1] is continuous,

(N7) tll_}l‘gl) ¥Y(w,0,t) =1,

(N8) 0 < &(w,6,t) < 1,

(N9) &(w, 6,t) = 0 ifand only if w = 6,

(N10) @(w,0,t) = ©(0,w, t),

(N11) @(w,w,t + s) < P(w, 0,t)00(0, w, s),

(N12) &(w, 0,"): [0, ) — [0,1] is continuous,

(N13) lim & (a3, 6,¢) = 0,

(N14) 0 < Y(w,0,t) <1,

(N15) Y (w,0,t) = 0ifand only if w = 0,
(N16) Y(@,0,t) = (6, @, 1),

N17) Y(w, w, (t +5)) < P(@,0,)09(6, w,s),
(N18) Y (w, 8,"):[0,) — [0,1] is continuous,

(N19) lim Y (@, 6,t) = 0,

(N20) if t <0, then ¥ (w,0,t) = 0,®(w,0,t) = 1,Y(w,6,t) = 1.
Then, (¥, ®@,1) is a neutrosophic metric and (&, ¥, @, 1, *, 0) is a NMS.

Definition 2.4. [25] The 5-tuple (£, ¥, @,%,0) is said to be an IF2MS if = is any non-empty set, * is a
continuous t-norm, ¢ is a continuous t-conorm, and ¥, @ are fuzzy sets on £ X = X = X (0, o), the
following criteria, as listed below, must be met, for each @, 8, w,w € Z and s,t > 0:

@ ¥Y(,0,w,t)+ P(w,0,w,t) <1,

(b) Given distinct elements @, 8 of =, there exist an element w of £ such that ¥ (w, 6, w, t) >

0,

(¢) Y(w,0,w,t) = 1if at least two of @, 6, w are equal,

d) ¥(w,0,w,t) =¥(w,w,0,t) =¥(0,w,@,t) forall @,f,w in =,

e) Y(w,o,w,t) *¥(w,w,w,s) *¥(w,0,w,7) <¥(w,0,w,t+s+7r)forall w,b,w,w €

5]
—

(f) ¥(w,0,w,"): (0,00) = (0,1] is continuous,

Q) @(w,0,w,t) <1,

(h) @(w, 0, w,t) = 0 if at least two of @, 6, w are equal,

(i) ¢(w,0,w,t) = P(w,w,0,t) = P(0,w,w,t) forall w,0,w in =,

(4) @(w,0,w,t) ¢ P(w,w,w,s) ¢ P(w,0,w,1r) = P(w,0,w,t+s+T1),
(k) @(w, 6, w,"): (0,0) - (0,1] is continuous.
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Now, we define the notion of N2MSs and several topological notions in the context of N2MSs.

Definition 2.5. The 6-tuple (£,¥, ®,1,*,0) is said to be a N2MS if Z is any non-empty set, * is a
continuous t-norm, ¢ is a continuous t-conorm, and ¥, @,y are neutrosophic sets on = X Z X & X
(0, ), satisfying the following conditions for each @, 8, w,w € £ and s,t > 0:

(N2M1) ¥ (w, 0, w, t) + @ (@, 0, w,t) + Y(w, 0, w,t) < 3,

(N2M2) Given different elements @, 8 of = there exist an element w of Z such that ¥ (w, 6, w, t) >

0,

(N2M3) ¥ (w, 0, w, t) = 1 if at least two of @, 6, w are equal,

(N2M4) ¥(w, 6, w,t) = ¥ (o, w,0,t) = ¥ (0, w, @, t) forall @, 0, w in Z,

(N2M5)

¥Y(w,0,w,t) * ¥(o,w,w,s) *¥Ww,0,w,7) <¥(w,0,w,t+s+71)

forall @, 8, w,win =,

(N2M6) ¥ (w, 0, w ): (0,0) — (0,1] is continuous,

(N2M7) @ (w, 0, w,t) < 1,

(N2M8) @ (w, 8, w, t) = 0 if at least two of @, 8, w are equal,

(N2M9) @ (w, 0, w,t) = ¢(w,w, 0,t) = ®(0, w, w, t) forall w,H0,w in Z,

(N2M10) & (@, 8,w,t) ¢ ?(w,w,w,s) 0 D(w,0,w,r) = ¢ (w,0,w,t +s + 1),

(N2M11) @ (@, 8, w,"): (0,0) = (0,1] is continuous,

(N2M12) Y (@, 0, w,t) < 1,

(N2M13) Y (@, 0, w, t) = 0 if at least two of @, 8, w are equal,

(N2M14) Y (@, 0, w,t) = Y(w,w,0,t) = P(0,w,w,t) forall w,H0,w in £,

(N2M15) Y (@, 0, w, t) 0 Y(w,w,w,s) 0 Y(w,0,w,r) = Y(w,8,w,t +s + 1),

(N2M16) Y (@, 6, w,"): (0,00) = (0,1] is continuous.

Here, the functions ¥ (w, 0, w, t), ®(w, 0, w, t) and P (w, B, w, t) denotes the degree of nearness,

the degree of non-nearness and the degree of naturalness between @, 8 and w with respect to t,
respectively.

Example 2.1. Let (£,d) be a 2-metric space. Suppose T * g = t-0 and 7 0 0 = max {t, ¢} for all
7,0 € [0,1] and let ¥, @ and Y be neutrosophic sets on = 3 x (0, ), defined by

Y(w,0,w,t) = ‘ & (w,0,w,t) = md(®,6, »)
@00, Ct+md(w,0,w)’ @0, " t+md(w, 0, w)
and
md(w, 0, w
w(wlelwlt)=¥l

forallm € R*. Then, (&Z,¥, ®,1,%,9) is an N2MS.

Proof Conditions (N2M1) — (N2M4), (N2M6) — (N2M9), (N2M10) — (N2M14) and (N2M16)
are trivial, here we examine (N2M5), (N2M10) and (N2M15).

N2MS. From the definition of 2-metric space, we have
d(w,0,w) < d(w,0,w) + d(w,w,w) + d(w, 8, w).
Therefore,

AIMS Mathematics Volume 8, Issue 2, 2532-2555.



2536

tsr md(w, 0, w)

< (rts + rs? + r?s)md(w, 8,w) + (rts + rt? + tr*)md(w, w, w)

+(t?s + ts? + rts)md(w, 6, )

= tsrmd(w, 0, w)

<(t+s+r)rsmd(w,0,w)+ (s+t+r)rtmd(w,w,w) + (t+ s+ r)tsmd(w, 8, w)

> tsr(t+s+ 1)+ tsrmd(w, 6, w)

<tsr(t+s+r)+(t+s+r)rsmd(w,6,w)+ (s+t+r)rtmd(w,w,w)

+(t+ s+ r)tsmd(w, 0, w)

> tsr[(t+s+7r)+md(w,6,w)]

< (t+s+r)[tsr + rsmd(w,0,w) + rtmd(w,w, w) + tsmd(w, 6, w)].
That is,

> tsr[(t+s+71r)+md(w,0,w)]

< (t+s+r)[tsr + rsmd(w, 6, w) + rtmd(w,w, w) + tsmd(w, 6, w)
+rm?d(w, 6, w)d(w,w, ) + tm?d(w, 8, w)d(w, w, w)
+ sm?d(w, 0, w)d(w, §,w) + m3d(w, 8, w)d(w,w, w)d(w, 8, w)]

> tsr[(t+s+71)+md(w,0,w)]
<(t+s+ r)[(t + md(w, 0, W))(s + md(w,w, w))(r + md(w, 6, a)))]

(t+s+r)
=z (t+s+r)+md(w,6,w)
. tsr
o (t + md(w, 0, W))(s + md(w,w, a)))(r + md(w, 6, a)))

. (t+s+r)
(t+s+r)+md(w,b,w)
- t _ s _ r
“t+md(w,8,w) s+md(w,w,w) r+mdw,0,w)

We have continuous t-norm 7 * ¢ = 70. Hence
¥Y(w,0,w,t) *¥(o,w,w,s) *Pw,0,w,7) <¥(w,0,w,t+s+r).
N2M10. & (w, 0, w,t) ¢ ®(w,w,w,s) 0 P(w,0,w,r) = ®(w,0,w,t + s + r). Observe the fact that
md(w, 0, w)

d ’6’ d ) ) d ,9,
S[t+s+r+md(w,9,w)]max{ md(@,0,w) _md(@,w,w) md(w, 6, w) }

t+md(w,0,w)’s + md(w,w,w)’ r +dm(w, 8, w)
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This implies

md(w, 0, w) - max{ md (@, 8,w) md (@, w, ) md(w, 0, w) }
t+s+r+md(w,0,w) ~ t+md(w,0,w)’s + md(w,w,w)’ r + md(w, 8, w)
Then
®(w,0,w,t+s+71r) <max{®(w,0,w,t),d(w,w,w,s),®w,0,w,1)}.
Hence,
®(w,0,w,t) 0 P(w,w,w,s) 0 d(w,0,w,1) = P(w,0,w,t +s + 7).

N2M15. Y(w, 0, w, t) ¢ Y(w,w,w,s) 0 Yp(w,0,w,r) = Y(w,0,w,t + s + r). Observe that,

) )

d ’0’ d ) ) d ,0,
md(w,@,w)s[t+s+r+md(w,9,w)]max{m (w,0,w) md(w,w,w) mdlw a))}.

t s r
This implies
md(w, 0, w) md(w,0,w) md(w,w,w) md(w,8,w)
< max , , )
t+s+r+md(w,6,w) S T
Then
Y(w,0,w,t+s+r)<max{y(w,0,w,t),Y(w,w,w,s),P(w,0,w,r)}
Hence

Y(w,0,w,t) O Y(o,w,w,s) 0Yy(w,0,w,1) = Y(w,0,w,t +s+r).
Therefore, (Z, ¥, ®,1,*,0) is an N2MS.

Definition 2.6. Suppose (5, ¥, ®,1,*,0) is a N2MS. Suppose r € (0,1),t > 0 and w € Z. The set
B(w,r,t) ={0 € Z:¥(w,0,w,t) >1—1,&(w,0,w,t) <rand Y(w,O,w,t) <rforallw € £}
is called the open ball with center @ and radius r with respect to t.

Example 2.2. Let £ = {1,2,3} and (Z, d) be a 2-metric space defined by d(w, 0, w) = |w — 6 — w|.
Suppose t*o =71-0andt ¢ 0 = max {r,0} forall 7,0 € [0,1] and let ¥, @ and ) be neutrosophic
sets on 53 X (0, ), defined by

W(w,0,w,t) = 0(@.0,0,0) =20~
@50, Ct+|lm—-0—-w| @@ Ct+ | -0 - ol
and
oo — 0 — w|
Y(w,0,w,t) = —

Then, (£, ¥, ®,Y,*,0) is a N2MS.
Let the center w =1, radius r = 0.6,t =6, then B(1,0.6,6) = {0 € Z: ¥(w,0, w, t) >
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0.4,(w,0,w,t) < 0.6 and Y(w, 0, w,t) < 0.6, for all w € E} is an open ball.

Definition 2.7. Suppose (=, ¥, ®,1,*,9) is a N2MS. Then, a set U C Z is open set if each of its points
is the center of some open ball contained in U. The open set in a N2MS (£, ¥, ®,1,*,0) is represented
by U.

Definition 2.8. Let (£, W, @,1,%,0) be a N2MS. A subset {2 of = is said to be @¥1p, —bounded if there
exits t > 0 and r € (0,1) such that ¥(w,0,w,t) >1—r,®(w,0,w,t) <rand Y(w,0,w,t) <r
for all @, @ € (2, and for all w € =.

Definition 2.9. Assume (£, ¥, ®,1,*,0) is a N2MS. A sequence (@) in £ is a Cauchy if for each € >
0 and each t > 0, there exists n. € N such that ¥(@w,, @, o, t) >1—1r, ®(w,, @y, 0,t) <
r and Y (@, @y, w,t) < rforalln,m = n. forall w € Z.

Definition 2.10. Suppose (&, ¥, ®@,1,%,0) is a N2MS. A sequence @w = (w),) is convergent to [ € =,
with respect to the N2MS if, for every € > 0 and t > 0, there exist k;, € N such that ¥ (wy, [, w,t) >

1—¢€®(@, l,wt) <eand Y(wy,l,w,t) < € forall k > k, and forall w € Z. In this case, we write
. (lpv¢!lp)2
¥, 0,¢¥), —limw =l orw, —— las k — oo.

Definition 2.11. Let (5,%¥,®,9,%0) be a N2MS. Define Ty ), = {2 € Z:foreachw €
Z,there existt > 0 andr € (0,1) such that B(w,r,t) € £} . Then, Tyey), is a topology
on (Z,¥,d,Y,x,0).

Definition 2.12. Let (£, %, ®,1,%,0) be a N2MS. If each Cauchy sequence converges with respect
t0 T(yp ), 1t 18 said to be complete.

Definition 2.13. Let (5, ¥, @,1,%,0) be a N2MS. A collection (F,),eny of non-empty sets is said to be
have the neutrosophic diameter zero if for each r € (0,1), and each t > 0, there exists n. € N such
that ¥(w,0,w,t) >1—r, ®(w,0,w,t) <r and Y(w,0,w,t) <r for all w,0 € F,, and for
allw € =.

Definition 2.14. Let = be any non-empty set and (Y, ¥, ®,1,*,0) be a N2MS. Then, a sequence (f;,)
of functions from = to Y is assumed to converge uniformly to a function f from = to Y if given t >
0 and r € (0,1), there exists n. € N such that

Y(fu(@),f(@),w,t) > 1 -1, &(fo(@), f(@) wt) <rand Y(f,(@), f(@),w,t) <7

foralln = n. and forall w,w € =.
3. Baire’s and Cantor’s intersection theorems

In this section, we establish Baire’s Theorem and Cantor’s Intersection Theorem in the context of
N2MS.
Theorem 3.1. Every open ball B(w, r,t) in N2MS is an open set.

Proof. Consider B(w,r,t) be an open ball with center @ and radius r. Assume 6 € B(w,r,t).
Therefore, ¥(w,0,w,t) >1—1r,®(w,0,w,t) < r,and Y(w,0,w,t) <r for each w € Z. There

exists g € (0,t) such that ¥ (w, 0,w, é) >1—1r@& (w, 6,w, 2) <r, andy (w, 6,w, é) < r, due to
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Y(w,0,w,t) >1—1r.1f we take ry = ¥ (w, 6,w, %), then forry > 1 —r,& € (0,1) will exist such
that 7, > 1 — & > 1 — . Given 1, and ¢ such that ry > 1 — &. Then, {r;}%_; € (0,1) such that ry *
xr>1—(1—-1)0(0—-1)00—-1n)<e and (1—-19) 0 (1 —15) 0 (1—14) <e&. Choose
r, = max{r;}°_,. Consider the open ball ]B(H,l —r7,§). We will show that B(B,l —r7,§) c

B(w,r,t). If we take v EB (9, 1-— r7,§), then ¥ (w, w, a),g) >r, , @ (w, w, a),é) <71y,
and ¢ (w, w, wé) <r;and ¥ (W, 0,w, é) >1r,d (W, 0, w,é) <r;,and Y (W, 0,w, g) < r7. Then,

t t t
Y(w,0,w,t) > (w, H,W,g) * (w, w, w,§> * (W, H,a),g)

21’0*7‘7*7‘727‘0*1‘1*1‘221—£>1—‘r‘,

t t t
®(w,0,w,t) =P (m, H,W,g) * @ (w,w, w,g) * @ (W, 9, w,§>

<A-1r)0(A—-r)0(A—1y)
<SA-1r)0(A—7r)0(A—1r)<e<r,

Y(w,0,w,t) = llJ(w,H,w,%) *l,b(w,w,w,%) *v,b(w, 6,(»,%)
SA-1)0(A—-1)0(1—1m)
<SA-1r)0(1-1m)0(A -1 <e<r.

It shows that v € B(w, r,t) and B (9, 1-— 1"7,%) c B(w,r,t).

Theorem 3.2 Every N2MS is Hausdorff.

Proof. Let (E,¥,®,1,%,0) be a N2MS. Let @ and 6 be any distinct points in Z. Then, 0 <
Y(w,0,w,t) <1, 0<®(w,0,w,t) <1, and0 < Y(w,0,w,t) <1 for every w € Z. Put 1, =

¥Y(w,0,w,t), 1—1,=0(w,0,wy,t),and1l —r; =yY(@,0,w,,t), 1, = ’P(zzr, Q,W,é), 1—1r;=

(0 (w, o,w, é), 1l—-1r,=19¢ (w, o,w, g) and r = max{r;,1 —1r,,1—1ry,1,,1 —15, 1 —15}. For each

7. € (r,1) there exist 7y and rg such that ry, * 1, * 1, > rrand (1 —15) * (1 —15) * (1 —15) < 1 — 1~

Put 1y = max{ry, g} and consider the open balls B (zzr, 1—r, g) and B (9, 1—r, é) Then, clearly
t t

yB (@, 1-7,2)nB(0,1-15,5) = 0.

If thereisw € (w, 1-— rg,g) NnB (9, 11—y, g) = (. Then,

t t t
rn=%w®,0,w,t) =¥ (w, w, w1,§) * (W, 0, w1,§> * (af, 6,w, §)
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ST *Tg*xTg STy *xTy %77 210 > 17
and similarly, 1 — r, < 1 — 1, which is a contradiction. Hence, (£, ¥, ®,,%,0) is Hausdorff.

Definition 3.1. Suppose 2 € Uy U, a collection O of open sets is called an open cover of 2. A
subspace (2 of a NM2S is compact, if every open cover of {2 has a finite subcover.

Theorem 3.3. Every compact subset 2 of a N2MS (£, ¥, ®,,%,0) is ®¥,—bounded.

Proof. Let 2 be a compact subset of a N2MS (&, ¥,®,,%,0). Suppose the open cover
{O(@,&,t):m € N} fort > 0,e € (0,1). Since 2 is compact, then there exist @y, @y, -+, @, €  such
that 2 € U}_,0(@y, &, t). For some @, w € £, there exist k,m < n such thatw € 0(wy, &,t) and
w € 0(wy, & t). Then, we get

{‘P(w, o, W, t) > 1 — ¢ O(w, T, w, t) < &, Y(@, D, w, t) <6,
Y(w, @y, w,t) >1—¢0(w,@,w,t) <& p(wa,w,t) <e,

foreach w € E. Let

p = min{¥ (@, @y, w,t): 1 < k,m < n},
o = max{®(wy, @, w,t):1 < k,m < n},
y = max{y(wy, @, w,t):1 < k,m < n}.

Hence, for 0 < &;,&,,&3 < 1, we have

¥Y(w,w,w,5t) = ¥ (@, o, w, t) * ¥(@, 0w, Dy, t) * V(o w,w,3t)
> Y(w,my,w, t) * ¥V (w,w, @y, t) * ¥ (@, @y, W, t) * ¥ (@, 0, Dy, t)
* (@, o,w,t) 2(1—e)x(1—e)xpxpx(1—e)>1-¢,

®(w,w,w,5t) < (@, oy, w,t) 0 P(w, w, Dy, t) ¢ (o, w,w,3t)
< (@, wy,w,t) 0 P(w, w, wy, t) O O(@y, Ty, W, t) O O(@y, W, Wy, t)
0 P(w,, w,w,t) <edebdodode<é,,

Y(w, w,w,5t) < Y(@, Ty, w, t) 0 Y(w, w, oy, t) O Y(wg, w,w,3t)
< Y(w, @, w,t) O Y(w, w, @y, t) O Y(@g, @y, W, t) O Y(@y, 0, @)y, t)
OY(wy, w,w,t) <ededodade<é,

If we take & = max{¢&;,&,, &3} and ty = 3t, we have ¥ (@, w,w, ty) > 1 — &, (w, w,w, ty) < & and
Y(w, w,w,ty) < € forall w,w € 2. Hence, 12 is @¥YP,—bounded.

Remark 3.1. Let (£, ¥, @,1,%,0) be a N2MS induced by a 2-metric d on Z. Then, 2 C £ is d¥P, —
bounded if and only if it is bounded.

Remark 3.2. In a N2MS every compact set is closed and bounded.

Theorem 3.4. Let (Z,¥,®,1,%,0) be a N2MS and 7(y ¢, be the topology on = induced by the

(W:‘D:Ip) . .
(¥, ®d,1),. Then, for a sequence (@) such that @, — S wifand only if ¥ (w,, w, w,t) —» 1 and

& (w,, w,w,t) » 0 and Y(w,, w,w,t) > 0asn - oo forallw € Z and t > 0.

X2 . .
Proof. Let t > 0. Suppose that w, — " 3@. If 0<e<1, then there exist N € N with w, €

O(w,¢s,t), for all n>=N. Therefore, 1-%¥(w, o wt)<ed(@,wwt)<e and
Y(w,, @, w,t) < €. So, we can write ¥ (@, w,w,t) - 1,®(w,, w,w,t) = 0, and Y(w,, @, w,t) =
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0asn — oo,

Conversely, ¥ (w,, @, w,t) - 1, ®(w,,w,w,t) = 0 and Y (w,, w,w,t) - 0 as n - oo, for all
t > 0. Then, for 0 < € < 1, there exist N € N such that 1 — ¥ (@, @, w,t) < &, ®(w,,w,w,t) < ¢
and Y(w,, w,w,t) <e for all N €N. Then, ¥Y(w,, w,w,t)>1—¢ &(w,mw,t)<e and
Y(w,, w,w,t) < € forall N € N. Then, @,, € O(w, ¢, t), for all n = N. This completes the proof.

Theorem 3.5. Let (Z,¥,®,1,*,0) be a NS2MS such that every Cauchy sequence in = has a
convergent subsequence. Then, (&, ¥, ®,1,%,0) is complete.

Proof. Let the sequence (@,,) be a Cauchy and let (wnl.) be a subsequence of (@) and @,, - @. Let
t>0and u € (0,1).Consider0 <e<1lsuchthat(1—¢&)*(1—g)x(1—¢e)=>21—pu,edede<
u. Since (@w,) is a Cauchy sequence, there exist N € N such that ¥ (wm, Wy, W, é) >1-

s P (wm, @, W, g) <egand Y (wm, @y, W, g) < g for all m,n > N. Since Wy, > @, there is positive
integer iy, such thati, > N, ¥ (wip,w, w, é) >1—¢,¢@ (wip,w, w, é) < eand P (wip,w, w, g) <&
Therefore, if n = N,

t t t
Y (w,, w,w,t) =¥ (wip,w, w, 5) * (wn,zzrip,w, §) * (wn, w, wip,§>

>SA-8*x(1—-8)*(1—-e)=1—y,

t t t
& (w,, w,w,t) <P (wl-p,w, W,g) 0P (wn, @i, W, §) 0P (zzrn,w, wip,§> <edede<y,

t t t
Y(w,, o, w,t) <Y <zzrl-p,zzf, W,g) 0y (zzrn,wip,w, §) Oy (zzrn, w, zzrl-p,§> <eledes .

Thus, we have @,, = @. This completes the proof.

Theorem 3.6. Let (5, ¥, ®,1,%,0) be a N2MS and let 2 be subset of £ with the subspace N2MS
(Yo, D0, ¥0)2 = (Plosx(o,m) <p|93x(0m),¢|ﬂgx(0m))2. Then, (2, Wq, P, Y. *,0) is complete if and
only if {2 is closed subset of =.

Proof. Assume (2 is a closed subset of = and let @, be a Cauchy sequence in (2, ¥, @, ¥,%,9). Then,

.o . . — o)
(@), be a Cauchy sequence in = and hence there is a point @ € £ such that @, S w. Then, w €

£ = 0 and thus (@), converges in 2. Hence (12, ¥, Py, P,*,0) is complete.

Conversely, let (2, ¥, g, Pg,*,0) is a complete and 2 is not closed. Let @ € O\L. Then, there
is a sequence (@),, of points in £ that converges to @ and thus (@),, is a Cauchy sequence. Thus, for
each 0 < € < 1 and each > 0, there is k- € N such that ¥ (@, @, 0,t) > 1 — €, @(wy, @, 0,t) <€
and Y (wy, @, 0,t) < € forall k,l = k. and for all 6 € Z. Since, (w),, is a sequence in 2,

Y(wy, @y, 0,t) = Yy (wy, @, 0,t), ®(wy, @, 0,t) = Oy (wy, @, 0,t)
and
Y(@y, @y, 0,t) = Yo(w@y, @,,0,1)
for all 6 € Z. Therefore (@),, is a Cauchy sequence in £2. Since (£, ¥, ®,,*,0) is complete, there is

AIMS Mathematics Volume 8, Issue 2, 2532-2555.



2542

a w € {2 such that w,, - w. That is, for each 0 < € < 1 and each t > 0, there is k- € N such that
Y(w,w,0,t) >1—¢€, P(w, w,0,t) <eand Y(@;, w,0,t) <€ for all [ = k- and for all 6 € Z.
But since (@), is a sequence in 2 and w € 2, ¥(w;, w,0,t) = ¥Vy(w;, w,0,t), (@, w,0,t) =
&, (w;, w,0,t) and Y(w;, w,0,t) = Y,(w;, w,0,t) we see that (@), converges in (2,¥, P, P,*
,0) to both @ and w. Since, w & 2 and w € 2, w # w, that results in a contradiction.

Lemma 3.1. Let (£, ¥, ®,1,%,0) beaN2MS. If t > 0and r,s € (0,1) such that (1 —s) * (1 —5s) *

a=>1-r), sO0sba <r, then ]B%(w,s,g) c B(w,r,t), where a = ‘P(w,e,w,g) , a' =
t , t

(6} (w, H,W,E) anda’ =9y (w, H,W,E).

Theorem 3.7. A subset 2 of aN2MS (&, ¥, @, 1,%,0) is nowhere dense if and only if every non-empty

open set in = contains an open ball whose closure is disjoint from (2.

Proof. Let U be a non-empty open subset of =. Then, there exist a non-empty open subset of V c U
and VN 2 #@. Let w € V. Then, there exist r € (0,1) and t > 0 such that B(w,r,t) c V.
Choose s € (0,1) such that (1 —5s)* (1 —s)*a > (1—7r) and s 0 s 0 a' < r for some fixed a €

(0,1). By Lemma 3.1, we have B (zzr, s, g) c B(w, r,t). Thus B (w, S, g) cUand B (w, S, é) nan =
@.

Conversely suppose 2 is not nowhere dense. Then, int 2 # @, so there exists a non-empty open
set U such that U c . Let B(w, 7, t) be an open ball such that B(w,r,t) < U. Then, B(w,7,t) N
£ # @. This is a contradiction.

Theorem 3.8. Let (U,:n € N) be a sequence of dense open subsets of a complete N2MS
(E,W,®,,%,0). Then, N,y Uy, is also dense in (Z, ¥, @, 1h,%,0).

Proof. Let V be a non-empty open set of Z. Since, U, is dense in Z,VNU; # @. Letw; € VN U;.
Since V N U; is open, there exists r; € (0,1) and t; > 0 such that B(w;,7;,t;) € VN U,. Choose

r; <1 and t; = min(¢ty, 1) such that B(wy,7{,t;) € V N U;. Since, U, is dense in £. By Theorem
3.1 B(wy,1,t;) N U, # @. Let w, € B(wy,17,t;) NU,. Since, B(wy,7{,t1) N U, is open, there

exists r, € (0,%) and t, > 0 such that B(@,, 1y, t,) € B(wy,1{,t;) N U,. Choose r, <1, and t; =

. 1 e EYEY L ) )
min ( t,,-) such that B(w,,1,,t,) € B(wy,1y,t;) N U,. Continuing in this manner, we obtain a
2,3 212t vl 2 g

sequence (@), in £ and a sequence (t;,) such that

1
0<t,< - and B(@y,41, 141, the1) € B(@,, 1, tn) N Upyyg.

Now, it’s simple to observe that (@), is a Cauchy sequence. Since = is complete, there exists w € =
(.29) ) . ——
such that @,, —— @. Since @, € B(w,, 1., t,) for k > n, we obtain @ € B(w,, 1, t,). Hence

w € B(wy,, m,t;) € B(@p_1,T—1,tn_1) NU, for all n. Therefore, VN (N,ey U,, # @. Hence
N,en U, is dense in (£, ¥, @, 1, %,0).

Remark 3.3. A non-empty subset Fof a N2MS Z has Neutrosophic diameter zero if and only if F is a
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singleton set.

Theorem 3.9. A N2MS (&, ¥, ®,1,%,0) is complete if and only if every nested sequence (F,)nen Of
non-empty closed sets with Neutrosophic diameter zero have non-empty intersection.

Proof. Firstly, we prove that (£, ¥, @,,,0) is complete under the given hypothesis. Let (@) be a
Cauchy sequence in Z. Set B, = (wy: k = n) and E, = B,,, then we claim that F, has Neutrosophic
diameter zero. For given s € (0,1) and t > 0, we choose r € (0,1) such that (1 —7)* (1 —71) *
A-r+«A-r*x1A-r)>1—sandr0r0rdrdr <s.Since (w,) is a Cauchy, there exists

n., € N such that ¥ (wn, Wy, W, g) >1—r, @ (zzrn,wm, w,é) <rand ¢ (wn, Wy, W, g) < r for all
nm =n, and for all w € E. Therefore ‘P(w,@,a),%) >1—r , @ (w,@,w,g) <r and

P (w, 0, w, g) < rforall w,6 € B, andforall w € Z. Let @, 6 € F,_. Then, there exist sequences (w@y,)

) (w,0,)) (¥,2,9)
and (6, ) in B, such that @y — 3w and 0, ——6 . Hence, @, € IB(w, r,g) and 6, €

B (H,r, é) for sufficiently large n. Now @, € B (zzr, T, g) implies that ¥ (w, w,, w,g) >1-—r,
(¢} (w, @y, W, é) <randy (w, w,, W, g) < r for all w € Z, therefore in particular for some 6 € = we
have ¥ (w, w,, 9,%) >1—r, @ (zzr, w,, 0,2) <r and Y (w, w,, 0,2) <r, similarly for 6, €
B (9, T, E). Now, we have

9

t t t
Y(w,0,w,t) =¥ (w,;, 6, w, 5) x4 (w, w,, W, §) * (w, 0, w,, 5),

v (@, 0,0,5) 2 ¥ (65,0,0,5) + ¥ (w1,6,,0,5) « ¥ (1,6,60,5)-

Hence
Y(@,0,w,t)21-1r)«A—-7r)+«x1-r)*s(1-r)«x(1—-7r)>1-s5s,
P(w,0,w,t) <Trdrdrérdr<s,
and similarly
Y(@,0,w,t) <r0rdrdrdr<s,

for all @,0 € F,_and for all w € Z. Thus (F,) has Neutrosophic diameter zero and hence by

. . ¥.2.4)
hypothesis N, ey F, 18 non-empty. Take @ €N,y F,. We see that @, 2 w. Then, foreach t = 0,

there exist n, € N such that ¥ (w,, w,w,t) > 1 —r, &(w,, w,w,t) < r and Y(w,, w, w,t) < r for
alln = n, and for all w € Z. Therefore, for each t > 0, ¥ (w,, w, w,t) - 1, ®(w,, @, w,t) — 0 and
Y(w,, @, w,t) > 0asn — oo forall w € Z. Hence, (Z,¥, ®,,%,0) is complete.

Conversely, suppose that (£, ¥, ®,1,*,0) is complete and (F,) ey is nested sequence of non-
empty closed sets with Neutrosophic diameter zero. For each n € N, choose a point @,, € F,. We claim
that (@, ) is a Cauchy sequence. Since (F,) has Neutrosophic diameter zero, for r € (0,1) and t > 0,
there exists n, € N such that ¥ (@, 0, w,t) >1—71r, &(w,0,w,t) <, and Y(w, 6, w,t) < r for all
n=>n, w0OEEF, and w€E. Since (F,) is nested sequence, ¥ (@, O, w,t)>1—1 ,
& (wy, 0, w,t) < r, and Y(w,, 0,, w,t) <r for all n,m € n, and for all w € £. Hence (w,) is a
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. - . #.2) -
Cauchy sequence. Since (&, ¥, @,1,*,0) is complete, @, ——3 @ for some @ € £. Therefore @ €

E, = E,for every n, and hence @ €N,y E,.

Remark 3.4. The element @ €N,y F, is unique.
Note that the topologies induced by the standard N2MS and the corresponding 2-metric are same.
So, we have the following result.

Corollary 3.1. A 2-metric space (=, d) is complete if and only if every nested sequence (Fy,),en Of
non-empty closed sets with diameter tending to zero have non-empty intersection.

4, Common fixed-point results in N2MS

Lemma 4.1. If (£, ¥, @,1,%,0) be a N2MS. Then, ¥ (w, 0, w, t) is non-decreasing ¢ (w, 6, w, t) non-
increasing and Y (@, 8, w, t) is non-increasing for all @, 8, w € Z.

Proof. Let s,t > 0 be any points such thatt > s.t = s + t;—s + t;—s Hence, we have

t—s t—s
®(w,0,w,t) = <15(w,0,a),s+ )

2 + 2
t—s t—s
< d(w,0,w,s) O fD(w, w, w,T) 0 CD((;), 9, w,T) =®(w,0,w,s)

and

t—s t—s
¢(?U,9,w,t)=lp<w,9,w,s+ > + )

2
<yY(w,b,w,s) by (w,w,w,tT) oY (a), 0, a),t_TS> =Y(w,0,w,s).

Similarly, ¥ (w, 8, w, t) > ¥Y(w, 0, w, s).
From Lemma 4.1, let (£, ¥, @, ,%,0) be a N2MS with the following conditions:

tlim ¥Y(w,0,w,t) =1, tlim(D(w, 6,w,t) = 0and tlirnlp(w, 6,w,t) = 0.

Lemma 4.2. Let (5, ¥, @,1,,0) be a N2MS. If there exists g € (0,1) such that ¥ (w, 6, w, gt + 0) >
Y(w,0,w,t), ®(@,0,w,qt +0) < ¢(w,0,w,t) and Y(w,0,w,qt +0) < Y(w,O,w,t) for all
w,0,w €EEwithw #w,w #6 andt > 0. Then, w = 0.

Proof. Since
Y(w,0,w,t) =¥ (@,0,w,qt +0) > ¥(w,0,w,t),
P (w,0,w,t) <P(w,0,w,qt +0) < P(w,0,w,t),
and

Y(@,0,w,t) <Y(w,0,w,qt +0) <Y(w,0,w,t)
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forallt >0, ¥(w,0,w,.), ®(w,0,w,.) and Y (w, 6, w) are constant. Since gim Y(w,0,w,t) =1,

gim ®(w,0,w,t) =0 and tlim Y(w,0,w,t) =0. Then, ¥(w,0,w,t) =1, &(w,0,w,t) =0 and

Y(w, 0, w,t) = 0. Consequently, for all t > 0. Hence @ = 6 because w # @, w # 6.

Lemma 4.3. Let (£, ¥, ®,1,*,0) be a N2MS and let tlim w, = o, tlim 6,, = 0. Then, the following

conditions are satisfied forall T € = and t = 0:
(D
lim inf¥ (w,, 0,,7,t) = ¥(w,0,1,t), lim sup ®(w,, 0, 1,t) < ®(w,0,1,t)
n—-o0o

n—-oo

and

lim sup Y (@, 0,7, t) < Y(w,0,1,t).
n—oo

(2)
¥Y(w,0,t,t) = lim Sup¥ (w,, 6, 7,t), ®(w, 0,1, t + 0) < lim inf®(w,, 6, T, t)
n—oo n—oo

and
Y(w,0,7,t+0) < Tll,l—r){)lo infy (w,, 0,, T, t).
Proof. Forall T € £ and t = 0, we have
¥Y(wy,, 0, 1,t) = ¥Y(w,,0,,w,t;) * ¥V (o, w,1,t,) *¥(w,0,,1,1), ty+t,=0
> Y (wy,, 0, @, t) * ¥V (o, @,1,t,) * ¥V (w,0,,0,t3)
* Y(w,0,1,t,) *¥(6,0,,1,1), ts+t, =0
which impliesii_r)go inf¥(w,, 0,,7,t) 21*x1x1+¥(w,0,1,t) 1 =¥(w,0,1,t), also
& (wy, 0,7, t) < P(w,, 0, @, t,) ¢ P(w,, w,1,t,) 0 D(w,0,,1,1), ty+t, =0
< O(wy,, 0, o, t) ¢ (W, @,1,t,) 0 P(w,0,,0,t3)
0 &(w,0,1,t,) 0 P(0,0,,1,t), ts+t, =0

which implies
lim Sup ®(w,,0,,7,t) <00000 0 ®(w,0,1,t) 0 0 = P(w,0,1,t)
n—-oo
and
l/)((D'n, Hnr T, t) S l/)(wn' Bn' w, tl) O l/J(ZD'n, w,T, tZ) 0 l/J(ZD', en' T, t)r tl + tZ = 0

S lp(wn' en' w, tl) 0 lp(wn' w,T, tZ) 0 1/)(?17, Hn' 9' t3)
0 (e, 0,7,ty) OY(6,0,,T,t), tz+t,=0
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which implies lim Sup Y(@,, 6,,7,t) <0000 0 0 Y(w,0,1,t) 0 0 = Y(w,H,1,1t).
n—-oo

(2) Let € > 0 be given. Forall T € w and t > 0, we have
Y(w,0,1, t+2£)>lP(w o, wn,z)*‘}’(w @y, ,2) ¥(w,, 0,T,t + ¢)

&

—) * (ZD', wy, T, %) * (w'n' 6,6y,

: f) *W(wy, 0,,7,t) x ¥ (Qn' 0.7, E)'

>y (w, 0, w,, >

Consequently,

Y(w,0,1,t + 2¢) = lim sup ¥ (w,, 6, T, t).
n—oo

Letting € — 0, we have

¥Y(w,0,t,t +0) = lim sup ¥(w,, 6, T, t).
n—oo

Also, we have

I3
T,—) 0 P(w,,0,1,t+¢)

(;D(wé?Tt+2£)<¢(w9wn,2)<>€b(w,wn, .

> (w, o, wn,;) 0D (zzr, W, T, ;) 0D (wn, 0, Bn,;) 0 @(wy,, 6,,1,t)

0@ (6,,6,7, 2) 0 D (@, 0, 7,6) 0 D (6,,6,7, 2)
Consequently,

®(w,0,1,t + 2¢) < lim infd(w,, 0,, T, t).
n—-oo

Letting € — 0, we have

®(w,0,1,t +0) < lim infd(m,, 6,,7,t).
n—-oo
and

Y(w,0,t,t+2e) <Y (w, 6,wn,§) 0P (w, ?Un,TE) 0 Y(wy,, 0,1,t +¢)
>1/)(wt9wn,€)<)l/)(w w,, T, )Oll)(zzrn,e 0, )Oll)(wn,Bn,T t)

<>¢(9n,9 T, )o¢(wn,9n,r £) <>¢(9n,9 T, 2)

Consequently,
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Y(w,0,t,t + 2¢) < lim infy (@, 0, T, t).
n—->oo

Letting € — 0, we have

Y(w,0,1,t+0) < lim infyY(w,, 0,,1,t).
n—->0o

Lemma 4.4. Let (Z,¥,®,¥,%0) be a N2MS and let 2 and B continuous self-mappings of
Z and [{2, B] are compatible. Let @, be a sequence in X such that Nw, - w and Bw,, > w. Then,
lBw, - Bw.

Proof. Since (2, B are compatible maps, 2Bw,, = (w, B®w, —» Bw and so, ¥ (.QBwn,.Qw, T, 2) -1,
) (B.an,Ba),T, g) - 0andy (Bﬂwn,Bw, T,g) —> QforallTte S andt > 0.

t t t
¥Y(NBw,, Bw,1,t) =¥ (.QBwn, Bw, B-an,g) * (.QBwn, BOw,, 1, §) * (B.an, Bw, T, §>
t t t
>y (B.an, Bw, 1Bw,, 5) * (Bﬂwn, Bw,,T, §) * (Bﬂwn,Bw,r, §> - 1.
Also, we have

t t t
¢ QBw,, Bw,T,t) < ® (QBwn, Bw, BNw,, §) 0P (QBwn, BNwy,, 1, §) 0P <B!2wn, Bw, T, §>

t t t
<o (B-an. Bw, 1Bwy,, §) 0 (B.an,.QBwn, T, §> 0P (B.an, Bw,T, §) -0,
forallt € Zandt > 0, and

t t t
Y(2Bw,, Bw,T,t) <Y (.QBwn, Bw, B.szrn,§> 0y (.QBZD'n, BQw,, T, §) VRT) (B.an, Bw, T, §)

t t t
<y (Bﬂwn, Bw, 0Bw,, 5) 0 (ann,ann, z, §> 0 (ann, Ba,x, §) 50,

forall T € Z and t > 0. Hence, 2Bw,, - Bw.

Theorem 4.1. Let (£, ¥, @,y,*,0) be a complete N2MS with continuous t-norm * and continuous t-
conorm ¢. Let S and T be continuous self-mapping of =. Then, S and T have a unique common fixed
point in = if and only if there exist two self-mappings (2, B of = satisfying
(1) PE cTE,BE c SE,
(2) The pair {2, S} and {B, T’} are compatible
(3) There exists g € (0,1) such that for every @, 6,7 € Z and t > 0,
¥Y(Nw,BO,1,qt) = min{¥ (Sw, Tw, 7, t), ¥ Nw, Sw, t,t), ¥(BO,TH, 1,t), ¥ (Rw, BO, T,qt)},
®(Qw,BO,1,qt) < max{®(Sw, Tw, 1,t), »(Nw,Sw, 1,t),®(BO,TO, 7, t), ®(Nw, BO, T,qt)},

Y(Qw, BO,1,qt) < max{y(Sw, Tw, 1, t), Y (Nw, Sw, 1,t),Y(BO,TO,1,t),Y(Nw, BO, T, qt)}.
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Then, 2, B, S and T have a unique common fixed point in =

Proof. Suppose S and T have a (unique) common fixed point say w € Z. Define 2: £ = X be Nw =

—

w forallw € Z,and B: £ — Z be Bw = w for all @ € Z. Then, one can see that (1)—(3) are satisfied.
Conversely, assume that there exist two self-mapping (2, B of @ satisfying condition (1)—(3). From
condition (1) we can construct two sequences @,, and 6,, of Z such that 68,,_; = Tw,,_jand 0,,,_; =
Sw,, = Bwy,_;forn =1,2,3, ..., putting @ = @w,,and @ = @,, 4+, in condition (3), we have that for
allteZandt > 0,

Y(0@2n11, 0D2n12,T, qt) = ¥ (Q@2n, Boont1, T, qL)

> min{¥ (Sop, Twn41,7T,t), V(2@ Sway, T, t),
Y(Boant1, TO2n11, T, 1), ¥ (R0 30, TO2041, T, 1)}

= min{¥ (0w,p, 0@2n41, 7, qt), ¥ (02041, 002041, T, q1)},
P(0@2n41, 0B2n42, T, qt) = P(D@3p, Bwznyy, T, qt)

< max{®(Swyp, Twyps1, T, t), P(Qwyy,, Swoy,, T, 1),
D (B@opt1, T®2n41,T, ), P(R@ 20, TW2n41, T, )}

< max{P(Ow,p, 0W2n+1, 7, qt), P(O@Wapn11, 0@Won+1, T, 1)},

and
Y(0@2n41, 0@2n42, T, qt) = Y(Q@32n, Bwopt1, T, qt)
< max{y(Swan, T@Wop11, T, 1), Y (Q@op, S, T, 1),
Y(Bozns1, TO2041, T, 1), Y (R0, TW2p11, T, )}
< max{y(0wzn, 0@Wany1, T, qt), Y(OW2n 41, 0W2n41, T, )}
Which implies that
Y(0D2n41, 0B2n42, T, qt) = Y (002041, 0@2n41, T, q1)
D(0Won11, 0@2n42, T, qt) < POy, 0@2n11,T, q1),
and

Y(0@2n41, 0@2n42, T, qt) < Y(0@2n41, 0@2041, T, q1).
By using Lemma 4.1 and letting @ = @,,,+, and 8 = @,, 4 in condition (3), we have that
Y(02n+2) 02043 T, qt) = ¥ (02041, 02041, T, 1)
D (02142, O2n+3, T, qt) = P(O2n41, 02041, T, 1),

and

V(02142 02043, T, qt) = P(O2n41, 02141, T, 1)

forallt€ Zandt > 0.
In general, we obtain that forallt € Zandt > 0andn = 1,2,3,---, we have

AIMS Mathematics Volume 8, Issue 2, 2532-2555.



2549

qj(gn) 0n+1) T, qt) 2 qj(en—li Hnl T, t)'
(P(Hn, 6n+1’ T, qt) < (p(en—l' Hn: T, t):

and

l/)(en' 6n+1’ T, qt) < lp(en—l' Hn: T, t)-
Thus, forallt€ Zandt > 0andn = 1,2,3, -+, we have

¥ (O, 01,7, 6) 2 ¥ (60,00,7, 7).

¢(6n’ 9n+1,T; t) S ¢ (90, 91’ T,an)

Y (O, Ons1, 7, 8) < 9 (00,61, 7, 7).

(4.1)

(4.2)

(4.3)

We now show that {6,,} is a Cauchy sequence in =, let m > n. Then, for all T € £ and t > @, we have

t t t
Y(6,,,0,,1T,t) =¥ (Hm, 6, 0n+1,§) * (0n+1, 0n, T, §) * (Bm, 0pi1s T, §)

t t
(Hml Hn' 9n+1' ) * Y <9n+11 011' T, g) * Y <6mr 6n+11 6n+2: §>

t t
* Y n+2' n+1' ) >*lp(9m'0n+2' '3 > *lp<0m' gm lT )

377171

t t
d’(@m, 9,1,‘[ t) < ¢ (9 1’l+1' ) <> d) (9n+1, 9n, T, §> <> ¢ <0m, 6n+1,T, §>

IA

3

t t
@ (660,011, ) 00 (611,00,7.2) 0® (O, Onir, B2
e

t t
n+2» n+11 ) 0@ (Hml 9n+2' 732 ) 00 <9mr Om 1,0 >

3mn

and

Y6, 00,70 <P (0O Brss,5) 09 (6141,60,75) 09 (61, 0,5

t
<9 (0O 0215 0 (02, 0072 09 (0, O, Bre )

v
t t
0 (B2 One755) O (O Bnrz 755 0 0 (B bncs T )

Letting m,n — oo, we have

limy¥@,,0,,1t) =1, lim ®(6,,,0,,1,t) =0, and lim Y(6,,,6,,1,t) = 0.
n—-oo n—oo n—oo
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Thus, {6,,} is a Cauchy sequence in Z. It follows from completeness of = that there exists w € = such
that

lim 011 = w, lim 9211—1 = lim Woypn-1 = lim .QID'Zn_Z = w,

and
lim 6,, = lim S@,, = lim Bw,,,_; = w.
n—->oo n—->oo n—>0oo

From Lemma 4.4, we have
NS®y41 = Sw and BTw,,41 = Tw. (4.4)
Meanwhile, forall T € Z with 7 # Swand 7 # Tw and t > 0, we have
Y(2Swon+1, BTwop11, T, qt) Z min{¥ (SS@an+1, TTW2041, 7, 1),
Y(2S@2141, SSTon41, T, 1), Y (BT @2041, TT®2041, qT, 1), ¥ (2S@ 2041, TTD 2041, T, D)},
P(2Son11, BTWop41, T, qt) < max{P(SSwapt1, TTWo041,T, ),
P(2SDon11, SSBan11, T, 1), P(BTwont1, TTW2n41, qT, 1), P(2S@op11, TTO2041, T, )},
and
Y(2S@2p41, BT@2041, T, 1) < max{P(SS@an41, TT®2n41, T, 1),
Y(2SD3041, SSW2011, T, 0), Y(BT@2n 41, TTW2041, qT, 1), Y(2S@op11, TT@2041, T, 1) .
Taking limit as n — oo and using (4.4), we have for all T € Z with 7 # Sw and t # Tw and t > 0.
YSw,Tw,1,qt +0) = min{¥(Sw,Tw, 1,t), ¥(Sw, Sw, T, t),
YTw,Tw,t,t),YSw,Sw,1,t)} = Y(Sw, Tw, T, 1),
d(Sw, Tw,t,qt +0) < max{®(Sw,Tw,1,t),P(Sw, Sw, T, t),
(Tw,Tw,1,t),®(Sw,Sw,7,t)} = P(Sw, Tw, T, t),
and
Y(Sw, Tw,t,qt +0) < max{yY(Sw,Tw, 1,t), P(Sw, Sw, T, t),
Y(Tw,Tw,1,t),Y(Sw,Sw,7,t)} = Yp(Sw, Tw, T, t).
By Lemma 4.2, we have
Sw =Tw. 4.5)
From condition (3), we get forall T € Z with 7 # Qw, T # Twand t > 0
Y(Qw,BTwyp41,7,qt) = min{¥(Sw, TTwp41,7,t), P (24, Sy, T, t),
Y(BTw2n41, TTOon41, T, 1), ¥ (R, TT@o041, T, 1)},

P (Qw,BTwypn41,7T,qt) < max{®(Sw, TTwyp1,T,t), P24, S0, T, 1),

AIMS Mathematics Volume 8, Issue 2, 2532-2555.



2551

P (BTw2n41, TT@2041, T, 1), P(2w, TT@p 44, T, 1)},
and
Y(w, BTwy,41,T,qt) < max{p(Sw, TTwyni1,7T, 1), P24y, Se, T, £),
Y(BTon41, TT®2041, T, 1), P (R, TT@2141, T, D) }-
Taking limit as n — oo, using condition (3), and Lemma 4.3, we have forall T € Z,
Y Qw,Tw,t,qt +0) = min{¥(Sw,Tw,1,t), ¥ Qw,Sw, T,t),
Y(Tw,Tw,t,t), Y Qw,Tw,1,t)} = Y(Qw, Tw, T, t),
?(Rw, Tw,t,qt + 0) < max{®(Sw,Tw,1,t),?(Rw,Sw, T,t),
*(Tw, Tw,1,t),2(Rw, Tw,7,t)} = P(Rw, Tw, T, t),
and
Y(Qw, Tw,T,qt +0) < max{y(Sw,Tw, 1,t), p(Rw,Sw, T, t),
Y(Tw,Tw,1,t),Y(Qw,Tw,7,t)} = Y(Qw,Tw, T, t).
By Lemma 4.2, we have
Nw =Tw. (4.6)
Forallt € 5 withT # Qw and T # Bw,and t > 0, we have
Y(Qw,Bw,1,qt) = min{¥(Sw,Tw,t,t), ¥ Qw,Sw, T, t),
Y(Bw,Tw,1,t),¥Y(Qw,Tw,T,t)},
>min{¥(Tw,Tw,1,t), Y Qw,Tw,1,t), Y (Bw,Qw,1,t),¥(Tw, Tw, ,t)}
=¥Y(Qw,Bw,T,t),
®(Qw,Bw,T,qt) < max{®(Sw,Tw,1,t),?(Nw,Sw, T, t),
®(Bw, Tw,T,t),?(Rw,Tw,T,t)},
<max{®(Tw,Tw,t,t),?Rw,Tw, 1,t), ?(Bw, 2w, 1,t), ?(Tw, Tw, T, t)}
= ®(Nw,Bw,T,t),
and
Y(Qw,Bw,t,qt) < max{Y(Sw,Tw,1,t),P(Rw,Sw, T, t),
Y(Bw,Tw,1,t), (2w, Tw,T,t)}
<max{Y(Tw,Tw,1,t), Y(Qw,Tw,1,t), P(Bw, Qw,t,t), P (Tw, Tw,T,t)}
= yY(Rw,Bw,T,t).
By Lemma 4.2, Qw = Bw and (4.7), it follows that Q2w = Bw = Sw = Tw. For all T € Z with T #

Bwand T # w,and t > 0
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Y (QRwyy, Bw,T,qt) = min{¥ (Sw,,, Tw,T,t), ¥ (Qway, SWay, T,t)
Y(Bw, Tw,t,t),¥Y(Rwyy,, Ty, T,t)},
& (Nwyy, Bw, T, qt) < max{®(Sw,,, Tw,1,t), D(Qw,,, Swop, T, t)
®(Bw,Tw,1,t),®(Qw,,, T, T,t)},
and
Y@y, Bw,T,qt) < max{y(Sw,,, Tw, T,t), Y(Qw,y,, STay, T, t)
Y(Bw, Tw,T,t), Y(Qwyp, T, T, )}

Taking limit as n — oo and using (4.3) and Lemma 4.3, we have for all 7 € Z we T # Bw, T # w and
t>0

¥Y(w,Bw,1,qt +0) = min{¥(w, Tw, 1,t), ¥ (0, w,w,t), ¥Y(Bw,Bw, 1,t), ¥ (0, Tw,T,t)}
>¥Y(w,Tw,1,t) = ¥Y(w,Bw,T,t),
®(w,Bw,t,qt +0) < max{®(w,Tw,1,t),?(w,w,w,t),P(Bw,Bw,1,t),®(0, Tw, T,t)}
<?d(w,Tw,1,t) < P(w,Bw,T,t),
and
Y(w,Bw,t,qt + 0) < max{yY(w, Tw,t,t),Y(w, w, w,t), Y(Bw,Bw,T,t), P(w,Tw,T,t)}
<yY(w,Tw,1,t) <Y(w,Bw,T,t).
So, we have
¥Y(w,Bw,t1,qt) =2 ¥(w,Bw,1,t), ?(w,Bw,1,qt) < ®(w,Bw,T,t)
and
®(w,Bw, T, qt) < P(w,Bw, T, 1),

here Bw = w. Thus w = Qw = Bw = Sw = Tw and so, w is a common fixed point of 2,B,C and T.
For uniqueness, let w be another common fixed point of 2,B,S,T for all T € £ with T # w, T #
wand t > 0, we have

¥Y(w,w,1,qt) = ¥(Rw,Bw,T,qt)

> min{¥(Sw, Tw, 7,t), ¥ Qw, Sw, 1,t), Y (Bw,Tw, 1,t), ¥ (Qw, Tw, T, t) }

> min{¥(w,w,1,t), ¥ (w,w,1,t), ¥(w,w,7,t), ¥(0,w,7,t)} = ¥(w,w,T,t),
®(w,w,1,qt) = (Nw, Bw, T, qt)

< max{®(Sw,Tw,1,t),?(Nw,Sw, 7,t), (BW,Tw, 7, t), P (Rw, Tw, T,t)}

< max{®(w,w,1,t),®(w,w,1,t),(W,w,1,t),2(0,W,1,t)} < P(w,wW,1,1t),

and
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Y(w,w,1,qt) =Y (Qw, Bw,T,qt)
<max{y(Sw,Tw, 1,t),P(Qw,Sw, 1,t), Y(Bw,Tw, 1,t), Y(Qw, Tw, T, t)}
< max{y(w,w,1,t), Y(w,w,7,t),p(w,w,1,t), P(w,w,1,t)} < P(w,w,T,t).
Which implies that
¥Y(w,w,1,qt) = ¥(w,w,1,t),2(w,w,1,qt) < P(w,w,1,1t),
and

Y(w,w,1,qt) <Y(w,w,1,t),

hence w = w. This completes the proof.
5. Conclusions

The N2MS idea, which is an extension of the NMS, was investigated in this article because it
offers a greater context for dealing with the ambiguity and uncertainty in natural problems that arises
in many fields of research and engineering. In this new setting, we constructed the Baire’s and Cantor’s
Theorems, which could be very helpful tools in the advancement of fuzzy set theory. We derived the
common fixed-point theorem with respect to N2MS. This work can easily be extending in the context
of neutrosophic b-2-metric spaces, neutrosophic controlled 2-metric spaces and neutrosophic partial
2-metric spaces.
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