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ABSTRACT
In recent decades, the mathematical modeling of infectious diseases, real-world problems, non-linear dynamical complex systems, etc., has
increased significantly. According to World Health Organization, tobacco use is the cause of about 22% of cancer deaths. Another 10% are
due to obesity, poor diet, lack of physical activity, and excessive drinking of alcohol. Approximately 5%–10% of cancers are due to inherited
genetic defects. The objective is to investigate the impact of time delays in implementing control measures on the epidemic dynamics. The
classification of cell population has four compartments: susceptible cells (x), cancer-infected cells (y), virus-free cells (v), and immune cells (z).
Our focus is to find the equilibria of the problem and their stability. The stability of the solutions is of two types: locally asymptotic and globally
asymptotic. The Routh–Hurwitz criterion, Volterra-type Lyapunov function, and LaSalle’s invariance principle are used to verify the stability
of solutions. The graphical behavior depicts the stable solutions to a real-world problem and supports the stability analysis of the problem. The
findings contribute to the understanding of epidemic dynamics and provide valuable information for designing and implementing effective
intervention strategies in public health systems.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0159942

I. INTRODUCTION

Cancer is a deadly disease that is becoming more common
around the world nowadays. According to the 2020 World Health
Organization report, there were ∼0.019 × 109 new cases of can-
cer and the death rate was ∼55%. The word cancer is given by
the Greek physician Hippocrates (460–370 BC). Cancer is a group
of different diseases, which bring about the distortion of cells and
can attack other parts of the body. It develops due to the excessive
growth of infected cells, named tumors in biological terms. Tumors
are of two types: benign and malignant. Benign tumors are local to
the organ/region where they develop, and malignant tumors attack

other parts of the body, which is called metastasis. Every form of
cancer has six stages. In the initial stage, one cannot trace a person’s
cancer because no symptom appears. Later on, cancer appears as an
ulcer or as a mucous membrane in the affected organ. A person with
lung cancer may find it hard to swallow things due to lung ulcers.
Some individuals may face problems such as weight loss, exhaus-
tion, distortion, skin damage, and feeling of weakness. Generally,
cancer is caused by variations in the environment. In addition, in few
cases, it is inherited by the patient from his parents. Some chemicals
may cause cancer as well. For instance, the radiations of radioactive
elements, ultraviolet rays, and carcinogens may increase the chances
of falling susceptible to the disease. Ionizing radiation has high
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energy to increase the chances of gene mutation. It includes radi-
ation caused by gamma rays, x rays, and radon. Non-ionizing
radiation does not have enough energy to cause cancer. Rock and soil
produce radon gas. When uranium and thorium are broken down,
they produce radium. The chances of lung cancer are higher in those
living in the areas of radon gas. Radiation with high energy, such
as gamma rays and x rays, can easily produce gene mutation and
result in the production of tumors in the exposed body. Explosions
in nuclear power plants and atomic bombs are the major sources
of these types of radiation. However, radiation is also used in can-
cer treatment, called radiotherapy. Radiotherapies are of two types:
external and internal therapy. Radiation therapy can help in destroy-
ing the affected DNA. This helps to stop cell division, so tumor size
shrinks. This technique takes from weeks to a month to operate.
Radiation therapy also has some side effects, such as killing of nearby
healthy cells. This technique is also costly. The patient needs to take
a special diet that contains more proteins and calories to maintain
physical health. Carcinogens are chemicals that can cause cancer
in humans. Carcinogens are of three types: chemical, physical, and
oncogenic carcinogens, which can be found naturally and are mainly
found in tobacco. Carcinogenic foods include processed meat, alco-
hol, soft drinks, fruits, vegetables, eggs, and tomatoes. Some exam-
ples of carcinogenic materials are benzene, vinyl chloride, nickel,
and asbestos. Malinzi et al. proposed a prospect in which they
describe the application of mathematical modeling in the treatment
of cancer.1 Salim et al. proposed a dynamic model of prostate can-
cer using vaccination delay.2 Valle et al. presented a mathematical
model to explain and check the correctness of chemoimmunother-
apy for cancer treatment.3 Alqudah presented a numerical analysis
of the mathematical model of cancer cells with chemotherapy.4 Nave
et al. proposed a prospectus of the dynamical model to treat breast
cancer.5 Jarrett et al. proposed a mathematical model of breast can-
cer constrained by magnetic resonance data.6 Jin studied the global
and local convergence of a dynamic cancer model.7 Ji et al. pro-
posed a mathematical model to explain the role of medication in the
treatment of prostate cancer and the development of metastatic bone
disease.8 Nakanishi and Hirata proposed a mathematical model for
scheduling hormone therapy to treat prostate cancer.9 Solís-Pérez
et al. proposed a fractional mathematical model of breast cancer.10

Lai and Friedman proposed a mathematical model to check the
validity of two drugs in treating cancer.11 Sigal et al. presented a
mathematical model of cancer cells with target immunotherapy.12

Medina reviewed the metabolic behavior of cancer disease using
mathematical modeling.13 Jordão and Tavares described the role
of mathematical modeling in curing cancer.14 The computation
efficiency of numerical methods in the mathematical modeling of
influenza with vaccination strategies and that of gonorrhea diseases
is studied in Refs. 15 and 16. Bratus et al. studied a dynamic model
of cancer by maximizing the time delay.17 Magi et al. proposed a
dynamic model to explain the current situation and spread of can-
cer.18 The research of Xu et al. is based on a delayed mathematical
model for cancer treatment and the growth of cancer cells in the
presence of continuous medication.19 Barbarossa et al. proposed a
delayed mathematical model of cancer with immune response.20

Yang et al. studied a construction project’s delay analysis selection
model.21 Ajayi and Chinda studied the impact of construction delay-
controlling parameters on project schedules.22 Cui and Xu analyzed
mathematical models for the growth of tumors with time delays

FIG. 1. Flow chart of the delayed cancer disease model.

in cell proliferation.23 Villasana and Radunskaya presented a delay
differential equation model for tumor growth.24 In the field of epi-
demiology, mathematical modeling has a key role. In addition, an
important type of mathematical modeling is delay modeling, which
is very useful in dealing with real-life problems, especially epidemic
diseases. Cancer is a dreadful disease. In addition, it is a major issue
and causes deaths on a large scale, as mentioned above. So, delay
modeling is an important factor in dealing with this horrible disease.
In Sec. II, the cancer delay model is presented along with its equi-
librium points. Section III presents the analysis of the model that
contains equilibria, positivity and boundedness, reproduction num-
ber of the model, and sensitivity analysis of the reproduction number
to each of its parameters. In Secs. IV and V, the local stability and
global stability are discussed. In Sec. VII, the conclusion and results
are presented.

II. MODEL FORMULATION
For simplicity, it is assumed that N(t) represents the total pop-

ulation of the cell, which is further divided into four compartments:
uninfected cells, infected cells, virus-free cells, and immune cells.
Their numbers at a given time t are represented by x(t), y(t), v(t),
and z(t), respectively. The dynamics of cell population is shown in
Fig. 1.

The system of delay differential equations from the presented
flow chart is given by

dx
dt
= r1 − ax(t − τ)v(t − τ)e−d1τ

1 − d1x(t), t ≥ 0 τ ≤ t, (1)

dy
dt
= ax(t − τ)v(t − τ)e−d1τ

1 − cy(t)z(t) − d1y(t) − by(t),

t ≥ 0 τ ≤ t, (2)

dv
dt
= by(t) − h2y(t)z(t) − d1v(t) −m1v(t), t ≥ 0, (3)

dz
dt
= cy(t)z(t) + h2y(t)z(t) − d1z(t) +m1v(t), t ≥ 0, (4)

x = x0 ≥ 0, y = y0 ≥ 0, v = v0 ≥ 0, z = z0 ≥ 0.

III. ANALYSIS OF MODEL
The cancer trivial equilibrium point (CTE—C0), cancer-

free cell equilibrium point (CFCE—C1), and cancer existing cell
equilibrium point (CECE—C2) are as follows:
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C0 = (x0, y0, v0, z0
) = (0, 0, 0, 0),

C1 = (x1, y1, v1, z1
) = (

r1

d1
, 0, 0, 0), and C2 = (x∗, y∗, v∗, z∗),

where

x∗ =
r1

av∗e−d1τ
1 + d1

, y∗ =
ar1v∗e−d1τ

1

(av∗e−d1τ
1 + d1)(cz∗ + d1 + b)

= β,

v∗ =
h2βz∗ − bβ

d1 +m1
, z∗ =

−m1γ
cβ + h2β − d1

.

A. Model properties

Theorem 1. For given t ≥ 0, τ ≤ t, and initial conditions, the
system preserves the positivity of the solution at the system of
Eqs. (1)–(4).

Proof. It is clear from the system of Eqs. (1)–(4) that

dx
dt
∣
x=0
= r1 ≥ 0,

dy
dt
∣
y=0
= axve−d1τ

1 ≥ 0,

dv
dt
∣
v=0
= by − h2yz ≥ 0,

dz
dt
∣
z=0
= m1v ≥ 0,

which shows that the positivity is reserved in the system.

Theorem 2. The solution (x, y, v, zεR4
+) of the system of

Eqs. (1)–(4) is bounded.

Proof. Let us suppose the population function as follows:

N(t) = x(t) + y(t) + v(t) + z(t),

dN
dt
= r1 − d1N,

dN
dt
≤ r1 − d1N.

Using Gronwall’s inequality gives the following results:

N(t) ≤ N(0)e−d1t
1 +

r1

d1
, t ≥ 0, lim

t→∞
Sup N(t) ≤

r1

d1
.

B. Reproduction number
The reproduction number of the delayed cancer model using

the next-generation matrix method is determined as follows:

Assume that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y′

v′

z′

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
ar1e−d1τ

1
d1

0

0 0 0

0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y
v
z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1 + b 0 0

−b d1 +m1 0

0 −m1 d1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y
v
z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
ar1e−d1τ

1
d1

0

0 0 0

0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1 + b 0 0

−b d1 +m1 0

0 −m1 d1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where A and B are the transmission and transition matrices,
respectively. Now, we have to find AB−1,

AB−1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

abr1e−d1τ
1

d1(d1 + b)(d1 +m1)

ar1e−d1τ
1

d1(d1 +m1)
0

0 0 0

0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Now, the most significant eigenvalue of AB−1 is the reproduction
number denoted by R0 and is given by

R0 =
abr1e−d1τ

1
d1(d1 + b)(d1 +m1)

.

C. Sensitivity of parameters
The sensitivity of parameters in epidemic models refers to how

changes in specific model parameters affect the overall behavior
and outcomes of the model. Sensitivity analysis helps researchers
understand the impact of parameter values on the model’s predic-
tions. By systematically varying parameter values, one can assess
how sensitive the model’s results are to changes in each parameter.
This analysis provides insights into which parameters have the most
significant influence on the model’s outcomes, helping identify crit-
ical factors that drive the spread and control of an epidemic. To
determine such parameters, consider the following calculations:

Ca =

∂R0
R0
∂a
a

=
a

R0
×

r1be−d1τ
1

d1(d1 + b)(d1 +m1)

=
1

R0
×

ar1be−d1τ
1

d1(d1 + b)(d1 +m1)
=

1
R0
× R0 = 1 > 0.

By repeating this process on other parameters, the following results
are found:

Cr1 = 1 > 0, Cb =
d1

d1 + b
> 0, Cm1 = −

m1

d1 +m1
< 0,

Cd1 = −
[τd1(d1 + b)(d1 +m1) + (2m1d1 + 3d2

1 + bm1 + 2d1b)]
[(d1 + b)(d1 +m1)]

< 0.

From the above analysis, it is found that some of the parameters have
positive sensitivity indices, such as a, r1, and b, and some of the para-
meters have negative sensitivity indices, such as m1 and d1. It means
that a, r1, and b have a direct relation with R0 and m1 and d1 have an
inverse relation with the reproduction number.

IV. LOCAL STABILITY

Theorem 3. If R0 < 1, then cancer-free cell equilibrium point,
C1 = (x1, y1, v1, z1

) = ( r1
d1

, 0, 0, 0), is asymptotically stable locally.
Otherwise, C1 is unstable.

Proof. At C1 = (x1, y1, v1, z1
) = ( r1

d1
, 0, 0, 0), the system of

Eqs. (1)–(4) becomes
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Jc(
r1

d1
, 0, 0, 0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−d1 0 −a(
r1

d1
)e−d1τ

1 0

0 −d1 − b a(
r1

d1
)e−d1τ

1 0

0 b −d1 −m1 0

0 0 m1 −d1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By evaluating ∣ Jc∣c1
− λI∣ = 0, we have found the following negative

eigenvalues −d1 − λ = 0, which gives λ = −d1 < 0 and the polynomial
λ2
+ a0λ + a1 = 0.

Here, a0 = 2d1 + b and a1 = d2
1 +m1d1 + bm1 + bd1

− ba( r1
d1
)e−d1τ

1 .
Since a0, a1 > 0 if R0 < 1, the cancer-free cell equilibrium point

is locally asymptotically stable.

Theorem 4. The cancer existing cell equilibrium (CECE)
point, C2 = (x∗, y∗, v∗, z∗), is stable in local sense, if R0 > 1.

Proof. The Jacobian matrix of the system of Eqs. (1)–(4) at the
cancer existing cell equilibrium point is as follows:

J(x∗, y∗, v∗, z∗) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−av∗e−d1τ
1 − d1 0 −ax∗e−d1τ

1 0

av∗e−d1τ
1 −cz∗ − d1 − b ax∗e−d1τ

1 −cy∗

0 b − h2z∗ −d1 −m1 −h2y∗

0 cz∗ + h2z∗ m1 cy∗ + h2y∗ − d1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For eigenvalues, put ∣J − λI∣ = 0,

RRRRRRRRRRRRRRRRRRRRRRR

−av∗e−d1τ
1 − d1 − λ 0 −ax∗e−d1τ

1 0

av∗e−d1τ
1 −cz∗ − d1 − b − λ ax∗e−d1τ

1 −cy∗

0 b − h2z∗ −d1 −m1 − λ −h2y∗

0 cz∗ + h2z∗ m1 cy∗ + h2y∗ − d1 − λ

RRRRRRRRRRRRRRRRRRRRRRR

= 0.

On evaluating the above determinant, we have the following polynomial:

λ4
+ (A + d1 + F − I − B)λ3

+ (AF − AB − AI − d1F −DF + BI − FI − CF −DH)λ2

− (ABI − ABF − AFI − ACE − ADH + d1BI − d1BF − d1FI − d1I − d1CE − d1DH + BFI
+m1G + CEI − CGH − CEm1 −DHF + ACE)λ + (ABFI + AGm1 + ACEI − ACGH
− ADEm1 − ADHF + BFTd1 +Gd1m1 + d1CEI − CGHd1 −DEm1d1 −DHFd1 − ACEI + ACHG) = 0.

Here,

m0 = 1, m1 = A + d1 + F − I − B,

m2 = AF − AB − AI − d1F −DF + BI − FI − CF −DH,

m3 = ABI − ABF − AFI − ACE − ADH + d1BI − d1BF
− d1FI − d1I − d1CE − d1DH + BFI +m1G + CEI
− CGH − CEm1 −DHF + ACE,

m4 = ABFI + AGm1 + ACEI − ACGH − ADEm1 − ADHF
+ BFTd1 +Gd1m1 + d1CEI − CGHd1 −DEm1d1

−DHFd1 − ACEI + ACHG,

where

A = ave−d1τ
1 , B = −d1 − b − cy, C = axe−d1τ

1 ,

D = −cy, E = b − h2z∗, F = d1 +m1

G = −h2y, H = cz + h2z, I = cy − d1 + h2y.

m0, m1 > 0, m1m2 −m0m3 > 0, (m1m2 −m0m3)(m3) −m1
2m4 > 0,

and m4 > 0 if RO > 1.
Hence, the cancer existing equilibrium of the given system of

Eqs. (1)–(4) is stable in local sense.

V. GLOBAL STABILITY

Theorem 5. The cancer-free equilibrium point
C1 = (x1, y1, v1, z1) = (

r1
d1

, 0, 0, 0) is stable in global sense, if
R0 < 1.
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TABLE I. Values of the parameters.

Parameters Descriptions Values (per day)/Source25

r1 The growth rate of cells 0.5 (assumed)

a The rate of infection of cells 5.1 (fitted)

d1 The rate of mortality of cells 0.5 (assumed)

c The rate of transport capacity of cells 3.048 (CFCE)
5.048 (CECE)

b The releasing rate of new particles with burst size 0.22–0.89 (fitted)

h1 The rate of immunity of cells 0.36–0.66 (fitted)

m1 The immunity’s rate of stimulation of infected cells 0.6–0.9 (fitted)

τ The delay parameter ≥0

Proof. Consider the Lyapunov function G : χ → R defined as
follows:

G = (x − x1 − x1 log
x
x1
) + y + v + z ∀(x, y, v, z)εχ,

dG
dt
= (1 −

x1

x
)

dx
dt
+

dy
dt
+

dv
dt
+

dz
dt

,

dG
dt
= (

x − x1

x
)(r1 − axve−d1τ

1 − d1x)

+ (axve−d1τ
1 − cyz − d1y − by)

+ (by − h2yz − d1v −m1v) + (cyz + h2yz − d1z +m1v),

dG
dt
= (x − x1)(

r1

x
− ave−d1τ

1 − d1) + axve−d1τ
1 − d1y − d1v − d1z,

dG
dt
= (x − x1)(

r1

x
− ave−d1τ

1 −
r1

x1
+ ave−d1τ

1 )

− d1(v −
axve−d1τ

1
d1

) − d1(y + z),

dG
dt
= (x − x1)(

r1

x
−

r1

x1
) − d1(v −

axve−d1τ
1

d1
) − d1(y + z),

dG
dt
= (x − x1)(

r1x1 − r1x
xx1

) − d1(v −
axve−d1τ

1
d1

) − d1(y + z),

dG
dt
= (
−r1(x − x1)

2

xx1
) − d1v(1 −

axe−d1τ
1

d1
) − d1(y + z).

dG
dt < 0 if R0 < 1, and dG

dt = 0 if x = x1, y = 0, v = 0, and z = 0.
Therefore, by LaSalle’s Invariance Principle (LIP), C0 is stable in
global sense.

Theorem 6. cancer existing cell equilibrium point
(CECE—C∗), C∗ = (x∗, y∗, v∗, z∗), is stable in global sense, if
R0 > 1.

Proof. Consider a Lyapunov function G : χ → R defined as

G = (x − x∗ − x∗ log
x

x∗
) + (y − y∗ − y∗ log

y
y∗
)

+ (v − v∗ − v∗ log
v

v∗
) + (z − z∗ − z∗ log

z
z∗
),

dG
dt
=

d
dx
(x − x∗ − x∗ log

x
x∗
)

dx
dt
+

d
dy
(y − y∗ − y∗ log

y
y∗
)

dy
dt

+
d
dv
(v − v∗ − v∗ log

v
v∗
)

dv
dt
+

d
dz
(z − z∗ − z∗ log

z
z∗
)

dz
dt

,

dG
dt
= (

x − x∗

x
)(r1 − axve−d1τ

1 − d1x)

+ (
y − y∗

y
)(axve−d1τ

1 − cyz − d1y − by)

+ (
v − v∗

v
)(by − h2yz − d1v −m1v)

+ (
z − z∗

z
)(cyz + h2yz − d1z +m1v),

dG
dt
= (x − x∗)(

r1

x
− ave−d1τ

1 − d1)

+ (y − y∗)(
axve−d1τ

1
y

− cz − d1 − b)

+ (v − v∗)(
by
v
−

h2yz
v
− d1 −m1)

+ (z − z∗)(cy + h2y − d1 +
m1v

z
),
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FIG. 2. (a) Behavior of uninfected cancer cells at CFCE. (b) Behavior of infected cancer cells at CFCE. (c) Behavior of virus-free cells at CFCE. (d) Behavior of uninfected
immune cells at CFCE. (e) Combined graphical behavior of all sub-populations of cells at CFCE.
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FIG. 3. (a) Behavior of uninfected cancer cells at CECE. (b) Behavior of infected cancer cells at CECE. (c) Behavior of virus-free cells at CECE. (d) Behavior of uninfected
immune cells at CECE. (e) Combined graphical behavior of all sub-populations of cells at CECE.
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dG
dt ≤ 0 for R0 < 1, and also dF

dt = 0 only if x = x∗, y = y∗, v = v∗, and
z = z∗. Hence, by LaSalle’s Invariance Principle (LIP), C∗ is stable in
global sense.

FIG. 4. (a) Combined graphical behavior of all sub-populations of cells at CECE when τ = 0.1. (b) Combined graphical behavior of all sub-populations of cells at CECE when
τ = 0.2. (c) Combined graphical behavior of all sub-populations of cells at CECE when τ = 0.5. (d) Combined graphical behavior of all sub-populations of cells at CECE
when τ = 0.5.
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FIG. 5. Comparison of the reproduction number and the delay term.

VI. SIMULATIONS
In this section, the simulation results of the model are displayed

with the use of the parameters whose values are shown in Table I.

VII. RESULTS AND CONCLUSION
Case 1: Without delay effect: The model’s behavior for cancer-

free equilibrium shown in Figs. 2(a)–2(e) converges. The model’s
behavior for cancer-existing compensation shown in Figs. 3(a)–3(e)
converges. Case 2: With delay effect: Figs. 4(a)–4(d) show that the
susceptibility of uninfected cells increases with delay tactics, and
the infectivity decreases and even converges to zero. Figure 5 shows
the comparison of the delay term with the reproduction number.
Figure 6 displays the effect of the delay strategies on infected cells.
In this article, we investigated a real-life application of the mathe-
matical analysis of a delayed cancer model. The model is based on

FIG. 6. Display of the effect of the delay term on an infective cell.

four sub-populations of cells: susceptible, infected, uninfected, and
immune. The model analysis includes positivity, boundedness, equi-
libria, and threshold number with local and global stabilities. The
sensitivity of the parameters is one of the outcomes of the model.
Linearization of the model is developed by well-known results, such
as the Jacobian and Routh–Hurwitz criteria. Furthermore, preven-
tive measures could be supportive to control or eradicate cancer,
such as a balanced diet, a healthy weight, and frequent physical activ-
ities. The researchers in this study employ mathematical techniques
to investigate how the introduction of delays in implementing these
strategies impacts the behavior and outcomes of the SEIR models. By
incorporating uncertainties into the model, the study aims to cap-
ture the realistic dynamics and time-dependent nature of the spread
of infectious diseases. The findings of this study contribute to the
understanding of how delayed strategies can influence the dynam-
ics of infectious diseases. The insights gained from this analysis can
help inform public health policymakers and practitioners in design-
ing more effective disease control and prevention systems, taking
into account the time delays associated with the implementation of
interventions.
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