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Abstract: Dengue viruses have distinct viral regularities due to the their serotypes. Dengue can be
aggravated from a simple fever in an acute infection to a presumably fatal secondary pathogen. This
article investigates a deterministic-stochastic secondary dengue viral infection (SDVI) model
including logistic growth and a nonlinear incidence rate through the use of piecewise fractional
differential equations. This framework accounts for the fact that the dengue virus can penetrate
various kinds of specific receptors. Because of the supplementary infection, the system comprises
both heterologous and homologous antibody. For the deterministic case, we determine the invariant
region and threshold for the aforesaid model. Besides that, we demonstrate that the suggested
stochastic SDVI model yields a global and non-negative solution. Taking into consideration effective
Lyapunov candidates, the sufficient requirements for the presence of an ergodic stationary distribution
of the solution to the stochastic SDVI model are generated. This report basically utilizes a novel idea
of piecewise differentiation and integration. This method aids in the acquisition of mechanisms,
including crossover impacts. Graphical illustrations of piecewise modeling techniques for chaos
challenges are demonstrated. A piecewise numerical scheme is addressed. For various cases,
numerical simulations are presented.
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1. Introduction

Dengue is one of the deadliest and most dangerous infections. According to the World Health
Organization (WHO), 50–100 million viruses cause illness each year, resulting in 500,000 emergency
room visits and approximately 12,500 deaths [1]. Recently, dengue has come to be presumed as a
tropical illness, but it has propagated the zone of infection to maintain or restore zones, owing mainly
to global climate change [2]. Dengue is spread to individuals through the mouth of contaminated
Aedes aegypti and Aedes albopictus mosquitoes. It is believed that four highly associated DENV
adenoviruses occur, namely DENV-1, DENV-2, DENV-3 and DENV-4 [3], so these serotypes lead to
illnesses of varying severities in individuals. The contaminated person typically suffers from an
intense bacteraemia known as dengue fever that is checked by a highly complicated immune reaction
within seven days of disease initiation. Dengue hemorrhagic fever (DHF) and dengue shock
syndrome (DSS) are more drastic representations of this illness (DSS). DHF/DSS can be potentially
lethal if not cured appropriately and properly. The WHO previously suggested a new dengue
classification predicated on infection intensity [4]. We should notice that, despite significant
initiatives to create an efficacious vaccine against dengue pathogens, advertising for dengue
immunization is still not accessible [5]. From this perspective, it is critical to comprehend the
biochemical practices and dynamic system procedures at work all throughout the infection [6, 7].
These intricate nonlinear natural mechanisms also produce a model structure with diverse and
significant complexities. The incidence rate of dengue in various demographics has been investigated
previously or in gradually expanded editions of the fundamental SIR mathematical formulation [8].
Moreover, we should mention that only a handful of micro-epidemiological experiments on dengue
viruses, including one new analysis focusing on the T-cell immune reaction, provide a comprehensive
and vibrant model that encompasses a specific antibody immune reaction [9, 10].

Furthermore, secondary infection occurs when a person who has had a systemic virus is subjected
to dengue virus with a high degree of specificity. It is common for certain sick people to develop
intricate and potentially lethal DSS/DHF environments. Because the new DENV serotype is similar in
composition to the old one, it stimulates the development of lymphocytes that enhance the old
serotype (i.e., cross immunity) as well as the most recent immune responses that counteract the
different pathogenicity. Consequently, there are primarily two pertinent immunoglobulins presently:
one generated by the viral illness that is heterologous to the unique subtype and one generated by the
antibiotic treatment that is homologous. Both of these immune cells have the ability to attach to and
incapacitate viral genomes. After neutralization, the specific antibody are transported to phagocytes.
However, owing to their low attachment to this fresh serotype, the heterologous immune cells are
primed to extract the pathogen when it enters the leukocytes. This leaves a portion of the virions
exposed and willing to inoculate the phagocyte. Hence, reactions are catalyzed against the latest
serotype that both safeguard and transport the pathogen to their priorities, contingent on the
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attachment of the immune response receptor. This is known as antibody reliant augmentation (ARA)
of infection [11]. For generations, the most prevalent speculation that could describe the increased
heinousness of potential pathogens has been ARA [12]. As a result, we can conclude that the immune
system is mainly accountable for both influencing the virus and supplying protection, while also
boosting responses within the bloodstream that cause extreme manifestations such as DHF/DSS.
Lastly, a framework for reinfection should incorporate the similar phenomenon of ARA of viruses and
increased lymphocyte proliferation.

Researchers in numerous classifications and scientific disciplines have gravitated toward using
fractional systems of differential equations (DEs) in the majority of their novel evidence and
investigations as a consequence of the emergence of fractional derivatives [13]. In addition, to see this
realistically, we can resort to numerical techniques for the proliferation and evolution of numerous
infections and communicable conditions, which have emerged as an intriguing issue for scholars in
past centuries; they employ fractional frameworks of initial value problems [14, 15]. While reviewing
the articles, we discovered that various scholars have proposed kernels that can be employed to create
fractional differential formulations [16]. The major motivation behind this is that serious challenges
exhibit signs of mechanisms that are similar to the behaviors of precise scientific
expressions. Fractional calculus incorporating a power law kernel has been led by the contributions
of Riemann, Liouville, Cauchy, and Abel. Caputo later improved their approach, and this form has
been employed in several scientific disciplines owing to its capacity to enable classical initial
conditions (ICs) [17]. Prabhakar proposed an appropriate kernel containing three components as a
combination of index laws and the generalized Mittag-Leffler (GML) kernel. This form has likewise
piqued the interest of numerous scholars and investigations into both concepts and implementations
have been conducted.

Furthermore, the various kernels have distinctive features; for instance an index kernel only aids in
the replication of systems that indicate index kernel tendencies. GML, the combination of the index
kernel, exponential kernel and GML kernel. The generalized three distinct have their own domain of
applicability [18, 19]. Because the phenomenon is multifaceted, Caputo and Fabrizio developed a
novel kernel with a particular exponential kernel exhibiting Delta Dirac characteristics. A differential
formulation that is becoming increasingly popular due to memory. Furthermore, the notion of a
fractional derivative having a nonsingular kernel was pioneered by this kernel, marking the
inauguration of a revolutionary era in fractional calculus [20]. A scientist’s observation regarding the
kernel’s non-fractionality resulted in the creation of a novel kernel, i.e., the GML function, which
includes one component. Atangana and Baleanu [21] proposed this formulation, which represents
another advancement in the discipline of fractional calculus. The formulations have been employed
successfully in a variety of fields of study. Glancing at reality and its intricacies, it is clear that these
proposed kernels are insufficient to forecast all of our universe’s complicated characteristics.
Following the remark, one will look for a different kernel or modified kernel, or a set of procedures
that will be used to add novel differential formulations. Sabatier has proposed various kernel variants
that will additionally lead to novel avenues of inquiry [22]. In addition to these remarkable
breakthroughs, numerous additional notions were proposed, such as the conception of short memory
and the definition of a fractional derivative in the Caputo interpretation for distinct characteristics of
fractional orders. Notwithstanding the well-known formulation, which takes a fractional order to be
time-dependent, the goal was to achieve a different form of variable order derivative. Wu et al. [23]

AIMS Mathematics Volume 8, Issue 3, 6466–6503.



6469

proposed and implemented this scenario in chaotic theory. However, researchers have discovered that
some real-world phenomena demonstrate mechanisms exhibiting varying behaviors as a factor of
space and time. A transition from deterministic to stochastic, either from index-law to exponential
decay, is an example. Because conventional differential formulations may be incapable of accounting
for these tendencies, piecewise differential/integral formulations were devised to cope with issues
manifesting crossover phenomena [24]. The primary goal of this article is to present a detailed
evaluation, potential implementations, strengths and shortcomings of these two notions.

Moreover, there are multiple fractional operators that identify dengue evolution in the
research [25, 26] and the reference materials therein. All of the additional implications above depict
the complexities of dengue viruses from various perspectives, including nonlinear dynamic analysis,
vaccination and stochastic optimization analysis. El-Sayed et al. [27] lists several notable survey
reports that mentioned dengue disease by using actual information.

The purpose of this research is to investigate the dynamic behavior of a deterministic-stochastic
secondary dengue viral infection (SDVI) model with multiple target cells via the piecewise fractional
differential operators approach, which aids in the identification of mechanisms with crossover
patterns. Thus, it is more pragmatic to investigate frameworks with both white noise and deterministic
noise rather than just white noise. Even so, there are no studies on the stationary distribution of the
stochastic SDVI model under regime switching in the existing literature. In this manuscript, we
demonstrate the ergodicity stationary distribution (ESD) of an SDVI model under regime switching
by effectively preparing Lyapunov candidates and an invariant region. Piecewise modeling via the
well-noted fractional derivative operators is highlighted with descriptions of chaos concerns. Taking
into account the computed findings, we procure a critical value for the extinction of SDVI, which is
presented by Rs

0 < 1. As a result, the intermittent nature of untreated specific receptors has a
significant impact on virus infection elimination. We contend that, while the GML kernel, exponential
decay and power law have been revealed to be capable of depicting several crossover behaviors, their
strengths to accomplish this may be restricted due to the enormity of nature.

The structure of the article is organized as follows, Section 2 describes preliminary ideas related to
stochastic processes and fractional calculus. Also, the model formulation is predicted herein. Section 3
examines the qualitative characteristics of the deterministic and stochastic states. By formulating a
certain adequate Lyapunov mapping, we demonstrate the existence of a unique ESD of the solution.
In Section 4, theoretical findings are analyzed by utilizing the crossover effects with varying kernels.
Section 5 exhibits the results and discussion of the suggested model. Finally, Section 6 contends with
some epilogue and future perspectives.

2. Model formulation

The secondary infectious disease framework presented by [28] is an extended version of the acute
infection system depicted in [9]. A sixth component, which also characterized the threshold of
immune response constituted during the preceding reinfection but is heterologous to the active viral
serotype, has been incorporated into the main framework. The homologous recombination immune
cells can connect to the virus particles in this scenario, but the severity of complexation is determined
not only by the substitutability between the pathogen and immunoglobulin but also by the densities of
the heterologous immune cells. It has been discovered that various pathogen serovars in both
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dominant and supplementary pathogens share immunologic similarities in their enzyme shell. Tanvi
et al. [28] developed the SDVI model for neutralizing antibody:



ṡ1(t) = ϑ1 − δ1s1v1 − γ1s1,

ẋ1(t) = ϑ2 − δ2x1v1 − γ2x1,

u̇1(t) = δ1s1v1 − ς1u1,

ṙ1(t) = δ2s1v1 − ς2r1,

v̇1(t) = ζ1u1 + ζ2r1ϕv1 − ω1v1m1 − ω2v1j1,

ṁ1(t) = χ1v1m1 − ρ1m1,

j̇1(t) = χ2v1j1 − ρ2j1,

(2.1)

with ICs s1(0) = s10, x1(0) = x10,u1(0) = u10, r1(0) = r10, v1(0) = v10,m1(0) = m10, j1(0) = j10. At a
time step t, the intensities of the heterologous immune response interacting on the initial infection and
homologous specific antibody against the deadly pathogen serogroup of the serious infection are
denoted by m1 = m1(t) and j1 = j1(t), respectively. The descriptor ω2v1j1 refers to the yield of dengue
virus neutralization by immune responses j1. The phrase ρ2j1 refers to the mortality speed of specific
antibody j1. B-cells produce specific antibody m1 and j1 at rates of ρ1m1 and ρ2j1, respectively. The
immune response pathogen compound has an effect on the antibody development at rates of s1v1m1

and x1v1m1. Researchers [29] have incorporated immunity and CTL immunity into their framework
of supplementary reinfection. Rashid et al. [30] presented the numerical investigation of a
fractional-order cholera epidemic model with transmission dynamics via fractal–fractional operator
technique. Atangana and Rashid [31] contemplated the novel view of a deterministic-stochastic
oncolytic M1 model involving immune response through the use of a crossover behavior. Rashid and
Jarad [32] expounded upon the stochastic dynamics of the fractal-fractional ebola epidemic model by
combining a fear and environmental spreading mechanism. Al-Qureshi et al. [33] established the
dynamical behavior of a stochastic highly pathogenic avian influenza A (HPAI) epidemic model via
piecewise fractional differential technique. Boisov et al. [34] evaluated a SDVI model with contagious
and systemic infections of viral diseases, trying to take secretory and CTL prerogatives into
consideration. Bonyah et al. [35] contemplated the fractional order dengue fever model in the frame
of reference of secured travellers. Fatmawati et al. [36] expounded a new framework for dengue fever
in the context of fractional calculus. Khan and Fatmawati [37] examined the modeling and simulation
consequences of a fractional dengue system.

In fact, there is unpredictability and stochasticity. As a result of the impact of Browinian motion on
modeling techniques, the stochastic framework is more accurate than the other modeling
techniques [38–40]. We assume that stochastic disturbances to individuals are influenced by random
intensities and are proportional to each state s1(t), x1(t), u1(t), r1(t), v1(t), m1(t) and j1(t),
respectively.

In light of the preceding discussion conducted in [38], we advocate for the stochastic SDVI
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framework via logistic growth as follows:

ds1(t) =
(
ϑ1 − δ1s1v1 − γ1s1

)
+ ℘1s1(t)dB1(t),

dx1(t) =
(
ϑ2 − δ2x1v1 − γ2x1

)
+ ℘2x1(t)dB2(t),

du1(t) =
(
δ1s1v1 − ς1u1

)
+ ℘3u1(t)dB3(t),

dr1(t) =
(
δ2s1v1 − ς2r1

)
+ ℘4r1(t)dB4(t),

dv1(t) =
(
ζ1u1 + ζ2r1ϕv1 − ω1v1m1 − ω2v1j1

)
+ ℘5v1(t)dB5(t),

dm1(t) =
(
χ1v1m1 − ρ1m1

)
+ ℘6m1(t)dB6(t),

dj1(t) =
(
χ2v1j1 − ρ2j1

)
+ ℘7j1(t)dB7(t),

(2.2)

where the concentrations of the standard Gaussian white noises are ℘p,p = 1, ..., 7 and
Bp(t), p = 1, ..., 7 are independent standard Wiener mechanisms.

Throughout this investigation, it is assumed that the scheme (2.2) is identified on a complete
probability space (i,F, {Ft}t>0,P) with a right continuous filtration {Ft}t>0 and an {F0} comprising all
of the components with measure zero.

The stochastic DE in d-dimensions is described as follows:

du(t) = f(u(t), t)dt + g1(u(t), t)dB(t), u(t0) = u0, ∀ t0 ≤ t ≤ T < ∞, (2.3)

where f : Rd × [t0,T] 7→ Rd and g1 : Rd × [t0,T] 7→ Rd×m1 are Borel measurable, B = {B(t)}t≥t0 is an
Rm1-valued Wiener technique, and u0 is an Rd-valued random variable stated on Θ.

Furthermore, C2,1(Rd × [t0,∞);R+) is regarded as the collection of all positive mappingsV(u, t) on
Rd× [t0,∞) that are continuously twice differentiable in u ∈ Rd and once in t ∈ [t0,∞). The differential
operator L for the stochastic DE (2.3) is provided by

L =
∂

∂t
+

d∑
p=1

fp(u, t)
∂

∂up
+

1
2

d∑
i,p=1

m1∑
`=1

g1p`(u, t)g1p`(u, t)
∂2

∂up∂ui
.

Define the mappingV ∈ C2,1(Rd × [t0,∞); then,

LV(u, t) = Vt(u, t) +Vu(u, t)f(u, t) +
1
2

d∑
i,p=1

m1∑
`=1

g1i`(u, t)g1p`(u, t)Vuu(u, t),

whereVt := ∂V
∂t , Vs1 = (Vup , ...,Vud) and Vuu = (Vup ,Vup)d×d.

For u(t) ∈ Rd, Ito’s approach is defined as

dV(u(t), t) = LV(u(t), t)dt +Vu(u(t), t)g1(u(t), t)dB(t).

Here, we provide the accompanying description to help readers who are acquainted with fractional
calculus [17, 20, 21].

C
0 Dβ

tF (t) =
1

Γ(1 − β)

t∫
0

F ′(r)(t − r)βdr, β ∈ (0, 1].
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CF
0 Dβ

tF (t) =
M(β)
1 − β

t∫
0

F ′(r) exp
[
−

β

1 − β
(t − r)

]
dr, β ∈ (0, 1],

whereM(β) is defined as a normalized function withM(0) =M(1) = 1.
The formulation of the Atangana-Baleanu derivative is represented below:

ABC
0 Dβ

tF (t) =
ABC(β)
1 − β

t∫
0

F ′(r)Eβ

[
−

β

1 − β
(t − r)β

]
dr, β ∈ (0, 1],

where ABC(β) = 1 − β +
β

Γ(β) signifies the normalization function.

3. Qualitative analysis of SDVI model

3.1. Deterministic state

To verify that our framework is reproductively adequate, we define a region for the densities of the
system’s cohorts. Intensities should not be negative or undefined on specific terms.

Generate the compact set ∆ =
{
(s1, ..., sn,u1, ...,un, v1,m1, j1) ∈ R2n+3

+ : sp,up ∈ [0,Lp], v1 ∈

[0,K1],m1 ∈ [0,K2], j1 ∈ [0,K3], p = 1, ..., n
}
.

Lemma 3.1. The domain ∆ of the model (2.1) is positively invariant.

Proof. Equating the system Eq (2.1) to zero, we have

ṡp
∣∣∣
sp

= ϑp > 0, p = 1, ..., n,

u̇p
∣∣∣
up

= δps1pv1 > 0, f or s1p, v1 ≥ 0, p = 1, ..., n,

˙v1p

∣∣∣
v1

=

n∑
p=1

ζpyp ≥ 0, f or s1p, v1 ≥ 0, p = 1, ..., n,

ṁ1p

∣∣∣
m1

= 0,
˙j1p

∣∣∣
j1

= 0.

Therefore, (s1, ..., sn,u1, ...,un, v1,m1, j1) ∈ R2n+3
+ for all t ≥ 0.

Taking Tp = s1p + u1p; then,

Ṫp = ϑp − ξps1p − ςpu1p ≤ ϑp − σp(s1p + u1p) = ϑp − σpTp,

where σp = min
{
ξp, ςp

}
,p = 1, ..., n. Thus, Tp ≤ Lp, if Tp(0) ≤ Lp, where Lp =

ϑp
σp
. The positivity of

the system’s parameters implies that s1p,u1p ∈ Lp. Moreover, we describe G = v1 + ω1
χ1

m1 + ω2
χ2

j1; then,

Ġ =

n∑
p=1

ζpu1p − ϕv1
ω1

χ1
m1 −

ω2

χ2
j1
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≤

n∑
p=1

ζpLp −$
(
v1 +

ω1

χ1
m1 +

ω2

χ2
j1

)
=

n∑
p=1

ζpLp −$G,

where $ = min{ϕ, ρ1, ρ2}. Thus G(t) ≤ K1, if G(0) ≤ K1, where K1 = 1
$

n∑
p=1

ζpLp. Since v1(t),m1(t) ≥

0 and j1(t) ≥ 0; then, v1(t) ∈ [0,K1], m1(t) ∈ [0,K2] and j1(t) ∈ [0,K3]. Also, K2 =
χ1
ω1
K1 and

K3 =
χ2
ω2
K1.

Next, we established the equilibria and basic reproduction numbers of the system (2.1).

Theorem 3.1. Assume that there are three thresholds parameters R0, R1 and R2 with R1 < R0 and
R2 < R0 such that
(a) if R0 ≤ 1; then, (2.1) has one equilibrium point E0 ∈ ∆,

(b) if R1 ≤ 1 < R0 and R2 ≤ 1 < R0 then (2.1) has two equilibria points E0 ∈ ∆ and E1 ∈ ∆◦, where ∆◦

is the interior point of ∆,

(c) if R1 > 1 and R2 < 1 then (2.1) has three equilibria points E0 ∈ ∆, E1 ∈ ∆◦ and E2 ∈ ∆◦,
(d) if R2 > 1 and R1 < 1 then (2.1) has three equilibria points E0 ∈ ∆, E1 ∈ ∆◦ and E3 ∈ ∆◦,
(e) if R2 > 1 and R1 > 1 then (2.1) has three equilibria points E0 ∈ ∆, E1 ∈ ∆◦,E2 ∈ ∆◦ and E3 ∈ ∆◦.

Proof. Equating the left side of the model (2.1) to zero, we have

0 = ϑp − δps1pv1 − ξps1p,

0 = δps1pv1 − ςpu1p,

0 =

n∑
p=1

ζpu1p − ϕv1 − ω1v1m1 − ω2v1j1,

0 = χ1v1m1 − ρ1m1,

0 = χ2v1j1 − ρ2j1. (3.1)

Utilizing last two equations of (3.1), we have three scenarios, as follows:
Case (a) For m1 = j1 = 0; then, the first and second equations of (3.1) can reduces to

s1p =
ϑp

ξp + δpv1
, u1p =

δps1pv1

ςp
. (3.2)

In view of the third equation of (3.1), we find

( n∑
p=1

ζpδps1p

ϕςp
− 1

)
ϕv1 = 0. (3.3)

Then, (3.3) has one of two configurations v1 = 0 or
n∑

p=1

ζpδp xp
ϕςp
− 1 = 0.
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Further, if v1 = 0; then, inserting it into (3.2) yields the infection-free equilibrium

E0

(
s0, ..., s0

n,

n+3︷    ︸︸    ︷
0, ..., 0, 0

)
with s1

0
p =

ϑp
ξp
. If v1 , 0, we have

n∑
p=1

ζpδps1p

ϕςp
− 1 = 0. (3.4)

Inserting the first equation of (3.1) into (3.4), we have

n∑
p=1

ζp(ϑp − ξps1p)
ϕςp

− v1 = 0. (3.5)

As s1p depends on v1; then, from (3.5), we present a mapping Υ1(v1) as

Υ1(v1) =

n∑
p=1

ζp(ϑp − ξps1p(v1))
ϕςp

− v1. (3.6)

We must demonstrate that there exists ṽ1 > 0 such that Υ1(ṽ1) = 0. Note that , if v1 = 0 then s1p = s1
0
p

and Υ1(0) = 0 and when v1 = v∗1 =
n∑

p=1

ζpξps1
∗
p

ϕςp
> 0, we have s1

∗
p = s1p(v∗1) and

Υ1(v∗1) = −

n∑
p=1

ζpξps1
∗
p

ϕςp
< 0.

Therefore, we have

Υ′1(0) =

n∑
p=1

ζpδpϑp

ϕξpςp
− 1.

Thus, Υ′1(0) > 0 if

n∑
p=1

ζpδpϑp

ϕξpςp
> 1. (3.7)

This implies that if the criterion (3.7) is fulfilled, then there exists ṽ1 ∈ (0, v∗1) fulfilling Υ1(ṽ1) = 0.
Again, from (3.2), we have that s̃1p, ũ1p, ṽ1 > 0. Therefore, a persistent infection to a deactivated

immunologic antibody reaction E1(s̃1, ..., s̃n, ũ1, ..., ũn, ṽ1, 0, 0) holds when
n∑

p=1

ζpδpϑp
ϕξpςp

> 1.

Then, we can establish

R0 =

n∑
p=1

ζpδpϑp

ϕξpςp
.

In this case, R0 represents the basic reproduction number, which also represents the number of
productive specific receptors produced by a single afflicted cell over the course of its existence. The
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next-generation matrix approach [41] or the local stability of the infection equilibrium point E0 can
furthermore be applied to determine R0.
Case (b) If m1 , 0 and j1 = 0, we achieve a contaminated equilibrium point by using only the
effective heterologous immune response E2(s̄, ..., s̄n, ū, ..., ūn, v̄1, m̄1, 0), where

s̄1p =
ϑp

ξp+
δpρ1
χ1

, ū1p =
δpϑpρ1

ςp(χ1ξp+δpρ1) , v̄1 =
ρ1
χ1
, m̄1 =

ϕ

ω1
(R1 − 1) and R1 =

n∑
p=1

χ1ζpδpϑp
ϕςp(χ1ξp+δpρ1) .

Case (c) If m1 = 0 and j1 , 0, we achieve an afflicted steady state by using only the effective
homologous immune response E3(ŝ, ..., ŝn, û, ..., ûn, v̂1, 0, ĵ1), where

ŝp =
ϑp

ξp+
δpρ2
χ2

, û1p =
δpϑpρ2

ςp(χ2ξp+δpρ2) , v̂1 =
ρ2
χ2
, ĵ1 =

ϕ

ω2
(R2 − 1) and R2 =

n∑
p=1

χ2ζpδpϑp
ϕςp(χ2ξp+δpρ2) .

Obviously R1 < R0 and R2 < R0.

Assertions (b) and (c) show that if R1 > 1 and R2 > 1 then E0, E1, E2 and E3 all occur.
Here, R1 is the heterologous specific antibody immune system stimulation quantity and R2 is the

handful of homologous specific antibody immune reaction stimulation.
We presently demonstrate that E0 ∈ ∆ and E1,E2,E3 ∈ ∆◦. It is obvious that E0 ∈ ∆. Suppose that

that R0 > 1; then, E1 holds and ϑp = ξps̃p + ςpũp. As a result of this,

sp <
ϑp

ξp
≤ Lp, up <

ϑp

ςp
≤ Lp.

Also, we have that ϕṽ1 =
n∑

p=1
ζpũp; then,

ṽ1 =
1
ϕ

n∑
p=1

ζpũp <
1
ϕ

n∑
p=1

ζpLp ≤
1
$

n∑
p=1

ζpLp = K1.

We obtain m̃1 = j̃1; then, E1 ∈ ∆◦. Obvious that s̄p, ūp ∈ (0,Lp).
Following that, we define that 0 < v̄1 < K1 and 0 < m̄1 < K2 when R1 > 1. The equilibrium

condition ofM2 yields

ϕv̄1 + ω1v̄1m̄1 =

n∑
p=1

ζpū1p.

Thus, if R1 > 1, we have that ϕv̄1 <
n∑

p=1
ζpūp =⇒ 0 < v̄1 <

1
ϕ

n∑
p=1

ζpLp ≤
1
$

n∑
p=1

ζpLp = K1.

Eventually, we get

m̄1 <
1

ω1v̄1

n∑
p=1

ζpūp <
χ1

ω1
K1 = K2.

Thus, E2 ∈ ∆◦. Analogously, we can easily prove that E3 ∈ ∆◦.

3.2. Stochastic state

The first consideration when researching the dynamic characteristics of an outbreak framework is
determining whether the configuration is global and non-negative. In this segment, we will demonstrate
that the Scheme (2.2) has a unique global non-negative solution with any initial settings by using the
Lyapunov mechanism technique referenced in [42]. We demonstrate the subsequent formalism.
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Theorem 3.2. Assume that a system (2.2) (s1(t), x1(t),u1(t), r1(t), v1(t),m1(t), j1(t)) on t ≥ 0 by the ICs
(s1(0), x1(0),u1(0), r1(0), v1(0),m1(0), j1(0)) ∈ R7

+ and the solution (s1(t), x1(t),u1(t), r1(t), v1(t),
m1(t), j1(t)) ∈ R7

+, ∀t ≥ 0 almost surely (a.s.).

Proof. Because the system (2.2) indices fulfill the local Lipschitz requirement, for any ICs
(s1(0), x1(0),u1(0), r1(0), v1(0),m1(0), j1(0)) ∈ R7

+, there exists only one local solution
(s1(t), x1(t),u1(t), r1(t), v1(t),m1(t), j1(t)) on t ∈ [0, λε), where λε indicates the moment of
explosion [43]. In order to prove the global solution, we need λε = ∞. To that point, let k0 > 1 be
large enough that (s1(0), x1(0),u1(0), r1(0), v1(0),m1(0), j1(0)) ∈ R7

+ is defined on [1/k0, k0]. Identify
the stopping time for every integer k ≥ k0 as shown:

λε = inf
{
t ∈ [0, λε) : min

{
(s1(t), x1(t),u1(t), r1(t), v1(t),m1(t), j1(t))

}
≤

1
k

or max
{
(s1(t), x1(t),u1(t), r1(t), v1(t),m1(t), j1(t))

}
≥ k

}
.

For the sake of simplicity, we take inf ∅ = ∞ ( ∅ signifies the empty set). Evidently, λk is nondecreasing
as k 7→ ∞.Assume that λ∞ = lim

k 7→∞
λk,where λ∞ ≤ λε (a.s). When λ∞ = ∞ holds (a.s), then λε = ∞ (a.s)

and (s1(t), x1(t),u1(t), r1(t), v1(t),m1(t), j1(t)) ∈ R7
+, ∀ t ≥ 0 (a.s). That is, we only need to demonstrate

λ∞ = ∞ (a.s) to obtain the evidence. If this assumption is factually inaccurate, then a couple of
constants exist T > 0 and ε ∈ (0, 1) such that

P{λ∞ ≤ T} > ε. (3.8)

As a result, there is an integer k1 ≥ k0 such that

P{λk ≤ T} ≥ ε, ∀ k ≥ k1.

We introduce a C2-function Φ : R7
+ 7→ R+ as follows:

Φ(s1, x1,u1, r1, v1,m1, j1) =
(
(s1 − a1 − a1 ln

s1

a1

)
+ (x1 + u1 + r1 + v1 + m1 + j1) − 6

−(ln x1 + ln u1 + ln r1 + ln v1 + ln m1 + ln j1). (3.9)

The positivity of (3.9) is evident from ρ1 − ln ρ1 − 1 ≥ 0 for every ρ1 > 0.
Using Ito’s strategy [44], we get

dΦ(s1, x1,u1, r1, v1,m1, j1) = LΦ(s1, x1,u1, r1, v1,m1, j1)dt + ℘1(s1 − a1)dB1(t) + ℘1(s1 − 1)dB1(t)
+℘2(x1 − 1)dB2(t) + ℘3(u1 − 1)dB3(t) + ℘4(r1 − 1)dB4(t)
+℘5(v1 − 1)dB5(t) + ℘6(m1 − 1)dB6(t) + ℘7(j1 − 1)dB7(t), (3.10)

where LΦ : R7
+ 7→ R is stated as

dΦ(s1, x1,u1, r1, v1,m1, j1)

=
(
1 −

a1

s1

)
(λ1 − δ1s1v1 − γ1s1) +

(
1 −

1
x1

)
(λ2 − δ2x1v1 − γ2x1)

+
(
1 −

1
u1

)
(δ1s1v1 − ς1u1) +

(
1 −

1
r1

)
(δ2x1v1 − ς2r1)
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+
(
1 −

1
v1

)
(ζ1u1 + ζ2r1 − ϕv1 − ω1v1m1 − ω2v1j1) +

(
1 −

1
m1

)
(χ1v1m1 − ρ1m1)

+
(
1 −

1
j1

)
(χ2v1j1 − ρ2j1) +

1
2

(a1℘
2
1 + ℘2

2 + ℘2
3 + ℘2

4 + ℘2
5 + ℘2

6 + ℘2
7)

= λ1 + λ2 + a1γ1 + γ2 + ς1 + ς2 + ρ1 + ρ2 − δ1s1v1 − γ1s1 + a1δ1v1

−δ2x1v1 − γ2x1 + δ2v1 + δ1s1v1 − ς1u1 + δ2x1v1 − ς2r1 + ζ1u1

+ζ2r1 − ϕv1 − ω1s1m1 − ω2v1j1 + ω1m1 + ω2j1 + χ1v1m1 − ρ1m1

−χ1v1 + χ2v1j1 − ρ2j1 − χ2v1 +
a1ϑ1

s1
−
ϑ2

x1
−
λ1s1v1

u1

λ2x1v1

r1

−
ζ1u1

v1
−
ζ2r1

v1
+

1
2

(a1℘
2
1 + ℘2

2 + ℘2
3 + ℘2

4 + ℘2
5 + ℘2

6 + ℘2
7)

≤ (ϑ1 + ϑ2) + a1γ1 + γ2 + ς1 + ς2 + ρ1 + ρ2 + (ζ1 − ς1)u1

+(a1 + δ1 + δ2 − χ1 − ϕ − χ2)v1 + (ζ2 − ς2)r1 + (ω1 − ρ1)m1 + (ω2 − ρ2)j1

+
1
2

(a1℘
2
1 + ℘2

2 + ℘2
3 + ℘2

4 + ℘2
5 + ℘2

6 + ℘2
7).

Since a1 = χ1 + ϕ + χ2 − δ1 − δ2, it follows that

dΦ(s1, x1,u1, r1, v1,m1, j1) ≤ (ϑ1 + ϑ2) + a1γ1 + γ2 + ς1 + ς2 + ρ1 + ρ2

+
1
2

(a1℘
2
1 + ℘2

2 + ℘2
3 + ℘2

4 + ℘2
5 + ℘2

6 + ℘2
7) := z.

Additionally, z is non-negative constant. Therefore, we have

dΦ(s1, x1,u1, r1, v1,m1, j1)
≤ zdt + ℘1(s1 − a1)dB1(t) + ℘1(s1 − 1)dB1(t)

+℘2(x1 − 1)dB2(t) + ℘3(u1 − 1)dB3(t) + ℘4(r1 − 1)dB4(t)
+℘5(v1 − 1)dB5(t) + ℘6(m1 − 1)dB6(t) + ℘7(j1 − 1)dB7(t). (3.11)

For every k > k0, integrating (3.11) on both sides from 0 to λk ∧ T and then applying the expectation
gives

EΦ
(
s1(λk ∧ T), x1(λk ∧ T),u1(λk ∧ T), r1(λk ∧ T), v1(λk ∧ T),m1(λk ∧ T), j1(λk ∧ T)

)
≤ Φ

(
s1(0), x1(0),u1(0), r1(0), v1(0),m1(0), j1(0)

)
+ zT.

For k ≥ k0, Λk =
{
ω ∈ Λ : λk = λk(ω) ≤ T

}
. Thus, we get P(Λk) ≥ ε̃. Obviously, for each ω ∈ Λk there

exists s1(λk, ω), x1(λk, ω),u1(λk, ω), r1(λk, ω), v1(λk, ω),m1(λk, ω) and j1(λk, ω) equating to either k or
1
k
. Therefore, Φ

(
s1(λk, ω), x1(λk, ω),u1(λk, ω), r1(λk, ω), v1(λk, ω),m1(λk, ω), j1(λk, ω)) is not less than

either k− a1 − a1 ln k
a1

or 1
k
− a1 − a1 ln 1

a1k
= 1
k
− a1 + a1 ln(a1k), k− 1− ln k, 1

k
− 1− ln 1

k
= 1
k
− 1 + ln k.

As a result, we have

Φ
(
s1(λk, ω), x1(λk, ω),u1(λk, ω), r1(λk, ω), v1(λk, ω),m1(λk, ω), j1(λk, ω)

)
≥

(
k − a1 − a1 ln

k

a1

)
∧

(1
k
− a1 + a1 ln(a1k)

)
∧ (k − 1 − ln k) ∧

(1
k
− 1 + ln k

)
.
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Finally, we have

Φ
(
s1(0), x1(0),u1(0), r1(0), v1(0),m1(0), j1(0)

)
+ zT

≥ E
{
IΛkΦ

(
s1(λk, ω), x1(λk, ω),u1(λk, ω), r1(λk, ω), v1(λk, ω),m1(λk, ω), j1(λk, ω)

)}
≥ ε

(
k − a1 − a1 ln

k

a1

)
∧

(1
k
− a1 + a1 ln(a1k)

)
∧ (k − 1 − ln k) ∧

(1
k
− 1 + ln k

)
,

where IΛk presents the indicator function of Λk. Taking k 7→ ∞ leads to the contradiction

∞ > Φ
(
s1(0), x1(0),u1(0), r1(0), v1(0),m1(0), j1(0)

)
+ zT = ∞.

This completes the proof.

3.3. ESD

In disease transmission, it is important to determine when an illness will persist in the community.
We demonstrate that the endemic equilibrium exists and is globally asymptotically stable in the
deterministic model (2.1). However, the highly prevalent stabilization does not exist in the stochastic
model (2.2) of the infected individual. According to Has’minskii’s theory [45], there exists an ESD
that reveals that the illness will endure.

Besides that, we reveal several hypotheses about the ESD (see Has’minskii [45]). Suppose that there
is a homogeneous Markov procedure u(t) in R7

+ that is characterized by the stochastic DE presented as

du(t) = f(u(t))dt +
∑̀
r1=1

g1r1
(u(t))dBr1(t). (3.12)

The diffusion matrix of the system u(t) is presented as follows:

A(y) = (aip(y)), aip(y) =
∑̀
r1=1

g1
i
r1

(y)g1
p
r1

(y). (3.13)

Lemma 3.2. [45] Suppose that u(t) is the Markov process with a unique ESD π(.) if there exists a
bounded region Q ∈ Rn has a regular boundary O and

(i) ∃ a positive S 1 such that
d∑

i,p=1
aip(y)ξiξp ≥ S 1|ξ|

2, ∀ y ∈ Q,∀ξ ∈ Rn,

(ii) ∃ a positive C2-mapping Φ such that LΦ is non-positive for every Rn \ Q, where L presents the
differential operator described by

L =

n∑
p=1

b1p(y)
∂

∂yp
+

1
2

n∑
i,p=1

aip(y)
∂2

∂yi∂yp
. (3.14)

Then

Py
{

lim
T7→∞

1
T

T∫
0

f(u(t))dt =

∫
Rn

f(y)π(dy)
}

= 1, ∀ y ∈ Rn, (3.15)
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where f(.) is an integrable mapping regarding to the measure π.
Define a parameter

Rs
0 =

ζ1ζ2ϑ1ϑ2δ1δ2

(℘
2
1

2 − γ1)(℘
2
2

2 − γ2)(℘
2
3

2 − ς1)(℘
2
4

2 − ς2)(
℘2

5
2 + ϕ)2

. (3.16)

Theorem 3.3. Suppose that system (2.2)
(
s1(t), x1(t),u1(t), r1(t),1 (t), v1(t),m1(t), j1(t)

)
is ergodic and

admits a unique stationary distribution π(.).

Proof. To test the assertion (ii) of Lemma 3.2, we must classify a non-negative C2-mapping Φ : R7
+ 7→

R+, which must be categorized

Φ1 = s1 + x1 + u1 + r1 + v1 + m1 + j1 − q1 ln s1 − q2 ln x1 − q3 ln u1 − q4 ln r1 − q5 ln v1, (3.17)

where q1,q2,q3,q4 and q5 are the constants to be determined later. Using Ito’s methodology and the
proposed framework, we produce the mentioned findings (2.2).

L(s1 + x1 + u1 + r1 + v1 + m1 + j1) = π − d(s1(t) + x1(t) + u1(t) + r1(t) + v1(t) + m1(t) + j1(t)).(3.18)

It follows that

L(− ln s1) = −
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
,

L(− ln x1) = −
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
,

L(− ln u1) = −
δ1s1v1

u1
− ς1 +

℘2
3

2
,

L(− ln r1) = −
δ2x1v1

r1
− ς2 +

℘2
4

2
,

L(− ln v1) = −
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
,

L(− ln m1) = −χ1v1 + ρ1 +
℘2

5

2
,

L(− ln j1) = −χ2j1 + ρ2 +
℘2

6

2
.

Now, we have

LΦ1 = −d(s1 + x1 + u1 + r1 + v1 + m1 + j1) −
q1ϑ1

s1
+ q1

(℘2
1

2
− γ1

)
− q1δ1v1 −

q2ϑ2

x1

+q2

(℘2
2

2
− γ2

)
− q2δ2v1 −

q3δ1s1v1

u1
− q3

(
ς1 −

℘2
3

2

)
−

q4δ2x1v1

r1
− q4

(
ς2 −

℘2
4

2

)
−

q5ζ1u1

v1
−

q5ζ2r1

v1
+ q5ω1m1 + q5ω2j1 + q5

(
ϕ +

℘2
5

2

)
.
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The preceding signifies that

LΦ1 ≤ −7
{
d(s1 + x1 + u1 + r1 + v1 + m1 + j1)

×
q1ϑ1

s1d(s1 + x1 + u1 + r1 + v1 + m1 + j1)
×

q2ϑ2

x1
×

q3δ1s1v1

u1
×

q4δ2x1v1

r1
×

q5ζ1u1

v1
×

q5ζ2r1

v1

}1/7

+q1

(℘2
1

2
− γ1

)
+ q2

(℘2
2

2
− γ2

)
+ q3

(℘2
3

2
− ς1

)
+ q4

(℘2
4

2
− ς2

)
+ q5

(
ϕ +

℘2
5

2

)
+ (ϑ1 + ϑ2) + q1

ϑ1

s1
.

Assume that

q1

(℘2
1

2
− γ1

)
= q2

(℘2
2

2
− γ2

)
= q3

(℘2
3

2
− ς1

)
= q4

(℘2
4

2
− ς2

)
= q5

(
ϕ +

℘2
5

2

)
= (ϑ1 + ϑ2).

Accordingly, we have

q1 =
ϑ1 + ϑ2(
℘2

1
2 − γ1

) , q2 =
ϑ1 + ϑ2(
℘2

2
2 − γ2

) , q3 =
ϑ1 + ϑ2(
℘2

3
2 − ς1

) , q4 =
ϑ1 + ϑ2(
℘2

4
2 − ς2

) , q5 =
ϑ1 + ϑ2(℘2

5
2 + ϕ

) .
As a result, we get

LΦ1 ≤ −7
({ (ϑ1 + ϑ2)7ζ1ζ2ϑ1ϑ2δ1δ2

(℘
2
1

2 − γ1)(℘
2
2

2 − γ2)(℘
2
3

2 − ς1)(℘
2
4

2 − ς2)(
℘2

5
2 + ϕ)2

}1/7
− π

)
+ q1

ϑ1

s1

≤ −7(ϑ1 + ϑ2)
[
(Rs

0)1/7 − 1
]

+ q1
ϑ1

s1
.

Furthermore, we obtain

Φ2 = q6
(
s1 + x1 + u1 + r1 + v1 + m1 + j1 − q1 ln s1 − q2 ln x1 − q3 ln u1 − q4 ln r1 − q5 ln v1

)
− ln s1

− ln m1 − ln j1 + s1(t) + x1(t) + u1(t) + r1(t) + v1(t) + m1(t) + j1(t)
= (q6 + 1)(s1 + x1 + u1 + r1 + v1 + m1 + j1) − (q1q6 + 1) ln s1 − q2q6 ln x1 − q3q6 ln u1

−q4q6 ln r1 − q6q5 ln v1 − ln m1 − ln j1.

Note that q6 > 0 is a constant which will be determined later. It is effective to demonstrate that

lim
(s1,x1,u1,r1,v1,m1,j1)∈R7

+\H`

Φ2(s1, x1,u1, r1, v1,m1, j1) = +∞, as ` 7→ ∞, (3.19)

where H` = (1/`, `) × (1/`, `) × (1/`, `) × (1/`, `) × (1/`, `). The next process is to demonstrate that
Φ2(s1, x1,u1, r1, v1,m1, j1) has only specified minimum value Φ2(s10, x10,u10, r10, v10,m10, j10).

The partial derivatives of Φ2(s1, x1,u1, r1, v1,m1, j1) corresponding to s1, x1,u1, r1, v1,m1 and j1 is
as follows:

∂Φ2(s1, x1,u1, r1, v1,m1, j1)
∂s1

= 1 + q6 −
1 + q1q6

s1
,

∂Φ2(s1, x1,u1, r1, v1,m1, j1)
∂x1

= 1 + q6 −
q2q6

x1
,
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∂Φ2(s1, x1,u1, r1, v1,m1, j1)
∂u1

= 1 + q6 −
q3q6

u1
,

∂Φ2(s1, x1,u1, r1, v1,m1, j1)
∂r1

= 1 + q6 −
q4q6

r1
,

∂Φ2(s1, x1,u1, r1, v1,m1, j1)
∂v1

= 1 + q6 −
q5q6

v1
,

∂Φ2(s1, x1,u1, r1, v1,m1, j1)
∂m1

= 1 + q6 −
1

m1
,

∂Φ2(s1, x1,u1, r1, v1,m1, j1)
∂j1

= 1 + q6 −
1
j1
. (3.20)

It is not difficult to determine that Φ2 has a distinct stagnation point.

(s1(0), x1(0),u1(0), r1(0), v1(0),m1(0), j1(0))

=

(1 + q1q6

1 + q6
,

q2q6

1 + q6
,

q3q6

1 + q6
,

q4q6

1 + q6
,

q5q6

1 + q6
,

1
1 + q6

,
1

1 + q6

)
. (3.21)

Also, the Hessian matrix Φ2(s1, x1,u1, r1, v1,m1, j1) at (s1(0), x1(0),u1(0), r1(0), v1(0),m1(0), j1(0)) is

U =



1+q1q6

s2
1(0) 0 0 0 0 0 0

0 q2q6

x2
1(0) 0 0 0 0 0

0 0 q3q6

u2
1(0) 0 0 0 0

0 0 0 q4q6

r2
1(0) 0 0 0

0 0 0 0 q5q6

v2
1(0) 0 0

0 0 0 0 0 1
m2

1(0) 0

0 0 0 0 0 0 1
j2
1(0)


. (3.22)

The aforesaid matrix seems to be positive definite. As a result, Φ2(s1, x1,u1, r1, v1,m1, j1) has the
lowest value of Φ2(s1(0), x1(0),u1(0), r1(0), v1(0),m1(0), j1(0)).

In view of (3.19) and the continuity of Φ2(s1, x1,u1, r1, v1,m1, j1), observe that
Φ2(s1, x1,u1, r1, v1,m1, j1) has at least one value Φ2(s1(0), x1(0),u1(0), r1(0), v1(0),m1(0), j1(0)) ∈ R7

+.

After that, we shall define a positive C2-mapping Φ : R7
+ 7→ R+ as follows

Φ(s1, x1,u1, r1, v1,m1, j1)
= Φ2(s1, x1,u1, r1, v1,m1, j1) − Φ2(s1(0), x1(0),u1(0), r1(0), v1(0),m1(0), j1(0)). (3.23)

In view of Ito’s formula and the suggested model, we have

LΦ ≤ q6

{
− 7(ϑ1 + ϑ2)

[
(Rs

0)1/7 − 1
]

+ q1
ϑ1

s1

}
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+π − d(s1(t) + x1(t) + u1(t) + r1(t) + v1(t) + m1(t) + j1(t)). (3.24)
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As a result of this, the following supposition can be constituted:

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+π − d(s1(t) + x1(t) + u1(t) + r1(t) + v1(t) + m1(t) + j1(t)), (3.25)

where q7 = 7(ϑ1 + ϑ2)
[
(Rs

0)1/7 − 1
]
> 0.

The next stage is to produce the set

Q =
{
s1 ∈ (ε1,

1
ε2

), x1 ∈ (ε1,
1
ε2

),u1 ∈ (ε1,
1
ε2

), r1 ∈ (ε1,
1
ε2

), v1 ∈ (ε1,
1
ε2

),m1 ∈ (ε1,
1
ε2

), j1 ∈ (ε1,
1
ε2

)
}
,

(3.26)

where εp > 0, p = 1, 2 is a very small arbitrary constant. For the sake of clarification, we will split up
the whole R7

+ \ Q into the aforementioned domains.

Q1 =
{
(s1, x1,u1, r1, v1,m1, j1) ∈ R7

+; s1 ∈ (0, ε1]
}
,

Q2 =
{
(s1, x1,u1, r1, v1,m1, j1) ∈ R7

+; x1 ∈ (0, ε2], s1 > ε2
}
,

Q3 =
{
(s1, x1,u1, r1, v1,m1, j1) ∈ R7

+; u1 ∈ (0, ε1], x1 > ε2
}
,

Q4 =
{
(s1, x1,u1, r1, v1,m1, j1) ∈ R7

+; r1 ∈ (0, ε1],u1 > ε2
}
,

Q5 =
{
(s1, x1,u1, r1, v1,m1, j1) ∈ R7

+; v1 ∈ (0, ε1], r1 > ε2
}
,

Q6 =
{
(s1, x1,u1, r1, v1,m1, j1) ∈ R7

+; m1 ∈ (0, ε1], v1 > ε2
}
,

Q7 =
{
(s1, x1,u1, r1, v1,m1, j1) ∈ R7

+; j1 ∈ (0, ε1],m1 > ε2
}
,

Q8 =
{
(s1, x1,u1, r1, v1,m1, j1) ∈ R7

+; s1 ≥
1
ε2

}
,

Q9 =
{
(s1, x1,u1, r1, v1,m1, j1) ∈ R7

+; x1 ≥
1
ε2

}
,

Q10 =
{
(s1, x1,u1, r1, v1,m1, j1) ∈ R7

+; u1 ≥
1
ε2

}
,

Q11 =
{
(s1, x1,u1, r1, v1,m1, j1) ∈ R7

+; r1 ≥
1
ε2

}
,

Q12 =
{
(s1, x1,u1, r1, v1,m1, j1) ∈ R7

+; v1 ≥
1
ε2

}
,

Q13 =
{
(s1, x1,u1, r1, v1,m1, j1) ∈ R7

+; m1 ≥
1
ε2

}
,

Q14 =
{
(s1, x1,u1, r1, v1,m1, j1) ∈ R7

+; j1 ≥
1
ε2

}
.

Here we will demonstrate that LΦ(s1, x1,u1, r1, v1,m1, j1) on R7
+ \ Q, which is equivalent to conveying

it on the ten previously specified domains.
Case I. For (s1, x1,u1, r1, v1,m1, j1) ∈ Q1, Eq (3.25), yields

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1
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−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

≤ −
ϑ1

ε1
+ (1 + q1q6)

ϑ1

ε1
+ Y1, (3.27)

where

Y1 = sup
(s1,x1,u1,r1,v1,m1,j1)∈R7

+

{
− q6q7 − δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2

}
.

Thus, we conclude that LΦ ≤ −1 for each (s1, x1,u1, r1, v1,m1, j1) ∈ Q1.

Case II. For (s1, x1,u1, r1, v1,m1, j1) ∈ Q2, Eq (3.25) yields

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

≤ −
ϑ2

ε2
+ Y2, (3.28)

where

Y2 = sup
(s1,x1,u1,r1,v1,m1,j1)∈R7

+

{
− q6q7 + (1 + q1q6)

ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
− δ2v1 − γ2 +

℘2
2

2

−
δ1s1v1

u1
− ς1 +

℘2
3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

}
.

Thus, we conclude that LΦ ≤ −1 for each (s1, x1,u1, r1, v1,m1, j1) ∈ Q2.

Case III. For (s1, x1,u1, r1, v1,m1, j1) ∈ Q3, Eq (3.25) yields

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

≤ −
δ1ε1v1

ε2
−
ζ1ε1

v1
+ Y3, (3.29)

where

Y3 = sup
(s1,x1,u1,r1,v1,m1,j1)∈R7

+

{
− q6q7 + (1 + q1q6)

ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2

+
℘2

2

2
− ς1 +

℘2
3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

}
.
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Thus, we conclude that LΦ ≤ −1 for each (s1, x1,u1, r1, v1,m1, j1) ∈ Q3.

Case IV. For (s1, x1,u1, r1, v1,m1, j1) ∈ Q4, Eq (3.25) yields

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

≤ −
δ2ε2v1

ε1
−
ζ2ε1

v1
+ Y4, (3.30)

where

Y4 = sup
(s1,x1,u1,r1,v1,m1,j1)∈R7

+

{
− q6q7 + (1 + q1q6)

ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2

+
℘2

2

2
−
δ1s1v1

u1
− ς1 +

℘2
3

2
− ς2 +

℘2
4

2
−
ζ1u1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

}
.

Thus, we conclude that LΦ ≤ −1 for each (s1, x1,u1, r1, v1,m1, j1) ∈ Q4.

Case V. For (s1, x1,u1, r1, v1,m1, j1) ∈ Q5, Eq (3.25) yields

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

≤ −δ1ε1 −
δ2ε2

ε1
−
ζ1u1

ε1
−
ζ2r1

ε1
+ Y5, (3.31)

where

Y5 = sup
(s1,x1,u1,r1,v1,m1,j1)∈R7

+

{
− q6q7 + (1 + q1q6)

ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2

+
℘2

2

2
− ς1 +

℘2
3

2
− ς2 +

℘2
4

2
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

}
.

Thus, we conclude that LΦ ≤ −1 for each (s1, x1,u1, r1, v1,m1, j1) ∈ Q5.

Case VI. For (s1, x1,u1, r1, v1,m1, j1) ∈ Q6, Eq (3.25) yields

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

≤ ω1ε1 −
δ1s1ε2

u1
−
δ2x1ε2

r1
−
ζ1u1

ε2
−
ζ2r1

ε2
+ Y6, (3.32)

where

Y6 = sup
(s1,x1,u1,r1,v1,m1,j1)∈R7

+

{
− q6q7 + (1 + q1q6)

ϑ1

s1
−
ϑ1

s1
− γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
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−ς1 +
℘2

3

2
− ς2 +

℘2
4

2
+ ϕ + ω2j1 +

℘2
5

2
+ π

}
.

Thus, we conclude that LΦ ≤ −1 for each (s1, x1,u1, r1, v1,m1, j1) ∈ Q6.

Case VII. For (s1, x1,u1, r1, v1,m1, j1) ∈ Q7, Eq (3.25) yields

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

≤ −q6q7 + ω1ε2 + ω2ε1 + Y7, (3.33)

where

Y7 = sup
(s1,x1,u1,r1,v1,m1,j1)∈R7

+

{
(1 + q1q6)

ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2

−
δ1s1v1

u1
− ς1 +

℘2
3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ +

℘2
5

2
+ π

}
.

Thus, we conclude that LΦ ≤ −1 for each (s1, x1,u1, r1, v1,m1, j1) ∈ Q7.

Case VIII. For (s1, x1,u1, r1, v1,m1, j1) ∈ Q8, Eq (3.25) yields

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

≤ (1 + q1q6)
ϑ1

ε2
−
ϑ1

ε2
+ Y8, (3.34)

where

Y8 = sup
(s1,x1,u1,r1,v1,m1,j1)∈R7

+

{
− q6q7 − δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

}
.

Thus, we conclude that LΦ ≤ −1 for each (s1, x1,u1, r1, v1,m1, j1) ∈ Q8.

Case IX. For (s1, x1,u1, r1, v1,m1, j1) ∈ Q9, Eq (3.25) yields

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

≤ −
δ2v1

ε2r1
−
ϑ2

ε2
+ Y9, (3.35)
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where

Y9 = sup
(s1,x1,u1,r1,v1,m1,j1)∈R7

+

{
− q6q7 + (1 + q1q6)

ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
− δ2v1 − γ2 +

℘2
2

2

−
δ1s1v1

u1
− ς1 +

℘2
3

2
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

}
.

Thus, we conclude that LΦ ≤ −1 for each (s1, x1,u1, r1, v1,m1, j1) ∈ Q9.

Case X. For (s1, x1,u1, r1, v1,m1, j1) ∈ Q10, Eq (3.25) yields

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2

−
δ1s1v1

u1
− ς1 +

℘2
3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

≤ −
δ1s1v1

ε2
−
ζ1ε2

v1
+ Y10, (3.36)

where

Y10 = sup
(s1,x1,u1,r1,v1,m1,j1)∈R7

+

{
− q6q7 + (1 + q1q6)

ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1

−γ2 +
℘2

2

2
− ς1 +

℘2
3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

}
.

Thus, we conclude that LΦ ≤ −1 for each (s1, x1,u1, r1, v1,m1, j1) ∈ Q10.

Case XI. For (s1, x1,u1, r1, v1,m1, j1) ∈ Q11, Eq (3.25) yields

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

≤ −
δ2x1v1

ε2
−
ζ2ε2

v1
+ Y11, (3.37)

where

Y11 = sup
(s1,x1,u1,r1,v1,m1,j1)∈R7

+

{
− q6q7 + (1 + q1q6)

ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1

−γ2 +
℘2

2

2
−
δ1s1v1

u1
− ς1 +

℘2
3

2
− ς2 +

℘2
4

2
−
ζ1u1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

}
.

Thus, we conclude that LΦ ≤ −1 for each (s1, x1,u1, r1, v1,m1, j1) ∈ Q11.

Case XII. For (s1, x1,u1, r1, v1,m1, j1) ∈ Q12, Eq (3.25) yields

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1
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−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

≤ −
δ1

ε2
−
δ2

ε2
+ Y12, (3.38)

where

Y12 = sup
(s1,x1,u1,r1,v1,m1,j1)∈R7

+

{
− q6q7 + (1 + q1q6)

ϑ1

s1
−
ϑ1

s1
− γ1 +

℘2
1

2
− δ2v1 − γ2 +

℘2
2

2

−
δ1s1v1

u1
− ς1 +

℘2
3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

}
.

Thus, we conclude that LΦ ≤ −1 for each (s1, x1,u1, r1, v1,m1, j1) ∈ Q12.

Case XIII. For (s1, x1,u1, r1, v1,m1, j1) ∈ Q13, Eq (3.25) yields

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

≤ −q6q7 +
ω1

ε2
+ Y13, (3.39)

where

Y13 = sup
(s1,x1,u1,r1,v1,m1,j1)∈R7

+

{
(1 + q1q6)

ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2

−
δ1s1v1

u1
− ς1 +

℘2
3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω2j1 +

℘2
5

2
+ π

}
.

Thus, we conclude that LΦ ≤ −1 for each (s1, x1,u1, r1, v1,m1, j1) ∈ Q13.

Case XIV. For (s1, x1,u1, r1, v1,m1, j1) ∈ Q14, Eq (3.25) yields

LΦ ≤ −q6q7 + (1 + q1q6)
ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2
−
δ1s1v1

u1

−ς1 +
℘2

3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 + ω2j1 +

℘2
5

2
+ π

≤ −q6q7 +
ω2

ε2
+ Y14, (3.40)

where

Y14 = sup
(s1,x1,u1,r1,v1,m1,j1)∈R7

+

{
(1 + q1q6)

ϑ1

s1
−
ϑ1

s1
− δ1v1 − γ1 +

℘2
1

2
−
ϑ2

x1
− δ2v1 − γ2 +

℘2
2

2

−
δ1s1v1

u1
− ς1 +

℘2
3

2
−
δ2x1v1

r1
− ς2 +

℘2
4

2
−
ζ1u1

v1
−
ζ2r1

v1
+ ϕ + ω1m1 +

℘2
5

2
+ π

}
.

Thus, we conclude that LΦ ≤ −1 for each (s1, x1,u1, r1, v1,m1, j1) ∈ Q14.
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Evidently, we can deduce from (3.27)–(3.40) that for a sufficiently small ε,

LΦ ≤ −1 ∀ (s1, x1,u1, r1, v1,m1, j1) ∈ R7
+ \ Q.

As a result, we develop that a constantU > 0 is such that it ensures

LΦ(s1, x1,u1, r1, v1,m1, j1) < U, ∀ (s1, x1,u1, r1, v1,m1, j1) ∈ R7
+ \ Q.

Finally,

dΦ(s1, x1,u1, r1, v1,m1, j1)
< −Udt +

[
(q6 + 1)s1 − (q1q6)℘1

]
dB1(t) +

[
(q6 + 1)x1 − q2q6℘2

]
dB2(t)

+
[
(q6 + 1)u1 − q3q6℘3

]
dB3(t) +

[
(q6 + 1)r1 − q4q6℘4

]
dB4(t)

+
[
(q6 + 1)v1 − q5q6℘5

]
dB5(t) +

[
(q6 + 1)m1 − ℘6

]
dB6(t)

+
[
(q6 + 1)j1 − ℘7

]
dB7(t). (3.41)

Suppose that (s1(0), x1(0),u1(0), r1(0), v1(0),m1(0), j1(0)) = (r1, r2, r3, r4, r5, r6, r7) = r̄ ∈ R7
+ \ Q, and

that δr̄ is the time span from an initial point r̄ to reach a domain Q; then

λn = inf
{
t : |u(t) = n|

}
and λ(n)(t) = min{λr̄, t, λn}.

By integrating both sides of the variant (3.41) from zero to λ(n)(t), contemplating the expectation and
using Dynkin’s computation, one can obtain the following:

UΦ
(
s1(λ(n)(t)), x1(λ(n)(t)),u1(λ(n)(t)), r1(λ(n)(t)), v1(λ(n)(t)),m1(λ(n)(t)),m1(λ(n)(t))

)
− Φ(r̄)

= U ∈ tλ
(n)(t)

0 LΦ
(
s1(u1), x1(u1),u1(u1), r1(u1), v1(u1),m1(u1), j1(u1)

)
du1

≤ U ∈ tλ
(n)(t)

0 −Udu1 = −UUλ(n)(t). (3.42)

Since Φ(r̄) is positive,

Uλ(n)(t) ≤
Φ(r̄)
U

. (3.43)

This indicates that P
{
λε < ∞

}
= 1 as a consequence of proof of Theorem 3.3. Conversely, the

model (2.2) can be stated as regular. Thus, if n, t 7→ ∞, we almost surely find λ(n)(t) 7→ λr̄, (a.s).
Applying Fatou’s lemma, we have

Uλ(n)(t) ≤
Φ(r̄)
U

< ∞. (3.44)

Obviously, supr̄∈` Uλ
r̄, where ` is a compact subset of R7

+. It validates the Lemma 3.2 assertion (ii).
Also, the diffusion matrix of the model (2.2) is

U =



℘2
1s2

1 0 0 0 0 0 0
0 ℘2

2x2
1 0 0 0 0 0

0 0 ℘2
3u2

1 0 0 0 0
0 0 0 ℘2

4r2
1 0 0 0

0 0 0 0 ℘2
5v2

1 0 0
0 0 0 0 0 ℘2

6m2
1 0

0 0 0 0 0 0 ℘2
7j2

1


. (3.45)
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Selecting V1 = min
(s1,x1,u1,r1,v1,m1,j1)∈Q̄∈R7

+

{
℘2

1s2
1, ℘

2
2x2

1, ℘
2
3u2

1, ℘
2
4r2

1, ℘
2
5v2

1, ℘
2
6m2

1, ℘
2
7j2

1
}
, we find that

7∑
p,p=1

app(s1, x1,u1, r1, v1,m1, j1)=p=p

= ℘2
1s2

1=
2 + ℘2

2x2
1=

2 + ℘2
3u2

1=
2 + ℘2

4r2
1=

2 + ℘2
5v2

1=
2 + ℘2

6m2
1=

2 + ℘2
7j2

1=
2 ≥ V1|=|

2,

(s1, x1,u1, r1, v1,m1, j1) ∈ Q̄,
(3.46)

where= = (=1,=2,=3,=4,=5,=6,=7) ∈ R7
+. This shows that the assertion (i) of Lemma 3.2 is satisfied.

Based on the foregoing discussion, Lemma 3.2 illustrates that the framework (2.2) is ergodic and has
only one stationary distribution.

4. Numerical experiments for fractional SDVI system

4.1. Caputo fractional derivative operator

In this part, we will investigate the dynamical behavior of SDVI models (2.1) and (2.2) that
incorporate the multi-target cells and involve classical, index-law and eventually, stochastic processes.
In this scenario, if we define T as the final time of transmission, that is, the penultimate time when a
secondary outbreak occurs, then the mathematical framework will be developed by using the classical
derivative formulation in the first round, then the index-law kernel in the second step and finally the
stochastic environment in the later phases. Following that, the mathematical formalism that explains
this phenomenon is offered as follows:

ds1
dt = ϑ1 − δ1s1v1 − γ1s1,
dx1
dt = ϑ2 − δ2x1v1 − γ2s1,

du1
dt = δ1s1v1 − χ1u1, i f 0 ≤ t ≤ T1,

dr1
dt = δ2x1v1 − χ2r1,

dv1
dt = ζ1u1 + ζ2r1 − ϕv1 − ω1v1m1 − ω2v1j1,

dm1
dt = χ1v1m1 − ρ1m1,

dj1
dt = χ2v1j1 − ρ2j1,

(4.1)



c
0D$

t s1(t) = ϑ1 − δ1s1v1 − γ1s1,
c
0D$

t x1(t) = ϑ2 − δ2x1v1 − γ2s1,
c
0D$

t u1(t) = δ1s1v1 − χ1u1, i f T1 ≤ t ≤ T2,
c
0D$

t r1(t) = δ2x1v1 − χ2r1,
c
0D$

t v1(t) = ζ1u1 + ζ2r1 − ϕv1 − ω1v1m1 − ω2v1j1,
c
0D$

t m1(t) = χ1v1m1 − ρ1m1,
c
0D$

t j1(t) = χ2v1j1 − ρ2j1

(4.2)
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ds1(t) =
(
ϑ1 − δ1s1v1 − γ1s1

)
+ ℘1s1(t)dB1(t),

dx1(t) =
(

= ϑ2 − δ2x1v1 − γ2s1
)

+ ℘2x1(t)dB2(t),
du1(t) =

(
δ1s1v1 − χ1u1

)
+ ℘3u1(t)dB3(t), i f T2 ≤ t ≤ T,

dr1(t) =
(
δ2x1v1 − χ2r1

)
+ ℘4r1(t)dB4(t),

dv1(t) =
(
ζ1u1 + ζ2r1 − ϕv1 − ω1v1m1 − ω2v1j1

)
+ ℘5v1(t)dB5(t),

dm1(t) =
(

= χ1v1m1 − ρ1m1
)

+ ℘6m1(t)dB6(t),
dj1(t) =

(
= χ2v1j1 − ρ2j1

)
+ ℘7j1(t)dB7(t)

(4.3)

Here, we apply the technique described in [24] for the scenario of Caputo’s derivative to analyze
quantitatively the piecewise structure described by (4.1)–(4.3). We commence the technique as follows:

dΩ`(t)
dt = Λ(t,Ω`). Ω`(0) = Ω`,0, ` = 1, 2, ..., n i f t ∈ [0,T1],

c
T1

Dβ
t Ω`(t) = Λ(t,Ω`), Ω`(T1) = Ω`,1, i f t ∈ [T1,T2],

dΩ`(t) = Λ(t,Ω`)dt + ℘`Ω`dB`(t), Ω`(T2) = Ω`,2, i f t ∈ [T2,T].

It follows that

Ωr
` =



Ω`(0) +
r∑

p=2

{
23
12Λ(tp,Ω

p)∆t − 4
3Λ(tp−1,Ω

p−1)∆t + 5
12Λ(tp−2,Ω

p−2)∆t
}
, t ∈ [0,T1].

Ω`(T1) +
(∆t)β−1

Γ(β+1)

r∑
p=2

Λ(tp−2,Ω
p−2)Ξ1

+
(∆t)β−1

Γ(β+2)

r∑
p=2

{
Λ(tp−1,Ω

p−1) − Λ(tp−2,Ω
p−2)

}
Ξ2

+
β(∆t)β−1

2Γ(β+3)

r∑
p=2

{
Λ(tp,Ω

p) − 2Λ(tp−1,Ω
p−1) + Λ(tp−2,Ω

p−2)
}
Ξ3, t ∈ [T1,T2],

Ω`(T2) +
n∑

p=r+3

{
5

12Λ(tp−2,Ω
p−2)∆t − 4

3Λ(tp−1,Ω
p−1)∆t + 23

12Λ(tp,Ω
p)∆t

}
+

n∑
p=r+3

{
5

12

(
B(tp−1) − B(tp−2)

)
℘Ωp−2 − 4

3

(
B(tp) − B(tp−1)

)
℘Ωp−1

+23
12

(
B(tp+1) − B(tp)

)
℘Ωp

}
, t ∈ [T2,T],

where

Ξ1 := (r − p − 1)β − (r − p)β, (4.4)

Ξ2 := (r − p + 1)β(r − p + 2β + 3) − (r − p)β(r − p + 3β + 3), (4.5)

and

Ξ3 :=

(r − p + 1)β
(
2(r − p)2 + (3β + 10)(r − p) + 2β2 + 9β + 12

)
+(r − p)β

(
2(r − p)2 + (5β + 10)(r − p) + 6β2 + 18β + 12

)
.

(4.6)

AIMS Mathematics Volume 8, Issue 3, 6466–6503.



6491

4.2. Caputo-Fabrizio fractional derivative operator

In this subsection, we will examine the system dynamics of SDVI propagation involving multiple-
target cells comprising classical, exponential decay law and stochastic mechanisms. If we describe
T as the concluding time of transmission, that is, the final time when a secondary epidemic appears,
then the mathematical structure will be formed in the first round by using the classical derivative
implementation, then the exponential decay kernel in the second step and eventually the stochastic
environment in the subsequent periods. Regarding that, the mathematical approach used to illustrate
this occurrence is presented as follows:

ds1
dt = ϑ1 − δ1s1v1 − γ1s1,
dx1
dt = ϑ2 − δ2x1v1 − γ2s1,

du1
dt = δ1s1v1 − χ1u1, i f 0 ≤ t ≤ T1,

dr1
dt = δ2x1v1 − χ2r1,

dv1
dt = ζ1u1 + ζ2r1 − ϕv1 − ω1v1m1 − ω2v1j1,

dm1
dt = χ1v1m1 − ρ1m1,

dj1
dt = χ2v1j1 − ρ2j1,

(4.7)



CF
0 D$

t s1(t) = ϑ1 − δ1s1v1 − γ1s1,
CF
0 D$

t x1(t) = ϑ2 − δ2x1v1 − γ2s1,
CF
0 D$

t u1(t) = δ1s1v1 − χ1u1, i f T1 ≤ t ≤ T2,
CF
0 D$

t r1(t) = δ2x1v1 − χ2r1,
CF
0 D$

t v1(t) = ζ1u1 + ζ2r1 − ϕv1 − ω1v1m1 − ω2v1j1,
CF
0 D$

t m1(t) = χ1v1m1 − ρ1m1,
CF
0 D$

t j1(t) = χ2v1j1 − ρ2j1,

(4.8)



ds1(t) =
(
ϑ1 − δ1s1v1 − γ1s1

)
+ ℘1s1(t)dB1(t),

dx1(t) =
(

= ϑ2 − δ2x1v1 − γ2s1
)

+ ℘2x1(t)dB2(t),
du1(t) =

(
δ1s1v1 − χ1u1

)
+ ℘3u1(t)dB3(t), i f T2 ≤ t ≤ T,

dr1(t) =
(
δ2x1v1 − χ2r1

)
+ ℘4r1(t)dB4(t),

dv1(t) =
(
ζ1u1 + ζ2r1 − ϕv1 − ω1v1m1 − ω2v1j1

)
+ ℘5v1(t)dB5(t),

dm1(t) =
(

= χ1v1m1 − ρ1m1
)

+ ℘6m1(t)dB6(t),
dj1(t) =

(
= χ2v1j1 − ρ2j1

)
+ ℘7j1(t)dB7(t).

(4.9)

Here, we apply the technique described in [24] for the scenario of the Caputo-Fabrizio derivative to
analyze quantitatively the piecewise structuredescribed by (4.7)–(4.9). We commence the technique as
follows: 

dΩ`(t)
dt = Λ(t,Ω`). Ω`(0) = Ω`,0, ` = 1, 2, ..., n i f t ∈ [0,T1],

CF
T1

Dβ
t Ω`(t) = Λ(t,Ω`), Ω`(T1) = Ω`,1, i f t ∈ [T1,T2],

dΩ`(t) = Λ(t,Ω`)dt + ℘`Ω`dB`(t), Ω`(T2) = Ω`,2, i f t ∈ [T2,T].

(4.10)
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It follows that

Ωr
` =



Ω`(0) +
r∑

p=2

{
23
12Λ(tp,Ω

p)∆t − 4
3Λ(tp−1,Ω

p−1)∆t + 5
12Λ(tp−2,Ω

p−2)∆t
}
, t ∈ [0,T1].

Ω`(T1) +
1−β
M(β)Λ(tn,Ωn) +

β

M(β)

r∑
p=2

{
5

12Λ(tp−2,Ω
p−2)∆t − 4

3Λ(tp−1,Ω
p−1)∆t

+23
12Λ(tp,Ω

p)∆t
}
, t ∈ [T1,T2],

Ω`(T2) +
n∑

p=r+3

{
5
12Λ(tp−2,Ω

p−2)∆t − 4
3Λ(tp−1,Ω

p−1)∆t + 23
12Λ(tp,Ω

p)∆t
}

+
n∑

p=r+3

{
5

12

(
B(tp−1) − B(tp−2)

)
℘Ωp−2 − 4

3

(
B(tp) − B(tp−1)

)
℘Ωp−1

+23
12

(
B(tp+1) − B(tp)

)
℘Ωp

}
, t ∈ [T2,T].

(4.11)

4.3. Atangana-Baleanu fractional derivative operator

Here, we will concentrate on the dynamic behavior of SDVI spreading, which demonstrates three
main phases for a certain region, including the classical, GML law and lastly, stochastic causes. If we
define T as the final time when a secondary epidemic appears, the mathematical configuration will be
constituted in the first round employing the classical derivative application, followed by the Mittag-
Leffler kernel in the second step and finally the stochastic environment in subsequent periods. In this
regard, the mathematical model utilized to describe this phenomenon is as follows:



ds1
dt = ϑ1 − δ1s1v1 − γ1s1,
dx1
dt = ϑ2 − δ2x1v1 − γ2s1,

du1
dt = δ1s1v1 − χ1u1, i f 0 ≤ t ≤ T1,

dr1
dt = δ2x1v1 − χ2r1,

dv1
dt = ζ1u1 + ζ2r1 − ϕv1 − ω1v1m1 − ω2v1j1,

dm1
dt = χ1v1m1 − ρ1m1,

dj1
dt = χ2v1j1 − ρ2j1,

(4.12)



ABC
0 D$

t s1(t) = ϑ1 − δ1s1v1 − γ1s1,
ABC
0 D$

t x1(t) = ϑ2 − δ2x1v1 − γ2s1,
ABC
0 D$

t u1(t) = δ1s1v1 − χ1u1, i f T1 ≤ t ≤ T2,
ABC
0 D$

t r1(t) = δ2x1v1 − χ2r1,
ABC
0 D$

t v1(t) = ζ1u1 + ζ2r1 − ϕv1 − ω1v1m1 − ω2v1j1,
ABC
0 D$

t m1(t) = χ1v1m1 − ρ1m1,
ABC
0 D$

t j1(t) = χ2v1j1 − ρ2j1,

(4.13)
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ds1(t) =
(
ϑ1 − δ1s1v1 − γ1s1

)
+ ℘1s1(t)dB1(t),

dx1(t) =
(

= ϑ2 − δ2x1v1 − γ2s1
)

+ ℘2x1(t)dB2(t),
du1(t) =

(
δ1s1v1 − χ1u1

)
+ ℘3u1(t)dB3(t), i f T2 ≤ t ≤ T,

dr1(t) =
(
δ2x1v1 − χ2r1

)
+ ℘4r1(t)dB4(t),

dv1(t) =
(
ζ1u1 + ζ2r1 − ϕv1 − ω1v1m1 − ω2v1j1

)
+ ℘5v1(t)dB5(t),

dm1(t) =
(

= χ1v1m1 − ρ1m1
)

+ ℘6m1(t)dB6(t),
dj1(t) =

(
= χ2v1j1 − ρ2j1

)
+ ℘7j1(t)dB7(t).

(4.14)

Here, we apply the technique described in [24] for the scenario of the Atanagan-Baleanu-Caputo
derivative to analyze quantitatively the piecewise structure described by (4.12)–(4.14). We commence
the technique as follows:

dΩ`(t)
dt = Λ(t,Ω`). Ω`(0) = Ω`,0, ` = 1, 2, ..., n i f t ∈ [0,T1],

ABC
T1

Dβ
t Ω`(t) = Λ(t,Ω`), Ω`(T1) = Ω`,1, i f t ∈ [T1,T2],

dΩ`(t) = Λ(t,Ω`)dt + ℘`Ω`dB`(t), Ω`(T2) = Ω`,2, i f t ∈ [T2,T].

It follows that

Ωr
` =



Ω`(0) +
r∑

p=2

{
23
12Λ(tp,Ω

p)∆t − 4
3Λ(tp−1,Ω

p−1)∆t + 5
12Λ(tp−2,Ω

p−2)∆t
}
, t ∈ [0,T1].

Ω`(T1) +
β

ABC(β)Λ(tn,Ωn) +
β(∆t)β−1

ABC(β)Γ(β+1)

r∑
p=2

Λ(tp−2,Ω
p−2)Ξ1

+
β(∆t)β−1

ABC(β)Γ(β+2)

r∑
p=2

{
Λ(tp−1,Ω

p−1) − Λ(tp−2,Ω
p−2)

}
Ξ2

+
β(∆t)β−1

2ABC(β)Γ(β+3)

r∑
p=2

{
Λ(tp,Ω

p) − 2Λ(tp−1,Ω
p−1) + Λ(tp−2,Ω

p−2)
}
Ξ3, t ∈ [T1,T2],

Ω`(T2) +
n∑

p=r+3

{
5
12Λ(tp−2,Ω

p−2)∆t − 4
3Λ(tp−1,Ω

p−1)∆t + 23
12Λ(tp,Ω

p)∆t
}

+
n∑

p=r+3

{
5

12

(
B(tp−1) − B(tp−2)

)
℘Ωp−2 − 4

3

(
B(tp) − B(tp−1)

)
℘Ωp−1

+23
12

(
B(tp+1) − B(tp)

)
℘Ωp

}
, t ∈ [T2,T],

where Ξ1,Ξ2 and Ξ3 are stated as before in (4.4)–(4.6).

5. Results and discussion

This part comprises numerical computations that demonstrate the simulated predictions via the
notable technique proposed by Atangana and Araz [24]. We utilize the stochastic piecewise fractional
DE method to obtain the stochastic version of the designed system by employing the
power-kernel described by (4.1)–(4.3), exponential decay kernel described by (4.7) and (4.8) and
GML kernel described by (4.12)–(4.14) for simulation analysis, as shown below. Suppose that
ϑ1 = 10, ϑ2 = 6, γ1 = 0.01, γ2 = 0.01, ς1 = 0.5, ς2 = 0.3, ζ1 = 10, ζ2 = 5, ϕ = 3, ω1 = 0.3, ω2 =

0.1, ρ1 = 0.1, ρ2 = 0.1, δ1 = δ2 = 0.00005, χ1 = 0.0005 and χ2 = 0.001 with random intensities
℘1 = ℘2 = ℘3 = ℘4 = ℘5 = ℘6 = ℘7 = 0.01. Moreover, we assumed the ICs as
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s1(0) = 0.1, x1(0) = 0.1, u1(0) = 0.1, r1(0) = 0.1, v1(0) = 0.1, m1(0) = 0.2 and j1(0) = 0.5. We can
instantly compute the threshold parameter Rs

0 = 0.258 < 1 and the solution of the model (2.2) must
comply with Theorem 3.3.

Depending on the above discussion, we took into account the model parameters and accompanying
noise concentrations of the dynamical system (4.1)–(4.9) for Figure 1 by utilizing the
deterministic-stochastic approach with crossover impacts. The estimate illustrates and validates
eradication, and it demonstrates that the stochastic framework (2.2) is stochastically asymptotically
stable in the prescribed environments. Figure 1 demonstrates that the simulation of Theorem 3.2 and
its deterministic counterpart have analogous features. Both model solutions congregate at the
disease-free equilibrium point of (2.1). This means that the illness becomes exterminated when such a
prescribed requirement is satisfied, i.e., the number of affected patients will decrease tremendously,
whereas susceptible individuals will remain.
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Figure 1. Deterministic-stochastic dynamic behavior of SDVI model cohorts (4.1)–(4.3),
as obtained by using the power-kernel with fractional-order β = 0.95 and low random
intensities.

Analogously, in Figure 2, we presume another case for the system’s parameters to fix intensities
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of white noise (stated above) through the use of the exponential decay kernel, which also reveals an
irreversible or steady dispersion and quantitatively appeases the theorem’s “stationary distribution”
declaration. According to modeling, the deterministic-stochastic model (4.7)–(4.9) will oscillate for
a long time around the correlating deterministic model’s specific regional steady state given by (2.1).
Because the low noise concentration of the virus will persist, the mean volatility all around the outbreak
steady state is minimal. In the long term, both frameworks result in similarities and differences between
the stochastic model (2.2) and its deterministic counterpart described by (2.1).
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Figure 2. Deterministic-stochastic dynamic behavior of SDVI model cohorts (4.7)–(4.9),
as obtained by using the exponential decay-kernel with fractional-order β = 0.95 and low
random intensities.

Figure 3 represents the deterministic-stochastic dynamics of the SDVI described by (4.12)–(4.14)
considering the piecewise fractional DEs with the system parameters and low random intensities. The
dynamics of the Atanagana-Baleanu Caputo fractional derivative can predict the dynamics in a better
way than the power-kernel and exponential decay kernel. Thus, we furthermore illustrate that the
stochastic approach described by (2.2) has a unique stationary distribution only when the random
intensities are small enough and the threshold parameter Rs

0 > 1.
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Figure 3. Deterministic-stochastic dynamic behavior of SDVI model cohorts (4.12)–(4.14),
as obtained by using GML kernel with fractional-order β = 0.95 and low random intensities.

Figures 4–6 shows the phase portrait of the deterministic-stochastic behavior utilizing the GML
kernel influence by the crossover effects with varying random intensities
℘1 = 0.01, ℘2 = 0.02, ℘3 = 0.03, ℘4 = 0.04, ℘5 = 0.05, ℘6 = 0.06 and ℘7 = 0.07. Nonetheless,
while the crossover qualities of the Mittag-Leffler kernel have been recognized as potent analytical
techniques for depicting major difficulties, it is important to recognize that only underlying
complications continuing to pursue the crossover residences of this kernel can be modeled with
certain restrictions, as is present in legitimate challenges; this kernel will not be capable of
demonstrating the time where the crossover occurred. Admittedly, serious concerns exemplifying
multiple procedures mean that the GML cannot be recreated by using the Atangana-Baleanu
derivative. The investigation is not constricted to the conceptual scheme for the SDVI model, as it can
be extended to several other vector-borne diseases, including Rift Valley fever, yellow fever and Zika,
to discuss the piecewise deterministic-stochastic behavior related to dynamical systems.
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Figure 4. Phase portrait of deterministic-stochastic dynamic behavior of SDVI model cohorts
(4.12)–(4.14), as obtained by using GML kernel with fractional-order β = 0.95 and low
random intensities.
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Figure 5. Phase portrait of deterministic-stochastic dynamic behavior of SDVI model cohorts
(4.12)–(4.14), as obtained by using GML kernel with fractional-order β = 0.95 and low
random intensities.
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(d) (e) (f)

(g)

Figure 6. Phase portrait of deterministic-stochastic dynamic behavior of SDVI model cohorts
(4.12)–(4.14), as obtained by using GML kernel with fractional-order β = 0.95 and low
random intensities.

6. Conclusions

Many real-world phenomena are not deterministic but include stochastic consequences, which
allows for a more precise prediction of their highly infectious evolution. In this research, we
developed a viral model to describe the deterministic-stochastic effects of secondary dengue viral
infection through the use of multiple target cells. In the framework, we have used both heterologous
and homologous immune cells. We tested the fundamental features of solutions, such as the
feasibility and invariant region. We determined the threshold parameters for both deterministic and
stochastic simulations, respectively. More accurately, we have verified the following result:

Rs
0 =

ζ1ζ2ϑ1ϑ2δ1δ2

(℘
2
1

2 − γ1)(℘
2
2

2 − γ2)(℘
2
3

2 − ς1)(℘
2
4

2 − ς2)(
℘2

5
2 + ϕ)2

.

Then, for any initial setting (s1(0), x1(0),u1(0), r1(0), v1(0),m1(0), j1(0)) ∈ R7
+, the scheme (2.2) has a

unique ESD π(.). We clearly see the adverse effect of noise concentration on virus transmission. The
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extermination of dengue virus infection in people grows in tandem with the extent of the noise in the
vulnerable community. Accordingly, the persistence of the virus declines as the noise level increases.
We contend that, while the GML kernel, exponential-decay kernel and power kernel have been revealed
to be capable of depicting several crossover behaviors, their strengths to do so may be curtailed due
to the intricacy of existence. Furthermore, numerous serious concerns exist about crossover behaviors
that have yet to be illustrated by the Mittag-Leffler, the exponential or the power law kernel, so any
mathematical formula based on these derivatives will be unable to exemplify such behavior. Some key
features of piecewise concepts are described in the proposed model, and a numerical mechanism has
been proposed. We are convinced that this theory will lead to opportunities for additional exploration
of biological impacts, including time delay [46] and reaction-diffusion [47].
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