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1. Introduction

Fractional calculus has received a lot of attention in the last decades [1]. This type of calculus has
become an important area of research due to its intensive development and diverse applications with
several complex problems of everyday life have been modeled by differential equations and integro-
differential equations of fractional order [2—5]. Such applications can be found in variety of fields like
economics, physics, chemistry, astronomy, thermal acoustic engineering, biology, probability theory,
control theory, viscous fluid dynamics, signal processing, electromagnetism, robotics, anomalous
diffusion, potential theory and electrical statistics, etc. We refer the reader to the papers [6-8] and
the references cited therein for more details.
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Many authors have taken into consideration the numerical solutions of boundary value problems or
initial value problems of ordinary/partial value problems (see [9, 10] and the references mentioned).
However, studying the qualitative properties of differential equations has still had priority.

In mathematical analysis, boundary conditions are constraints on the solutions of ordinary or partial
differential equations in a given domain. There is a large number of possible boundary conditions
depending on the formulation of the number of variables involved and thus depending on the nature
of the differential equation. Boundary value problems of differential equations of fractional order
have been extensively studied. In many works, the authors presented some excellent results about the
existence of solutions and utilized the fixed point theorems for this purpose; for example, see [11-
16]. Concerning the fractional integro-differential equations, please refer to [17-21]. On the other
hand, some researchers were interested in studying the stability of solutions to fractional differential
equations. One of the most important types of stability that played a noticeable role in the development
of fractional differential equations is the so-called Ulam-Hyers stability. Ulam-Hyers stability analysis
was recognized as a simple method of investigation of the solutions of a differential equation. We refer
the readers to [22-27] and the references contained therein.

Some basic theory for the hybrid differential (or hybrid integro-differential) equations was discussed
in some articles; for instance, in [28], Dhage and Lakshmikantham discussed the existence and the
uniqueness of solutions for the following classical Cauchy problem of hybrid differential equations

{%(J%)=g(t,u(t)), re0.7), 0
u(0) = ug
where g € C([0,T] X R,R) and f € C([0, T] x R, R\{0}).
Herzallah and Baleanu [29] discussed the existence of solutions and some fundamental differential

inequalities for the following Cauchy problems of hybrid differential equations involving Caputo-
Liouville derivative.

{ DY (i) = 8 u (), (1.2)
u(0) = ug

and

{ CDp. (1) = h(t, u(1))) = g (t,u (1)), (1.3)

u(0) = uo,

where r € [0,T],0<B<1,ge€ C(0, T] xR,R) and f,h € C([0, T] x R,R\{0}).
Bashir et al. [30] investigated the existence of solutions for a nonlocal boundary value problem of
hybrid fractional integro-differential inclusions given by

{ Dy, (W)_Z’;' '°ih"(t’”(t))) €gtu(), t€[0,1],

Fu@)
u(0) = pu(u), u(l) = A,

(1.4)

where where CDﬁ+ denotes the Caputo-Liouville fractional derivative of order 8 € (1,2], I'! denotes
the Reimann-Liouville fractional integral of order @; and h; € C([0,T] XR,R),i =1, ...,m.

In [31], Dhage proved the existence and approximations of the solutions for the following initial
value problems of nonlinear hybrid fractional integro-differential equations
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c u(t)—=1%, h(t,u(t)) _ t
{ Dl () = g (1w ), ks, u()ds), 1€ [0,T], 03

u(0) = uo,
where 0 << 1l,a>0and b,k : [0,T]XR — R, f:[0,T]XR — R\{0}, g: [0, T]XRXR — R
are given functions.

Motivated by the above mentioned works, in this article, we handle the existence of solutions
for the following hybrid proportional fractional integro-differential equations with Dirichlet boundary

conditions o
(O-Z 2 T07 hieu(e))
{%ﬁ’”‘(” O < g, 1€ (0.7

p~o+ Fu(®)
u(0) = up, u(T) = ur,

(1.6)

where o0 € (0,1], 1 <8 <2, a; > 0,(i = 1,....m),m € N*, up,ur € R and I(;’Dg’fr represents the
Caputo-Liouville proportional fractional derivative of order 8 and J;;” denotes the Reimann-Liouville
proportional fractional integral of order «;, and &; : [0,T] X R — R, f: [0,T] x R — R\{0}, ¢ :
[0,7] x R — R are given functions. We discuss existence of solutions by applying the Dhage’s fixed
point and benefiting from the incomplete Gamma function and its properties that were presented by
Laadjal et al. [32]. On the top of this, we discuss the uniqueness of these solutions and their Ulam-
Hyers-Rassias stability for the case f(z,u(¢)) = 1 for all ¢ € [0, T'] of the hybrid problem (1.6).
We note that, we deduce the following main cases from problem (1.6).

Case 1. If o = 1. The problem (1.6) reduces to a hybrid integro-differential equations involving the
usual Caputo-Liouville fractional derivative with the usual Reimann-Liouville fractional integral.

Case 2. If f(t,u(t)) = 1 and h;(t,u(t)) = 0, (i = 1,...,m) for all (t,u(t)) € [0,T] X R, we get the
following Caputo-Liouville proportional fractional boundary value problem

{ CONTu(r) = g(tu(t),t€[0,T], (1.7)

u(0) = uo, u(T) = ur,

Case3d. Ifo=1,f(t,u(®) =1,and h; (t,u(t)) =0, (i = 1,....,m) for all (t,u(t)) € [0,T] X R, we get
the following Caputo-Liouville fractional boundary value problem

{ CDlu(t) = g(t,u),t€0,T], (1.8)

u(0) = ug, u(T) = ur.

The paper is organized as follows: Next section presents some definitions and some properties
needed in next sections. Section 3 proves the existence of solutions for the given problem. Section 4
investigates the uniqueness result of solutions for the given problem (with f(z,u(t)) = 1). Section 5
discusses the Ulam-Hyers-Rassias stability results. Lastly, section 6 provides an example to clarify the
results obtained.

2. Preliminaries

In this section, we present some definitions and properties associated with the fractional
calculus [33,34] and the incomplete gamma function [32] that are helpful for our discussion.

AIMS Mathematics Volume 8§, Issue 1, 1172-1194.
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Definition 4 ( [33]). Let 8 > 0. The left fractional integral of Reimann-Liouville type of the function
® € L'([0, T1,R) is defined by I°.0 (1) = O (t) and

1

If;@ (l) = I_‘_(ﬁ)

f (t —pY~' ©(p)dp, for >0, (2.1)

where t € [a, b].

Definition 5 ( [33]). Let B > 0. The left fractional derivative of Caputo-Liouville type of the function
® e C'([0,T],R) is defined by CD2+® () =0(@) and

‘DLOw = LD

1 !
3\ p-1 nyn
g | oy DO dp forp >0, 22)

wheren—1<pB<n neN.

Definition 6 ( [34]). Let o € (0, 1], and B > 0. The left generalized proportional fractional integral of
Reimann-Liouville type of the function ® € L'([0, T],R) is defined by Jgf@ ) =0 and

7o = cﬁ%(ﬁ) f (t - p)~" e PO (p)dp, for > 0, (2.3)

where t € [a, b].

Definition 7 ( [34]). Let o € (0, 1], and B > 0. The left generalized proportional fractional derivative
of Caputo-Liouville type of the function ® € C"([0,T],R) is defined by ng;"@ (1) =0 (t) and

SO = U (De) ()

1 ! -
O'ﬁr—(n _B) ja‘ (r- p)n—,B—l e 4P (D™ ®) (p) dp for B > 0, 2.4)

wheren—1 < B <n, n € N.and (D" O)(t) = (D"O)¢) = (1 — 0)O(t) + 0O’ (1), and

O(t), forn=0,

DO =1 prpe. . preyw. forns 1. )

n-times

Remark 8. Note that, for o = 1, Definitions 6 and 7 reduce to the usual definitions of Riemann-
Liouwville fractional integral and Caputo-Liouville fractional derivative, respetively.

Proposition 9 ( [34]). Let o € (0,1, @ > 0and B> Owithn—1 < < n, and ® € L'([0,T],R), we
have the following properties.

B (170) (1) = J%7 (57 0) (1) = A7) (2.6)
ST (1£70) (1) = O); 2.7)

AIMS Mathematics Volume 8, Issue 1, 1172-1194.
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—

n—

B ((o0) (=00 = ) clt-a) T, (here ® € C'([0,T1, R)),
k

Il
[«

(D" 0)(a)
o*k!

where ¢, = . In particular, when 1 < f <2 and a = 0, we have

J'gf (CDE"T®) (1) =O®) —coe™ ' —cite’7 ",

p Yo+

Definition 10 ( [32,35,36]). Let 8 € (R(B) > 0).
The upper incomplete gamma function is defined by

—+00
I'Q,1) = f e ¥dx, t>0.
t

The lower incomplete gamma function is defined by

!
y(ﬁ,t):fxg_le_"dx, t>0.
0

The upper regularized incomplete gamma function is defined by
I'e, o

e
The lower regularized incomplete gamma function is defined by

(B, 1)
re

QB.1) =

PB,1H=1-00B,1 =

(2.8)

(2.9)

(2.10)

2.11)

(2.12)

(2.13)

Remark 11 ( [32]). Let ¢ € R* and B € C, where (R(B) > 0), It is clear that P(B,¢(t — a)) is a

non-decreasing function with respect to t € [a, b]. Moreover
P(B,s(t—a)) €[0,1] forallt > a;
g}%l’(ﬁ, s(t—a)) = PB,¢(t — a))l—, = P(B,s(b — a));
min P(B. (1 - @) = P(B.5(t = -, = 0.

Lemma 12 ( [32,37]). Let o € (0, 1], and w > 0. Then

P(w, =2 (t-a))

=00~ (- g

T(w+1)’

foro e (0,1),

foro =1,

where t € [a, b] and the function P is defined by Eq (2.13). Moreover

. P, (t-a) _(t-a)®
Nim 1-0)¢ IED @ = F(w+1)
and
[ _ Pw, (- a))) (b-a)
max | lim = .
refap) \o=1 (1 —o0)” INw+1)

(2.14)
(2.15)
(2.16)

(2.17)

(2.18)

(2.19)

AIMS Mathematics Volume 8§, Issue 1, 1172—-1194.
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Lemma 13 ( [32,37]). Let o € (0,1), t;,t, € [a,b] (t; £ 1) and w > 0. Then

(I-0)
where the function P is defined by Eq (2.13).

f (b - p) Ty = T [P( -1 - P, 1—<b—rz>>] (220

Lemma 14 ( [32,37]). Leto € (0,1],8>0anda <p <t; <ty < b. Then

lim 1(z2 =P T — (1 — Pt T dp =0, (221)
20
Theorem 15 (Dhage [38]). Let U be a non-empty, closed convex and bounded subset of a Banach
algebraX and let A,C : X — X and B : U — X be three operators satisfying the following conditions.
(1) A and C are Lipschitz with Lipschitz constants AandC, respectively
(2) B is completely continuous
(3) AMp + C < 1, where My = ||B(U)|| = sup {|| Bx ||: x € U}
(4) AxBy + Cx=x= x€ U forally € O.
Then, the operator equation

AxBx+ Cx =x (2.22)

has a solution in O.
3. Existence results

In this section, we provide our essential findings concerning the problem defined by (1.6) and then
derive the existence results for the special cases 1, 2 and 3.

Lemma 16. Leto € (0,1],1 < <2, a; >0, =1,...,m). For ® € C([0, T],R), the solution of

{ CD,Ba-(u(f) L] Jhy U“(’”) 0@

p=0* fltu()
u(0) = uo, u(T) = ur,

3.1

is equivalent to the integral equation

(r]t

u(t)
f(T ur)e=T

-1

le o « =T
s )T =) (ﬂ,m)f( P! S TP ip,u (p))dp
Ur)lL e o

1
te(TTt

0' ITO"BF(ﬂ)
[fa-pr e rowa)

f (T —pf' = TP0 (p) dp

O'ﬁF(,B)
— N e )
+ ;O'Q’F(ai)‘f(;(t o) e P hi(p, u(p))dp. 3.2)
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Proof. Applying the operator Jgfr on both sides of the equation in Eq (3.1), we get

WO = SIS U)oy e
- cl—cite v = J77O1). 3.3
i, u() Coe 7 —eite 7= o O0) (3.3)

From the boundary conditions u(0) = uy and u(T) = ur we get

Uo

70, u0) G4

Cy =

and Z' .
Ur — ’.fm Jai,(r (L u()NT) U 1 o

B JBTO(T). 35

o (T, ur)Te=T f(() uo)T TeZST (1) (3.5)

Substituting the values of ¢j and ¢, in Eq (3.3), we obtain

o=,

t th urs Le®s
w0 = S0 (15 )e T

o ;e)"Te TZJ (o u())T)
T o —

0'—1 i=m

—JPTOT) + J5700) | + D o hilt, u(t)).

eT —1

te

Inversely, it is obvious that if u(?) satisfies Eq (3.2), then Eq (3.1) holds. The proof is complete. O

Now, consider the Banach algebra space defined by ¥ = C([0,7T],R), with the norm |ju|| =

sup |u(?)|. Then, we define the multiplication in X by (uv)(f) = u(¢)v(¢) for all u, v € X and the operator
0<t<T

®:3¥ -3 by
t\ o ur err(;l
(D = —_— o ! _—
0 7 u(t))[f(o, 0)( T)e * f(T,up)e=T
o gen Z Jy (@ = p) e TP hitp,u (p)dp
f(T, ur)e’s o4l (a;)
B W f (T - pf™" e " g (o,u(p)) dp
i [ F o)
i=m 1 1 -
b Y [ e P o, (3.6)
i 0

i=1

Remark 17. The problem described by Eq (1.6) has a solution u € X if only if u is fixed point of the
operator @.

To prove the existence, we need the following assumption:

AIMS Mathematics Volume 8§, Issue 1, 1172-1194.
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(H;) Assume that g : [0,7] X R — R is continuous function, there exists a continuous function g from
[0, T] to R, and a continuous nondecreasing function ¢ from R, to R,\{0} such that |g(¢, u(?))| <
SOy (llull), for all £ € [0, T] with supg(r) = |[g| .

0<t<T
(H,) Assume that ; : [0,T] xR — R, 7 = 1,...,4, are continuous functions, there exist L;, > 0,

i = 1,...,m such that |h;(t, ;) — hi(t, )| < Ly, |41 — 4|, for all (£, 4,,42) € [0,T] X R xR and
|hi(t,0)| < 6,(t), where 6;(t) are positive and continuous functions on [0, T'] for i = 1,...,m with
sup 6;(r) = [|6i]| -

0<t<T
(H3) Assume that there exists Ly > 0 such that |f(r, 4;) — f(t, 2)| < L¢|d; — Ay, for all (¢,4;,4,) €

[0,T] x R x R, and [f(z,0)| < (¢), where (¢) is positive and continuous function on [0, '] with
sup (1) = |I¢]].-
0<t<T
Now, we present the following existence theorem for the problem described in Eq (1.6) using the
Dhage’s fixed point theorem.

Theorem 18. Let o € (0, 1) and the hypotheses (H,), (H,) and (H3) hold. If there exists a real number
R > 0 such that

i=m 16illP(ai, = T)
ollgl + pizy ihen 2D
Ly, P(e:, 52T’ 3.7)
Cl-oL- 3 e
where P denotes the lower regularized incomplete gamma function with
5 Ly, P(a,, 2T)
L+ <, (3.8)
oLy Z —
and
|uto] 1 < (LR +116:1l) P(ev;, 52T)
0 = ———+ [ berl + ) |
lfO,uo)l | A(T, up) e’ T — (1-0)
1 gl y(R)P(B, =2T
+(U1 +1)g¢ B ). (3.9)
e’ (1-of
Then, the problem described in Eq (1.6) has at least one solution on [0, T].
Proof. Consider U = {u € Z, s.t. ||u|| < R} and let
®u = AuBu + Cu, (3.10)
where A,C : £ — X and B : U — X are three operators defined by
Au(r) = f(t, u(®), (3.11)
o £\ o urte's
Bu(t) = (1 - —)e”;t + T—U_
£, up) T f(T,ur)e= T

AIMS Mathematics Volume 8, Issue 1, 1172-1194.
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_ Fe'r f’:ff (T - p)* " T TPhyp, u (p))dp
(T ur)e’= T ool (o)
- Uﬁr_;;eﬂT f (T =pf™" e T g (o,u(p)) dp
+ U,T(ﬁ) fo (0= pP ! TP (p,u (0)) dp (3.12)
and
Cu(r)—Z(,ar( y f (0= )"t T Philp, u(p))dp. (3.13)

Claim (1). A and C are Lipschitz with Lipschitz constants Aand C, respectively.
Letu,v € X, for all r € [0, T] we have

|Au(r) — Av(D)| = | f(t, u(®)) = f(&, v < Ly |lu = v,

which yields
|Au — Av|| < Alu — V||, where A = Ly.

Next, we have

i=m

1 ! 1 el
Cult) = Cvn] < Y~ f (1 =p)"" €7 |, u (o)) = hilp, v (o))l dp
=1 (o T(a/l-) 0
< t— )%l ;](f—P)d _
< Z(M(a)f< P e T Pdp lu — |
X LhiP(a'i, 7 1)
= ;W”M—VH
& Lu P(ai, 5ET)
< — 9 "Nu-
< Zl T e
which yields
Ly, P(a;, =2T)
ICu — Cv|| < Cllu —v||, where C = Zh— (3.14)
o)

Hence A and C are Lipschitz with Lipschitz constants A and C, respectively.
Claim (2). B is completely continuous.
Step 1. We will show that the operator B : U — X is uniformly bounded.
For any u € U, we have

t 2L
|uo| (1 ~ t) = lur| 7e =

B L U _mirer
1Bu(e) | £(0, uo)| T)¢ \f (T, ur)| e=7

AIMS Mathematics Volume 8, Issue 1, 1172-1194.
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fe'v fo (T = )™ 7T (o, u (0)) dp
+ o-1
lf(T,ur)le+ T o T (a;)
a1y
_e T o-1
+ —L (T —p) e =" g(p,u(p))ldp
o-ﬂr(ﬁ)e ‘Tfo

+ O'FT—(B) f(; (t—py! ¢’ =) lg (o, u (p))| dp.

Foru € U and ¢ € [0, T], using (H3) we get

it u @) = |hi(t,u (1)) = hi(2,0) + hi(z,0)|
< it u(0)) = hi(t, 0)] + |hi(z, 0)|
< LyR+6.

Then, using Lemma 13, we obtain
1 " (Ly R + 116il) P(a;, =T
But| < ol luer| ., Z(h, l16:11) (a_ —T)
1fO,ul (T, ur) =T |f(T,ur) e " “5 (1-o0)"
I8l (RPB, =2T) |l W (R)P(B, =2T)

+
(1-cfe"T (1-of
= O < +o00.

Therefore, ||Bu|| < +o0, and consequently B(O) is bounded. Hence, B is uniformly bounded.
Step 2. We show that the continuity of B on U. Let (u,),oy be a sequence where lim u, = u with

n—+oo
u e 0.
For all ¢ € [0, T], we have
r o=l
1\ oo Urre =
lim Bu() = ——0 (1 - —)ev’ .l i
n—-+oo S0, uo) T f(T,up)e=T
Lo Zm: lim, oo f (T =p)" €5 TOhilp,u, (p))dp
T, une” =T ol (a;)
ik f 1, (T—p)
- —— (T —pY e "¢ (p,u, (0))dp
O'ﬁF B) e T L
1, ZL(t—p)
+ aﬁr B lim f (t—pY'e g (p,u, (p)) dp.
Using the Lebesgue dominated convergence theorem, we get
¢ upLe st
lim Bu,(r) = el (1 - —)e(rvl’ + —T =
n—+oo S0, up) T f(T,ur)e’s T
e Z n [T =) e T TP lim, o hilp, u, (0)dp
f(T’ MT)E'UT_IT i=1 ol (a'i)

AIMS Mathematics Volume 8, Issue 1, 1172-1194.
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L%

T _ (r—l(T_ ) .

- - (T -pf'e= " 1im g (p,u, (p))dp
O'BF B)e oL (B) e T f n—+eo

i [ =P im0 dp

= Bu(r),

which yields lim,,_, ,, ||Bu, — Bu|| = 0. Therefore, B is continuous on U.
Step 3. We prove that B(U) is equicontinuous.
Lett,, € I =[0,T] with t; > t,. Then, for any u € U, we have

X {(1 - t—z)et]’z - (1 h )e";n} + “r {tfze%lfz - ‘eTH}
ro) ! d ST, MT)eT
{%e%;ltz _ f_l o lt1 i=m j(‘)T (T _p)ai—l eU'T*l(T_p)hi(p’u(p))dp
) f(T ur)e o oI (q;)

{Te(r( ll _ tT]eTtl} T »
- ﬁr BT f (T —p)Y e’ "¢ (p,u(p)) dp
o e

fu—p)ﬁlev“”)g(pu(p))dp

|Bu(1>) — Bu(t,)|

CfﬁF B)

1 o=l —
_o-ﬂr(lg)f (11 = pP ™ €T Pg (p,u () dp
0
jur [ — e

|uto] ( fz) o1 151 ol
< Wl _iG_k ev’z—(l——)e am
| £(0, up)| T T |f (T, ur)| e”(—;lT
. %e%ltz _ Ie s =Ly i=m (LhR + ”9”)1(; (T p)a, e(ral(T ,D)dp
f(Tup)esT 4 o (a;)
eth —he%n g T ]
MBS 7
T (B e T 0
|@|¢’(R) -1 =L(1— S = y
LIS t — o0 _ (g (,(nm'd

||~||¢(R) n
o'ﬁF(ﬁ)f( —pf e dp.

Using Lemmas 16 and 14, we obtain
|Bu(t;) — Bu(t))| » 0 as t; — t.

Therefore, Bu(t) is equicontinuous on [0, T].

Making use of the Arzela-Ascoli theorem, we have B(U) is relatively compact. Thus B is a compact
operator and as a consequence B is completely continuous.

Claim (3). AMjp + C < 1, where My = sup {|| Bu ||: u € U}.

AIMS Mathematics Volume 8, Issue 1, 1172-1194.



1183

We have My = ||B(O)|| = sup{|| Bu ||: u € U} < o where o is given by( 3.9). So,

% Ly, P(evj, S2T)
AMp+C < oL, + < 1.
B % f Z (1 _0_)(1, <
Claim (4). AuBu+ Cu=u= u € U forallu € U.
Let u € U we have

ldl < llAull- |BE| + Cul
— _i ol uTTe(T[
- ,S[‘SE][W u<t>>|| D (1) P

Lo = [T - o) e T TP (o, u (p))dp
f(T ur)e’s T & oI (@)
aﬁr(ﬁ)eale (T = pf™ = Tg (0,u(p)) dp
= ® fo (1=pf" P o u(p) ]
= 1 ! ai—1  ==L(—
=l K R A
ion Plas, =21)
< sup [ (Ll + el o + D (Lol + ) —0)“,]
< @, =2T)

= (Ly ol + 121 Q+Z(Lh el + 116:11) p

16411 P(ai, 2 T)

P( lal O-T) i i
_ ||u||[QLf+Z P, 1 ] ol + Y oo

i=1

which yields
i=m 10i1P(a;, =2 T)

ol + 25t — = —

i=m Lh,P(az _(TT)
l—oLy =2\ =

[Jull <

Therefore, u € O.

Thus, all the conditions of Dhage fixed point theorem are satisfied; hence, the operator @ has a fixed
point in U. As a result, the proportional fractional boundary value problem declaired in Eq (1.6) has at
least one solution on [0, T']. This completes the proof. O

In the following, we present the existence theorem for the given problems in the special cases 1, 2
and 3.

Remark 19. From Lemma 12, in case o = 1, we can replace the formula (al)’ 57 by the formula

m (w € {B,ay,...an}). Then, by using Theorem 18 we can conclude the existence results of the
given problem with usual Caputo fractional derivative.
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Corollary 20. Let o = 1 (i.e., D7 = €DP. ) and assume that the hypotheses (H,), (H>) and (Hs) hold.
»0 0

If there exists a real number R > 0 such that

|[
ozl + pizy e

> , (3.15)
— i=m LnT%
1 —oL; =25 m
where
LT
oLi+ Yy ——— <1 (3.16)
Z‘ T(e; + 1)
and '
— |uto] 1 <« (L R+ 16T 218l (R)T?
= + lur| + ’ + . (3.17
CT O T AT, T>|[ DY T(e; + 1) ] T +1) )

i=1
Then, the identified problem in Eq (1.6) has at least one solution on [0, T].

Corollary 21. Let o € (0, 1) and assume that the hypothesis (H,) holds. If there exists a real number
R > 0 such that

R> -2 (3.18)
1 — 00
where g -~
lur| ( 1 )I [y (R)P(B, ‘TT)
= |ug| + + +1 3.19
00 = |u e‘%lT e”a'T (1_0_)ﬁ ( )

Then, the problem in (1.7) has at least one solution on [0, T].

Corollary 22. Let o = 1, and assume that the hypothesis (Hy) holds. If there exists a real number
R > 0 such that

R> -2 (3.20)
I -0
where ) ;
R)T
 Jug| + ] + NEVRITT 321)
rg+1)

Then, the problem (1.8) has at least one solution on [0, T].
4. Uniqueness of the solution

In this section, we discuss the existence and uniqueness of solution for the following problem.

C Noa i=m @;,0 —
SO0 (1) = T TG hiCe u(®)) = g (u @), 1 €[0,T1, @D
u(0) = uo, u(T) = ur,
Note that we can write the equivalent equation for problem described by Eq (4.1) as follows.
u(t) = Biu(t) + Cu(t) := Ou(t), 4.2)
where B; = B (with f(0,up) = 1 = f(T,ur)) and B and C are given by Eq (3.12) and Eq (3.13),

respectively.
The following assumption is essential.
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(H,;) Assume g € C([0, T]> x R,R) and there exists L, > 0 such that [g(z, 1) — g(t, 12)| < Ly |41 — Ao,
for all (¢, 41, 4;) € [0, T]XR xR and |g(¢, 0)| < Y(¢), where T (¢) is positive and continuous function
on [0, T'], with sup T(¢) = ||| .

0<t<T

Theorem 23. Let o € (0, 1) and assume that (H,) and (Hy) are satisfied. Then, the problem described
by Eq (4.1) has a unique solution on [0, T] if

A<, 4.3)
where

(LePB T B Ly P, 2T 1y
A [—(1_0_)ﬁ +;—(1—0')“" (57 +1) (4.4)

with P defined as in Eq (2.13).

Proof. Let us set U ={uecl, st |jul| <r}, where r > 0 satisfying:

luol + lur| e =T + A
1-A ’

where A is given by Eq (4.4) and

A

. Y| PB, =2T) =216\ P(a;, =T
:(eaT+1)(” | P(B, ==T) Z” | P(a;, = )' 45)

I-of & (-0

We will show that @, c U.
Foru e Uandr € [0, T], we have

12 (Lyr + 16/ Pla;, =27
B < luol + V1L + TZ( wr + 16:) Plai, 52T)

e%lT e{TTl P (1-o0)"
(Ler +11Y11) PGB, Z2T)  (Lgr + Y1) P(B, 52T
+ +
(1-ofe=T (1-0)f

On the other hand, we have

i (Ly;r + 116i]1) P(a;, %T)
ICull < ) :

i=1 (1 -a)"

We procure that

Dy ull

IA

1Byl + | Cul|
S (L + 164 P, 2T
il () T IO P
= - 1-o)"
Ler + |IY1l) P, =2T)
(1-0)f

1-0 —_
|ttg| + |ur] e L + A+ Ar

IA

|uol +

+(eFTaT + 1)(
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<

which implies that ®, U c U.
Next, we show that the operator @, is a contraction mapping.
For u,v € ¥ and for all r € [0, T'], we have

|B1u(t) — Byv(1)|

IA

Lot i [T - p) T TP i, u (p) — hip, v (p)l dp
; o4l (q;)

—1
e T 4

L 1 {T(T )
+aﬂr(ﬁ)e‘”Tf (T =py™ e T 1g(p,up)) — glp,v ()l dp

wnﬁ) fo (1= Y™ =P g (p,u (p)) = glp, u (p))] dp

1 lim: Ly, llu = vl P(a, 52T) N Ly llu — vl P(B, 555 T)
e T (1- O')Qi (1-cfe=T

i=1

LIIu—vIIP(B
(1—J)ﬁ
1 A LyPi, 52T)  LPB,T) 1y
{e"UIT; -0 ' (-oF (e +1)}
X[l = V1.

Taking the supermum over all ¢ € [0, 7'] and using the inequality (3.14) yield

[Py — @vl| < [[Biu = B[l + ||Cu — Cv|
Allee = vl.

IA

From the condition (4.3), we conclude that the operator @, is a contraction mapping. Hence, the
problem (4.1) has a unique solution on [0, 7']. The proof is completed. O

Now, for o = 1, using Remark 19 above, we can easily come by the following result.

Corollary 24. Let o = 1 (i.e., g@g” CDg+ ) and assume that (H,) and (Hy) are satisfied. Then, the
problem describe by Eq (4.1) has a unique solution on [0, T] if

A <1, (4.6)

where

4.7)

2L, TP B 2L, T
1 3 2l
F(,B +1) ZAlai+1)
5. Ulam-Hyers stability results
We begin introducing the concept of Ulam-type stability for the problem described by (4.1).
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Definition 25. The solution of the problem described by (4.1) is said to be Ulam-Hyers stable if there
exists a real constant K, > 0 such that for given € > 0 and for each solution v € C([0,T],R) of the
inequality

<eg, 5.1

,C,@ﬁ;“(u (1) - Zml T Thit, u(t))) - g (tu ()
i=1

there exists a solution u € C([0,T],R) of problem described by Eq (4.1) with
V() —u(?)| < Kee, for te[0,T].

Definition 26. The solution of the problem described by Eq (4.1) is said to be generalized Ulam-Hyers
stable if there exists a function ¢, € C(R*,R") with ¢4(0) = O such that, for any given & > 0 and for
each solution v € C([0, T],R) of the inequality (5.1), there exists a solution u € C([0, T],R) of problem
described by (4.1) with

v(t) —u@®)| < ¢g(e), for te€[0,T].

The stability mentioned in Definition 25 can be generalized if the constant € is replaced by a certain
type of functions. Such stability is called the Ulam-Hyers-Rassias stability.

Definition 27. The solution of the problem described by (4.1) is said to be Ulam-Hyers-Rassias stable
with respect to ¢, € C([0,T],R") if there exists K, 4, > 0 such that, for any given € > 0 and for each
solution v € C([0, T],R) of the inequality

< &g, (1), (5.2)

o) - D () - g )
i=1

there exists a solution u € C([0, T],R) of the problem described by (4.1) with
(1) —u@®)| < Ky4e0,(t), for te[0,T].

Definition 28. The solution of the problem described by (4.1) is a generalized Ulam-Hyers-Rassias
stable with respect to ¢, € C([0, T1,R") if there exists K, 4 > O such that, for any given & > 0 and for
each solution v € C([0, T],R) of inequality

< 6.0, (5.3)

Coh () - S () - g (t,u (1)
i=1

there exists a solution u € C([0,T],R) of problem (4.1) with
V(®) — u)] < Koo, for 1€[0.T1.

Remark 29. A function v € C([0, T],R) is a solution of the inequality (5.2) if and only if there exists a
small perturbation 2 € C([0, T],R) (dependent on v) such that
i) |2(0)| < ep=(2), t € [0,T1],

i) S () = T IRt u(0)) = g () + E(), 1 € (0,71
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Lemma 30. If v € C([0,T],R) represents a solution of inequality (5.2), then v is a solution of the
following integral inequality

v(t) — @v(1)| < elly (1) (5.4)
where
Hy. (1) = —el"w AT p=)(T) + (T ¢=)(1) (5.5)
Proof. From Remark 29, we get
Uo t\ o, MT%e%lt
= 1 - = T —_—
0= o) uo)( T)e R Toune
Lo Z n [T =) e T TPhp,v (p))dp
f(T uT)e o T 4= oT (@)

O'ﬁl:(,(;)‘re"-lr f (T -py! ¢ (7= ?[g (o,v (0) + E(p)] dp

f(x—pfl D (g (p,v (0)) + E(0)] dp

0'5F B
f— a;i—1 %(I_p)hi , d ,
+; T j; (t-p)e (0, u (p))dp

this yields that

,
VD) - D] < ‘—Wf( — T TPE(p)dp
= LTI (TR + (TR0
< Lo FTVRTe 92T + (T 92)(0)
= &lly (1),
which leads to the inequality in (5.4). O

In the following, we present the theorem related the Ulam-Hyers-Rassias stability of the solution of
the problem described by Eq (4.1).

Theorem 31. Let o € (0, 1). Assume that (H,), (H,) and (H4) are satisfied with
A<l

Then, the solution to the problem described by Eq (4.1) is both Ulam-Hyers-Rassias stable and
generalized Ulam-Hyers Rassias stable on [0, T].
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Proof. From Lemma 30 we get, for ¢ € [0, T]

V(@) —u@| < @) — Pv@)| + [Pv(7) — u@?)|
[v(#) = @ ()] + [P (1) — Dyu(?)]
elly (1) + Av(t) — u(z)].

IA

This yields that
I, (1)
1) —ul(t <
V() — (@) A

By setting K, 4 = LA we end up with

V(1) — u()] < K e, (0).

Hence, the solution of problem described by Eq (4.1) is Ulam-Hyers-Rassias stable with respect
to Il,.. Moreover, if we set ¢,(r) = &lly (1) with ¢,(0) = 0, then the same solution is generalized
Ulam-Hyers-Rassias stable. The proof is completed. O

Corollary 32. Let o =1 (i.e., gﬁgf = CDg+ ) and assume that (H,) and (Hy) are satisfied with A; < 1

where Ay is given by (4.7). Then, the solution of the problem described by Eq (4.1) is both Ulam-
Hyers-Rassias stable and generalized Ulam-Hyers Rassias stable on [0, T].

Remark 33. Let o € (0, 1]. By using Theorem 31 and Corollary 32, we can conclude that:

1) If 4. (1) = 1, then the solution of the problem described by (4.1) is Ulam-Hyers stable.
2) If we set ¢p,(e) = K, 4& with ¢,(0) = O, then the solution of the problem described by (4.1) is
generalized Ulam-Hyers stable.

6. Example

Consider the following hybrid proportional fractional integro-differential equation:

2i—1 3
3,3 u(t) Zt 4J 4 COSIM(?l
g®8+4 [ i=1Yot+ 1+10i — E(] t)Slnlu([)l tE [O, 1]’

Fu(®) T+u() 6.1)
u(0) = 1—10, u(l) = %
where the real constant € and the function f(t, u(t)) will be fixed later.
Here T = 1,8 = 3,00 = 3,a; = 24 hi(t,u(r) = S0 (i = 1,...,4), g(t, u(®) = LF220l yp = &

and u; = 210.
We can show that

1
|hi(2, A1) — hi(t, )| < 10i [ =, i=1,..4,
i

1
it 0 < oo i= Lo,
l

[l

lg(z, u(®)l < el (1 - I)T”u”.
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Also, for all (z, 1) € [0, 1] X R, we have

(1 +]A]) cos || — sin |1|
= 1-
028, D1 = 16l (1 =) | ===

< 2|,

It follows that Ly, = gty = 16,7 = 1.....4), L = 2lel [l = lel and w(lul) = 13k

Using Matlab program, we find

1 —
PB, —2T) = 0.118985157486215,
o

1 _
Play, —ZT) = 0.787212464733354,
g

1 -
P(a, O-T) = 0.415815178677325,

1 _
P(as, —2T) = 0.186545461450941,

1 -
P(ay, O-T) = 0.073797013512809.

For illustrating Theorem 18, we take f(t, u(t)) = % V1 + lu(r)* and € = 1.
We can show that

1
(5, A0) = f(1, )] < T |41 = 42| and |f(z,0)] = -

ie., Ly =1 and |||l =

We see that the condition (3.7) and (3.8) is followed with a real number R €
[0.929854125359180, 5.322899777680700].

Therefore, all conditions in Theorem 18 are satisfied. We conclude that the problem (6.1) has at
least one solution on [0, 1].

Remark 34. If R = 0.929854125359180, we obtain

0 = 2.555690432688444,

6:llP(ai, 52 T)
oIl + T e

i=m L P, =2T)

= 0.929854125359179 <R,

l—oLy =2\ =
and
L Pa;, =2
QLf+Z i ( )“ D) 0.481751141200855 < 1,

Also, if R = 5.322899777680700, we obtain
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0 = 6.153559316370539,

i=m 6ilIP(@;, =2 T)

ol + 2ici — =
—— = 5.322899777680694 < R,
i=m L Pi, 5= T)
l—oLy = 2icy — oy
and . 1
=m LhiP(ai, %T)
oLs + Z‘ gy = 0841538029578065 < 1.

Note that all conditions in Theorem 18 are satisfied. We conclude that the problem (6.1) has at least
one solution on [0, 1].

For illustrating Theorems 23 and 31, we take f(z,1) = 1 forall (r, 1) € [0,1] X R and € = ﬁ

Using the above data, we find:

A =0.978416714361031 < 1.

In virtue of Theorem 23, problem (6.1) has a unique solution. Furthermore, we can compute

1
Koy = T-A- 46.332148715785415 > 0.

Thus, by use of Theorem 31, problem (6.1) is Ulam-Hyers-Rassias stable, and consequently
generalized Ulam-Hyers-Rassias stable.

7. Conclusions

In this work, we inspected the existence of solutions to a certain class of hybrid fractional intego-
differential equations in the casement of generalized proportional fractional hybrid integro-differential
equations supplemented with Dirichlet boundary conditions. The existence of at least one solution
was shown with the assistance of the hybrid fixed point theorem for a product of three operators. In
addition, for some special cases, the uniqueness of the solutions for the considered class of equations,
and their stability in the sense of Ulam, were discussed.

We believe that the results obtained will be very important for the researchers working on the
qualitative aspects of the boundary value problems in the frame work of the generalized fractional
derivatives mentioned in the article. This is due to the fact that as far as we know this is the first work
in which the lower regularized incomplete gamma function is used to discuss some qualitative aspects
of solutions to fractional differential equations.
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