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Abstract: In this paper, a novel implicit IH-multistep fixed point algorithm and convergence result for
a general class of contractive maps is introduced without any imposition of the “sum conditions” on the
countably finite family of the iteration parameters. Furthermore, it is shown that the convergence of
the proposed iteration scheme is equivalent to some other implicit IH-type iterative schemes (e.g.,
implicit IH-Noor, implicit IH-Ishikawa and implicit IH-Mann) for the same class of maps. Also,
some numerical examples are given to illustrate that the equivalence is true. Our results complement,
improve and unify several equivalent results recently announced in literature.

Keywords: strong convergence; implicit multistep [H-iterative scheme; real Hilbert space; general
contractive operator; normed linear space
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1. Introduction

The problem of solving a nonlinear equation and that of approximating fixed points of
corresponding contractive-type mapping are closely related. In line with this, there is a practical and
theoretical interest in finding approximate fixed points of various contractive-type operators. Existing
literature is filled with several methods for achieving this.
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Let (Z, d) be a complete metric space and I' : Z — Z a self-map of Z. Assume that FI') = {g € Z :
I'q = g} is the set of fixed points of I'.

In recent years, implicit iterative schemes for approximating fixed points of nonlinear mappings
have attracted the attention of different researchers all over the world. Regarding this direction, some
authors have explored implicit iterations in terms of their qualitative features with regard to
convergence, stability and equivalence of convergence in various spaces (see [1-8], and the references
therein). Implicit iterations are indispensable from a numerical point of view due to the fact that they
give an accurate approximation as compared to explicit iterations. Using computer-oriented
programs, it has been observed that approximation of a fixed point via implicit iterative schemes has
the potential to reduce the computational cost of the fixed-point problem (see [4] for more details).
Other areas in which iteration techniques have found practical values are in solving the root-finding
problems (see [9, 10]) and in generating fractal patterns (for details see [11]). In the area of the
convergence of implicit and explicit iterations in different spaces, numerous research papers have
been published (see [12—-39] and the references contained in them).

In computational mathematics, it is of paramount importance (theoretically and practically) to
check for the equivalence of iterations so as to avoid duplication of results. For recent works in this
direction, see [3,40] and the references contained therein. Among the works relating to the Kirk-type
iteration scheme and equivalence of convergence results, the results in [37] caught our attention for
the obvious reason that the sum conditions imposed on the countably finite family of the iteration
parameters are too strong and could constitute a computational hazard for the effective
implementation of the iterative scheme in applications. For instance, considering the explicit iterative
method (1.1) as described in [37], the iterative scheme of the sequence {y,} " , is defined by

[1 fl

1 1 .

Ytl = YnoZ, + Z Vil 2, Z Uy = 13
r=0

r=1

€z+l €t+l
t t o+l t s _t+1 | _ .
. = 0%, +Zan’sl“ Z, ,Zaw =1,t=1,2,--- ,u—2;
s=1 s=0
fu €u
u—-1  _ u—1y-s u—-1 _
z, = Zan’, Iy, E @, =lLux=2,n>0, (1.1)
s=0 s=0

where y is an arbitrary pointin X, {; > £, > {3 > --- > {, for each u, af”, Ynr = 0 and 1y, 0, @0, # 0 for
each i, a/j'l,s, Yor €10, 11,6 =1,2,--- ,u—-2,5=0,1,2,--- ,¢, and ¢; and ¢, are fixed integers for each u
(which is a generalization of different explicit iterations), which introduces some inherent challenges
with the topmost being that of the necessary and sufficient condition for the convergence of (1.1) to the
fixed point of the contractive-type mapping I'. This condition requires that the sum of the countably
finite family of the iteration parameters be at unity (i.e., Zf‘z 0@y = 1; Zi’z*(‘) a,, = 1and Zf“z Vit =
1) which, as explained above, is not only complex and time consuming but also mandates a huge
computational cost.

In view of the aforementioned challenges, it becomes pertinent to ask the following question:

Question 1.1. Can it be possible to construct a more effective implicit multistep iterative scheme that
will address the challenges mentioned above and still maintain the results in [3]?

AIMS Mathematics Volume 8, Issue 1, 841-872.
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To address these challenges, Agwu and Igbokwe [41,42] introduced the following explicit iterative
schemes:

Let H be a Hilbert space and letI' : H — H be a self-map of X. For an arbitrary x, € H define the
sequence {x,} > iteratively, for s = 1,2,--- ,k — 2, as follows:

Xt = Op1 X + 25 60 TS (1= 6, )Ty + 1L (1 = 6, )Ty
vy =k X, + 2"”' o TT5 (=g YTty + [T (1= el )T ysts (1.2)
W =3% ek 1 12 (1 =k hrtx, + 1%, (1 - aﬁ;l)rf’kxn,k > 2,n > 1,
where {; > €, > {3 > --- > £, foreach j, {{5,,4}‘:’0}5" 1> {{a/,,]},‘f’o}] , €10, 1] foreach kand £y, 05, - , &
are fixed integers (for each k). The iteration scheme defined by (1.2) is called the multistep IH-iteration
scheme.
Again, for any xo € X, the sequence {x,} " is defined recursively, for s = 1,2,--- ,k — 2, by

Xt = Spayy + 20, 6,y TS (1 = 6,00y + T2, (1— S )1 yh;
yn _ a,n 1yn+1 + 2 Cort CZ H] 11(1 as )Fj—l s+l H 3+1 a )F€1 s+1 (13)
PN ey P

where €} > €, > {3 > -+ > {, foreach j, {0, ;} o}J 1> {{a,,j}fl"O}J , €10,1] foreachkand ¢, 5, -+ , 4,
are fixed integers (for each k); this is called a multistep DI-iteration scheme. Using (1.2) and (1.3),
Agwu and Igbokwe [41,42] achieved strong convergence and stability results without any imposition
of the sum conditions on the control sequences.

The above iteration techniques deal with explicit iterations. The case of implicit iterative schemes
have not been fully employed to examine the fixed points of nonlinear problems in recent times.
Following the results of Chugh et al. [43], in which the authors proved convergence of faster implicit
iterative schemes and remarked that this type of scheme has an advantage over the corresponding
explicit iterative scheme for nonlinear problems (as they are widely used in many applications when
explicit iterative schemes are inefficient), several researchers have concentrated their efforts in this
direction.

Most recently, Bosede et al. [3] invented the following implicit multistep iterative scheme: Define
the sequence {z,};” , by

{1 0y

1 .

Znel = Yol t Z Yn,krrzn+la Z Apr = 1’
r=1 r=0

U1 U1
Z = a/;’oz;“+Za;’sl“szn,Za 1,2, ,u—2;
s=1
2 = n,zn+Za/”1F““Za/’“:lu>2n>0 (1.4)

where z is an arbitrary pointin X, £; > £, > €3 > --- > ¢, foreach u, a, ;, ¥,; > 0 and .0, @0, # 0 for
each i, aﬁl’s,yn,, el0,1],t=1,2,--- ,u—-2,5s=0,1,2,--- ,¢, and ¢, and ¢, are fixed integers for each
u. Again, (1.4) is a generalization of many implicit iterative schemes (i.e., implicit Kirk-Noor, implicit
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Kirk-Ishikawa and implicit Kirk-Mann). Despite their usefulness, the same necessary and sufficient
conditions (the sum conditions) required for the convergence of (1.1) to the fixed point of a certain
contractive-type mapping I" is evident in (1.4). Consequent to this, the following second question
emerges:

Question 1.2. Is it possible to replicate (1.2) for the case of an implicit multistep iterative scheme and
still retain the results in [3]?

Motivated and inspired by the results in [3,41,42] and remark in [4], in this paper, we define a novel
iterative scheme for which an affirmative answer is provided for Question 1.2. See [43—45], for more
details.

The remaining part of the paper is organized as follows. Section 2 considers some preliminary
results required to prove our convergence theorems. Section 3 deals with the strong convergence of
the implicit /H-multistep iteration scheme, implicit /H-Noor iteration scheme, implicit /H-Ishikawa
iteration scheme and implicit /H-Mann iteration scheme. In Section 4, numerical examples, open
problems and the conclusion are considered.

2. Preliminary

Throughout the remaining sections, ¢ : R* — R*,R*, N and H will denote a monotone increasing
subadditive function, the set of positive real numbers, the set of natural numbers and a real Hilbert
space, respectively. Also, the following definition, lemmas and propositions will be needed in order to
establish our main results.

Definition 2.1. ( [24]) Suppose Y is a metric space and let I : Y — Y be a self-map of Y. Let
{x.}2y € Y be a sequence generated by the iteration scheme

Xn+l = g(r, -xn), (21)

where x € Y is the initial approximation and g is some function. Suppose {x,} ", converges to a fixed
point q of I'. Let {t,,};7 , € Y be an arbitrary sequence and set €, = d(t,,g(I',1,)),n = 1,2,--- Then, (2.1)
is said to be I'-stable if and only if lim, . €, = 0 implies lim, ., x, = gq.

Note that in practice, the sequence {z,} >’ ) could be obtained the using the following approach: Let
xo € Y. Set x,,; = g(I', x,,) and let ¢y, = xy. Since, x; = g(I', x¢), following the rounding in the function
I', the value #; (which is estimated to be equal to x;) could be calculated to give #,, an approximate

value of g(I', 7;). The procedure is continued to yield the sequence {z,},, which is approximately the
same as the sequence {x,} .

Lemma 2.1. (See, e.g., [37]) Let {12, € R" : 7, > 0asn — oco. For0 <6 < 1, let {w,}", be a
sequence of positive numbers satisfying w1 < ow, + 7, n=0,1,2,--- . Then, w, —» 0 asn — oo.

Lemma 2.2. ( [28]) Let (Y, || .||) be a normed space and T : Y — Y a selfmap of Y. Let ¢ : R* — R*
be monotonic increasing subadditive function such that $(0) = 0 and ¢(Mr) = M¢(r) for all 0 < p <
I,M>0and r € R*. Then, Vi e Nand Vs,t € Y; we have

J o
I07s =Tl < pllls = dll + )| (f)pf—lab(ns ~ Tsl). (22)
i=0

AIMS Mathematics Volume 8, Issue 1, 841-872.
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Proposition 2.1. ( [38]) Let {« }l . € R be a countable subset of the set of real numbers R, where k is
a fixed nonnegative integer and N € N is any integer with k+ 1 < N. Then, the following identity holds:

e+ l;l ; ]:1(1 — )+ ﬂ(l —a;) = 1. (2.3)

Proposition 2.2. ( [38]) Let k be a fixed nonnegative integer, t,u,v € Hand N € Nwithk+1 < N. Let
{vl}N 'C Hand{« } C [0, 1]. Define

Y=t + Z Q; 1_[(1 — ;)i 1+n(1 —aj)v.

i=k+1 j=k

Then,

=P = aylie = ulP + Zaﬂ(l—a,)nv, L= ul? +]_[(1—a,>||v—u||

i=k+1 j=k
—ay Z a; ﬂ(l —a)llt = vial? + ]_[a - )it —viP]
i=k+1 Jj=k
N i—1
~(-ap)| > a| [ =aplvis = @it + wie)IP
i=k+1 =k

i-1

+ay [ [ =aplv = vyal?],

=k
where wy, = Zﬁ,ﬁl Q; Hj;ﬁc(l — ;)i + ]—[;;}{(1 —ajv,k=1,2,--- ,Nandw, = (1 —c,)v.
3. Main results

In this section, we introduce the following implicit IH-type iterative schemes.
Let (Z,].||) be a normed linear space, E a nonempty closed convex subset of ZandI' : E — E a

self-map of E. For an arbitrary x, € E, the sequence {x,} ., is defined iteratively, for j = 1,2,--- ,r-2,
by

Xn+l = n IX;I) + Z 5nl Hi_l nt)ri_lxn+l + 1—[51 (1 - n,t)relxn+1;
(J) _ yn 1xglj+1) Z,HQI 7,” H (1 _ yn I)Fl lx(j) H /+1 ,y] )r€j+1x(]). (31)

1 1 1 1 1) N, D
f: Y=yl + Xy TIC A =y +nt:1(1 Y™ r > 2,

where n > 1,6, > €, > {3 > --- > {, for each j, 6,; > 0,0, # O,)/f;’l. > 0, andyi1 # 0 for each

Js {{5,1,[};’[’:0}5;1, {{)/f,,}ff 0}1 . € [0,1] for each j and ¢, 65, -+ , ¢, are fixed integers (for each j); this is
called an implicit /H-multistep iteration.

AIMS Mathematics Volume 8, Issue 1, 841-872.
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Equation (3.1) represents a general iteration scheme for getting other implicit /H-type iterations.
Indeed, if r = 3 in (3.1), we get a three-step implicit /H-Noor iteration, as follows:

Xn+l = n lxizl) + Z 5ni H;;i(l - 5n,t)ri_1xn+l + Hfl (1 - nt)l—‘{I Xn+15
5 =y + 2 Y TIoi (L= )T + T2, (1=, )02 (3.2)
(2) _ yn X + 25327,“ H (1 _ ,yit)l—*i—l () + H€31(1 y2 ,)Ff*)é,z),n > 1,

where 51 2 52 2 539 5nz 2 0 5nl # 0 ’ynl”ynl = 0 7,11 * O '}’ {{ nz}n ()}, 1’{{ i,}:}o}l 1 € [0 1]
and ¢, {, and {5 are fixed positive integers. Again, if r = 2 i in (3 1), we get a two-step implicit /H-
Ishikawa iteration as shown below:

{x,m: Sni Xy + 2 8, TTZH (L = 8 D0 ey + T, (1 = 80 )T X

D=y Sy TS =7 )T+ 12 (=7, )T,
where ¢; > €5, 6,; > 0,6,1 # 0, 7n1 > 0, 7n1 + 0, {{6n,i},‘;":0}fi1,{{7,’1‘,,-}:’:0}21 € [0, 1] and ¢, and ¢, are
fixed positive integers. Lastly, if r = 2 and ¢, = 0 in (3.1), we have a one-step implicit /H-Mann
iterative scheme as follows:

(3.3)

£ i-1 4
et = x4 > 6 [ [ = 6000 ey + [ (1= 6,00 s, (3.4)
j= t=1 t=1

where 6,,; > 0,6, # 0, {{5n,i};10}fi1 € [0, 1] and ¢ is a fixed positive integer.

For the sake of convenience, especially in our attempt to prove our proposed equivalence, (3.2)—
(3.4) shall be rewritten in the manner shown below: Let (Z, |.||) be a normed linear space, E a nonempty
closed convex subset of Z and I' : E — E a self-map of E. For an arbitrary w, € E, the sequence

{wn}>, 18 defined iteratively by

Wpe1 = n IWEzl) + Za 6nl H 5n,t)ri_1wn+1 + Hfl (1 - 5n,t)r£1 Wntts
W =y, W+ B2 ml I (1 —yh T W+ n L=y rw; (3.5)
W = 2 w4 £, 72, T =72 )0 4 18, (1= 22 )Down = 1,
Wheref] 2 52 2 53’ 5nz 2 0 5 Nl # 0 ynl’ynl = 0 7,11 # 0 )’ {{ nl}n O}z 1’{{ 21}200}1 1 € [0 1]

and ¢, ¢, and {5 are fixed positive integers; this is called an 1mphclt HI-Noor iterative scheme. Further,
for an arbitrary zy € E, a two-step implicit / H-Ishikawa iteration will be defined as follows:

{Zn+1 = 6z + 20 60 [T = 6,00 2y + [12,(1 = 6,001 201

n = yn 1%n + 21 zylll H;;i(l - 7111,t)ri_1Z111 + Hfi](l - le,z)rgzZ,l,,
where €; > €5, 6,; > 0,6, # 0, 7n1 > 0, 7n1 # 0, {{5,1,{};'[’:0}21,{{%;,};" 0}1 , €10,1] and ¢, and ¢, are
fixed positive integers. Also, for an arbitrary uy € E, a one-step implicit /H-Mann iterative scheme
will be defined as follows:

(3.6)

4 i—1 4
ttyr = Ot + > 6 [ [(1 =600 gy + | (1= 6,00 e, (3.7)
j= t=1 t=1

where 6,,; > 0,6, # 0, {{5n,i}f:o}fl1 € [0, 1] and ¢ is a fixed positive integer.

AIMS Mathematics Volume 8, Issue 1, 841-872.
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Remark 3.1. If €, = 6, = {3 = 2, 6,1 = 04,042 = ,8,1,7}!’1 = Vn,)’,l,,z = a/,,,yil = o'n,yiz =71, and
I'? =T, then we obtain the following iteration method from (3.5):

Wast = 6,ws) + (1= 8)[Bawnsr + (1 = BITw,1],
wi =yl + (1 = y)laaw” + (1 — a,)Tw)], (3.8)

2 1 2
w? = ow, + (1 = o)W + (1 = 7,)Iw?].

Also, if B, = a, = 1, = 0 and o, = 0, then we obtain the following well known iterative methods:

@) If B, = a, = 7, = 0, then we have

Wast = 0wy + (1 = )Wy,

wi) = Wl + (1 =y )Iwd), (3.9)

Wi = aw, + (1= o),
which is called the implicit Noor iteration method.
(i) If o, = 0in (3.9), then we have

nrl = Op Szl)+1_6nrn s
o 3.10)
Wy =YWy + (1- Y lw,
which is called the implicit Ishikawa iteration method.
(i) If y, = 0in (3.10), then we have
Wi = 60 + (1 = 6,)T W1, (3.11)

which is called the implicit Mann iteration method.
Now, we present our convergence theorems.

Theorem 3.1. Let H be a real Hilbert space, D a nonempty closed and convex subset of H and T :
D — D a self-map of H satisfying the contractive condition

ITx = T'yl| < pllx = yll, (3.12)

where x,y € Hand0 < p/ < 1. For an arbitrary x, € H, let {xa}2 be the implicit 1H-multistep
iteration scheme defined by (3.1) with )" (1 — 6,1) = co. Then,

(1) the fixed point q of T satisfying condition (3.12) is unique;
(I1) the implicit | H-multistep iteration scheme converges strongly to the unique fixed point q of T

Proof. First, we establish that the mapping I' satisfying (3.12) has a unique fixed point. Assume there
exist i, g, € F(I') and g, # g2, with 0 <||lg; — gl|. Then,

0 < llg1 = qall = ICq1 = Tgall < p'llgr = qall. (3.13)

The Eq (3.13) implies that (1 — p')|lg; — ¢2l| < 0. Since p € [0, 1), it follows that 0 < 1 — p’ and
llg1 — 2|l < 0. Also, since the norm is nonnegative, we get ||g; — ¢2|| = 0. That is, g; = g2 = gq( say ).
Therefore, g is the unique fixed point of T'.

AIMS Mathematics Volume 8, Issue 1, 841-872.
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(/11) Now, we prove that the sequence defined by (3.1) converges strongly to g. From (3.1), (3.12)
and Proposition 2.4 with x,.; =y, ¢ = u, xV =,k = 1,I" 'x,4; = v;_; and T = v, we get

lw — gl = ||6n1x<”+25n,ﬂ<1— Su )T xn+1+ﬂ<1— Sn )T X1 = gl

i=2 t=1

Sull” = gl + Z O ]_[(1 = 6l X1 = gl
j= t=1

IA

4
o [ (G e
t=1

IA

I8 i—1 y
Sualle =gl + (> 0 [ [(1 = 60060 + [ [(1 = 80060 )lnss — gl?
i=2 =1 t=1

IA

5n,1 )
(1 ~ (20,00 TIZH = 6,000 + T1L, (1 = 6,00 )|
x|lx,” = gl (3.14)

Again, from (3.1), (3.12) and Proposition 2.4 with % = y, ¢ = u, Wl =tk = l,l"i‘lxﬁ,j)vj_l and Ty, =
v, we have the following estimates (for j = 1):

" =gl = lyx? + Zn,]_[ﬂ m)r‘“”+l—[<1 VT — I

i=2 t=1

Yoallx? = gl + Z o ﬂ(l — T = gl + ]_[<1 — T2 = g

IA

IA

Vaalle” - gl +an]—[(1—7m)(p) ks, = gl +]_l(1—yn,<p> D = gl

i=2 t=1

= yLll® - qlP + (Z Yai ]_[(1 — 1)@ + ]_[a — 70 (01D - gl
i=2 t=1

1
Yn
.1 i-1 1 - ; £ |, ”xf) - C[”z- (3.15)
1- [( 22 Y T (U =9, )00 + 12,1 = )/n’t(p’)2)]

Furthermore, using (3.1), (3.12) and Proposition 2.4 with

- . 1 i -
A =y,q=u, X =tk=1T" 1x,(1’)vj_1 andI'y, = v,

we have the following estimates (for j = 2):

2 = glP = Iyp ) + Zn,l—[ﬂ n,>F”<2>+l—[<1 PadOx = glf

i=2 t=1

IA

Vil = gl +Zn,ﬂ<1—mnr” @ —ql? +]_[<1—yn,>||rfs @ _ g2

i=2 t=1

AIMS Mathematics Volume 8, Issue 1, 841-872.
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IA

Vaalle” - gl +Znﬂ(1—n,><p> ks, = gl +ﬂ(1—yn,(p> I — gl

i=2 t=1

Valal gl + (Z e ]_I(l — V()P + ]_[(1 — 2P IxP - gl
i=2 t=1 t=1

2
Vit 3 2
_ _ — 1Y — gII”. (3.16)
L= (22,72, TIS = %2007 + T2, (1= 2,(0))|

Continuing in this manner, using (3.1), (3.12) and Proposition 2.4 with X = v,q = U, x,:rl =tk =
1,T= lx(])v] pand I';_, = v, we have the following estimates (with j =r—2and j =r—1) for ||x(r b_

gl and |lx; ™" - gIf*:
() i—1 Cr—1
||x(r 2) 6]||2 _ ”,yr 2 (r DI Zy;f 1_[(1 _,)/;;2)r1—1x£lr—2) 4 1—[(1 _,y;’—tZ)I-‘&_lx;r—Z) —6]||2
=2 t=1 t=1
1 i—1
< Yy - gl +Zy 2| ]a -y - g
t=1
€r71
[ Ja = vt - g
t=1
li i-1
<y =gl + ) vl | ] =y I - gl
i= t=1
{1
| Ja -y - ar?
t=1
Cr-y i—1
=y =gl + (O v Ja - v’
i=2 t=1
[r 1
+ﬂ<1—nt O )Ixg™ = glP
| = |
< [ i—1
1= (23 72 TTEA = v + TS (4 = v 0)?)]
x|l — gIP (3.17)
and
fr 1
= gl? = iy <’>+Zy ﬂ(l Vaa 1>+ﬂ(1 Ve LD = gl
< 72,’11||x2’)—q||2+272}1 ]_[(1 Y G0 — g2
i=2 t=1
2
[ Ja =yt - g
=1
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IA

{r i—1
Vil = alP + > vt | [ = vy - gl
i= t=1
6
[ Ja =72 - qr?
=1
Ly

i—1
= Y =gl + (v | ] - vahe'?
i=2 t=1

2
| Ja-vi' @) - qp
t=1

Yot
e [(Zi v THZ A = v + T12, (1= i 0 2)|
x|Ix = gl
Now, from (3.14)—(3.18), we have
) St
el = (1 (L, 60 TTEN = 6,000 + TT2,(1 = 6,000 )2)])
y le )
= [( 2270 T = 7000 + TI2, (1 =75,
y 711 )
1= [(Z2,72, T = v2 )02 + T12,( = 72,(0)?)|
y Yol )
1= (253 v T =y @ + TI5 (4 = 7220
y 7%1 )
1= (25 v TIEA = vt + T, (=73 0)?)]
x|l — gl
Let
D =1- : On .
1= [(Z2, 60 TN = 6,000 + TTE, (1 = 6,002
Then,
N — (20, 80 TN = 6,00 + T (1 = 6,00 + 6
- [( it 00 T2 (1 = 8,00 + T, (1 = 8,000
>

chn,]—[a— Su) (')’ +]_[(1 50)E))] + 61

(3.18)

(3.19)

AIMS Mathematics Volume 8, Issue 1, 841-872.
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Consequently,

D, <Zémﬂ<1— Su )P’ +ﬂ<1— Su) (') + 61 (3.20)

i=2 =1

Since p € [0, 1), it follows that p' < p < 1 for i € N. Also, since from Proposition 2.3

{1 i—1 { { 4
Doni | [ =600 + ] [0 = 6060 = A =60 = [ [ =600+ [ [(1 = 6000,
i=2 t=1 t=1 t=1

it follows (from (3.20)) that
D, = (1 - 6,1,1) + 6,1’1. (321)

Using similar argument as above, we obtain

1

Yl 1 1

. : . K S (1 _’)/n,])p-l_’)/n,]’ (322)

L= (22,75, T = vl )02 + T2, = 74, (0)?))]
2

R — (-7 (3.23)

1= [(Z2, 2, TTEA = v2 )% + TT2, (1= 2,(0') |
y:l_lz r=2 r=2
<1 -y Dp+v (3.24)

L= (253 v 2 T = v )02 + TIA = vi22(0)?))
and
Vit
1= (25 72, TTE A = v + T (- v o)

Now, using (3.19)—(3.25), we have

)] <({1- y;jll)p + y,rl’_ll. (3.25)

%041 = glF < [(1=8,1) + Gall(1 —y,io +y, A=y Dp +7e,]
X [(1 =y, e+ i (=¥, e + vl — gl
< [1—(1—5,1,1><1—p)]||xn—q||. (3.26)

From (3.26) and Lemma 2.2, we have x,, — g as n — oo and this completes the proof.
Since (3.1) includes (3.5)—(3.7), the corollary below follows immediately from Theorem 3.1. O

Corollary 3.1. Let H be a real Hilbert space, D a nonempty closed and convex subset of H and
I' : H — H a self-map of H satisfying the contractive condition

T = Tyl < p'llx = yll, (3.27)

where x,y € Hand 0 < p/ < 1. For arbitrary wy = 2o = uy € H, let Walieo {znbie and {u,}, ) be
the implicit IH-Noor, implicit multistepl H-Ishikawa and implicit [H-Mann iteration scheme deﬁned
by (3.5)—(3.7), respectively. Then,
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(1) the fixed point q of T defined by (3.26) is unique;
(I1) the implicit IH-Noor iteration scheme (3.5) converges strongly to the unique fixed point q of T';
(I1I) the implicit IH-Ishikawa iteration scheme (3.6) converges strongly to the unique fixed point q of
I;
(IV) the implicit IH-Mann iteration scheme (3.7) converges strongly to the unique fixed point q of T

Theorem 3.2. Let H be a real Hilbert space, E a nonempty closed and convex subset of H and T :
E — E, with q € F('), satisfying the following condition:

IT"x = gll < pllx = yll, (3.28)

where p' € [0,1) . Let {x.}>2, and {u,} | be the implicit IH-multistep and implicit IH-Mann iteration
schemes defined by (3.1) and (3.7), respectlvely with 37" (1 = 6,1) = co. If xo = uy € E, then (a) and
(b) below are equivalent.

(a) Implicit IH-Mann iterative scheme {u,} deﬁned by (3.7) converges to q;
(b) Implicit IH-multistep iterative scheme { - | defined by (3.1) converges to q.

Proof. First, we prove that (a) = (b). Assume u, — g as n — oo. Since, (3.1), (3.7) and (3.28) imply

4
et = Gl = 161t = ,) = Zo‘nﬂ(l Su )| T w1 = Tttt | = [ | s = TatIP,
t=1

it follows that

4 i—-1
2 2 i—1
e = ot P < Sl = 5l + 11 6 [ [(1 = 80T et = Tyt |
j= t=1
4
2
[ [@xnr = Tl
t=1
41 i-1
2 i—1 2
< Suallin = %l + > 6 [ [ = 80l 20y = Tyt
4
2
[ [ = Tuwl
t=1
41 N
< 5 2 S 1 S i\2 2
= n,lllun - xn” + n,i ( - nt)(p) ||xn+1 - un+1||
i=2 =1
0
i\2 2
[ [@D 1w = wn)
t=1
0,
< n,1

( t i—1 . ¢ . ) X ”Mn - xn”z- (329)
U= [ 202, 60 TN = 6,000 + T2, ()]

Also, using (3.1), we have

i—1

ity = X1 = 1y Gty = x7) = van(l—n,) [T = 1y = (T = Ty )|

i=2 t=1
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¢
o [ A T
=1

1% i—1

< 7}1,1 ”un - x£,2)||2 + ” Z 7;11,1' n(l - y;lq,z)[ri_lun — U, - (Fi_lxﬁl]) - 1—‘i—lun):l
i=2 t=1
1)
=] Ja = yo(rex? = T2, )2
t=1
123 i—1
= il = 2P+ 1 v | [ = ya )@y = w)
i=2 t=1
1% 0 i—1
—[ 1A= va@uy = w) = [ > vai | [0 =¥ 0Big@ D =Ty, )
=1 =2 =1
%)
[ Ja = 7io(rm, = ToxD)| 12
t=1
%) i1
< Yl =PI +1) vme | A =70 @ = w)
i=2 t=1
2 %) i—1
—[ [ =vio@u —w) = [ D vi, | (= vi)Big@' 5P = T;_yu,)
=1 =2 t=1
%)
-] [ =y (T, - TP
t=1
1% i—1
< Yl =X+ 1) vmi | A =70 @ = w)
i=2 t=1
2 12 i—1
~[ [ =w@u = wdl?+ 1Y v [ [ =7 ) (07D =Ty
=1 i=2 t=1
%)
-] Ja=yo(reu, —rexl)p
t=1
%) i—1
< il =221+ > v | [ = ya I = P
i=2 t=1
12 O i—1
[ Ja=woir?u, = u)iP + > yai | [ =y 0D = TP
=1 =2 t=1
1%
[ Ja =woirtu, - TexPP. (3.30)
t=1

Applying condition (3.28) to (3.30), we get
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1% i—1
D2 1 2)112 1 1 i—1 2
it = X1 <l = xPIP+ > yn, ] = v, =
i=2 t=1
2 2 i—1
1 ¢ 2 1 1 i\2 1 2
[ Ja=mair?u, = ui? + >y [ [ = 720600 = wll
=1 =2 t=1
%)
1 i\2 D2
[ Ja =700 e, = £
t=1
YV, 2)12
< ”un - x; )”

U= [ 20yl TIE = 780002 + 12,1 = 74)(07]
Y27 T =) X
- (2| i-1 1 N2 £ | ~ T wy = ws|
L= [ 207 T = 7)) + 112,31 - )0
+ Hfil(l - 7)1,:)
1= | 22, 78, TS = v )02 + T2, (1 =, )0
XIIT%u, — un)I. (3.31)

Observe that

”Fi_]un - un”2 ”un —-q- (ri_lun - ri_IQ)HZ

< lw = glP + 10wy = T gl < (1 + (0w — gl (3.32)
From (3.31) and (3.32), we have
y!
e, — xPIP < = lat, — 2|

L= [ 22,9, TN = Y )0 + T12,(1 = )(0)?]
2 7a [0 =700+ (0)) )
" [ i—1 1 ; 6 1 N2 llet,, — q”
1= 22, v T A =yl )2 + T12, (1 =L )02
. [12,(1 = %,)(0 + (0)°)
1= | 22, v T A =yl )2 + T12, (1 =L )0
Xlletn — gl (3.33)

Using a similar argument as above, we obtain

2

Yl
(2))2 n, 312
S < llet, — 2,7l

1= 272, T = 2000 + T12,0 - 920007
. S Y T (= 72000+ (0')) T
L= [ 28,92, T = 72000 + 12,0 - 200 ?]

”un - X
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N [12,(1 =920 + (o))
1= 202,72, T A =22 )00 + 12, (1= 2 )0
Xl — g, (3.34)

73
312 n1 4H12
P < llu, — 57|

”I/tn - xn ¢ . . L .
1= | 22 73, TIE A = Y2 )00 + T, (1 =72 )0
i v LA =y + () )
' e ——llu, —l
1= 22,93, TIE A = Y3 )02 + T2, (1 =73 )]
N [T, =73 )1+ (0)%)
L= 27 TTEA = Y3000 + T (1 = 73 )0
Xty — glI> (3.35)

and continuing this process (r — 2) and (r — 1) times yields

r—=2

ity — XTI < T ity — XD
1= 25y 1 a—nAWV+H 1=y
Zl =2 ynl 1—[ yntz)(l + (P)2 )
+ " - [ ———{lu, gl
- | 2 v T U—nJmV+H” e raaa
. 11 =y A0 + (o))
1= | 20 v 2 TIZ A = v + T (= v
Xlut, — gl (3.36)
and
r—1
ity — XV < T ity — x|

1= | 2,y TIE a—nhmV+H”a—nhmﬂ
S vt T =y + (o)) ,
+ vy — i, gl
- |2y T n»m>+nla—n»wﬂ
N [Ty, (= v (A + (')
L= [ S, v TIEA = v + T (= v
Xllutn — gl (3.37)

Now, using (3.29) and (3.33)—(3.37), we have
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||un+l
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2
_Xn+1||

<

S
(1 — | 2, 60 T = 800 + T, (1 - 6n,t><pf)2])
y 7r11,1
1= [ 22, v T A =yl )02 + T12,(1 - v )02
y 7’5,1
1= [ 28,72, TIZHA =72 )02 + TT12,(1 = 72 )02
y 7’3,1

1= [ 2, v, T A =72 0002 + T2, (1= %3 )0

Xoooo

Yo 12 )
X .
(1 [ 2 Y2 T =y + T (1= 7520

Yo 11 )
X -
(1 = [ 2, v T = v + T12, (1 = v

2
XHun - xn”

7rll,1
+{(1 — [ 22,7 TIE A =y )2 + TT2, (1 - yz,,>(pf>2])
g : |
1= [ 28,72, TIZHA =2 )02 + T12,( = 72 )02
g |
1= [ 28,72 TIZHA = v )02 + T, (= 72 )02

X oo

r=2
yn 1

X(l - [ 2 v T A =) + T (A = v >2])
S v T =y

1= [ 2o v TIEA = v + T (= v

N [ =y ]

1= 2 v TIEA = v + T (= v

X

yn,l )
+ ,
(1 = [ 22,7 TIEA = vl )02 + T2, (=¥} )2
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yn,l )
X -
(1 — [ 22,2 TS =92 (002 + TIE, (1= %2 ) (02|

3

7,, 1 )
X
(1 | S v LA = Y3 )0 + T2, (1= 73 )0

X oo

r—=2
yn 1

X(l — [ 2 v A THE A = v ()2 + T (= v A )2])
iz v o =7
1= [ 2022 TIEA = v )02 + T2 = v
M =7 ]
1= [ 2022 TIEA = v D02 + T2 - v
S v T =72

X

+

- | 22,7} TIZHA = 5 )(0)% + T12,(1 = ¥} )(0)?]
N M2,d -5 }
1= | 22, v8 TS =y )02 + T12, (1 =) )02
x( On1
1= [ 20, 60 TTZA = 8,002 + T, (1 = 6,002
X(1+ (0"))llun — gl (3.38)

Substituting (3.21)—(3.25) into (3.38) yields

s = XnstlP < (4= 6n1) + S )1 =7, ) + ¥, XA =72 )+ ¥a XA =72 )+ 7))
Xoeoo

X((1 =y + v =Y D) + v Dl — xP
+{((1 VD VA =YD+ VA=Y D)+ DA =YD+ D)

S vt T (1—7,”)

L= | 2 v 2 THE A = v D02 + T (= v
. M A =72 ]
= [ 25 v 2 T = v + T (A = v
+H(A =y + Y (L =y2 ) +y2 (1 = 7,1,1) +700)

‘..
(=YD +v)

X
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iz o =7
1= [ 202 72 THEA = v )02 + T = v
M =97 ]
1= [ 20272 THEIA = v )02 + T = v
32 v (=7,
1= [ 22,7 TIEA = vl )02 + T12,( =7 )02
N M2,d -5 }
1= [ 22,7 TIZA = vl )02 + T12,( = 7} )02
X((1 = 601) + 6001 + (0Dl — gl
<[1=(1 = 6,01 = Pty — x|

X

+

+

+{((1 =Y ) + VDA =y )+ Vo XA =y ) + 7o XL =¥ D) + i

Zf’ﬂn, [T=d =72
1= | 2 v TIEA = v + T (= v
. H T =y ]
1—[2"2'%1, [T =)0 + T (1 = v (02

+((1 - )/n,l + 711,1))((1 - ’Ynl) + 7n,1)((1 - 7n,1) + yn,l)
X oo

X(A =YD +vD)

X

y 55 Veg TS0 =97
1= | 202 v TIEHA = v )e0? + 1A = 7))
+ 0=y ]
L= [ 559 TEEN = v + T (= 7))

DIFTAN ) T

- | 22, vl TS = v )% + T12,(1 = v, )]
+ nfil(l - %ﬁ,t) }
L= [ 28,90, T =7 )02 + 12,0 - ¥} )]
X((1 = 8,1) + 8.+ (0))Nlun — glI. (3.39)
Let
on = (1 =6,1)(1 -p) (3.40)
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and

T, = {((1 V) + DA =y ) +va A =y ) + 7o (A =YD+ YD)
SOy TILIA -y
L= 25 v TESA = v 2002 + T (= v
+ [T =y }
1= [ 20 v TIEA = v + TS (4 = v

+HA =y + A=y )+ v DA =7 D)+ 7))
X PRPE

X(A =y, D +vD)

X

. Sy T =y
1= [ 253 v T A =) + T = v He?
. M -7 ]
1= [ 253 v TIEA = v + T = v

Zfiz 7,,,,' Ht:l (1- 7n,t)

- | 22,7 TIZHA = Y2 )% + T12,(1 = ¥4 )(0)?]
. 12,0 =y) }
L= 22, v T = v )02 + T2, (1=} )02
X((1 = 6,1) + 6,001+ (0l = gl (3.41)

Then, we get (from (3.39)) that
i1 = XperlP < (1 = 0)llit = Xall* + 7. (3.42)
From Lemma 2.3 and (3.42), we conclude that
lim fla, — x| = 0. (3.43)

Since ||x, — ql| < |lu, — x| + ||u, — gll, it follows from the assumption lim,,_,, ||u, — x,|| = 0 and (3.43)
that lim,,_,, [|x, — ¢l =

Next, we prove that (b) = (a). To do this, assume that x u, — g as n — oco. Furthermore, since,
(3.1), (3.7) and (3.56) imply

i—1

0y
Foner = eI = 116,16, — 1) - Zan,]_[(l— Su )| Tttt = Tt | = [ | ot = TIPS
=1

it follows that
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4 i—1
2 1 2 i1
Bt = P < Sl = w11 6 [ (1= 80 [T tt0r = T30 |
i=2 t=1
4
2
~ [ [Cttus = i)l
t=1
f[ i—1
2 i~1 2
< Gutlln = xlP + > 6 [ [(1 =80l = @ 00 = iy
i=2 =1
4
2
[ [ @ = Tl
t=1
€1 i—1
2 i1 2
= Gutlln = 5P+ > 6 [ [(1 = 80T 00 = Tyt
i=2 t=1
4
2
[ [ = T
t=1
{ i—-1
2 N2 2
< Sutlln = xlP + )" i [ [ = 800001 = sl
i=2 t=1
£
i\2 2
[ @)1 = )
t=1
5n] 2
< [ (3.44)

1= 2,60 TTENA = 8,002 + T2, (002

Again, from (3.1), (3.7), (3.28) and the fact that (a — b)> < a® + b?, we obtain
&) i-1
b =l = WG = w0 = Dy | | =y [T e = 11
i=2 t=1

%)

Cr (1)y12

[ =22
t=1

123 i—1
< @ = w410 v | = yi 0 = Ty = @D =T )|
i=2 t=1

4
= [ [ =700 = T, + D0, - T2
t=1

%) i-1
1 2 2 1 1 i—1
= yoallx® = w11 v | [ = vh 0 =T )
i=2 =1
i-1

f] 62
[ Ja =70 =T, - [ D] [ =y P, - T
=1 i=2 =1
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%)
-] Ja-wowexd - rfzun)]n2
t=1

1% i—-1
1 2 2 1 1 i—1
< vl =P 1) vn | | = 7aG =Ty
i=2 t=1
{1 12 i—1
1 % 2 1 1 ¢ 1
[ =700 = TP+ 1Yyl [ (1 =70, — T
t=1 i=2 t=1
%)
1 {r (1 % 2
= [ Ja = 7ap@exd = reu)i,
t=1
12 i—1
1 2 2 1 1 i—1 2
< yaln® =l + > e | [ =7l = Tl
i=2 t=1
141 2 i—1
1 ¢ 2 1 1 i—1_.(1 i—1 2
[ ] =yl =T2u)IP + > yh [ [ =wal = @D =T
t=1 i=2 =1
12}
1 % 1 [ 2
[ Ja = wiirex® = T, 2,
t=1
12 i—1 12
1 2 2 1 1 i\2 1 2 1 i\2 1 2
<yl = wl?+ ) v [ [ =701 = P + | [ =71 )@ =
i=2 =1 t=1
2 i—1 2
1 1 i—1 2 1 % 2
3 v [ 1= wile, = Tl 4+ 1= i ol = T2
=2 =1 =1
,yl
n,1 2 2
< |

1= [ 22,y T = h )00 + T2, = v )0
Z1622 yrll,i H;i(l - 7}1,1) L 2
+ 61 7ri-l 1 ; 0 1 i = Tl
1= [ 22, vl T A =y ) + T12,(1 - L))
[#) 1 =41
+ @ =700 ety — T2, .

L= [ 22, vl T2 (=2 )2 + T12, (1= L )0

The last inequality and (3.32) imply

1
)/n,l

D = P < . 2 — |
' L= [ 22, vt TTEN =y )2 + T12, (1= i )]
. Sy TS =y )+ TI2,(0 = 7))
L= | 22, v8 TS = v )02 + T12, (1 =) )02
(1 + (0))llu — gl (3.45)

Using a similar argument as in (3.45), we get the following:
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2
YV
R - — —lx” = wlP
1= 22,72, TS =72 )02 + TIE, (1 =72 )02
N Zfiz Voi Hf;(l ~ V) + Hfil(l -5
L= | 22, v T A =200 + T12, (1= 2 )0
x(1+ (0"l — gl (3.46)
3
Va
IX® —w, P < : XD — w0,

L= [ 2, vl T A =72 000 + T4, (1 - %3 )0
. ey I =y )+ T14,(=%3)

1= [ 28,72 TIZA = w2 )02 + TTE, (=72 )02

(1 + (0))llus = gl (3.47)

and by continuing the computation up to (r — 2) and (r — 1) times, we get

r—2
”x(r 2) unllz < yzl - ”x(r 1) Mn||2
- | 2 v TIE A = v Ae)? + T a—nn@ﬂ
. i vt Mo =) + T (=)
L{zgﬂjnzu—nﬂmy+n a—nbmﬂ
(1 + (Pl — gl (3.48)
and
r—1
Yo )
by ™" —wl < — - ——— x|
L= S v A A = v + T, (= v
L Xy A - ) + T3 =7
¢y r—1 i-1 1 2 1 i\2
L= [ 2, v TIE A = v + T, (= v e
x(1 + (o)l — gl (3.49)

Putting (3.45)—(3.49) into (3.44) and simplifying using Proposition 2.3 (bearing in mind that p' € [0, 1)
so that 0 < (p')? < p < 1), we get

X1 = st < (1= 60) + (1 =¥, ) + ¥, XA =75 )+ ¥a (A =73 )+ 7))
X oo

X((L =YD+ v =y + v Ollx, — wlP?
+%a—yh>+ﬁﬂ«1—ﬁp+yaxu—ya)+ﬁp«1—%”)+y %)

Zr_z)/nl H (1_7’";)
L= [ S0 v T = 7200 + 1 (- v

X
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IA

. H"H(l — Vi) ]
1= [ D T - 20 + T =)

(1= Y1 + YA = v2) + 72 (A = 7,,,1) + 1)
Xoooo

(A =y +vni)
PIHED el | PR v
1= | 202 v TIENA = v )e)? + 1A = 7)o
. M2 =y ]
- | 23 v TIE (1—ym%@>%+n“%1—ym%m>ﬂ
Ty =)
L= 22,9 TIE A =¥ )62 + 12, (1= 72 )(0)?]
. M2, =) }
L= 22,9 TIEA =¥ )62 + T12, (1 = 72 )(0)?]
X((1 = 8,1) + 8n)(1 + (Pl — gl
[1 = (1= 6,)(1 = p)llxy — |
+&a—yh)+ﬁﬂ«1—ﬁﬁ+yaxa—ya)+ﬁp«l—%“>+y Y

Z, = Vn, H (1 — Y1 %)
1= | 20 v TIEA = v + I A = v
N [ (=2 ]
=[S v 2 TIEA = v + T1 (= v
H(L =Yy + VA =72 )+ DA =72 )+ 7))
...

X((1_7n1)+7

X

+

X

y Sz Mo =7

1= [ 20272 TIEA = v )02 + T = v
. M-y ]
1= [ 253 v TIEA = v + T A = v e

T2y Ind -y
L= [ 207!, T =y )00 + T12,(1 =720
Hfil(l - %lu) }
=] 22, 7], T2 = Y )00 + T12,( = Y )]

+

+
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X((1 = 6,1) + 8L + (0l — gl (3.50)
We set
o= =6, -p) (3.51)

and

T, = %u—yb)+ﬁﬁ«1—ﬁﬂ+yaxa—yz)+ﬁp«1—ﬁf)+ﬁf)

PIHED | R TC D )
L{zngnma—nﬂmy+n 1=y
N I (=72 ]

1= [ 25 v TTEA = v + TS (4 = v
H(L=ypy + Ya A =72 )+ DA =72 ) + 7))
..l

X(1 =y, D +vD)

X

. Sy A =7
1= | 22 v TIEA =y ) + T = 7))
. M-y ]

1= | 22 72 TIEA =y D0 + T = 7))
Z, 2)/"1 H (1 - %1,;)

+
L= 22, v T = v )02 + T2, (1 =) )02
+ Hfil(l - %iJ) }
L= 22, v T = v )02 + T2, (1 =) )02
X((1 = 6,1) + S, )(1 + ()t — gl (3.52)
Then, we have (from (3.50)) that
||xn+1 - un+1”2 < (1 - O-rl)”xn - unHZ + Ty (353)
From Lemma 2.3 and (3.53), we obtain
lim ||x, — u,|| = 0. (3.54)

Since ||u, — ql| < ||x, — u,l| + ||x, — gll, it follows from the assumption lim,,_,, ||x, — ¢g|| = 0 and (3.54)
that lim,, o, ||lu, — gl =

Since (a) = (b) and (b) = (a), it follows that the convergence of the implicit /H-multistep iterative
scheme (3.1) is equivalent to the convergence of the implicit /H-Mann iterative scheme (3.7) when
applied to the general class of the map (3.56). This completes the proof. O

The corollaries below are immediate consequences of Theorem 3.3.
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Corollary 3.2. Let H be a real Hilbert space, E a nonempty closed and convex subset of H and
I': E — E, with q € F(') satisfying the following condition:

IT'x = gll < p'llx = yll, (3.55)
where p' € [0, 1). Let ug = 7o = wy € E, then the following are equivalent.

(a) (i) Implicit IH-Mann iterative scheme {u,} | defined by (3.7) converges to q;
(ii) Implicit IH-Ishikawa iterative scheme {z,, | defined by (3.6) converges to q;

(b) (i) Implicit IH-Mann iterative scheme {u,}. deﬁned by (3.7) converges to q;
(ii) Implicit IH-Noor iterative scheme {z,}, deﬁned by (3.5) converges to q.

Proof. The proof of Corollary 3.4 is similar to that of Theorem 3.3. This completes the proof. O

Corollary 3.3. Let H be a real Hilbert space, E a nonempty closed and convex subset of H and
I': E — E, with q € F(') satisfying the following condition:

IT'x = gll < p'llx = yll, (3.56)
where p' € [0, 1) . Let uy = zo = woxo € E, then the following are equivalent.

(i) Implicit IH-Mann iterative scheme {u,} | defined by (3.7) converges to q;
(ii) Implicit IH-Ishikawa iterative scheme {z,, | defined by (3.6) converges to q;
(iii) Implicit IH-Noor iterative scheme {u,} deﬁned by (3.5) converges to q;
(iv) Implicit IH-multistep iterative scheme {z,l _, defined by (3.1) converges to q.

4. Applications, numerical examples and open problem

Implicit iterations could be seen in application for problems involving recurrent neural network
(RNN) analysis. Indeed, neural networks are a class of nonlinear approximation functions and stable
states which is established in recurrent auto-associative neural network using iterations. Here, we
analyze the convergence speed of implicit iterations in an RNN and several important results will
be studied for decreasing and increasing functions. The results obtained possess multifaceted real
life applications and in particular can be helpful to design the inner product kernel of support vector
machines with a faster convergence rate (for further study about RNNs, we refer any interested reader
to [44]).

Now, we demonstrate the equivalence of convergence between the implicit /H-multistep iterative
scheme (3.1) and other implicit /H-type [implicit /H-Noor (3.5), implicit /H-Ishikawa (3.6), implicit
IH-Mann (3.7)] iterative schemes with the help of computer programs in Matlab. We shall consider
increasing and decreasing functions for the demonstration of our results as shown in the tables below.

4.1. Example of increasing function
LetI" : [6,8] — [6,8] be defined by I'x = g + 3. Then, I is an increasing function with the
fixed point g = 6.000000. Using the initial values xo = wy = zo = up = 7.000000 and 6,,; = yf;,i =

1
1 - —forj=1,2,3,--- ,r —2,n > 2 for all iterative schemes. The equivalent of the iterative schemes

n
considered for the fixed point g = 6.000000 are as shown below in the Table 1.
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Table 1. Numerical example for decreasing function I'x = g + 3.

n IH-MANN IH- ISHIKAWA IH-NOOR IH-MULTI-STEP
1 7.000000 7.000000 7.000000 7.000000
2 6.800000 6.400000 6.200000 6.100000
3 6.640000 6.160000 6.040000 6.010000
4 6.512000 6.064000 6.008000 6.001000
5 6.409600 6.025600 6.001600 6.000100
6 6.327680 6.010240 6.000320 6.000001
7 6.262144 6.004096 6.000064 6.000000
8 6.209715 6.001638 6.000013 6.000000
9 6.167772 6.000655 6.000003 6.000000
10 6.134218 6.000262 6.000001 6.000000
12 6.107374 6.000105 6.000000 6.000000
13 6.085899 6.000042 6.000000 6.000000
14 6.068719 6.000017 6.000000 6.000000
15 6.054976 6.000007 6.000000 6.000000
16 6.043980 6.000003 6.000000 6.000000
17 6.035184 6.000001 6.000000 6.000000
18 6.028147 6.000000 6.000000 6.000000
19 6.022518 6.000000 6.000000 6.000000
20 6.018014 6.000000 6.000000 6.000000
21 6.014412 6.000000 6.000000 6.000000
22 6.011529 6.000000 6.000000 6.000000
23 6.009223 6.000000 6.000000 6.000000
24 6.007379 6.000000 6.000000 6.000000
25 6.005903 6.000000 6.000000 6.000000
26 6.004722 6.000000 6.000000 6.000000
27 6.003778 6.000000 6.000000 6.000000
28 6.003022 6.000000 6.000000 6.000000
29 6.002418 6.000000 6.000000 6.000000
30 6.001934 6.000000 6.000000 6.000000
31 6.001547 6.000000 6.000000 6.000000
32 6.001238 6.000000 6.000000 6.000000
33 6.000990 6.000000 6.000000 6.000000
34 6.000792 6.000000 6.000000 6.000000
35 6.000634 6.000000 6.000000 6.000000

Continued on next page
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n IH-MANN IH-ISHIKAWA IH-NOOR IH-MULTI-STEP

36 6.000507 6.000000 6.000000 6.000000
37 6.000406 6.000000 6.000000 6.000000
38 6.000325 6.000000 6.000000 6.000000
39 6.000260 6.000000 6.000000 6.000000
40 6.000208 6.000000 6.000000 6.000000
41 6.000166 6.000000 6.000000 6.000000
42 6.000133 6.000000 6.000000 6.000000
43 6.000106 6.000000 6.000000 6.000000
44 6.000085 6.000000 6.000000 6.000000
45 6.000068 6.000000 6.000000 6.000000
46 6.000054 6.000000 6.000000 6.000000
47 6.000044 6.000000 6.000000 6.000000
48 6.000035 6.000000 6.000000 6.000000
49 6.000028 6.000000 6.000000 6.000000
50 6.000022 6.000000 6.000000 6.000000
51 6.000018 6.000000 6.000000 6.000000
52 6.000014 6.000000 6.000000 6.000000
53 6.000011 6.000000 6.000000 6.000000
54 6.000009 6.000000 6.000000 6.000000
55 6.000007 6.000000 6.000000 6.000000
56 6.000006 6.000000 6.000000 6.000000
57 6.000005 6.000000 6.000000 6.000000
58 6.000004 6.000000 6.000000 6.000000
59 6.000003 6.000000 6.000000 6.000000
60 6.000002 6.000000 6.000000 6.000000
61 6.000002 6.000000 6.000000 6.000000
62 6.000002 6.000000 6.000000 6.000000
63 6.000001 6.000000 6.000000 6.000000
64 6.000001 6.000000 6.000000 6.000000
65 6.000001 6.000000 6.000000 6.000000
65 6.000001 6.000000 6.000000 6.000000
65 6.000000 6.000000 6.000000 6.000000

4.2. Example of decreasing function

LetT : [0,1] — [0, 1] be defined by I'x = (1 — x)?. Then, I' is an increasing function with the fixed
; 1

point ¢ = 0.381996. Using the initial values xy = wozoup = 7.000000 and 9,,; = yi ;= 1——forj=
: n

1,2,3,---,r—2,n > 2 for all iterative schemes. The equivalent of the iterative schemes considered for

the fixed point ¢ = 0.381996 are as shown below in Table 2.
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Table 2. Numerical example for decreasing function I'x = (1 — x)2.

n IH-MANN [H-ISHIKAWA IH-NOOR IH-MULTI-STEP
1 0.700000 0.700000 0.700000 0.700000
2 0.483425 0.413628 0.391780 0.385002
3 0.413628 0.385002 0.382256 0.381994
4 0.391780 0.382256 0.381975 0.381966
5 0.385002 0.381994 0.381966 0.381966
6 0.382904 0.381969 0.381966 0.381966
7 0.382256 0.381966 0.381966 0.381966
8 0.382056 0.381966 0.381966 0.381966
9 0.381994 0.381966 0.381966 0.381966
10 0.381975 0.381966 0.381966 0.381966
12 0.381969 0.381966 0.381966 0.381966
13 0.381967 0.381966 0.381966 0.381966
14 0.381966 0.381966 0.381966 0.381966
15 0.381966 0.381966 0.381966 0.381966

Remark 4.1. (a) Using Table 1, it is observed that for the increasing function I'x = g + 3, the

convergence of the implicit multistep-1H iterative scheme (3.1) to the fixed point 6.000000 is
equivalent to the convergence of other implicit IH-type [implicit IH-Noor (IIHN) (3.5), implicit
IH-Ishikawa (IHII) (3.6) and implicit IH-Mann (IHM) (3.7)] iterative schemes to the same fixed
point of 6.000000.

(b) Using Table 2, it is observed that, for the decreasing function Tx = (1 — x)* , the convergence
of the implicit IH-multistep iterative scheme (3.1) to the fixed point 0.381966 is equivalent to the
convergence of other implicit IH-type [implicit IH-Noor (IIHN) (3.5), implicit IH-Ishikawa (IIHI)
(3.6) and implicit IH-Mann (IIHM) (3.7)] iterative schemes to the same fixed point of 0.381966.

Remark 4.2. Despite the remarkable results obtained in the papers studied (and their various
inclusions), the implications of the “sum conditions” (that is, the condition that
Zfloan, =1 Zf’*(l) a,,=1and Z oo n‘, =1, where {, > €, > 3 > --- > {, for each u, aﬁ,’s,an,o,i 0
foreacht, a; € [0,1] and €, and €, are fixed integers for each u) are quite enormous . For instance,

the sum condition implies that

guarantee instant generation of such a finite family of control sequences such that
Zr 0@y =1 Zf’“ =1and Z ‘o n, = 1, which might be almost impossible and

0 ns
(2) one has to make adequate provisions for the computational time and memory space for the
computation  and storage of the bulky and complex task of generating
Zf‘oan, = 12?’*6 a,, = 1 and Zf“o a';! = 1, which invariably leads to enormous
computational cost.

(1) for large {,,u > 1, one has to choose different points of the sequences {a,;} ", that would

Unlike the papers studied, the iterative schemes used to obtain our results do not require sum
conditions. Consequently, our iterative schemes are more efficient in application as compared to
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several other iterative techniques studied in this area.
Remark 4.3. The following areas are still open:

(i) The results obtained in this paper are in the setting of real Hilbert spaces. However, there are
other spaces more general than Hilbert spaces. Hence, it becomes necessary to ask if Propositions
(2.3) and (2.4) could be proved in those other spaces so as to generalize the results in this paper.

(ii) The results in this paper are for a finite family of a general class of contractive-type maps. Again,
is it possible to prove Propositions (2.3) and (2.4) for the case of an infinite family of maps so as
to extend the results in this paper?

(ii) In this paper, the speed of convergence of the iterative schemes was only considered for different
IH-type implicit iteration methods. Relating the speed of convergence of the iterative methods
studied in the paper to other implicit iterative methods studied in literature is still open.

5. Conclusions

In this paper, we studied the set of fixed points and considered iterative schemes of the /H-type
in order to obtain approximate fixed points of contractive-type mappings for which we have proven
strong convergence theorems without any imposition of sum conditions on the control parameters.

Further, we showed that /H-Mann, IH-Ishikawa, /H-Noor and /H-multistep iteration techniques
defined with the help of contractive-type mappings are equivalent. Also, we demonstrated the rate of
convergence for the various iteration schemes considered and discovered that the IH-multistep iterative
scheme converges faster than the rest of the iterative schemes for increasing and decreasing functions.

Finally, an affirmative answer has been provided for Question 1.2 and the numerical examples
considered in this paper justified our claim on the equivalence results obtained. These results show
that our implicit IH-type hybrid iterative schemes (for which no imposition of any sum condition is
required) have better potentials for further applications than some other iterative schemes considered
so far in this area.
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